WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 || 3 | 4 |

«РАЗВИТИЕ ТЕХНИЧЕСКОГО МЫШЛЕНИЯ У БУДУЩЕГО УЧИТЕЛЯ ТЕХНОЛОГИИ И ПРЕДПРИНИМАТЕЛЬСТВА СРЕДСТВАМИ СИСТЕМЫ ПОЗНАВАТЕЛЬНЫХ ЗАДАНИЙ ...»

-- [ Страница 2 ] --

Философия науки и техники позволяет понять мировоззренческую и логико-методологическую проблематику современного естествознания и техникознания, знакомит с философскими основами и методологией технических дисциплин [74].

Методология - система принципов и способов организации и построения теоретической и практической деятельности, а также учение об этой системе [86, с. 33]. Знание методологических особенностей технических наук позволяет обоснованно фокусировать внимание будущих учителей на сущностных вопросах при обучении техническим дисциплинам.

Решая проблему развития технического мышления студентов с помощью специально разработанной системы, мы опираемся на особенности методологии технических наук. К основным особенностям методологии технических наук ученые относят:

- значение технических наук как важнейшей производительной силы общества;

- общественную значимость технических наук;

- разработку средств, направленных на оптимизацию последствий технического прогресса и предотвращение нежелательных последствий;

- влияние роли социального фактора;

- особенности технических задач.

Раскроем выделенные особенности.

В условиях технического прогресса наука все более непосредственно выступает как производительная сила общества. Наиболее полно функция науки как производительной силы находит выражение в технических науках. Именно технические науки обосновывают, разрабатывают и поставляют современному производству высокие технологии, которые способствуют бурному развитию производства и повышению уровня жизни населения [200].

Наиболее существенной методологической особенностью знаний в технике является то, что опредмечиваются, материализуются в технике соответствующие знания лишь при условии общественной потребности в данных продуктах труда [98]. Если у общества появляется техническая потребность, то это продвигает науку вперед больше, чем десяток университетов [101]. Б.М.Кедров отмечает: «Технические науки связаны с общественно-экономическими науками, так как цели, ради которых в технике используются законы природы, черпаются из интересов и запросов общественно-исторической практики» [75, с. 31].

Другой важной методологической особенностью технических наук является характерная для них в настоящее время ориентация на предотвращение и устранение нежелательных последствий научнотехнического прогресса. Она связана с развертыванием современного научно-технического прогресса и является специфичной для него. Ориентация на профилактику негативных последствий научно-технического прогресса давно уже стало нормой при разработке новой техники и технологии [109].

Наряду с этим начинает проявляться новая методологическая особенность технических наук — ориентация на разработку технических систем, направленных на оптимизацию взаимодействия общества и природы. К сожалению, уже сейчас появились необратимые тенденции, например, в экологической обстановке, обусловленные техническим прогрессом. И теперь технические науки разрабатывают технологии, средства, направленные на устранение уже имеющихся негативных последствий технического прогресса [109].

Важно подчеркнуть, что в структуру технического знания входит социальная задача. Конечно, в известном смысле, социальная задача ставится и перед естественными науками. Однако исследования в области естественных наук могут быть и не связаны прямо с общественными потребностями, с социальным заказом. Достаточным стимулом развития целого ряда направлений естествознания является уже сама по себе потребность в знаниях, в научном творчестве, а научный поиск, творчество в естествознании определяется часто не социальным заказом, а внутренней логикой развития науки. Можно привести следующие примеры социальных задач в технических науках: автоматизация работ с вредными для здоровья условиями производства, строительство гидроэлектростанций с учетом нужд ирригации, создание крупных, более экономичных турбогенераторов и т. д. [200].

Если социальные задачи технических наук носят более определенный характер, чем в естественных науках, то, напротив, сами по себе конкретные технические задачи формулируются менее строго, менее однозначно, чем в естествознании. Роль данных иногда выполняют различные ограничения, которые нужно учесть. Эти ограничения часто выполняют роль своеобразных принципов запрета, указывая на то, что нельзя создавать (конструировать). Большинство подобных ограничений при постановке технической задачи явно не формулируются, так как вытекают из общепринятых норм и стандартов.

Необходимость принятия решений в условиях неопределенности, обусловленной характером постановки технических задач, и связанная с этим многовариантность их решения, привели к широкому использованию в технических науках методологических средств системного подхода и системного анализа. Методологический статус указанных концепций не совпадает, хотя они имеют много общего.

В основе системного анализа лежат исходные идеи системного подхода. Системный подход как общенаучное направление методологии представляет конкретизацию принципов материалистической диалектики применительно к исследованию объектов как систем. Исходя из трактовки систем как определенных целостных образований, системный подход ориентирует познание на раскрытие целостности, единства объекта исследования, на выявление типов связей с тем, чтобы на теоретическом уровне получить отражение конкретных механизмов целостности и типологии связей объекта. С позиции системного подхода все технические объекты представляют собой элементы или системы, взаимодействующие, в свою очередь, с другими системами. Так, отдельные станки и агрегаты выступают в качестве элементов технологических линий (систем), а производственное предприятие в целом рассматривается как сложная система. Такой подход упрощает решение как чисто технических задач, так и организационно-управленческих задач. При разработке крупных технических проектов системный подход позволяет подчинить решение технических задач требованиям экономики, социальным и другим требованиям. Тем самым системный подход способствует усилению взаимосвязи технических и общественных наук [98, 181].



Системный анализ связан с более частными, в том числе формализованными, методами и процедурами. Методы системного анализа направлены на выдвижение различных вариантов решения задачи при наличии некоторой неопределенности в условиях задачи. Выбор наиболее приемлемого для реализации варианта решения задачи осуществляется как на основе научного исследования, так и в ряде случаев на основе личного опыта, интуиции и других субъективных моментов. В процессе принятия технических решений методологические средства системного анализа служат действенным фактором интеграции технических наук и производства.

Занимаясь проблемой развития технического мышления, мы обязаны учитывать эти методологические особенности и строить обучение таким образом, чтобы эти тенденции были отражены в содержании и технологии обучения.

Мы раскрыли предмет философии техники и задачи, которые она решает. Для исследования это было особенно важно не только потому, что позволило войти в мир технического знания и разобраться в его специфике, но и выявило необходимость исследования методологии технических наук как важнейшей составляющей процесса исследования технического мышления, влияющей на выбор направления исследования.

Таким образом, стало очевидно, что сама по себе техника нейтральна. Она - только средство, которое может принести и пользу и вред в зависимости от того, что из нее сделает человек, чему она служит, в какие условия он ее ставит. Поэтому главной, центральной фигурой взаимодействия человека и техники является человек. А то, насколько он будет образован, подготовлен, сведущ в техникознании, является уже проблемой образовательной области. Ее решение ложится на плечи педагогов, перед которыми стоят задачи не только обеспечить студентов знаниями, умениями, навыками предметной области техники с учетом того уровня технической культуры и тех требований, которые предъявляет сегодня общество, но и развивать личность, техническое мышление, технические способности. Именно педагог призван создавать такие условия в обучении, при которых человек не будет чувствовать себя лишним в мире техники, не будет бояться инструкций, описаний технических объектов, сможет легко и свободно работать с техникой и с ее помощью осуществлять грандиозные замыслы и мечты.

1. Обосновывается значимость в условиях профессиональной подготовки учителя развития его профессионального мышления. Выявляются особенности профессионального мышления учителя. Обосновывается целесообразность развития педагогического мышления и необходимость целенаправленного развития мышления, специального для предметной области знаний (в рамках данного исследования – технического). Показывается, что техническое мышление является необходимой составляющей профессионального мышления будущего учителя технологии и предпринимательства и поэтому его развитие является важнейшей задачей профессиональной подготовки.

2. Анализ работ педагогов и психологов по проблеме развития мышления является одним из его важнейших профессиональных качеств, поскольку помогает ему обосновывать свои действия, включаться в инновационную деятельность, совершенствовать свой профессионализм.

3. Проведенный анализ блока психолого-педагогических дисциплин, определенного Государственным образовательным стандартом, подтверждает, что проблеме развития педагогического мышления учителя в этом блоке уделяется достаточно большое внимание. Необходимость формирования у будущего учителя как педагогического, так и специального мышления также подтверждается требованиями Государственного образовательного стандарта.

4. Важность развития технического мышления будущего учителя технологии и предпринимательства обоснована задачами образовательной области “Технология”. Педагог должен быть подготовлен таким образом, чтобы обеспечивать в процессе обучения учащихся предмету “Технология” решение следующих задач образовательной области “Технология”: формирование элементов технического мышления, конструкторских способностей, развитие творческих способностей учащихся, формирование трудовой культуры и т.д.

5. Через призму общей теории мышления рассматриваются особенности технического мышления. Выявлено, что техническое мышление является самостоятельным видом интеллектуальной деятельности. Выявлено также, что оно в своих истоках является тем же обобщенным и опосредованным познанием действительности; может быть теоретическим и практическим, репродуктивным и продуктивным, наглядно-образным и наглядно-действенным в зависимости от стоящих перед ним задач. Разработка стратегии развития технического мышления у будущего учителя технологии и предпринимательства (см. гл. II) потребовала, кроме выявления специфики технического мышления, выделение основных положений методологии технического знания.

6. Изучение работ отечественных и зарубежных авторов по “Философии техники” и проведенное сравнение технических и естественных наук по ряду ключевых параметров (объект изучения, ориентация процесса познания, закономерности, понятия и др.) позволило выделить наиболее важные для нашего исследования методологические особенности технических наук. К ним относятся: особенности технических задач, ориентация на предотвращение и устранение нежелательных последствий научно-технического прогресса, общественная значимость. Эти методологические знания были включены в содержание обучения студентов по техническим дисциплинам; они явились ориентиром при проектировании системы задач (2.3) для развития технического мышления.

ГЛАВА 2. РАЗРАБОТКА ДИДАКТИЧЕСКОГО ПОДХОДА К

РАЗВИТИЮ ТЕХНИЧЕСКОГО МЫШЛЕНИЯ

2.1 Структура технического мышления Структура (от лат. structura - строение, расположение, связь) – определенная взаимосвязь, взаиморасположение составных частей, строение, устройство чего-либо [182, с. 598].

Уже само определение понятия «структура» показывает, что исследование структуры того или иного феномена требует раскрытия основных составляющих и их взаимосвязей.

Глубокое исследование структуры технического мышления было осуществлено Т.В.Кудрявцевым и его коллегами Ю.А.Концевой, И.С.Якиманской и другими авторами на материале экспериментов со школьниками, инженерами, конструкторами. Т.В.Кудрявцев исследовал техническое мышление в 70-80 годы XX века. Это время характеризовалось развитием научно-технического прогресса, усложнением инженерной деятельности. Поэтому исследование особенностей мышления человека в техническом труде стало особенно актуальным.

Т.В.Кудрявцев предположил, что само своеобразие производственно-технического труда вызывает преимущественное развитие определенных сторон мышления. Иными словами, особенности многих технических объектов и задач, «само оперирование производственнотехническим материалом придают мышлению специфический характер.

