«АНАЛИЗ И ОЦЕНКА АГРОЛАНДШАФТОВ СТАВРОПОЛЬСКОГО КРАЯ С ИСПОЛЬЗОВАНИЕМ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ...»
Концепция «сухого» земледелия, используемая в последнее время, учитывает почвенно-климатические условия ландшафтных провинций и адаптирована в первую очередь к аридности климата сельскохозяйственных зон через севообороты с чистыми парами, расширение орошаемых земель. Сейчас она нуждается в дальнейшем развитии и корректировке согласно принципам концепции адаптивно-ландшафтного земледелия.
По договору с краевым комитетом по земельным ресурсам и землеустройству, СтавропольНИИгипрозем в 1996 году начал и в марте 1997 года завершил работы по составлению «Схемы использования земельных ресурсов Ставропольского края на агроландшафтной основе до 2005 года». Схема использует принципы адаптивно-ландшафтной системы земледелия, в основе которых лежит выделение агроэкологических групп земель, в первую очередь на пашне, как более подверженной негативным процессам. В соответствии с характером природных ограничений пригодности земель для возделывания конкретных культур или групп культур и характером мероприятий по их преодолению, агроэкологические группы земель ранжированы по шести категориям (Схема…, 1997).
I-Агроэкологическая группа. Включает земли большинства хозяйств края, в которых имеется пашня с балльной оценкой выше среднерайонного уровня с уклонами местности до 1°, с различными почвенными разновидностями, которые по признакам, влияющим на плодородие могут быть объединены и использоваться для возделывания всех районированных культур в системе полевых севооборотов. Группа объединяет все подтипы черноземов, каштановых, лугово-черноземных и лугово-каштановых почв, сформировавшихся в различных биоклиматических и гидрологических условиях объединенными однотипным процессом почвообразования без отрицательных признаков, влияющих на плодородие. Эта группа земель составляет 2169,8 тысяч гектаров или 58% от всей площади пашни края и относится к особоценным.
II-Агроэкологическая группа. Включает земли также всех хозяйств края, с балльной оценкой ниже или близкой к среднерайонному уровню, с уклонами местности 2-3°. Сюда отнесены участки пашни с различными почвенными разновидностями, подверженными эрозии почв в слабой степени. Группа объединяет те же почвы, что и первая, но с наличием отрицательных признаков, влияющих на плодородие – слабоэродированные, слабозасоленные, слабокаменисто-щебенчатые. Эта группа пригодна для возделывания менее требовательных сельскохозяйственных культур, должна быть включена в систему кормовых севооборотов. Занимает 1121,2 тысячи гектаров или 30% от площади пашни края.
III-Агроэкологическая группа. Участки подверженные ветровой, водной и совместной эрозии в средней степени. По рельефным и почвенным условиям они отличаются значительным разнообразием, но их объединяет одно – они могут использоваться в системе почвозащитных севооборотов и оставаться в составе пахотных угодий. Занимает 447,2 тысячи гектаров или 12% от площади пашни.
IV-Агроэкологическая группа. Участки пашни в сильной степени утратившие свои свойства, малопригодные для возделывания сельскохозяйственных культур, на которых в соответствии с законом «О сохранении почв и предотвращении их деградации» (1995) намечается изменение целевого назначения. Занимают 174,5 тысяч гектаров. 0,02 тысячи гектаров рекомендуется перевести в запас, 1,1 – использовать для создания многолетних насаждений, 46,8 – перевести в сенокосы и 126,6 – в пастбища со срочным выполнением работ по ускоренному залужению многокомпонентными травосмесями, включая семена трав «аборигенов»;
V-Агроэкологическая группа. Участки пашни, подверженные деградации в сильной степени, потерявшие свыше 50% мощности почвенного профиля (А+В), непригодные для возделывания сельскохозяйственных культур, подлежащие выводу из состава сельскохозяйственных угодий с последующей консервацией. Занимает 46,1 тысячу гектаров.
VI-Агроэкологическая группа. Включает участки богарной и орошаемой пашни, подверженные подтоплению, вторичному засолению, требующие проведения работ по устранению избыточного переувлажнения, рассоления и по другим причинам, подлежащие переводу в стадию мелиоративного строительства. Занимает 22,3 тысячи гектаров.
С использованием технологии оверлея между слоем, содержащим пространственные данные о типологии ландшафтных морфологических единиц на уровне местностей и слоем, содержащим границы землепользователей с привязанной к слою атрибутивной базой данных по площади и соотношению агроэкологических групп земель была выявлена прямая зависимость между типами местностей и характером распределения пашни по агроэкологическим группам. Это позволило типизировать ландшафты по способу организации их территории на группы. По преобладанию типов местностей все ландшафты делятся на 10 групп (таблица 2).
Соотношение типов местностей в ландшафтах Ставропольского края – индикатор агроэкологического состояния пашни 14,7 Эоловые денудационно-аккумулятивные и аллювиально-морские низменности
ГЛАВА 4. ИСПОЛЬЗОВАНИЕ ГИС-ТЕХНОЛОГИЙ ПРИ АНАЛИЗЕ
И ОЦЕНКЕ АГРОЛАНДШАФТОВ СТАВРОПОЛЬСКОГО КРАЯ
4.1. Оценка почвенно-климатических ресурсов агроландшафтов края Оценка ресурсов почвенного плодородия агроландшафтов края по бонитетам. В крае многообразие и сложность природных условий обусловили большое разнообразие почв: от серых лесных и черноземов горных до светло-каштановых почв и песков. Наиболее обобщенной количественной оценкой уровня плодородия почв является бонитет (Государственная кадастровая оценка земель, 2003). На основе бонитетов базовой группы хозяйств каждого агроландшафта были рассчитаны средневзвешенные баллы бонитета сельскохозяйственных угодий, пашни и пастбищ (табл. 3).Самые плодородные почвы в крае имеет пашня РасшеватскоЕгорлыкского ландшафта (7 ландшафт – 72,7 балла) и Кубано-Малкинского ландшафта (24 ландшафт – 71,1 балла). Самые низкие бонитеты пашни в ландшафте (23.7) и в 16, 17, 19 ландшафтах полупустынь (28.9, 26.8, 26. балла соответственно). Распределение бонитетов почв по ландшафтам края носит зонально-провинциальный характер. Крайние значения бонитетов различаются более чем в три раза, что естественно, определяет разную экологическую устойчивость почв и разные подходы к системам земледелия, в том числе и к мероприятиям по поддержанию плодородия.
Рассматривая соотношение бонитетов пашни и пастбищ по ландшафтам края, можно отметить, что самые незначительные отличия (12-17%) отмечаются в ландшафтах 7, 22 и 24, отличающихся наиболее плодородными почвами, самые большие (76% и 68%) в 9 и 20 ландшафтах, где в пастбищах много солончаков и мочаристых почв. В остальных ландшафтах разница в плодородии почв пашни и пастбищ лежит в диапазоне 25-51%.
Средневзвешенные баллы бонитета земель сельскохозяйственного использования в агроландшафтах Ставропольского края Эти данные свидетельствуют о том, что резервы расширения пашни за счет других угодий в ландшафтах края исчерпаны и при существующем дисбалансе угодий (особенно в ландшафтах с распаханностью > 70%) целесообразно сокращение пашни за счет вывода малопродуктивных земель.
Расчет биоклиматических потенциалов ландшафтов для сельскохозяйственной деятельности. При рассмотрении сельскохозяйственной деятельности в границах природных ретроспективных ландшафтов края очень важно определить их природно-ресурсный потенциал. Прежде всего, был проведен критический анализ существующих методических подходов по их оценке.
Анализ литературы, во-первых, показал, что в основу всех показателей ресурсного потенциала положено соотношение тепла и влаги. Во-вторых, все они дифференцируются на две группы: общие оценки агроклиматического потенциала территории для регионального агроклиматического районирования и оценки, характеризующие условия возделывания конкретных с/х культур для частного районирования.
Из первой группы показателей в земледелии России и за рубежом широкое распространение получила формула гидротермического коэффициента Г.Т.Селянинова (1928), как показатель увлажнения вегетационного периода где р – сумма осадков за теплый период, мм;
t – сумма температур выше 10°С за этот же период.
Недостатком ГТК является то, что он характеризует увлажнение только теплой части года и не учитывает весенние запасы влаги в почве, которые при одном и том же увлажнении вегетационного периода, могут определять различную влагообеспеченность сельскохозяйственных культур.
Коэффициент увлажнения, предложенный Н.Н.Ивановым (1949) выражается формулой где R – сумма осадков за рассматриваемый период;
Е – приближенная испаряемость водной поверхности, рассчитываемая по уравнению:
где Т – среднемесячная температура воздуха;
а – среднемесячная относительная влажность воздуха.
Этот коэффициент широко используется при определении аридности климата.
Для сравнительной оценки общей биопродуктивности ландшафтов края, на наш взгляд, наиболее приемлем климатический индекс биологической продуктивности – Бк, являющийся производным от биоклиматического потенциала Шашко Д.И. (1985) - БКП.
где БКП – относительные значения биоклиматического потенциала;
Кр (КУ) – коэффициент роста по годовому показателю атмосферного увлажнения;
tак – сумма средних суточных температур воздуха за период активной вегетации в данном месте;
tак(баз) – базисная сумма средних суточных температур воздуха за период активной вегетации, т.е. сумма, относительно которой проводится сравнительная оценка.
Биологическая продуктивность (Бк) рассчитывалась по формуле Коэффициент роста Кр (КУ) рассчитывался через коэффициент увлажнения КУ.
где КУ – коэффициент годового атмосферного увлажнения, равный отношению количества осадков к сумме средних суточных значений дефицита влажности воздуха.
Вычисленные по метеостанциям величины биоклиматических потенциалов были интерполированы методом кригинга. Полученные поверхности были отвекторизованы и в дальнейшем отображены на картах (Каторгин, 2002).
На примере рис. 4 показано зональное распределение биоклиматического потенциала по территории края.
Как свидетельствуют данные, индекс биологической продуктивности (Бк) имеет зональный характер распределения с увеличением с северовостока на юго-запад края с 84,8 единиц (метеостанция Арзгир) до 140,7 единиц по метеостанции Ставрополь, а биоклиматический потенциал (БКП) в том же направлении возрастает с 1,5 до 2,6 единиц. Сравнение биоклиматического потенциала Ставропольского края с потенциалами Краснодарского края (Тюрин, 1973) показало, что для последнего он изменяется от 2,2 до 3, единиц. В Ставропольском крае только 34% территории края имеют потенциал > 2,2 единиц.
Рис. 4. Распределение индекса биологической продуктивности по территории Применение технологии оверлея позволило получить средневзвешенные значения биоклиматических потенциалов для ландшафтов Ставропольского края. По ним были построены тематические карты (рис. 5 – 10).
Поскольку сельское хозяйство связано с возделыванием конкретных сельскохозяйственных культур, очень важно оценить агроландшафты края по благоприятности их возделывания.
С помощью ГИС-технологий по усовершенствованной в СНИИСХ методике И.В. Свисюка (1980), для ландшафтов края был просчитан индекс почвенно-климатических ресурсов возделывания озимой пшеницы, ведущей сельскохозяйственной культуры края (ИПКР). Характер его изменения имеет такую же, как и БКП тенденцию увеличения с востока на запад с изменением от 1,38 до 2,25 единиц (рис. 7).
Рис. 5. Средневзвешенное значение биологической продуктивности ландшафтов Ставропольского края.
Рис. 6. Средневзвешенное значение биоклиматического потенциала ландшафтов Ставропольского края.
Рис. 7. Средневзвешенное значение индекса почвенно-климатических ресурсов возделывания озимой пшеницы в ландшафтах Ставропольского края.
Установленная Л.И.Желнаковой (1992) связь ИПКР с урожайностью озимой пшеницы по районам и госсортучасткам по чистым парам и непаровым предшественникам позволила нам использовать установленные ею уравнения связи (у1, у2) и рассчитать по ним перспективную урожайность озимой пшеницы по чистым парам и непаровым предшественникам для ландшафтов Ставропольского края (таблица 4):
где у1 – перспективная урожайность озимой пшеницы по чистым парам, центнеров на гектар;
где у2 – перспективная урожайность озимой пшеницы по непаровым предшественникам, центнеров на гектар.
Индекс почвенно-климатических ресурсов и перспективная урожайность озимой пшеницы по чистым парам и непаровым предшественникам В Ставропольском НИИ сельского хозяйства установлена высокая и достоверная связь с урожайностью озимой пшеницы критерия Улановой Е.С.
(1975), учитывающего весенние запасы продуктивной влаги в метровом слое почвы (Wb) (рис. 8).
где Wb – весенние запасы продуктивной влаги в метровом слое почвы;
Rbe – сумма осадков за вегетацию;
t bc – сумма температур выше 5°С за период возобновления вегетации – восковая спелость озимой пшеницы.
Рис. 8. Средневзвешенное значение коэффициента Улановой Е.С. для оценки условий возделывания озимой пшеницы по ландшафтам.