Это не означает, разумеется, что техническое мышление характеризуется своей исключительностью, что оно не имеет ничего общего с другими видами мыслительной деятельности. В своих истоках оно является тем же обобщенным и опосредованным познанием действительности, как и любой другой вид мыслительной деятельности, и также осуществляется через решение проблемных задач. Но постоянное оперирование производственно-техническим материалом накладывает свой отпечаток на психологическую структуру мыслительной деятельности, на особенности ее процесса и вырабатывает определенную направленность мышления»

[71, с. 4].

Исследуя психологическую структуру технического мышления, Т.В.Кудрявцев выявил, что оно трехкомпонентно: «понятийно-образнопрактическое» [88, с.230]. Понятийный компонент обеспечивает сформированность технических понятий. Образный компонент способствует возникновению сложной системы образов и умению оперировать ею.

Практический компонент предполагает обязательную проверку практикой полученного решения. «Теоретические (понятийные), образные (наглядные) и практические (действенные) компоненты не только взаимосвязаны (что имеет место в других видах деятельности), но взаимодейственны, причем каждый из компонентов выступает в роли равноправного члена триединства», - пишет Т.В.Кудрявцев [88, с.230]. Он неоднократно подчеркивает нерасторжимое единство теоретических и практических компонентов деятельности, доказывая этот тезис тем, что любое теоретическое решение, как правило, проверяется практикой, а практика в свою очередь вносит коррективы в теорию. Единство понятийно-образных компонентов доказывается особенностями технических задач, так как очень часто сведения о форме предмета задаются не готовыми образцами, а в виде системы абстрактных графических знаков. Несформированность какого-либо компонента сказывается на решении технических задач.

Для исследования технического мышления Т.В.Кудрявцевым использовался подход, который заключался в анализе экспериментальных материалов: протоколов решения технических задач, продуктов деятельности, результатов наблюдений. Эти материалы получены от разных групп испытуемых, начиная от школьников начального этапа обучения до взрослых людей, занятых профессиональной деятельностью.

Выявленная Т.В.Кудрявцевым более четверти века назад структура технического мышления, в течение последующих десятилетий практически не пересматривалась. Между тем, за прошедшее время в технике произошли поистине революционные перемены.

Действительно, за четверть века, прошедшие после исследования, проведенного Т.В.Кудрявцевым, техника совершила огромный рывок в развитии. Взрывная волна технического прогресса подняла на новый уровень отношения общества и техники. Тысячи важных технических открытий, радикально изменивших окружающий мир, были сделаны учеными и инженерами к концу ХХ века. Рядом с нами живут люди, которые помнят мир без телефона и телевизора, без самолетов и спутников, а сейчас любой человек, имеющий компьютер и подключение к Интернету, может мгновенно получать информацию из любой точки Земли и даже космоса. Причем прогресс компьютерных технологий идет поистине «бешеными» темпами. Новые компьютеры и комплектующие все более высокого качества сменяют друг друга так стремительно, что едва появившись на рынке, они начинают устаревать.

Вслед за новыми научными направлениями и открытиями возникают целые новые отрасли производства: радиоэлектроника, микроэлектроника, атомная энергетика, химия синтетических материалов, производство электронно-вычислительной техники и другие. Творить врачам помогает самая современная аппаратура – точная электроника, оптика, лазерная техника; безнадежных больных спасают искусственные органы.

Как отмечает В.П.Зинченко: «Новые формы деятельности влияют на психологию и сознание людей» [65, с. 56]. В.П.Зинченко делает очень важный вывод о том, что новые средства деятельности, прежде всего трудовой, не только повышают производительность труда, но и предъявляют новые, нередко чрезмерные, требования к человеку, в том числе к его оперативно-технической, познавательной, эмоционально-волевой сферам, к его мотивации, возможностям и способностям, т.е. в широком смысле - к внутренним средствам деятельности человека. Тенденция усложнения форм деятельности новыми техническими средствами давно стала предметом внимания всего цикла наук о трудовой деятельности [65, с. 56].

Несомненно, что такие кардинальные изменения в техническом мире оказали влияние и на техническое мышление: оно стало иным. Уровень развития технического мышления каждого человека должен быть заметно выше, поскольку к этому обязывают жизненные условия, очень тесно зависимые от техники и ее нормального функционирования. “Развитие техники приводит к изменению условий трудовой деятельности, что в свою очередь изменяет требования к субъекту труда”, - отмечается Б.А.Душковым [192, с. 5-6].

Поэтому в настоящее время возникла необходимость развития структуры технического мышления и выделения компонентов, в соответствии с современным развитием техники, на основе методологии технических наук.

По мнению Л.А.Микешиной, автора работы «Методология современной науки»: «Процессы роста и развития знания не могут быть объяснены только в рамках специального знания, поскольку оно входит в структуру науки, взаимодействуя с философско-мировоззренческими, социокультурными, этическими и эстетическими предпосылками и установками. Раскрыть эти компоненты знания и познавательной деятельности тем более сложно, что они существуют в неявной, скрытой форме, опосредуются через подтексты основного специализированного текста.

Необходимость выделять эти скрытые предпосылки и основания делает мышление современного ученого принципиально методологическим, критико-рефлексивным» [111, с. 3]. По мнению автора, «методологический анализ, являясь формой самосознания науки, проясняет соотношение знания и деятельности, строение, организацию, способы получения и обоснования знаний. Выявляя условия и предпосылки познавательной деятельности, в том числе философско-мировоззренческие, методологический анализ превращает их в средства осознанного выбора и научного поиска» [111, с. 4].

Известный философ Х.Ленк, исследующий проблемы философии техники, отмечает, что инженерная деятельность сегодня все чаще имеет дело уже не просто с техническим устройством или машиной, усиливающими возможности продуктивной деятельности человека, и даже не просто с человеко-машинными системами, а со сложными системными комплексами [89, с. 6]. Поэтому необходимость решать ряд задач совершенно нового типа, задач, связанных с синтезом, организацией и управлением сложными техническими и социотехническими системами, а также задач, ориентированных на изучение функционирования и развития сверхсложных социальных объектов, привела к необходимости использования системного подхода.

Известно, что системный подход, как один из важнейших методологических подходов к исследованию объектов [51, 55, 56, 129], можно применять в различных науках (философских, политических, инженернотехнологических) при решении задач, предполагающих изучение или создание системных объектов высокой сложности, а также управление ими.

Как подчеркивает А.И.Ракитов в монографии «Философские проблемы науки», - результат познания таких систем зависит не только от объективно воплощенных в них структур, но и от тех познавательных приемов, операций и процедур, с помощью которых изучаются и фиксируются соотношения между структурами, их формальные и содержательные характеристики, а также включенные в них подсистемы и элементы [145, с. 69]. Разумеется, что для этого в каждом конкретном случае системный подход должен реализовываться в виде некоторого конкретного системного метода, т.е. набора правил, инструкций, эталонов и приемов исследования данных конкретных объектов с учетом их качественного своеобразия. Следовательно, он преломляется через конкретные теоретические конструкции, т.е. через те или иные конкретные понятия и теории, в которых выражаются знания о законах функционирования и развития таких объектов [16, 41, 146].

Исследование такой сложной и многогранной проблемы, как структура технического мышления и его развития, логично осуществить, опираясь на системный подход. Применение системного подхода позволяет глубже проникнуть в сущность структуры технического мышления как целостной системы. Системный подход в наших условиях позволяет раскрыть взаимозависимость компонентов технического мышления и их конкретную роль в осуществлении мыслительного процесса с техническими объектами.

Опора на системный подход при исследовании процесса развития технического мышления ориентирует на необходимость проведения анализа структуры технического мышления в современных условиях развития техники. Необходимо выяснить, можно ли в настоящее время рассматривать компоненты, выделенные около 30 лет назад Т.В.Кудрявцевым, как целостную систему или же, в связи с коренными изменениями в мире техники, необходимо обогащение структуры технического мышления для того, чтобы ее можно было рассматривать как целостную структуру, соответствующую современному уровню развития техники. Далее опора на системный подход подсказывает необходимость разработки средств для развития всех компонентов выявленной структуры технического мышления с целью получения нового качества Для того, чтобы познать техническое мышление как систему, необходимо исследовать, описать каждый компонент структуры и выявить их взаимосвязи и взаимообусловленность.

Анализ современных технических задач и их сравнение с задачами 20-30-летней давности показывает, что, если раньше для описания и решения этих задач достаточно было использовать естественный язык, расширенный техническими терминами, то для свободного владения чертежами, схемами, диаграммами подавляющего большинства современных технических задач необходимо владение специальным языком, называемым языком техники.

Любое научное знание существует в языковой форме. В этом смысле язык служит специфическим строительным материалом для научных теорий. Естественными называются языки, на которых мы говорим: русский, украинский, английский и т. д. Они естественны в том смысле, что возникли в ходе естественного развития общества как средство общения его членов. Имеет смысл рассматривать язык как единство способа определенной структуризации действительности и способа выражения мыслей об этой структурированной действительности. Такой подход позволяет понять необходимость существования, наряду с естественными языками, огромной и все увеличивающейся совокупности научных языков.

Естественный язык наиболее приспособлен для выражения не некоего универсального, а обычного членения действительности.

Однако естественный язык утрачивает это качество, когда познание выходит за границы того, что можно непосредственно увидеть, услышать и осязать. Собственно говоря, специальные искусственные языки как раз и необходимы для фиксации открываемых современными науками членений их предметных областей”, - подчеркивают М.С.Бургин и В.И.Кузнецов в монографии “Введение в современную точную методологию науки” [24, с. 177]. Они посвящают языку как способу выражения научного знания целую главу, назвав “важным компонентом научной теории ее языковые средства, которые, как правило, образуют систему языков разных типов” [24, с.165].

Авторы монографии “Философия науки и техники” [164] подчеркивают, что хотя наука и пользуется естественным языком, она не может только на его основе описывать и изучать свои объекты. Во-первых, обыденный язык приспособлен для описания и предвидения объектов, вплетенных в наличную практику человека (наука же выходит за ее рамки); во-вторых, понятия обыденного языка нечетки и многозначны, их точный смысл чаще всего обнаруживается лишь в контексте языкового общения, контролируемого повседневным опытом. Наука же не может положиться на такой контроль, поскольку она преимущественно имеет дело с объектами, не освоенными в обыденной практической деятельности. Чтобы описать изучаемые явления, она стремится как можно более четко фиксировать свои понятия и определения. И дальше: “Выработка наукой специального языка, пригодного для описания ею объектов, необычных с точки зрения здравого смысла, является необходимым условием научного исследования. Язык науки постоянно развивается по мере ее проникновения во все новые области объективного мира. Причем он оказывает обратное воздействие на повседневный естественный язык” [164, с. 35].

Язык науки является, по мнению авторов монографии “Философия и методология науки”, важнейшим средством научного познания [179].

“Для языка науки характерны определенность используемых понятий и терминов, стремление к четкости и однозначности утверждений, к строгой логичности в изложении материала” [179, с. 17].

Таким образом, как методологические исследования, так и постановка современных технических задач убеждают в том, что владение языком техники целесообразно выделить в качестве самостоятельного компонента технического мышления.