Поскольку запасы влаги в почве определяются только на 9 метеостанциях, оценка ландшафтов края по критерию Улановой Е.С. менее точна, однако, достаточно надежна, об этом свидетельствует сопоставление оценок Улановой и индексов почвенно-климатических ресурсов (ИПКР) (рис. 7, 8) по ландшафтам края. Индекс Улановой также позволяет рассчитывать урожайность озимой пшеницы по непаровым предшественникам по уравнению где У – урожайность озимой пшеницы;
х – показатель Улановой.
Показатель влагообеспеченности Сапожниковой С.А. (1958) (рис. 9) использовался нами для оценки условий возделывания ранних яровых колосовых культур. Весенние влагозапасы рассчитываются по зимне-весенним осадкам Q (X – IV) и формула имеет вид где - коэффициент перевода t > 10° в испаряемость.
Сопоставление рисунков 7 и 9 свидетельствует о том, что почвенноклиматические ресурсы ландшафтов Ставропольского края более благоприятны для возделывания озимой пшеницы, а ранние яровые колосовые целесообразно возделывать только в западной и юго-западной части края.
Для оценки ландшафтов по условиям возделывания кукурузы был использован коэффициент Чиркова Ю.И. (1969) где R – осадки за указанные месяцы.
Сумма осадков осенне-зимнего периода (с октября по март) учтена с коэффициентом 0,5. Результаты вычислений отображены на рис. 10.
Рис. 9. Средневзвешенное значение коэффициента Сапожниковой С.А.
для оценки условий возделывания яровых зерновых культур по ландшафтам.
Рис. 10. Средневзвешенное значение коэффициента Ю.И. Чиркова для оценки условий возделывания кукурузы по ландшафтам.
Оптимальные условия для возделывания кукурузы на зерно складываются только в 24 ландшафте среднегорий, очень хорошо в 1 и 20 ландшафтах.
На 24,8% территории влагообеспеченность кукурузы от оптимальной составляет от 69 до 87%. Сопоставление коэффициентов благоприятности возделывания кукурузы на зерно с изогиетой суммы осадков за май - август в 200 мм, ограничивающей ландшафты производственной целесообразности возделывания кукурузы на зерно, свидетельствуют о большом риске возделывания ее в 8, 9, 5, 12, 14, 15 ландшафтах.
Поскольку подсолнечник в Ставропольском крае является ведущей масличной культурой перспективна оценка ландшафтов по условиям его возделывания. Для этих целей был использован показатель увлажнения подсолнечника по Мельнику Ю.С. (1972) (рис. 11).
где х1 – сумма осадков за период от +5° осенью до +10° весной;
х2 – сумма осадков за период от +10° весной до созревания подсолнечника;
t >10° - сумма температур свыше 10°С за период вегетации подсолнечника.
Как показала оценка условий влагообеспеченности подсолнечника по ландшафтам края, только на 8% территории края она может быть оценена как отличная, на 26% - как хорошая, а на 41% - как посредственная.
Рис. 11. Средневзвешенное значение коэффициента Ю.С. Мельника для оценки условий возделывания подсолнечника по ландшафтам.
Таким образом, проведенный с помощью ГИС-технологий анализ природно-климатических ресурсов ландшафтов Ставропольского края как в целом для земледелия, так и для возделывания отдельных сельскохозяйственных культур показал:
- во-первых, что территория края пригодна для ведения земледелия, особенно в западных ландшафтах, хотя потенциал территории Ставропольского края значительно ниже потенциала территории Краснодарского края;
- во-вторых, природно-ресурсный потенциал возделывания озимых зерновых культур в ландшафтах края значительно выше, чем яровых зерновых.
Кроме того, установлено, что при возделывании озимых зерновых их низкий почвенно-климатический ресурс может быть оптимизирован с помощью использования чистых паров;
- в-третьих, надо очень взвешенно подходить к размещению подсолнечника и кукурузы в ландшафтах края, поскольку хороший потенциал их возделывания занимает только 30% территории края, а на 25% – в восточных и северо-восточных ландшафтах возделыванием этих культур заниматься нецелесообразно.
4.2. Анализ сельскохозяйственной нагрузки на ландшафты края Очень важно знать ареалы проявления, виды и типы экологических проблем в том или ином ландшафте, так как адаптивно-ландшафтные системы земледелия не мыслятся без обеспечения экологической устойчивости ландшафтов и экологической реставрации деградированных территорий.
Поскольку экологические проблемы сегодняшнего дня являются следствием тех антропогенных нагрузок, которые были прежде с их определения и начинается анализ проблемных экологических ситуаций по системе «воздействие-изменение-последствие». Все недостатки хозяйствования как в фокусе отражаются на состоянии земельных ресурсов и, в первую очередь, пашни.
Не имея материалов анализа и оценки предыдущих антропогенных воздействий на ландшафты края нельзя правильно представить себе степень остроты деструктивных процессов на их территории и дать обоснованный прогноз дальнейшего развития экологических проблем. В ландшафтах, где антропогенная нагрузка сбалансирована с природными возможностями ландшафта, деградация почв и негативные экологические ситуации не возникают. Поскольку в границах ландшафтов и их более мелких таксономических единиц не проводится сбор статистических сведений по видам и интенсивности сельскохозяйственных воздействий, то антропогенные нагрузки определялись по базовым группам хозяйств, лежащих всей своей территорией в границах каждого из 24 ландшафтов края.
При анализе ландшафтов и агроландшафтов крайне важно знать масштабы антропогенной нагрузки. Для оценки сельскохозяйственной нагрузки на агроландшафты Ставропольского края использовались и обрабатывались данные государственной статистики по сельскому хозяйству за 1984 и годы, годы максимальной интенсификации земледелия и наибольшего поголовья скота в крае.
Некоторые авторы (Дербинова, Сороковикова, 1983; Шлейнис, 1992) предпринимали попытки оценивать антропогенную нагрузку с применением показателей государственной статистики. При этом основой служили пять основных показателей: доля сельскохозяйственных угодий (%) в площади рассматриваемой административной единицы, часть пашни (%) в этих угодьях, нормы внесения минеральных и органических удобрений, поголовье скота. В соответствии с предлагаемой авторами градацией этим показателям присваивался балл. На основании суммы баллов оценивали агрогенную нагрузку на территорию изучаемого региона. Например, для всех административных районов Литвы была проведена оценка агрогенной нагрузки на почвенный покров (Шлейнис, 1992). Вместе с тем названная выше методика не включает все основные виды оценки сельскохозяйственной нагрузки и нуждается в дополнении. Более полная методика оценки сельскохозяйственной нагрузки разработана в Смоленском НИИ сельского хозяйства (Харламов, 2001). Однако она не подходит для Ставропольского края, поэтому была разработана собственная методика (Каторгин, 2003а), приведенная ниже.
Согласно Н.Ф. Реймерсу (1994), при расчете сельскохозяйственной нагрузки использовались 2-х балльные (норма и риск) и 4-х балльные (норма, риск, кризис и бедствие) шкалы.
Расчет агрогенной нагрузки:
доля сельскохозяйственных угодий в общей площади земель < 90 % - балл; > 90 % - 2 балла.
доля пашни к площади сельскохозяйственных угодий < 30 % - 1 балл; 31 балла; 61 - 80 % - 3 балла; > 80 % - 4 балла;
доля паров к площади сельскохозяйственных угодий < 5 % - 1 балл; 5 - % - 2 балла; 11 - 15 % - 3 балла; > 15 % - 4 балла.
Суммируя баллы вышеперечисленных показателей, получаем совокупный балл агрогенной нагрузки (рис. 12).
Рис. 12. Совокупная агрогенная нагрузка на земли в агроландшафтах Ставропольского края.
Расчет мелиоративной нагрузки:
доля орошаемых земель к площади сельскохозяйственных угодий < 5 % балл; 5 - 10 % - 2 балла; 11 - 15 % - 3 балла; > 15 % - 4 балла.
Расчет нагрузки скота:
Существующее поголовье скота переводилось в условные головы (УГ) через коэффициенты: коровы – 1,0; крупный рогатый скот – 0,6; лошади – 0,75; молодняк лошадей – 0,6. Поголовье свиней и птиц в расчет не бралось, так как данные животные содержатся исключительно на фермах и на пастбища не выводятся. Далее рассчитывались условные головы скота, приходящиеся на 100 гектаров сельскохозяйственных угодий.
< 10 гол. – 1 балл; 10 – 20 гол. – 2 балла; 20 – 30 гол. – 3 балла; > 30 гол.
– 4 балла.
Нагрузка овец рассчитывалась отдельно из-за более интенсивного воздействия данного типа животных на пастбища. За 1 балл был принят норматив нагрузки овец на пастбища по 4-м агроклиматическим зонам: 1-я – 0, голов на гектар; 2-я – 2,5 головы; 3-я – 5,5 голов; 4-я – 8 голов. По приведенным нормативам была разработана таблица оценки нагрузки овец.
Оценка нагрузки овец, голов/гектар агроклиматическая зона Через деление площади пастбищ на количество овец по ядровым группам хозяйств была вычислена нагрузка овец на 1 гектар пастбищ.
Суммируя показатели, получаем совокупный балл нагрузки скота. Данные, полученные по расчету сельскохозяйственной нагрузки, представлены в таблице 6 и показаны на рис. 13.
Как видно из рис. 13, наименьшую суммарную сельскохозяйственную нагрузку, близкую к норме (9 баллов) имеют Верхнеегорлыкский и Воровсколесско-Кубанский ландшафты, что связано с относительно высокой расчлененностью рельефа и связанной с этим невысокой нагрузкой на земли.
Кризисную нагрузку или близкую к кризисной имеет большинство степных и часть полупустынных ландшафтов, где ввиду невысокой расчлененности рельефа высока степень агрогенной нагрузки, составляющая 8 и более баллов (рис. 12), а также значительны нагрузки скота.
Расчет суммарной сельскохозяйственной нагрузки на ландшафты Ставропольского края.
№ п/п Рис. 13. Сельскохозяйственная нагрузка на агроландшафты Ставропольского Агроландшафты имеют различную степень почвенного плодородия, и, соответственно, различную степень устойчивости к сельскохозяйственным нагрузкам. Поэтому сельскохозяйственные нагрузки были пересчитаны с учетом бонитировочных баллов почвенного плодородия. Агрогенная и мелиоративная нагрузки были поделены на средневзвешенный по агроландшафтам балл бонитета пашни, нагрузка скота – на балл бонитета сельскохозяйственных угодий, а нагрузка овец – на балл бонитета пастбищ.
Полученные коэффициенты приведены в таблице 7, по суммарному коэффициенту создана тематическая карта (рис. 14).
Коэффициенты сельскохозяйственных нагрузок приходящихся на 1 балл бонитета почв № ландшафта сельскохозяйстмелиоративной Рис. 14. Суммарный коэффициент сельскохозяйственных нагрузок на Анализируя рис. 14 можно сделать вывод, что возрастание суммарного коэффициента сельскохозяйственных нагрузок имеет четко выраженный зональный характер. С увеличением более чем в 3 раза от предгорных ландшафтов к полупустынным ландшафтам Терско-Кумской низменности и Кумо-Манычской впадины. Это связано как с уменьшение балла почвенного плодородия в восточном и северо-восточном направлении, так и с достаточно высокими нагрузками на ландшафты сухих степей и полупустынь.
4.3. Обобщенная оценка степени деградации почвенного покрова Важность выявления характера деградационных процессов в границах структурных единиц природных ландшафтов. Существующее, далекое от оптимального, плодородие почв агроландшафтов Ставропольского края является следствием долголетнего нерационального их использования, неадаптивностью земледелия к особенностям рельефа, нерациональным землеустройством, слабым внедрением почвозащитных технологий, незавершенностью систем противоэрозионной защиты. Расширился спектр деградационных процессов в крае, интенсивность их проявления и охват территории.
Распаханность предгорий Большого Кавказа и протяженных склонов Ставропольской возвышенности, приводит к интенсивной водной эрозии, а высокая доля пашни в сельхозугодьях в комплексе с засушливым климатом и большим количеством ветровых коридоров на западе и песчаных почв на востоке края – к ветровой эрозии. Обширное распространение на территории Терско-Кумской низменности, Кумо-Манычской впадины и Янкульской депрессии соленосных морских отложений в совокупности с развитой мелиоративной сетью способствуют активным процессам вторичного засоления почв. Интенсивные технологии обработки пашни, недостаточное внесение минеральных и органических удобрений приводят к агрохимической деградации – потере естественного плодородия почв и снижению содержания в них питательных веществ. Развитая промышленность в городах Кавказских Минеральных Вод, Невинномысске, Ставрополе, Буденновске, нефтяные промыслы на востоке края, наличие в западной части края развитой дорожной сети и т.п. привели к загрязнению почв химическими элементами.
Поскольку каждый природный ландшафт и его структурные единицы обладают определенными природными особенностями, которые способствуют или сдерживают развитие деградационных процессов, очень важно проводить анализ деградационных процессов сразу на нескольких геосистемных уровнях – от фаций до провинций ландшафтов.
Вычленить особенности протекания деградационных процессов и связь их с природными свойствами хотя бы на уровне крупных природнотерриториальных комплексов ранга ландшафтов очень трудно, поскольку основная базовая информация не увязана с природными структурами, а привязана к административным единицам территории отдельных хозяйств, районов, края. Поэтому объективную оценку деградационным процессам можно дать только крупным природным единицам – ландшафтам, используя данные почвенных обследований крупных хозяйств, лежащих в границах ландшафтов края.