Язык техники служит своеобразным связующим звеном между теорией и практикой. В этом заключается специфическая роль любой технической схемы, в которой определенные понятия “закодированны” при помощи тех или иных символов. Для выяснения того, что изображено на схеме, необходимо хорошо знать условные обозначения и функции отдельных частей схемы. В процессе анализа основных частей схемы и определения связей между ними создается представление о том, что изображено на схеме и каково назначение устройства, изображенного при ее помощи. Более подготовленные учащиеся могут один раз прочитать схему механизма и, не возвращаясь к каждому узлу схемы, установить связи между узлами схемы. Но чаще уровень подготовки студентов заставляет их не один раз возвращаться к каждому элементу схемы механизма, прежде чем назначение механизма будет им понято.

Таким образом, владеть языком техники необходимо, так как особенностью технических объектов является то, что они должны иметь описания, по которым специалисты могут воспроизвести нужный объект и обеспечить его использование. Также очень часто технические задачи задаются в виде условных обозначений. Информацию, заданную в такой специфической форме, надо “перекодировать”. Поэтому, владение языком техники - необходимый компонент сформированного технического мышления.

В качестве второго компонента мы выделяем - оперативность. Под оперативностью понимается способность быстро, вовремя исправить или направить ход дел [120, с. 452].

Определение оперативности также дано Д.А.Ошаниным, который под оперативностью понимает тонкую приспособимость к условиям деятельности, обеспечивающую гибкое переключение с отражения одних свойств объектов на отражение других свойств и приводящую, таким образом, отражение в соответствие с потребностью решения конкретных задач [125].

Введение компонента оперативности в структуре технического мышления связано с тенденциями изменения условий трудовой деятельности человека.

Б.Ф.Ломов отмечает три главные тенденции.

Во-первых, в связи с развитием механизации и автоматизации перед человеком ставится задача одновременного управления все большим количеством объектов (и их параметров). Это, естественно, усложняет анализ и оценку их состояний, а следовательно, и операции программирования, управления и контроля.

Во-вторых, человек все более отдаляется от управляемых объектов.

В условиях дистанционного управления он уже не может воспринимать их состояние непосредственно. Между органами чувств человека и объектом управления “вклинивается” целая система технических устройств, передающих необходимую информацию. При этом обычно информация, поступающая к человеку, оказывается закодированной; перед ним возникает новая задача - декодирование, которой не было при непосредственном восприятии хода управляемого процесса.

Наконец, в условиях современной техники значительно возрастают требования к скорости действий работника, обусловленные повышением скоростей управляемых процессов [162, с. 5].

Необходимость овладения оперативным мышлением является следствием быстрого устаревания (старения) знаний в процессе интенсивного технического прогресса. Объяснятся это следующим. Высокий уровень развития научно-технических знаний способствует постоянному совершенствованию средств производства. В значительной мере ускоряются сроки их практического внедрения. Если еще в первой четверти ХХ века период от фундаментальных научных исследований до их практической реализации составлял около двадцати лет, в 90-х годах он сократился в 5-6 раз, а теперь некоторые технические средства устаревают, еще не дойдя до потребителя (компьютерная техника). Поэтому человеку необходимо уметь оперативно обновлять технические знания. При современном темпе жизни, огромном потоке информации, многовариантности возможных решений человек сталкивается с новой для себя задачей охвата этого потока информации, выбора нужной. Технические знания нужно обновлять также оперативно, как развиваются технические средства [53].

Особенности функционирования сложных технических систем, которые отмечаются в методологии технического знания (см. 1.3), предполагают оперативность в оперировании образами.

“Оперативный образ – отражение в сознании человека объекта действия (предмета, процесса), складывающееся по ходу выполнения действия и подчиненное его задачам” [180, с. 234]. Оперативный образ содержит только ту информацию об объекте, которая необходима для правильного совершения данного действия. Он обеспечивает успешное выполнение задач в оптимальных (нормальных) и затрудненных условиях.

В оперативном образе объект функционально деформируется, в нем акцентируются характеристики объекта, особенно существенные для выполнения данного действия. Эту проблему активно исследовал Д.А.Ошанин. Он отмечает, что, “воспроизводя динамику объектов, отражение само становится динамическим, осуществляется в форме динамических образов. А в той мере, в какой оно непосредственно детерминировано как по своему содержанию, так и по своей структуре задачами деятельности, соответствующие динамические образы должны рассматриваться как оперативные” [125, с. 32].

Психологи, занимающимися проблемами взаимосвязи человека и техники [66, 162], выделяют особенности функциональных характеристик человека, работающего с техникой. Приведем ряд выделенных особенностей, которые отражают значение оперативности при работе с техническими объектами:

- способность работать в неожиданных ситуациях, высокая гибкость и приспособляемость к изменяющимся внешним воздействиям, возможность работать по многим программам;

- способность использовать недостаточную (неполную) информацию и создать цельное представление по отдельным событиям;

- возможность принимать решения на основе обобщенных данных и знаний, относящихся к различным областям науки, техники и производства;

- способность сориентироваться во времени и в пространстве;

- способность интегрировать разнородные элементы в единую систему;

- широкий диапазон гибкости способов переработки информации;

- способность накапливать информацию и использовать накопленный опыт для совершенствования способов работы;

- широкие возможности выбора способов действия [66, 162].

Во всех этих случаях имеет место ситуация, когда человек, принимающий решение, должен разобраться в возникшей обстановке и найти пути преодоления тех неблагоприятных факторов, которые создали ненормальное положение в работе системы.

Повышение требований к людям, взаимодействующим со сложными техническими системами, выделяют как важнейшую из методологических особенностей и философы, занимающиеся проблемами предметной области техники [89, 112, 161].

Целесообразность введения оперативности в ранг компонента технического мышления связана с особенностями решения технических задач. По мнению В.В.Чебышевой, к решению практических задач всегда предъявляются определенные временные требования. Сроки решения технических задач ограничены. Даже совершенное решение может утратить значение, если чрезмерно затягивается во времени. Вместе с тем, менее совершенное, но быстро найденное и осуществленное решение может оказаться более приемлемым. Скоростные (мы бы назвали оперативные) требования к решению задачи становятся одним из решающих ее условий.

Исходя из вышесказанного, можно утверждать, что одной из составляющих технического мышления является оперативность.

Оперативное мышление – совокупность интеллектуальных процессов человека-оператора АСУ, включенных в регуляцию его управляющей деятельности. По своей функции в информационных процессах системы “человек – машина” оперативное мышление является одной из форм переработки информации. Оперативное мышление обладает следующими основными особенностями: 1) оперативное мышление – мышление в действии, для действия и посредством действий (т.е. операционных преобразований, подлежащих немедленной реализации); 2) оперативное мышление характеризуется высоким уровнем развития синтетических процессов (процессов структурирования), позволяющих объединить многочисленные, разнообразные и разрозненные детали, параметры наличной ситуации в четкую малоэлементную структуру; 3) в оперативном мышлении значителен удельный вес перцептивных компонентов, обогащенных и преобразованных с помощью обобщенных понятийных знаний об объекте управления [138, с. 233].

В соответствии с этим можно выделить три основные функции оперативного мышления – решение задач, планирование, декодирование.

Именно эти функции часто требуются мышлению в процессе осуществления технической деятельности. Качественное выполнение этих функций обусловливает успешное взаимодействие с техническими объектами.

Раскроем эти функции.

Для того, чтобы прийти к решению задачи, которое даст техникоэкономический эффект, нужно из множества возможных вариантов решений выделить оптимальный, оценить эти варианты с точки зрения множества неуловимых и часто противоречивых критериев. Поскольку ограниченное время далеко не всегда позволяет дать исчерпывающее описание всех возможных решений, то инженер должен иметь развитое оперативное мышление, позволяющее решать задачи в определенных условиях.

Как отмечает М.Л.Шубас: “инженерная задача - это нечто большее, чем нахождение одного решения: она требует нахождения предпочтительного метода достижения желаемого результата. Инженерное мышление есть, следовательно, не механическое отражение данной реальности, а избирательная рефлексия, или извлечение инженером как субъектом познания необходимой ему информации и одновременно илиминации ненужных сведений. Лишь после получения нужной ему информации инженер мысленно преобразовывает существующую технику, варьирует различными эмпирическими моделями и в конечном счете творит новую технику” [202, с. 20].

Существование функции планирования обусловлено необходимостью временного упорядочения, организации действий по управлению объектом в нормальных условиях его работы. Деятельность планирования состоит в подыскивании совокупности способов, средств и определенных сроков реализации производственной цели. Важнейшей особенностью планирования является предвидение возможных осложнений в работе управляемого объекта. Особую форму планирования составляет оптимальное планирование – сравнительная оценка возможных в данных условиях вариантов регулирования и выбор наиболее оптимального.

Декодирование информации об объекте управления как функция оперативного мышления состоит в переводе образов сигналов в образ управляемого объекта. Собственно интеллектуальными компонентами декодирования являются ассоциативные и реконструктивные процессы – актуализация содержания знания, относящегося к данным сигналам, развертывание, реконструкция и интерпретация этого знания об объекте управления.

Оперативное мышление нацелено на обслуживание непосредственно осуществляемых человеком актуальных действий и операций. В сложной деятельности, связанной с решением технических задач, человек не может только созерцать, ограничиваться “чистым восприятием”. На разных этапах решения у него складывается оперативная модель воспринимаемого, которое как бы приспособлено к его задачам и установкам. Повидимому, в процессе чтения схематических технических изображений в результате осмысления их и на основе первоначального образа объекта возникает его оперативная модель. Она является мобильной и может реконструироваться вслед за изменением условий деятельности (хода решения задачи).

В заключение подчеркнем, что оперативное мышление необходимо для решения практически любой современной технической задачи.

Таким образом, в настоящее время мы выделяем в структуре технического мышления 5 компонентов: понятийный, образный, практический, оперативный, владение языком техники. Мы считаем необходимым раскрыть выделенные Т.В.Кудрявцевым компоненты более подробно с позиции современной методологии и философии научнотехнического знания для того, чтобы все компоненты были представлены в едином ключе.

Понятийный компонент технического мышления обеспечивает сформированность технических понятий.

В философском словаре понятие - это мысль, отражающая в обобщенной форме предметы и явления действительности и существенные связи между ними посредством фиксации общих и специфических признаков, в качестве которых выступают свойства предметов и явлений и отношения между ними [182].

М.В.Мостепаненко в монографии “Философия и методы научного познания”. Он пишет: “Наукой надо считать систему научных понятий и предложений о явлениях и законах природы и общества, способную служить теоретической основой для их практического преобразования в интересах всего человечества” [113, с. 8]. По мнению автора монографии, понятия и представления являются научными, если они получены посредством особых научных методов (эмпирических и теоретических) и подтвердились в процессе практики. В этом случае понятия и представления должны правильно отражать объективные законы природы и общества [113, с. 8].

Автор, раскрывая методологическую роль понятийного компонента, утверждает, что под влиянием тех или иных диалектикоматериалистических идей в научном познании, наряду с эмпирическим базисом, складывается некая система общих понятий, обобщающая эмпирические данные науки и служащая основой для выдвижения таких принципов и гипотез, которые разрешают построить новые научные теории [113].

М.В.Мостепаненко подчеркивает: “Поскольку эта система общих понятий является исходным пунктом для построения теорий, то ее следует назвать теоретическим базисом научного познания. Теоретический базис неразрывно связан с эмпирическим базисом и находится под непосредственным влиянием философских идей” [113, с. 39].

Х.Ленк в монографии “Размышления о современной технике” отмечает, что “техника - это понятийно ориентирующий конструкт с внутренне присущей ему многозначностью” [89, с. 46]. Также он подчеркивает, что понятийный инструментарий должен приспосабливаться к развитию самого анализа того или иного феномена. “Понятия являются зондами, а не раз и навсегда установленными неизменными категориями для усмотрения сущности” [89, с. 47].

Методологический анализ и понятийные средства теории науки пригодны прежде всего как ориентирующие и выходящие за рамки отдельных дисциплин исходные положения для успешного теоретического обобщения и объединения технических феноменов [89, с. 59].

Диалектический подход к инженерному мышлению требует рассмотреть последнее как процесс; поэтому необходимо, в первую очередь, выяснить теоретические закономерности его формирования и развития.

Среди них М.Л.Шубас выделяет “широкое использование интегральных (“гибридных”) понятий”, а также “усиление взаимодействия понятийных и наглядно-образных компонентов”[202, с. 16].

Математические, физические, технические понятия имеют свои особенности. В технических понятиях отражаются системные характеристики технических объектов, обобщенное знание, соотнесенное с назначением объектов. Например, “двигатель” преобразует какой-либо вид энергии в механическую, “конденсатор” накапливает электрический заряд, “трансформатор” преобразует напряжение и т.д. В техническом понятии заложена сущность технических объектов, их внутреннее содержание. Нередко встречаются технические понятия, охватывающие системы технических знаний, например, теория механизмов и машин, теоретическая механика и т.д.

Ученые (Л.С.Выготский, Д.Брунер ) придают огромное значение процессу формирования понятий как для системы знаний, так и для развития мышления. Поэтому в структуре технического мышления понятийный компонент включается как один из важнейших составляющих технического мышления, при преобразовании которого и происходит развитие технического мышления.

Образный компонент должен способствовать возникновению сложной системы образов и умения оперировать ею.

В.П.Зинченко в статье «Культура и техника» пишет, что образное мышление - это средство перехода от замысла, идеи, гипотезы, схемы к образу. Он указывает, что психологи, анализирующие процесс творчества, именно в пункте этого перехода локализовали максимальное умственное усилие, требующее предельного напряжения от ученого. К этому типу мышления пора начать относиться не как к чему-то естественному для художников, писателей и лишь по счастливой случайности оказавшемуся у А.Энштейна, а как к необходимому инструменту познания и практического действия в любой области. А.Энштейн, - как отмечал В.П.Зинченко, - мыслит посредством зрительных образов и даже мышечных ощущений [65, с. 58].

Выше мы отмечали (см. 1.3), что одна из особенностей технического знания заключается в том, что технические сведения очень часто задаются в виде условных обозначений (графиков, схем, чертежей, диаграмм и т.д.). Причем часто графическое изображение не дает готового образа того или иного понятия, его нужно самостоятельно представить.

Существует реальная необходимость создания образа технического объекта по этим условным обозначениям. Поэтому для успешного осуществления процесса познания в технических науках недостаточно иметь развитое теоретическое мышление. Необходимо владеть сформированным образным мышлением.

Образное мышление - это процесс познавательной деятельности, направленный на отражение существенных свойств объектов (их частей, процессов, явлений) и сущности их структурной взаимосвязи [139, с.

210]. Значение образного мышления связано с тем, что видение и понимание реальности объектов и явлений окружающего мира обусловлено формами их познания и отражения. Образное мышление представляет собой единую систему форм отражения - наглядно-действенного, наглядно-образного и визуального мышления. “В процессе нагляднодейственного мышления происходит выделение и отбор единиц предметного содержания отражения, определения в них существенных свойств и связей. Наглядно-образное мышление направляется на абстрагирование отражения и построение образно-концептуальной модели. “Средствами визуального мышления производится дальнейшее абстрагирование концептуальной модели обобщенных отношений элементов и определение сущностных свойств функциональной структуры объектов отражения”, утверждается в кратком психологическом словаре [139, с. 211]. В данном типе мышления используются в основном средства выделения, формирования, преобразования и обобщения содержания отражения образной формы.

Методологи отмечают также, что в структуре технической теории очень важную роль играют теоретические схемы, образующие своеобразный “внутренний скелет” технической теории [44, 164, 200]. Авторы работы “Философия науки и техники” В.С.Степин, В.Г.Горохов, М.А.Розов пишут, что схемы представляют собой особые идеализированные представления (теоретические модели), которые часто (в особенности в технических науках) выражаются графически. Примером таких графических представлений могут быть электрические и магнитные силовые линии, введенные М.Фарадеем в качестве схемы электромагнитных взаимодействий. “Фарадеевы линии силы, - писал Максвелл, - позволяют нам воспроизвести точный образ предмета, о котором мы рассуждаем” [164, с. 324]. Авторы монографии отмечают: “Представители научного сообщества всегда имеют подобное идеализированное представление объекта исследования и постоянно мысленно оперируют с ним. В технической же теории такого рода графические изображения играют еще более существенную роль” [164, с. 325]. Таким образом, для успешного освоения технических теорий необходимо формировать образный компонент.

Развитое образное мышление помогает овладеть такими методами научного исследования, характерными для технических наук, как абстрагирование, мысленный эксперимент, моделирование, метод идеализации и др.

По мнению Т.В.Кудрявцева, образный компонент технического мышления может выступать в двух формах или их сочетаниях: вопервых, при решении ряда задач необходима актуализация представлений памяти или возникновение представлений воображения, во-вторых, в огромном (если не преобладающем) числе случаев необходимо создать образы объектов на основе их восприятия. Добавим, что образный компонент должен позволять видоизменять образы.

При решении технических задач приходится или опираться на уже имеющиеся в памяти образы, воспроизводя их в воображении, или необходимо создать новые образы, различной сложности. Часто для решения задачи недостаточно создать статичный образ: необходимо представлять его в динамике; причем необходимо представлять не только движение самого механизма, но и отдельных его элементов во всем их многообразии. Это мыслительное действие называется оперированием динамическими пространственными образами.

Кроме этого, особенной сложностью при решении технических задач является большое количество образов, которые необходимо трансформировать один за другим, т.е. решение задачи может быть достигнуто в том случае, когда образ, создаваемый в воображении, изменяют, реконструируют многократно, усложняя его, прежде, чем прийти к исходному варианту.

Умение распознавать объекты, представленные реально или изображенные различными графическими средствами, создание на этой основе адекватных образов, осуществление оперирования созданными образами, умение перекодировать пространственные образы разной меры условности, наглядности, обобщенности - таковы основные функции образного мышления. Таким образом, технические образы, как правило, сложны по структуре, имеют пространственную зависимость и соотношения. Кроме того, они находятся в непосредственном взаимодействии, в динамике. Вот почему при решении технических задач очень трудно, а в ряде случаев и невозможно представить конечный результат.

Таким образом, сформированное техническое мышление предполагает развитие образного мышления на высоком уровне.

Практический компонент технического мышления предполагает обязательную проверку практикой полученного решения.

Методологическое значение практического компонента отмечается многими исследователями проблем техники. Мы уже упоминали об этом в первом параграфе и в процессе методологического обоснования других компонентов технического мышления. В работах ученых отмечается, что методологическое значение практического компонента технического мышления заключается в том, что образование фундаментальных понятий и теорий научно-технического знания формируется, в основном, опираясь на обобщенные данные практической деятельности [44, 164, 195, 196].

Также отмечается существенная роль практической деятельности в происхождении технического знания. Авторы многих работ подчеркивают, что техническое знание возникло из практической деятельности и именно инженерная деятельность является определяющим фактором для формирования технического знания [22, 123, 163, 192].

Х.Ленк, размышляя о методологических аспектах современной техники, отмечает: «В качестве требования для проведения точного философско-методологического анализа технических процессов и явлений необходима постоянная кооперация теоретиков науки с инженерамипрактиками и методологами конструирования» [89, с. 59].

Теория деятельности, разработанная А.Н.Леонтьевым и С.Л.Рубинштейном, а потом и многими другими специалистами [22, 197, 198], раскрывает важнейшую особенность субъекта: люди и их психика формируются и развиваются, прежде всего, в ходе изначально практической деятельности, а потому объективно могут быть исследованы через проявления в такой деятельности. Мы познаем действительность, воздействуя на нее, преобразуя ее в процессе деятельности. Деятельность субъекта – изначально практическая, затем также теоретическая, но в принципе единая. Одно из проявлений этого - единство мышления, не расщепляющегося на практическое и теоретическое, репродуктивное и творческое и т.д. Соответственно, так называемая прикладная наука не просто лишь реализует на практике результаты фундаментальных исследований;

она продолжает научное изучение объекта во все более конкретных условиях. Практика, отделенная от теории (как и теория, оторванная от практики) не является деятельностью в строгом смысле слова. Лишь в составе единой деятельности практика существенна для познания [90, 112].

А.В.Брушлинский в статье “Деятельность субъекта как единство теории и практики” [22, с. 5] выделяет два крайних типа органической взаимосвязи практики и теории: 1) от практики к теории; 2) от теории к практике. В первом случае сама повседневная жизнь властно требует систематически осуществлять необходимые действия по обучению, воспитанию людей. Во втором случае, напротив, только в результате и на основе научной теории можно было широко использовать ее выдающиеся достижения непосредственно в общественной практике. Например, только в ХХ веке по мере возникновения и развития ядерной физики (теоретико-экспериментальной) создалась ядерная техника, которая внесла эпохальные изменения в жизнь человечества. В свою очередь, ядерная физика стала возможной лишь благодаря успехам предшествующей науки.

Таким образом, именно теория деятельности (изначально практической, затем также и теоретической, но в принципе единой) раскрывает и утверждает органическое единство теорий, эксперимента и практики. Более конкретно это сделано в отношении того главного инструмента, с помощью которого люди познают действительность (преобразуя ее), т.е.

в отношении самого мышления. Известные работы С.Л.Рубинштейна, Б.М.Теплова и др., продолженные в настоящее время, в частности, исследованиями Ю.К.Корнилова, А.В.Карпова и других психологов, убедительно показали, что нет “пропасти” между практическим интеллектом и теоретическим мышлением. Любое мышление неразрывно связано с практикой - непосредственно в первом случае и опосредствованно во втором. Этот принцип единого интеллекта, разрабатываемый сейчас Ю.Я.Голиковым, Д.Н.Завалишиной, А.Н.Костиным и др., означает, что при всей специфичности различных видов и уровней мышления (у ученых, мастеров, рабочих и т.д.) сохраняются единые общие закономерности мыслительной деятельности. Особенное значение этот компонент технического мышления приобретает в приложении его к формированию технического мышления. Основываясь на раскрытии практического использования знаний в жизни, раскрывая связь теории и практики, удается показать, что технические науки развиваются под влиянием заказа общества, отталкиваются от его практических нужд. Ни одно решение не может получить право на внедрение, если оно не прошло практическую апробацию и не подтвердило теоретическую гипотезу.