В адаптивно-ландшафтном земледелии идентификация деградационных процессов, оценка их вредоносности, площади поражения очень важны, как и в медицине при анализе-диагнозе-прогнозе и лечении болезней. Неустойчивость деградированных почв в агроландшафте, не купированная целой системой защитных и реанимационных мероприятий, может стать очагом экологического бедствия, полного подрыва плодородия почв и сельскохозяйственного производства.
Агрохимическая деградация почв пашни. Агрохимическое обследование проводится с целью агрохимической оценки почв и контроля за изменением почвенного плодородия. Прослежена динамика изменения средневзвешенных значений почвенного плодородия агроландшафтов Ставропольского края за период с 1986-1988 годов до 2003 года по следующим показателям: содержанию гумуса в пашне (метод Тюрина в модификации ЦИНАО);
содержанию подвижного фосфора в пашне (метод Мачигина в модификации ЦИНАО); содержанию обменного калия в пашне (метод Мачигина в модификации ЦИНАО);
При определении средневзвешенных показателей за 100% принималась фактически обследованная площадь в ядровых группах хозяйств ландшафтов, с помощью SQL-запросов были просчитаны средние значения показателей почвенного плодородия по 286 хозяйствам в 24 ландшафтах (таблица 9).
При характеристике почв по обеспеченности элементами питания по ландшафтам Ставропольского края и pH мы пользовались следующими группировками, принятыми в Агрохимическом центре «Ставропольский»
(Агрохимическая характеристика…, 1988; Группировки почв…, 2003; Подколзин, 1997) (таблица 8).
Группировки почв по содержанию питательных веществ.
В результате вычислений были определены изменения содержания питательных веществ в пашне агроландшафтов Ставропольского края за 1988 – 2003 гг., показанные на картах-схемах, построенных методом диапазонов с помощью ГИС MapInfo (рис 15 – 17).
Как видно из выше приведенных данных, изменения показателей плодородия по агроландшафтам края неоднозначны. В большинстве агроландшафтов, особенно в западной части края отмечается убыль гумуса и обменного калия, хотя эти изменения и не выходят за рамки групп обеспеченности.
Можно говорить о тенденции снижения почвенного плодородия, не поддерживаемого внесением органических и калийных удобрений, особенно в период реформирования сельского хозяйства. По фосфору тенденции изменения менее тревожные. Возможно, это связано с тем, что еще не истощены запасы подвижного фосфора, накопленные в предреформенный период, когда в почву вносилось ежегодно достаточное количество фосфорных удобрений.
Средневзвешенные значения содержания питательных веществ и их изменение в пашне агроландшафтов Ставропольского края (слой 0 – 20 см).
№ ландшафта * к данным по содержанию гумуса в хозяйствах 20-го ландшафта следует относиться критично. Возможно, это связано с тем, что в некоторых хозяйствах, входящих в данный ландшафт, была использована другая методика определения содержания гумуса.
Рис. 15. Изменение содержания гумуса в пашне агроландшафтов Ставропольского края за период с 1988 по 2003 гг. (%).
Рис. 16. Изменение содержания подвижного фосфора в пашне агроландшафтов Ставропольского края за период с 1986 по 2003 гг. (мг/кг почвы).
Рис. 17. Изменение содержания обменного калия в пашне агроландшафтов Ставропольского края за период с 1986 по 2003 гг. (мг/кг почвы).
Загрязнение почв химическими элементами. По мере ухудшения экологического состояния окружающей среды Ставрополья приобретает все большую актуальность вопрос загрязнения такого важнейшего компонента ландшафтов, как почвы.
Для анализа загрязненности почв ландшафтов края нами были использованы результаты мелкомасштабной экогеохимической съемки Ставрополья, выполненной в 1994 году Геоэкологической партией Центральной геологосъемочной экспедицией (ЦГСЭ) Регионального геологического центра (РГЦ) «Севкавгеология», положенные в основу Карты загрязненности почв и донных отложений Ставропольского края химическими элементами (Карта загрязненности…, 1994; Пояснительная записка…, 1994).
Для всех загрязняющих почвы химических элементов были рассчитаны статистические параметры, в том числе, определены «Ставропольские» фоны, значения которых необходимы при расчете суммарного показателя загрязненности (Zc), поскольку экогеохимические аномалии имеют полиэлементный состав (Пояснительная записка…, 1994).
Суммирование концентраций элементов осуществлено по методике, изложенной в «Методических указаниях…» (1987), согласно которым:
где Kc – коэффициент концентрации Kc = Ci – реальное содержание элемента Сф – фоновое содержание того же элемента n – число суммируемых элементов.
В качестве шкалы для создания тематической карты, показывающей средневзвешенное значение суммарного показателя загрязненности (Zc) почв в ландшафтах края химическими элементами мы взяли диапазоны, приведенные в «Пояснительной записке к карте загрязненности почв и донных отложений Ставрополья химическими элементами» (1994) и показанное в таблице 10.
В результате перевода в векторный цифровой формат «Карты загрязненности почв и донных отложений Ставропольского края химическими элементами» и применения оверлейных операций были вычислены средневзвешенные значения Zc и построены тематическая карта (рис. 18).
Схема оценки почв Ставрополья с использованием показателя суммарного загрязнения химическими элементами.
Коэффициент Неопасная Zc=1-3. Значения Кс не достигают 1,5 и не превышают ПДК Допустимая Zc=4-8. Значения Кс равны 1, Умеренно Zc=9-12. Значения Кс равны 1,5 Использование под любые культуры опасная и выше, а по одному из элемен- при условии контроля качества сельтов превышают ПДК скохозяйственных растений Высоко опас- Zc=13-16. Значения Кс по мно- Использование под технические ная гим элементам равны 1,5 и вы- культуры. Использование под сельше, а по двум элементам пре- скохозяйственные культуры огранивышают ПДК чено, с учетом растений концентратов Чрезвычайно Zc>16. Значения Кс по многим Использование под технические опасная элементам равны 1,5 и выше, а культуры или исключение из сельпо нескольким элементам пре- скохозяйственного использования.
Рис. 18. Средневзвешенное значение суммарного показателя загрязненности почв в ландшафтах Ставропольского края.
Как показывает рис. 18, большая часть ландшафтов (или около 60% территории края) относятся к категории загрязненности почв, определяемой как «неопасная». Широкое распространение эта категория получила в северовосточных, восточных, северных и западных частях края. Это обстоятельство обусловлено двумя причинами:
1. здесь относительно редко встречаются концентрированные и активно действующие источники загрязнения (крупные населенные пункты, высоко загруженные авто- и железные дороги);
2. редкое распространение природных загрязнителей почв в виде геологических образований, содержащих тяжелые металлы.
Ландшафты, относимые нами к категории загрязненности почв как «допустимая», занимают две полосы.
Первая полоса простирается с северо-запада на юг с увеличением Zc к югу. Повышенное значение Zc здесь связано с выходом на дневную поверхность «майкопской» свиты глинистых отложений палеогена и неогена, а также интрузивных магматических останцевых гор Пятигорья, являющихся природными аномалиеобразующими объектами. Весьма активно сказалось антропогенное воздействие, которое проявилось в многочисленных городах и прочих населенных пунктах, густой сети автомобильных и железных дорог, нефте- и газопроводов, животноводческих, земледельческих и прочих хозяйственных объектов. К элементам, наиболее активно участвующим в загрязнении в пределах описываемой территории, относятся свинец, мышьяк, цинк, относящиеся к элементам первого класса медицинской опасности, медь, относящаяся ко второму классу и другие, связанные преимущественно с хозяйственной деятельностью, а также бор и молибден, относящиеся ко второму классу, и имеющие природное происхождение.
Вторая полоса идет по долине реки Кумы, которая практически превращена в сплошную селитебную зону, одновременно являющуюся зоной интенсивного сельскохозяйственного производства, охватывает районы нефтяных промыслов и площади интенсивного земледелия и широкого развития мелиорации в Степновском и Курском районах. Элементам, наиболее активно участвующим в загрязнении в пределах второй полосы, являются медь, свинец, мышьяк, цинк, барий и другие, связанные преимущественно с хозяйственной деятельностью, а также бор и скандий, имеющие природное происхождение.
Интегральная оценка деградационных процессов в ландшафтах Ставропольского края. Для решения выше поставленных задач по оценке и типизации ландшафтов по развитию деградации почв большое значение имеет расчет обобщенного показателя.
Большинство почвенных деградационных процессов характеризуются двумя показателями: площадью распространения и интенсивностью поражения. При оценке эродированности почв, процессов засоления, гидроморфизма, каменистости мы посчитали правомерным заменить качественные характеристики проявления деградационных процессов: слабое, среднее, сильное, на количественные, используя поправочные коэффициенты (коэффициенты понижения), применяемые при бонитировке почв. Во-первых, эти коэффициенты имеют один критерий оценки – степень снижения продуктивности зональных почв; во-вторых, они получены в результате обобщенных многочисленных зависимостей урожайности и агрономически важных свойств почв, полученных в полевых опытах и в производстве; в-третьих, большинство из них учитывает региональные особенности свойств почв и рекомендовано к использованию в крае специальными постановлениями.
Для расчетов были использованы следующие поправочные коэффициенты на эродируемость и дефлируемость почв (Серый, 1984; Теоретические основы, 1991), приведенные в таблице 11.
Поправочные коэффициенты на эродируемость и дефлируемость Поправочные коэффициенты на каменистость, засоленность почв, солонцеватость и солончаковатость и гидроморфизм взяты из «Нормативноправовых актов … 1992 года», часть их уточнена по материалам лаборатории солонцов СНИИСХ (Годовой отчет, 1985); они приведены в таблице 12.
Поправочные коэффициенты на каменистость, засоленность, гидроморфизм Вид деградации Солонцовые комплексы Поскольку поправочные коэффициенты на виды деградаций представляют собой долю продуктивности, которую имеют почвы подверженные деградационным процессам, от продуктивности зональных почв принятой за единицу, то разница между единицей и поправочным (понижающим) коэффициентом может служить мерой интенсивности поражения почв разными видами деградаций, названной индексом интенсивности поражения (ИИП) (приложение 6-7). Произведение ИИП на относительную площадь поражения (%) может служить мерой опасности (мерой развития) данного вида деградации, выраженной в баллах. Обобщенный показатель деградированности почв определялся суммированием баллов оцениваемых видов деградаций.
На первом этапе площади распространения видов деградаций были выражены в процентах от обследованных площадей и определены средневзвешенные понижающие коэффициенты по всем видам деградаций.
Такие расчеты проведены для пашни и сельскохозяйственных угодий ландшафтов края. В некоторых ландшафтах (1, 4, 6, 13, 21) сумма пораженной различными видами деградаций площади оказалась больше общей площади обследованных земель, что свидетельствует о явном «наложении» различных видов деградаций на часть площади. Интегрирующий эффект наложения был определен делением пораженной площади на обследованную. Полученный коэффициент был использован как корректирующий при комплексной оценке интенсивности поражения анализируемых видов деградаций, поскольку совместные проявления деструктивных процессов вызывает эффект синергизма (Ксн). Так, для сельскохозяйственных угодий первого ландшафта он будет равен 1,65 (164,5% / 100%), а для пашни – 1,37 (137,1% / 100%), для четвертого – соответственно 1,37 и 1,03, шестого – 1,27 и 1,09, тринадцатого – 1,70 и 1,52, двадцать первого – 1,37 и 1,24 (приложение 4-5).
Как было отмечено выше, деградирующий эффект складывается из двух составляющих – площади и интенсивности поражения. Совместное использование этих составляющих позволит оценить вклад каждого вида деградаций в суммарный деструктивный процесс. Произведение площади проявления на интенсивность поражения может служить обобщающим баллом вредоносности любого вида деградаций, а сумма этих баллов для ландшафтов – комплексным баллом оценки. Весь процесс расчета интегральной оценки процессов деградации представлен в приложениях 2-9.
Доля оценочного балла данного вида деградации по отношению к сумме баллов всех видов деградаций определяет доминирующие и второстепенные виды.
Все виды деградаций могут по разному сочетаться на различных территориях. Чтобы можно было легче типизировать территории по сочетанию деструктивных процессов предлагаются формулы, в которых используются буквенные обозначения видов деградаций и их вклады (%) в снижение продуктивности почв. Приняты следующие буквенные обозначения: З – засоленность; С – солончаки, солонцы, солонцовые комплексы; П – переувлажнение;
Б – заболачивание; К – каменистость; В – водная эрозия; Д – дефляция; ВД – совместная эрозия. Тогда соотношение и вредоносность деградационных процессов, например, для пашни первого ландшафта будет иметь вид: З32 С В23 К8 Д4 П2, по седьмому ландшафту – В52 Д40 П6 З1, что свидетельствует о доминировании в первом ландшафте фактора галогенеза (63%) и водной эрозии почв (23%), а по седьмому ландшафту – водной эрозии (52%), дефляции (40%) и гидроморфизма (6%).
Для сокращения формулы сочетаний можно объединить виды деградаций, сходных по типу процессов: галогенеза, гидроморфизма. Тогда по первому ландшафту формула примет вид (ЗС)63 В23 К8 Д4 (приложение 9).