Таким образом, опираясь на определение системного подхода, данное выше, мы выявили отношения и преобразования компонентов, составляющих структуру технического мышления. Несмотря на то, что эта структура делится на составляющие ее элементы, значимость она приобретает только целостностью.

2.2 Концепции развивающего обучения и пути развития различных видов мышления Поскольку техническое мышление - один из видов мышления, то в основу разработок путей его развития должны быть положены известные в психологии концепции и идеи развития мышления.

В отечественной психологической науке накоплен значительный теоретический и практический материал по формированию у учащихся творческой интеллектуальной активности. Существует ряд теоретических положений и концепций, которые составляют фундамент отечественной психологической науки. К ним относятся теоретическая и экспериментальная разработка проблем мышления, умственного развития и выявления познавательных возможностей человека (В.В.Давыдов, Л.В.Занков, Н.А.Менчинская, С.Л.Рубинштейн, Д.Б.Эльконин и др.), теория усвоения и роль ориентировочной деятельности в формировании умственных действий (С.Л.Выготский, П.Я.Гальперин, А.В.Запорожец, З.А.Решетова, Н.Ф.Талызина и др.), деятельностная теория мышления (П.Я.Гальперин, В.В.Давыдов, О.К.Тихомиров, А.Н.Леонтьев).

Гипотезу о том, что обучение существенно влияет и определяет развитие человека была выдвинута Л.С.Выготским. Л.С.Выготский предполагал, что у столь значительного феномена, каким является развитие, не может не быть закономерных оснований. И он нашел их в историческом сопряжении общественного и индивидуального сознания. Развитие происходит внутри взаимоотношений, в процессе усвоения обобщенного опыта, зафиксированного в системе научных понятий и способах действий. Л.С.Выготский вместе с группой коллег выработали концепцию развивающего обучения, суть которой составляла идея о том, что психическое развитие личности осуществляется при реальном и неизбежном влиянии обучения и воспитания. В основе развивающего обучения используется механизм, позволяющий подвести обучаемых к теоретическим обобщениям, используемым в дельнейшей работе как для решения частных практических задач, так и для “взращивания” более объемных обобщений.

В настоящее время современная педагогическая наука и практика располагают несколькими теоретически обоснованными и экспериментально выверенными концепциями развивающего обучения. Мы обращаемся к технологиям развивающего обучения потому, что стержневой идеей, которая используется в процессе их применения, является идея об опережающем развитии мышления, которое становится как бы локомотивом, способным повести за собой умственное развитие учащегося в целом, обеспечить его готовностью самостоятельно использовать свой творческий потенциал. Наибольшую популярность получили системы Д.Б.Эльконина - В.В.Давыдова и Л.В.Занкова [47, 57, 58, 87, 205].

Технология развивающего обучения Д.Б.Эльконина - В.В.Давыдова принципиально отличается от других тем, что акцент в ней делается на формировании теоретического мышления, под которым понимается словесно выраженное понимание человеком происхождения той или иной вещи, того или иного явления, понятия, умения проследить условия этого происхождения, выяснить, почему эти понятия, явления или вещи приобрели ту или иную форму, воспроизвести в своей деятельности процесс происхождения данной вещи. Эмпирическое же мышление принимает вещи такими, какие они есть в реальном мире [58, 205, 206].

Суть системы - получение теоретических знаний в их философскологическом понимании. Значимым в этой системе обучения становятся не столько знания, сколько способы умственных действий, что достигается при воспроизводстве в учебной деятельности детей логики научного познания.

Основными принципами ее организации являются следующие:

- дедукция на основе содержательных обобщений;

- содержательный анализ;

- содержательное абстрагирование;

- теоретическое содержательное обобщение;

- восхождение от абстрактного к конкретному;

- содержательная рефлексия.

Л.В.Занков разработал новую дидактическую систему, способствующую общему психическому развитию школьников [58]. Основными принципами, на основе которых выстраивалась его система, являются:

- обучение нужно вести на высоком уровне трудности;

- в обучении нужно добиваться того, чтобы ведущую роль играли теоретические знания;

- продвижение в изучении материала обеспечивается быстрыми темпами;

- в процессе обучения школьники должны сами осознавать ход умственных действий;

- необходимо добиваться включения в обучение эмоциональной сферы;

- в ходе работы с детьми преподаватель должен обращать внимание на развитие каждого учащегося данного класса.

Система Л.В.Занкова оказывает явно положительное влияние на развитие детей в сфере мышления, наблюдательности и практического действия. Она акцентирует внимание учителя на главных параметрах развития школьников: на их умении мыслить, наблюдать, практически действовать.

Остановимся поподробнее на подходе к организации развивающего обучения, поскольку этот подход является основным в процессе формирования технического мышления [60].

Для достижения в процессе обучения желаемого уровня развития учащегося нужно понимание учителем особенностей развивающего обучения и овладение им специальными средствами для организации продуманной и целенаправленной работы. На основе теоретических изысканий в области развивающего обучения возникла принципиально новая методика, предназначенная для развития самой важной характеристики человека - интеллекта.

Методика развивающего обучения - это система качественно новых знаний, предполагающих принципиально иное построение учебной деятельности. Сегодня доказано, что эта методика способна обеспечить все потребности массовой педагогической практики и с успехом может быть применена в учебных заведениях разных типов.

Технологическое обеспечение развивающего обучения для учащихся различных возрастных групп при обучении гуманитарным и политехническим дисциплинам становится одной из приоритетных задач науки и практики.

Суть концепции развивающего обучения заключается в создании условий, когда развитие школьника превращается в главную задачу как для учителя, так и для самого ученика.

В книге Н.М.Зверевой [60] проведено сравнение традиционной и развивающей систем обучения по ряду важных параметров: целям, сущности, возможности применения, достоинствам, трудностям принципиального характера. Важными для нашего исследования является вывод о том, что оба типа обучения должны найти место в учебном процессе, так как они направлены на решение фундаментальных, но разных задач обучения. Преувеличение роли и удельного веса первого из них неизбежно приводит к ослаблению развивающей функции обучения, абсолютизация второго чревата пробелами в системе знаний. В переводе на язык технологий это означает, что при построении обучения нельзя ограничиваться какой-либо одной технологией, поскольку каждая из них решает только строго определенный круг задач.

Таким образом, мы видим, что традиционная система обучения решает прагматические, строго определенные задачи - получение знаний, формирование умений, навыков. Развивающая система обучения способствует именно развитию. Она обеспечивает такое построение системы обучения, при которой усвоение содержания учебного материала, воспитание культуры и развитие интеллекта являются единым процессом. Естественно, при этом не снимается вопрос усвоения знаний, но в данном случае - это средство достижения основной цели.

Под развивающим обучением будем понимать способ организации обучения, содержание, методы и формы которого прямо ориентированы на всестороннее развитие ребенка [87].

В концепции В.В.Давыдова, утверждается, что развитие происходит в процессе присвоения определенных типов деятельности. Он считает, что развитие представляет собой воспроизведение индивидом исторически сложившихся типов деятельности и соответствующих им способностей, которые реализуются в процессе их присвоения. В качестве наиболее значимой деятельности, способствующей развитию мышления и других познавательных процессов, психологи выделяют самостоятельное решение учащимися поставленных проблем.

Первым, принципиально важным условием для “включения” ученика в новую для него проблему, является наличие у него определенной базы знаний по поставленной проблеме. Это могут быть знания, полученные на предыдущих занятиях, а также почерпнутые из жизненного опыта. Знания являются важным источником развития мышления. “Пустая голова не рассуждает; чем больше опыта и знаний имеет эта голова, тем более способна она рассуждать”, - подчеркивал П.П.Блонский [18, с.

308]. Знания преобразуются мышлением, и в этом смысле они являются средством развития мышления. С.Л.Рубинштейн утверждал, что мышление уже в своем исходном пункте предполагает знание [149]. Таким образом, знание не есть мышление, а мышление возможно только при наличии знания. Формирование прочных, глубоких базовых знаний - одна из важнейших составляющих учебного процесса. Только после того, как ребята качественно овладеют теоретическими знаниями по определенной дисциплине, т.е. будет ясно что человек знает, можно переходить к следующему этапу - как это фактически усваивается (имеются ввиду мыслительные средства). Поэтому, этот этап заслуживает особого, пристального внимания. И опытные педагоги считают необходимым уделять именно этому этапу особенное значение.

При организации процесса развития технического мышления мы четко выделяем этап формирования базовых знаний. Необходимые теоретические сведения студенты получают на лекциях. В рамках технолого-экономического факультета объем технических дисциплин, который должны освоить студенты, достаточно велик. Поэтому базовые технические знания студенты приобретают на разных дисциплинах, таких как:

детали машин, теория механизмов и машин, теоретическая механика, устройство автомобиля, сопротивление материалов, технология конструкционных материалов и т.д. В ходе выполнения лабораторных работ происходит дополнительное разъяснение наиболее трудоемких вопросов и более детальная проработка сложных элементов, если в этом есть необходимость. При преподавании дисциплины “Устройство автомобиля” значительная часть теоретического материала усваивается в ходе выполнения лабораторных работ. Вопросам усвоения и закрепления базовых знаний отводится значительное время. Для активизации процесса усвоения базовых знаний используются разнообразные формы и методы обучения. Осуществляется реализация этого этапа путем разработок специальных заданий, отвечающих определенным дидактическим требованиям, описанным ниже в пункте 2.3.

Между тем всем хорошо известно, что иметь знания и уметь ими пользоваться - это далеко не одно и то же. В практике это неумение ярко проявляется, когда базовые знания надо применять в нетиповой ситуации, когда нужно раскрыть свои возможности в решении несложных, но нестандартных задач. Становится ясно, что главная функция обучения состоит не в накоплении, а в преобразовании уже имеющихся знаний, в их активной творческой переработке и получении на этой основе новых знаний. Поэтому не менее важной задачей образования является организация в процессе обучения целенаправленной работы по максимальному развитию мышления, обучению самостоятельному пополнению и обновлению знаний, сознательному использованию их в решении теоретических и практических задач. Развитие мышления происходит в процессе усвоения знаний. Однако не всякое усвоение способствует прогрессу интеллекта. Необходима особая организация процесса усвоения, при которой учащиеся должны сами стремиться добывать новые знания, развивая свое мышление, интересы, склонности, а не получать готовую информацию для заучивания и воспроизведения без достаточного осмысления. В трудах Л.С.Выготского неоднократно подчеркивается мысль о том, что любое обучение должно осознаваться обучающимися людьми.

Таким образом, вторым условием “включения” ученика в новую для него проблему является владение необходимыми познавательными умениями для того, чтобы ученик смог успешно осуществлять поиск решения новой для него проблемы.

В книге “Практическая дидактика для учителя” [60] выделяются следующие познавательные умения, овладение которыми необходимо ученику для участия в самостоятельной поисковой деятельности.