Наш методический подход позволяет судить как о распространении деградационных процессов, так и о интенсивности поражения и, на наш, взгляд более объективно оценивать вредоносность деградационных процессов.
Согласно нашим данным, исходя из формулы соотношения видов деградаций для пашни края С29З26В19Д13П6К3ВД3, на первом месте среди лимитирующих факторов стоят различные виды засоления (СЗ) – 55%, затем водная эрозия (В) – 19%, дефляция (Д) – 13%, переувлажнение почв (П) – 6%, каменистость (К) – 3% и совместное проявление эрозионных процессов (ВД) – 3%.
Предлагаемый подход к оценке деградационных процессов позволяет дифференцировать и оценивать деградации, вызванные преимущественно природными процессами: засоление, солончаковатость, солонцеватость, каменистость, заболачивание и пр., и процессы, вызванные преимущественно нерациональной хозяйственной деятельностью: водная эрозия и дефляция, подтопление, различные виды химической, биологической и физической деградации. Суммируя баллы последних можно оценить ландшафты по развитию антропогенных деградаций. Так, в целом по краю балл преимущественно антропогенных деградаций пашни, что составляет 42% от общего балла, равен 5,2, а их виды по убыванию вредоносности ранжируются следующим образом:
Таким же способом могут быть оценены виды деградаций преимущественно природного происхождения.
Например, в девятом (Бурукшунском) ландшафте оценочный балл засоления почв в сельскохозяйственных угодьях составляет 8,4 балла, солончаков – 2,73, солонцов и солонцовых комплексов – 4,5, заболачивания – 0,73 балла.
Итоговый балл природной деградации составляет по этому ландшафту 16, балла или 83% от общей деградации. Виды деградаций ранжируются по формуле:
где Ск – солонцы и солонцовые комплексы, Сол – солончаки.
На 44,8% площади сельскохозяйственных угодий девятого ландшафта среди природных факторов, снижающих плодородие почв, на первом месте стоит их засоление (51%), затем, солонцы и солонцовые комплексы (28%) и солончаки (17%). В соответствии с выявленным ранжированием неблагоприятных факторов должна строится и стратегия мелиоративных мероприятий.
В приложении 9 приводятся итоговые формулы деградации сельскохозяйственных угодий и пашни по ландшафтам Ставропольского края.
Рассмотрение сочетаний видов деградаций позволяет объединить ландшафты по классификациям сочетаний. Так, по доминированию видов деградаций почв связанных с засолением пашни выделяется большая группа из ландшафтов, где на долю засоления приходится от 31 до 97% вредоносности деградационных процессов. Ландшафты ранжируются по мере увеличения доли вредоносности процессов засоления пашни в общей деградации следующим образом:
Доминированием вредоносности процессов водной эрозии отличается пашня следующих ландшафтов:
Каменистость, как фактор деградации доминирует в третьем и двадцать четвертом ландшафтах. Особенно высока в разрушении почв роль дефляционных процессов в 17 (37%), 16 (32%), 5 (17%), 20 (16%), 3 (15%) ландшафтах.
Преобладание того или иного вида деградаций предопределяет очередность мелиоративных восстановительных мер на территории ландшафтов, но размеры поражения могут быть выявлены только при сопоставлении площадей и баллов поражения каждого ландшафта.
Вся территория распределяются по поражению на 4 группы ландшафтов.
При этом разница между крайними значениями балльной оценки достигает по сельскохозяйственным угодьям ландшафтов 70 единиц, пашни – 60 единиц.
Особенно тревожное состояние сельскохозяйственных угодий в 11, 2, 6, 17, 21, 4, 1 и 13 ландшафтах края, пашни в 6, 4, 21, 1 и 13 (табл. 13, рис.19-20).
Интегральная оценка пораженности почв сельскохозяйственных угодий и пашни деградационными процессами в ландшафтах Ставропольского края № п/п Рис. 19. Суммарный балл оценки деградационных процессов почвенного покрова сельскохозяйственных угодий в ландшафтах Ставропольского края.
Рис. 20. Суммарный балл оценки деградационных процессов почвенного покрова пашни в ландшафтах Ставропольского края.
4.4. Пути оптимизации соотношения угодий в агроландшафтах Оценка возможности оптимизации соотношения угодий в ландшафтах края для стабилизации деградационных процессов. Главная причина экологической нестабильности ландшафтов Ставропольского края заключается в чрезмерной распашке их территории, достигающей 80-90% от площади. Существует много подходов к определению доли пашни в агроландшафтах. Это и густота долинно-балочного расчленения (Володин и др., 1999), потребность в кормах и количестве навоза, необходимого для компенсации утраты почвенного плодородия (Митрофанов, 1998), метод экологической емкости ландшафтов (Володин и др., 1999).
Наш подход опирается на результаты агроэкологической инвентаризации пашни (Схема использования …, 1997), которая дифференцирует ее по плодородию, рельефу, необходимости и затратности мелиоративных мероприятий, то есть ее экологическому состоянию на шесть агроэкологических групп.
I-Агроэкологическая группа. Особо ценные земли с балльной оценкой выше среднерайонного уровня с уклонами местности до 1°, с зональными почвами, неподверженными процессам деградации, пригодными для возделывания сельскохозяйственных культур без особых ограничений;
II-Агроэкологическая группа. Ценные земли с бальной оценкой ниже или близкой к среднерайонному уровню, с уклонами местности 2-3°, с зональными почвами подверженными деградационным процессам в слабой степени, которые могут быть преодолены противоэрозионными агротехническими и мелиоративными мероприятиями;
III-Агроэкологическая группа. Участки пашни с различными уклонами местности, но не более 5°, с почвами, подверженными деградации в средней степени, пригодные для возделывания сельскохозяйственных культур с ограничениями, которые могут быть преодолены среднезатратными мелиоративными мероприятиями;
IV-Агроэкологическая группа. Участки пашни в сильной степени утратившие свои свойства, малопригодные для возделывания сельскохозяйственных культур, на которых в соответствии с законом «О сохранении почв и предотвращении их деградации» (1995) намечается изменение целевого назначения;
V-Агроэкологическая группа. Участки пашни, подверженные деградации в сильной степени, непригодные для возделывания сельскохозяйственных культур, подлежащие выводу из состава сельскохозяйственных угодий с последующей консервацией;
VI-Агроэкологическая группа. Участки богарной и орошаемой пашни, подверженные подтоплению, вторичному засолению, требующие проведения работ по устранению избыточного переувлажнения, рассоления и по другим причинам, подлежащие переводу в стадию мелиоративного строительства.