1. Умение “видеть” и формулировать проблему.

2. Умение анализировать факты, различные подходы, сведения;

умение работать с различными пособиями.

3. Умение выдвигать гипотезы, осуществлять перенос знаний в новую ситуацию.

4. Осуществлять проверку правильности гипотез.

5. Формулировать выводы.

6. Отстаивать свою позицию при участии в дискуссии.

В практике часты случаи, когда студенты не усваивают заданное предметное содержание из-за несформированности у них умственных действий, обеспечивающих овладение этим содержанием. Но благодаря включению в учебный процесс технологий развивающего обучения, например, технологии развития технического мышления, учащиеся получают знания о законах функционирования технического мышления человека, направленного на познание технической действительности, об организации мыслительной деятельности, в том числе их собственной.

Владение студентами приемами усвоения технических знаний закладывает основу для активной деятельности человека, умеющего самостоятельно строить процесс познания. Чтобы студент научился самостоятельно направлять свое мышление, важно научить его осознавать происходящие в его сознании процессы и умственные операции. В процессе изучения технических дисциплин мы знакомим студентов с компонентной структурой технического мышления. Разъясняем значение каждого компонента. Приводим примеры включения различных компонентов в процессе решения задачи. Показываем их взаимосвязь на примере решения технических задач. Поэтому, зная компонентную структуру технического мышления, владея определенными умениями для решения технических задач, студенты переходят от неосознаваемой деятельности к осознаваемой. Это необходимо для того, чтобы учащийся сам направлял свое мышление, сам осознавал происходящие в его сознании процессы и умственные операции. Мышление начинает формировать само себя.

Таким образом, главным отличительным моментом развивающего обучения является изменение самого характера деятельности учащегося.

В то время как при традиционном обучении деятельность учащегося носит репродуктивный характер (воспроизведение, выполнение заданий по алгоритму), в условиях развивающего обучения она является продуктивной. В процессе продуктивной деятельности ученик самостоятельно ищет решение нового для него задания, проблемы. Для этого ему нужно применять знания в новой ситуации, самому разрабатывать алгоритм решения стоящей перед ним проблемы.

Таким образом, мы подошли к следующему важному условию развития мышления - наличие проблемной ситуации. В основе теории проблемного обучения лежит положение о том, что существуют некоторые исходные задатки способностей у человека, но имеются они только в зачатке и развиваться они могут только в процессе соответствующей деятельности субъекта. Признание способностей, даже в зачаточной форме, сводится к вопросу об их развитии путем “подталкивания” с помощью, например, проблемных ситуаций [59, 103, 104, 121].

Ведущим стимулом познавательной активности является проблемность. “Начало мышления в проблемной ситуации”, - пишет С.Л.Рубинштейн [150, с. 15]. Проблемная ситуация - это психическое состояние интеллектуального затруднения, которое возникает у человека тогда, когда он в ситуации решаемой им проблемы (задачи) не может объяснить новый факт при помощи имеющихся знаний или выполнить известное действие прежними, знакомыми способами, а должен найти новый способ действия [104, с. 109-110].

Цель проблемного обучения - формирование творческого мышления и усвоение знаний в результате собственной познавательной деятельности субъекта. Суть проблемного обучения - оптимальное сочетание репродуктивного и продуктивного усвоения знаний, причем акцент делается на развитие мыслительных способностей, на воспитание творческой самостоятельности обучаемого.

Для того чтобы создавать и применять проблемные ситуации, психологами созданы типологии проблемных ситуаций. Сегодня существует несколько таких типологий [88, 103]. Проблемная ситуация призвана вызвать у учащегося состояние психологического затруднения, приводящее, в свою очередь, к активной мыслительной деятельности. Для того, чтобы возникла мыслительная активность, нужно выполнение определенных условий. Одно из них мы описывали выше - наличие определенной базы знаний по поставленной проблеме. Более того: “Процесс мышления возникает лишь при определенной степени несогласованности между усвоенными и усваиваемыми знаниями, соответствующей некоторой единице, определяемой творческими возможностями и уровнем развития субъекта.

Собственно, только в этом относительно узком диапазоне рассогласования и возможен процесс мышления, приводящий к выявлению неизвестного в возникшей проблемной ситуации”, - отмечает А.М.Матюшкин [103, с. 42]. Другими необходимыми условиями “принятия” проблемной ситуации являются наличие “некоторого опыта активного учения и благоприятная, доброжелательная обстановка в классе” [62, с. 66].

Для преподавания технических дисциплин удобно выделить следующие типы проблемных ситуаций:

1. Ситуация, основанная на несоответствии (недостатке, противоречии) знаний, имеющихся у учащихся, и теми, которые необходимы для разрешения данной учебной проблемы (информационная модель).

2. Ситуация, основанная на необходимости выбрать нужную систему знаний из имеющихся (вероятная модель).

3. Ситуация, основанная на противоречии между имеющимися знаниями и умениями и новыми практическими условиями их использования для разрешения возникшей (поставленной) проблемы (поведенческая модель).

Следующим очень важным условием успешного осуществления развития мышления является деятельность учителя. Обучающие должны постоянно заботиться об активном включении сознания в познавательную деятельность.

Одним из самых важных педагогических умений, которым должен обладать учитель, является умение поставить проблему. Причем к постановке проблемы необходимо относиться очень серьезно, учитывая основные дидактические требования: включение учащегося в деятельность, направление мыслительной деятельности в “нужное русло”, чтобы проблема вызывала активный интерес и желание в ней разобраться, опиралась на имеющиеся знания и опыт исследования.

Следующим важным педагогическим умением выделяется подготовка развивающего урока. Но необходимо не только продумывать формальные стороны вопроса подготовки урока (обеспечение всем необходимым материалом), но продумать форму осуществления руководства со стороны учителя.

Наконец, нельзя оставить в стороне еще одно непростое педагогическое умение – обсуждение полученных результатов и подведение итогов работы. На этом этапе важно, чтобы ученик сумел прояснить все непонятные моменты и подойти к нужным выводам, испытал большое удовлетворение от работы и радость успеха.

Итак, мы кратко обрисовали подход к организации развивающего обучения.

Опираясь на исследования, посвященные вопросам организации и управления дидактическим процессом в высшей школе, и учитывая перечисленные выше условия успешной организации процесса развития мышления учащихся, мы выделили следующие основополагающие принципы, опираясь на которые необходимо осуществлять развитие технического мышления:

1. Принцип системности относится не только к содержанию обучения, но и к самому ходу обучения, его процессуальной стороне. Эффективность процесса развития технического мышления зависит от степени упорядоченности дидактического материала, от его планового охвата в соответствии с имеющимися основами, от рационального деления материала на смысловые фрагменты, систематически ли сопутствует получению знаний развитие мышления и совершенствование соответствующих умений и навыков.

2. Принцип научности, который выражается в том, что все содержание курсов по техническим дисциплинам должно находиться в полном соответствии с современными данными развивающейся науки и техники, т.е. содержание технических дисциплин должно определяться на основе объективных закономерностей технической науки с опорой на соответствующие факты; построение содержания должно быть выполнено на основе предвидения будущего развития технической науки; технические науки должны рассматриваться как фактор изменения и переустройства структуры и функций обучения.

3. Принцип единства теории и практики, учет которого осуществляется как при разработке содержания заданий, так и при анализе организационных форм обучения, средств и методов.

4. Принцип доступности, выражающийся в составлении и применении заданий, требующих от студентов практической деятельности различного характера (от репродуктивного до творческого).

5. Принцип постепенного и непрерывного осуществления процесса развития технического мышления, заключающийся в том, что сначала необходимо овладеть “азами наук”, т.е. ведущими теоретическими положениями, определенными способами действий в стандартных, а затем в несколько измененных условиях, далее, постепенное вооружение умениями ориентироваться в новых условиях, предполагающих наличие высокого уровня развития технического мышления.

6. Принцип учета специфических особенностей развития технического мышления, который предполагает учет особенностей технического знания при разработке содержания технических дисциплин, знакомство студентов с методологическим и дидактическим подходами к развитию технического мышления.

Нами проанализированы некоторые подходы к формированию различных видов мышления, осуществленные в высших и общеобразовательных учебных учреждениях.

Например, И.Я.Лернер при исследовании проблемы развития исторического мышления подчеркивает, что без осознания учителем методологических проблем в учебном процессе трудно представить развитие мышления. Автор считает, что одна из причин формализма знаний по истории кроется в том, что учащихся не вооружают средствами и способами познания. И.Я.Лернер пишет: “Стихийное овладение умственными операциями, только благодаря структуре содержания информации в должной мере не обеспечивает усвоение знаний... Систематическое обучение должно обеспечить усвоение как содержательной стороны информации, так и операциональной. Более того, операциональная сторона процесса тоже является содержанием, подлежащим усвоению” [92, с. 5].

И далее: “Каждый ученик должен пройти школу мышления и познания для приобретения основных познавательных структур и интеллектуальных умений. Для усвоения недостаточно только объяснить их и проиллюстрировать на примерах, хотя это важно. Необходимо включить учащихся в непосредственную мыслительную деятельность” [92, с. 8].

Анализ исторического познания позволил автору выделить компоненты исторического мышления, формирование которых требует специальной целенаправленной работы учителя: анализа с этих позиций содержательной стороны курса, создание системы познавательных заданий и др.

И.Я.Лернер подчеркивает, что такой подход к развитию исторического мышления будет способствовать формированию методологической установки личности.

Научный подход к исследованию проблемы формирования естественнонаучного мышления учащихся в процессе обучения физике осуществлен доктором педагогических наук, профессором Н.М.Зверевой [61].

Применение методологии естественнонаучного познания позволило автору выделить признаки и свойства естественнонаучного мышления. Эти признаки и свойства являются определяющими составляющими естественнонаучного мышления и их необходимо сформировать у учащихся в процессе обучения. Выделение отдельных признаков необходимо для того, чтобы сделать их элементом содержания образования и основой для разработки специальной системы методов и приемов обучения, направленных на развитие естественнонаучного мышления. Таким образом, естественнонаучное мышление включает развитое логическое и диалектическое мышление и понимание методологии естественнонаучного познания.

Автором были выделены элементы методологии естествознания, которые оказывают влияние на стиль мышления естествоиспытателя, и на их основе выделены умения, которые формируют у школьников способы мышления в естествознании.

Естественнонаучное мышление предполагает наличие знаний на эмпирическом уровне (данные опытов, эмпирические понятия и закономерности) и на теоретическом уровне (теории, основные идея, принципы). Для целенаправленного формирования естественнонаучного мышления учащихся необходимо применение специальной системы методов и приемов обучения физике. Эта система охватывает все этапы учебного процесса и включает известные в дидактике и методике физики методы и приемы обучения, модернизированные автором, а также специально разработанные автором методы и приемы. Проведенный автором анализ школьного курса физики позволяет утверждать, что в нем заложены большие возможности для развития естественнонаучного мышления школьников. Но формирование естественнонаучного мышления (ФЕНМ) не может явиться простым следствием обучения физике. Только внедрение системы, сфокусированной на развитие ествественнонаучного мышления, позволяет говорить об определяющей роли этой системы в формировании естественнонаучного мышления в процессе физического образования. Таким образом, автор стоит на позиции когнитивизма.

Исследование, посвящено развитию экономического мышления было осуществлено в диссертационной работе А.В.Коренькова [83].

Автор выделяет два главных критерия, которые характеризуют экономическое мышление студентов, а именно: его научность (отражение в нем современных реалий) и деятельностную экономическую направленность.

По мнению А.В.Коренькова, стимулирование экономического мышления студентов происходит тогда, когда они включаются в деловое сотрудничество, видят конечный результат своей экономической деятельности, вступают в деловые контакты с другими организациями и учреждениями, участвуют в хозяйственной деятельности института.

Автор считает, что процесса организации формирования экономического мышления должен осуществляться путем:

— построения содержания учебного материала в соответствии с методом восхождения мысли от абстрактного к конкретному;

— организации учебной деятельности посредством решения учебных задач, адекватных предметному материалу менеджмента;

— построения отношений между участниками учебного процесса на основе взаимодействия.

Автор считает, что экономическое мышление студентов развивается интенсивно при использовании нетрадиционных форм учебновоспитательного процесса: включения в поиск решения; определении наиболее эффективной технологии и последовательности действий; анализе результатов и их критической оценке.

Применение методов активного обучения в сочетании с традиционными способствует вовлечению студента в учебный процесс не в качестве пассивного объекта, а как непосредственного его участника. который творчески, самостоятельно вырабатывает экономические решения на основе знания экономических законов и одновременно с этим развивается как личность в процессе коллективной деятельности.

Таким образом, автором было определено, что для повышения эффективности процесса формирования экономического мышления v будущих менеджеров необходимо большое внимание уделять творческой деятельности студентов; учитывать современные требования к содержанию высшего образования, где происходит смещение акцента с монологического изложения основ наук на совместную творческую деятельность педагога и студента, на самообучение, саморазвитие каждого студента с учетом максимального раскрытия его индивидуальных способностей: ориентироваться на формирование у студента интегративного мышления, для которого характерно гармоничное развитие вербальной и образной составляющих.

Интересный подход к развитию педагогического мышления предложен Н.Н.Деменевой [49]. Автором были определены компоненты модели педагогического мышления в индивидуально-личностном аспекте на основе выделения его сущностных характеристик и системообразующих качеств. К ним относятся:

- направленность на решение задач, связанных с проблемой развития личности ребенка;

- общие нормативные характеристики – теоретико-практический и творческий характер;

- системообразующее качество – педагогическая гибкость мышления;

- мотивационная сторона – сочетание профессиональной и познавательной мотивации, а также мотивации творчества.

Анализ предлагаемых в литературе путей и средств формирования педагогического мышления привел автора к выводу о необходимости разработки их системы, фундамент которой образует активизация обучения на интегративной основе. Интеграция предметов психологопедагогического цикла осуществляется путем их объединения в интегративную систему за счет взаимного сближения и установления между ними тесных взаимосвязей, включения в нее интегрированного курса предметной методики.

Автором было определено, что центральным звеном обобщенного алгоритма построения интегративной системы психолого-педагогических дисциплин является процедура междисциплинарного структурирования курсов. Эта процедура приводит к выделению единиц содержания, которые служат основой для интеграции.

Интегративная система, описанная автором, была построена на основе взаимной согласованности дисциплин; привлечения содержания одной дисциплины при изучении другой; объединения, суммирования элементов содержания различных дисциплин с целью создания обобщений;

создания нового знания, некоторой целостности. Также для интегрированного курса предметной методики автором был разработан комплекс средств активизации, построенный на фундаменте проблемного обучения.

Для нашего исследования огромный интерес представляет работа, проведенная в Московском государственном индустриальном университете.

В рамках этого университета осуществляют подготовку специалистов через систему формирования творческой личности будущего инженера. Система включает широкую гуманизацию и гуманитаризацию обучения, демократизацию учебного процесса, непрерывное формирование творческого инженерного мышления, развитие творческих способностей и овладение студентами методологией инженерного творчества. Эта система переориентировала обучение на новые цели - формирование системного творческого технического мышления и развитие творческих способностей студентов, обеспечив ее соответствие начальному понятию “инженер”. “Инженер”, в переводе с латинского, - это творец новой техники. Системообразующими элементами в этой целостной системе являются поисковая деятельность студентов на занятиях с использованием методологии инженерного творчества и использование компьютерной интеллектуальной поддержки как средства управления творческим процессом.

Для реализации в вузе данной системы была проведена и проводится существенная перестройка сложившейся научной и педагогической методологии преподавателей, обучение их основам непрерывного формирования творческого технического мышления и использованию системы интеллектуальной компьютерной поддержки инженерных решений, что представляет собой трудный и сложный процесс. Кроме того, необходима разработка конкретной технологии обучения по общенаучным, общетехническим, специальным и социально-гуманитарным дисциплинам, требуется создание принципиально новой методологической базы и ТСО кафедр, введение новых организационных форм, таких как лабораторно-компьютерный практикум [63, 64].

Приведем пример решения проблемы развития технического мышления студентов в Брянском педагогическом университете. В рамках технолого-экономического факультета исследовалась проблема психологопедагогических условий формирования технического мышления у будущих учителей технологии и предпринимательства. Исследование проводилось О.А.Булавенко под руководством В.Д.Симоненко.

По мнению автора работы, к основным условиям развития технического мышления относятся: формирование технических представлений на основе включения студентов в активную мыслительную деятельность, конструктивных способностей будущих учителей технологии и предпринимательства; готовность студента решать профессиональные задачи на высоком уровне.

Разработанные автором педагогические условия позволили активизировать творческую деятельность будущего учителя технологии, через которую выражается техническое мышление [23].

По мнению О.А.Булавенко, техническое мышление как многоуровневая система, находится во взаимодействии с технологическим мышлением и техническими способностями, проявляясь в профессиональной деятельности.

Автор считает, что использование комплексного подхода к проблеме развития технического мышления обеспечивает эффективность его формирования у студентов; система реализуется при структурировании содержания учебного материала, сочетании различных форм организации учебного процесса, согласовании их содержания, использовании комплекса методов и средств. И дальше: “Оптимальными методами подготовки будущих учителей технологии и предпринимательства к осуществлению развития технического мышления являются методы, позволяющие активизировать учебную деятельность студентов и осуществлять интенсификацию учебного процесса. К ним относятся: метод “проб и ошибок”, метод “мозгового штурма”, “синектика и морфологический анализ”, метод контрольных вопросов, АРИЗ, деловые игры, семинары- дискуссии, метод математического моделирования с применением ЭВМ, метод проектов” [23, с. 82].

Использование комплекса межпредметных связей повысили уровень знаний и умений, необходимых для формирования технического мышления, что нашло подтверждение в проведенном педагогическом эксперименте.

Также существенным в их работе является разработка критериев для определения уровня эффективности технического мышления будущих специалистов [23, с. 128-129].

Мы согласны с позицией О.А.Булавенко в том, что к решению проблемы формирования технического мышления нужно подходить комплексно.

Предлагаемый нами подход к формированию технического мышления в педагогическом вузе основан на целенаправленном развитии всех компонентов, составляющих структуру технического мышления, а именно: понятийного, образного, практического, оперативного, владения языком техники. Основываясь на этом подходе, мы разработали систему заданий, направленную на развитие технического мышления в процессе обучения техническим дисциплинам в педвузе.

2.3 Разработка системы познавательных заданий, ориентированных на структуру технического мышления.

Задача - важнейшее средство обучения и диагностики. Психологодидактическая функция учебных заданий связана с преобразованием объективных знаний, содержащихся в различных источниках, в субъективные, самостоятельно выведенные знания; с управлением процессом становления и совершенствования мыслительной деятельности обучаемых [88, 95, 143, 151, 175]. Специфика учебной задачи состоит в том, что при ее решении учащиеся посредством учебных действий открывают и овладевают общим способом (принципом) решения целого класса однородных частных задач [148]. Учебные задачи отвечают требованиям технологичного подхода к обучению. Они являются средством проектирования учебных действий обучаемых и инструментом диагностики уровня усвоения знаний и сформированности широкого круга умений [50, 88, 165, 175].

Вопреки тому, что задачи представляют собой столь важную дидактическую категорию, их теория до сих пор не была достаточно проработана.

Дидактика не предоставляет учителям соответствующую информацию ни для составления, ни для эффективного использования учебных задач. “Студентов педагогических институтов не обучают тому, как составлять учебные задачи, внедрять их в процесс обучения и применять в качестве инструмента, позволяющего включать в действие и развивать познавательную активность учащихся” [175, c. 25]. Теория учебных задач позволяет познавать учебные задачи как с точки зрения их структуры, так и с точки зрения их педагогической сущности и дидактической функции. Большинство задач может решаться воспроизведением знаний. Но даже если задачи и активизируют познавательную деятельность учащихся, то это бывает большей частью простые мыслительные операции. Задачи, которые давали бы возможность творческого мышления и возбуждали самостоятельную познавательную активность учащихся, например, в виде проблемных ситуаций, наблюдаются редко. Кроме того, упорядочение задач по требовательности и сложности бывает в большинстве случаев интуитивным. Лишь незначительная часть задач ведет учащихся к тому, чтобы они обобщали собственный опыт или результаты собственных наблюдений.

Согласно мнению Д.Толлингеровой, учебные задачи являются теми механизмами, которые позволяют предвидеть учебные действия. “Учебные задачи проходят через весь воспитательно-образовательный процесс, выполняя в нем самые различные функции: активизируют и мотивируют учащихся, побуждают их к учебной деятельности, удерживают ход учебного процесса, являются инструментом для результатов учения” [175, c.25]. Автор считает, что посредством учебных задач объективные данные, содержащиеся в изложении учителя, в учебниках, наблюдаемые при опытах и практических занятиях, самостоятельно выведенные при решении проблемных ситуаций, преобразуются в субъективные знания учащихся. От учебных задач зависит и качество знаний, их постоянность, уровень обобщенности, практическая применимость и т. д.

Благодаря многофункциональности, учебные задачи объединяют различные составляющие педагогической технологии: цели с конкретными условиями, со способами и средствами достижения цели, диагностикой результатов.

При создании системы учебно-познавательных заданий нами были изучены и проанализированы типологии, предлагаемые ведущими дидактами и психологами: И.Я.Лернером [92], В.А.Сластениным [151], Д.Толлингеровой [175]), Т.В.Кудрявцевым [88], а также типологии, разработанные исследователями при решении близкой к нам проблемы формирования технического мышления будущего учителя технологии. Остановимся на некоторых основных типологиях и системах учебных задач.

И.Я.Лернер с целью развития творческого мышления учащихся на материале истории создал систему проблемно-познавательных задач (ППЗ), отвечающую пяти показателям. Такая система, по мнению автора, должна охватывать все типы аспектных проблем; решаться всеми типами методов исторического познания; обучать всем процедурам творческой деятельности; удовлетворять принципу постепенного возрастания сложности; учитывать методические условия и необходимость индивидуализации включения учащихся в решение проблемных задач. В соответствии с выделенными показателями в систему ППЗ включены следующие типы задач:

- аспектные задачи, обучающие решению основных типов проблем, характерных для изучения и осмысления исторического материала;

- задачи, обучающие различным типам методов исторического познания и способам решения проблемных задач;

- задачи, направленные на формирование процедур творческой деятельности (как отдельных, так и их сочетания) [92].

А.А. Вербицкий, автор концепции знаково-контекстного обучения, разработал положение о трех обучающих моделях: семиотической, имитационной и социальной. В моделях меняется не только содержание, но и характер деятельности студентов — от репродуктивного до творческидеятельностного. Данный подход позволяет реализовать активное обучение студентов. Приведем основные типы заданий, характерные для каждой обучающей модели:

- задания по изучаемым проблемам, предполагающие работу с текстом;

- задание на соотнесение полученной информации с ситуациями будущей профессиональной деятельности;

- задания по актуальным проблемам образования, направленные на углубление предметных знаний, формирование умений, навыков и социальной компетентности студентов.

Е.В.Бережнова с целью формирования методологической культуры у студентов педагогического вуза предлагает систему заданий для каждого этапа подготовки: теоретического, практического и педагогической практики в школе.

С целью контроля знаний и оценки их качества (полнота, глубина, оперативность, гибкость, обобщенность, системность, осознанность, прочность) ряд ученых (И.Я.Лернер [92], М.Н.Скаткин [156] и др.) предлагают разрабатывать такие задания, выполнение которых обнаруживает зафиксированные качества.

Т.В.Кудрявцев важнейшим способом развития технического мышления считает “задачный” или “проблемный” метод обучения, сущность которого состоит в создании проблемных ситуаций посредством технических задач. В монографии Т.В.Кудрявцева выделяются следующие отличительные признаки технических задач:



Pages:     | 1 || 3 | 4 |


Похожие работы:

«Мироненко Светлана Николаевна Интеграция педагогического и технического знания как условие подготовки педагога профессионального обучения к диагностической деятельности Специальность 13.00.08 Теория и методика профессионального образования Диссертация на соискание ученой степени кандидата педагогических наук научный руководитель:...»

«Ульянова Марина Олеговна УГЛЕВОДОРОДНЫЕ ГАЗЫ В ПОВЕРХНОСТНЫХ ДОННЫХ ОСАДКАХ ЮГО-ВОСТОЧНОЙ ЧАСТИ БАЛТИЙСКОГО МОРЯ Специальность 25.00.28 – океанология Диссертация на соискание ученой степени кандидата географических наук Научный руководитель : кандидат геолого-минералогических наук Сивков Вадим Валерьевич Научный консультант : доктор...»

« Ткаченко Лия Викторовна Морфо – функциональная характеристика лимфатической системы легких и их регионарных лимфатических узлов кроликов в норме и эксперименте 06.02.01 – диагностика болезней и терапия животных, онкология, патология и морфология животных Диссертация на соискание ученой степени доктора биологических наук...»

«Тополянский Алексей Викторович МОСКОВСКИЕ НАУЧНЫЕ ТЕРАПЕВТИЧЕСКИЕ ШКОЛЫ (20-е – 40-е годы 20 века) И ИХ РОЛЬ В СТАНОВЛЕНИИ КАФЕДР ВНУТРЕННИХ БОЛЕЗНЕЙ В МСИ – МГМСУ 07.00.10...»

«Воробьёв Анатолий Евгеньевич РАЗРАБОТКА И ИССЛЕДОВАНИЕ СИСТЕМ МОНИТОРИНГА РАСПРЕДЕЛЕННЫХ ОБЪЕКТОВ ТЕЛЕКОММУНИКАЦИЙ Специальность 05.12.13 - Системы, сети и устройства телекоммуникаций Диссертация на соискание ученой степени кандидата технических наук Научный руководитель :...»

«АЛЕКСЕЕВ Тимофей Владимирович Разработка и производство промышленностью Петрограда-Ленинграда средств связи для РККА в 20-30-е годы ХХ века Специальность 07. 00. 02 - Отечественная история Диссертация на соискание ученой степени кандидата исторических наук Научный руководитель : доктор исторических наук, профессор Щерба Александр Николаевич г. Санкт-Петербург 2007 г. Оглавление Оглавление Введение Глава I.Ленинград – основной...»

«УМАРОВ ДЖАМБУЛАТ ВАХИДОВИЧ ИНОСТРАННЫЕ КАНАЛЫ ВЛИЯНИЯ НА ПРОЯВЛЕНИЕ ТЕРРОРИЗМА В СОВРЕМЕННОЙ РОССИИ (НА ПРИМЕРЕ СЕВЕРНОГО КАВКАЗА) Диссертация на соискание ученой степени кандидата политических наук по специальности 23.00.04 - Политические проблемы международных отношений, глобального и регионального развития Научный руководитель : доктор политических наук, профессор Панин В.Н. Пятигорск - СОДЕРЖАНИЕ ВВЕДЕНИЕ...»

«Григоров Игорь Вячеславович ОБРАБОТКА СИГНАЛОВ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ С ПРИМЕНЕНИЕМ НЕЛИНЕЙНЫХ УНИТАРНЫХ ПРЕОБРАЗОВАНИЙ Специальность 05.12.13 Системы, сети и устройства телекоммуникаций Диссертация на соискание учёной степени доктора технических наук Научный консультант : доктор технических наук,...»

«Палойко Людмила Валерьевна ОБРАЗ ПЕРСОНАЖА В ОРИГИНАЛЕ И ЛИТЕРАТУРНОМ ПРОДОЛЖЕНИИ АНГЛОЯЗЫЧНОГО РОМАНА КАК ОБЪЕКТ ФИЛОЛОГИЧЕСКОГО АНАЛИЗА Специальность 10.02.04 – германские языки Диссертация на соискание...»

«Белякова Анастасия Александровна Холодноплазменный хирургический метод лечения хронического тонзиллита 14.01.03 — болезни уха, горла и носа Диссертация на соискание ученой степени кандидата медицинских наук Научный руководитель : член-корр. РАН, доктор медицинских наук, профессор Г.З. Пискунов Москва– СОДЕРЖАНИЕ СПИСОК СОКРАЩЕНИЙ ВВЕДЕНИЕ ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ...»

«Полилова Татьяна Алексеевна Инфраструктура регионального образовательного Интернет-пространства 05.13.11 — Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей диссертация на соискание ученой степени доктора физико-математических наук Москва 2000 г. 2 Оглавление Введение Исторический и социальный контекст Этапы информатизации российского образования Интернет в...»

«Николаичева Светлана Сергеевна Дневниковый фрагмент в структуре художественного произведения (на материале русской литературы 30 – 70 гг. XIX века) 10.01.01 – русская литература Диссертация на соискание ученой степени кандидата филологических наук Научный руководитель : доктор филологических наук, доцент Юхнова Ирина Сергеевна Нижний Новгород – 2014 Содержание Введение Глава I. Дневник как социокультурный и...»

«ХИСАМОВА АНАСТАСИЯ ИВАНОВНА ОСОБЕННОСТИ РАЗВИТИЯ ИНСТРУМЕНТОВ УПРАВЛЕНИЯ ПРЕДПРИЯТИЯМИ ЭНЕРГЕТИКИ В КОНКУРЕНТНОЙ СРЕДЕ Специальность 08.00.05 - Экономика и управление народным хозяйством (экономика, организация и управления предприятиями, отраслями, комплексами) Диссертация на соискание ученой степени кандидата экономических наук Научный руководитель : доктор экономических наук, профессор Пыткин...»

«РУССКИХ СВЕТЛАНА НИКОЛАЕВНА КНИЖНАЯ КУЛЬТУРА ВЯТСКОГО РЕГИОНА В 1917-1945 ГГ. В 2 томах. Том 1 Специальность 05.25.03 — Библиотековедение, библиографоведение, книговедение Диссертация на соискание ученой степени кандидата исторических наук Научный руководитель...»

«КОЖЕВНИКОВА Мария Владимировна ВЛИЯНИЕ РЕГУЛЯТОРОВ РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВОЙ СИСТЕМЫ И СИСТЕМЫ МАТРИКСНЫХ МЕТАЛЛОПРОТЕИНАЗ НА ФОРМИРОВАНИЕ КЛИНИЧЕСКИХ ВАРИАНТОВ ТЕЧЕНИЯ ГИПЕРТРОФИЧЕСКОЙ КАРДИОМИОПАТИИ 14.01.05 – Кардиология ДИССЕРТАЦИЯ на соискание...»

«ТОЛМАЧЕВ Сергей Игоревич СУДЕБНО-МЕДИЦИНСКАЯ ХАРАКТЕРИСТИКА ПОРАЖЕНИЙ, ПРИЧИНЕННЫХ ИЗ СРЕДСТВ САМООБОРОНЫ, СНАРЯЖЕННЫХ ИРРИТАНТОМ ДИБЕНЗОКСАЗЕПИНОМ (ВЕЩЕСТВОМ CR) Специальности: 14.03.05 – судебная медицина 14.03.04 – токсикология ДИССЕРТАЦИЯ на соискание ученой степени кандидата медицинских наук Научные руководители: доктор...»

«ЕРЕМИНА АННА АЛЕКСЕЕВНА ИССЛЕДОВАНИЕ СОСТОЯНИЯ УРАНОВАНАДАТОВ ЩЕЛОЧНЫХ, ЩЕЛОЧНОЗЕМЕЛЬНЫХ, d-ПЕРЕХОДНЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В ВОДНЫХ РАСТВОРАХ Специальность 02.00.01 – неорганическая химия Диссертация на соискание ученой степени кандидата химических наук Научный руководитель : доктор химических наук, профессор Н. Г....»

«ЗАЙКИН ОЛЕГ АРКАДЬЕВИЧ Совершенствование приводов транспортно-технологических машин использованием зубчатого бесшатунного дифференциала Специальность 05.02.02 – Машиноведение, системы приводов и детали машин Диссертация на соискание ученой степени кандидата технических наук Научный...»

«НИКОЛОВА ВЯРА ВАСИЛЕВА РУССКАЯ ДРАМАТУРГИЯ В БОЛГАРСКОМ КНИГОИЗДАНИИ 1890-1940-Х ГОДОВ Специальность 05.25.03 – Библиотековедение, библиографоведение и книговедение Диссертация на соискание ученой степени кандидата филологических наук Научный руководитель : кандидат филологических наук, профессор И.К....»

«Захарова Татьяна Владимировна МОНИТОРИНГ ФАКТОРОВ РЕГИОНАЛЬНОЙ ПРОДОВОЛЬСТВЕННОЙ БЕЗОПАСНОСТИ (НА ПРИМЕРЕ ОТРАСЛИ РАСТЕНИЕВОДСТВА СТАВРОПОЛЬСКОГО КРАЯ) Специальность 08.00.05 – Экономика и управление народным хозяйством: экономическая безопасность Диссертация на соискание ученой степени кандидата экономических наук Научный руководитель доктор экономических наук профессор А.И. Белоусов Ставрополь – Оглавление Введение 1.1. Устойчивое...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.