В качестве атрибутов для расчетов использовались данные по площади агроэкологических групп пашни в разрезе хозяйств. Результаты вычислений отражены на рис. 21 – 23.
Для количественной оценки фактора распаханности была принята шкала экологической устойчивости агроландшафтов при различной степени распаханности (Лопырев, 1995):
1. Экологическое равновесие 20% и менее;
2. Устойчивое 21-29%;
3. Среднеустойчивое 30-39%;
4. Слабоустойчивые 40-49%;
5. Порогоустойчивые 50-59%;
6. Неустойчивые 60-69%;
7. Разрушенные 70-79%;
8. Очень разрушенные 80-89%;
9. Чрезвычайно разрушенные 90% и более.
Виды деградаций, площадь и интенсивность поражения при грамотно проведенной инвентаризации должны отражаются в специфичном соотношении агроэкологических групп земель в ландшафтах края.
Проведенный анализ (табл. 14) подтвердил, что соотношение агроэкологических групп земель, достаточно верно отражает природную специфику ландшафтов.
Все многообразие соотношений агроэкологических групп земель в ландшафтах было сведено в единый средневзвешенный показатель – балл экологической уязвимости, принимая номер группы за балл оценки, повышающийся от первой к шестой группе. Оценка ландшафтов края по этому показателю подтвердила сложность экологической ситуации, вызванной широким развитием деградации почв в следующих ландшафтах края: (3.35); 24 (3.02); 18 (2.96); 21 (2.85); 13 (2.64); 17 (2.49); 6 (2.29); 2 (2.26); (2.15); 4 (2.07) и 11 (2.05), то есть в 10 ландшафтах.
Полученные результаты по процентному соотношению пашни к сельскохозяйственным угодьям приведены в таблице 14.
Руководствуясь мыслью о том, что нестабильность агроландшафта определяется в первую очередь тем, что в пашне используются уже разрушенные деградированные земли IV-VI агрогрупп, был просчитан вариант оптимизации распаханности каждого ландшафта за счет вывода из нее этих земель. На втором этапе кроме деградированных рассматривался и вывод склоновых, эрозионноопасных земель третьей агрогруппы (табл. 15).
Анализ материалов, сведенных в таблицу 15, и оцененных по критериям М.И. Лопырева (1995) показал, что в настоящее время только 8 ландшафтов (27,8% территории края) имеют распаханность ниже порогоустойчивой, а 59,1% территории края или 12 ландшафтов из 24 можно отнести к разрушенным, поскольку их распаханность превышает 70%, а в 2-х ландшафтах (7 и 15) даже 90% (рис. 21).
Соотношение агроэкологических групп земель в ландшафтах края, как индикатор их экологического состояния Оптимизированная распаханность в агроландшафтах Ставропольского края.
ландшафтов При выведении из пашни деградированных земель (IV-VI агрогрупп) уже 40,2% территории края (11 ландшафтов) могут иметь распаханность ниже порога устойчивости, а 9 ландшафтов (47,1% территории) остаются с распаханностью от 71 до 90%. При выключении из обрабатываемой пашни земель третьей агрогруппы уже 13 ландшафтов (56,2% территории) значительно повышают свою устойчивость (распаханность ниже порогоустойчивой).
При этом следует отметить, что в разряд устойчивых и экологически равновесных могут перейти 7 ландшафтов с площадью в 27,2% от территории края. На рис. 22 и 23 изображена оптимизированная (без IV-VI агрогрупп) и максимально оптимизированная (без III-VI агрогрупп) распаханность ландшафтов края.
Однако и в третьем варианте распаханность 11 ландшафтов (43,8% территории края), где большие площади занимают плодородные экологически устойчивые земли I и II агрогрупп, остается достаточно высокой – от 65 до 87%. Понятно, что переводить эти ценные земли из пашни в другие виды угодий экономически нецелесообразно, а потому нужны новые подходы к стабилизации пашни в агроландшафтах с высокой распаханностью.
Как видно из таблицы 15 вывод земель III-VI агрогрупп снижает распаханность агроландшафтов, но все же более половины будут относиться к разрушенным агроландшафтам, поскольку их распаханность свыше 70%. Это требует новых подходов к обеспечению их устойчивости.
Поскольку агроэкологическая дифференциация пашни требует ее адекватного дифференцированного использования под полевые, кормовые и почвозащитные севообороты, это позволит улучшить и экологическую стабильность агроландшафтов.
Рис. 21 Существующая распаханность ландшафтов Ставропольского края (процентное отношение к сельскохозяйственным угодьям).
Рис. 22. Распаханность ландшафтов Ставропольского края при выводе из пашни деградированных земель IV-VI агроэкологических групп.
Рис. 23. Распаханность ландшафтов Ставропольского края при выводе из пашни деградированных (IV-VI), склоновых и засоленных (III) агроэкологических групп земель.
Определяющая роль типов местностей в экологическом состоянии ландшафтов Ставропольского края. Всё своеобразие, сложность и уникальность природных условий Ставропольского края выражена в выделенных на его территории 24 ландшафтах, 19 из которых относятся к Русской равнине, а 5 к Большому Кавказу. Выделенные ландшафты объединяются в пять провинций и четыре подпровинции, и состоят из 3-6 местностей, которые подразделяется в свою очередь на урочища, подурочища, фации. В ландшафтах края насчитывается 93 местности. По гипсометрии, геоморфологии, геологии, положению на геохимической катене они могут быть объединены в 24 типа.
Для выяснения взаимосвязи между соотношением агроэкологических групп пашни и распространением деградационных процессов в ландшафтах края нами была составлена матрица, с одной стороны которой располагался ряд местностей по снижению их гипсометрического уровня и геологического возраста, а с другой ландшафты, с оценкой сельскохозяйственных угодий по деградационному баллу, а пашни по коэффициенту экологической уязвимости. На пересечении граф указывалась доля типов местностей в структурной иерархии каждого ландшафта. Отдельно рассматривались ландшафты Русской равнины и Большого Кавказа (табл. 16, 17).
Как видно из представленных материалов, сложность экологической обстановки в том или ином ландшафте определяется в первую очередь спецификой входящих в его состав типов местностей. Высокие структурноденудационные плато, эрозионно-денудационные высокие равнины акчагыльской и апшеронской поверхностей выравнивания, а также аллювиальноморские равнины и эоловые дефляционно-аккумулятивные низменности в первую очередь подвержены деструктивным процессам (ландшафты 1, 2, 4, 6, 13, 16, 17). Эта же матрица по типологии местностей четко дифференцирует ландшафты по провинциям лесостепей и степей Ставропольской возвышенности (ландшафты 1-6, 13), ландшафтам степей (7-10, 11, 12, 14, 15, 19) и ландшафтам полупустынь и пустынь (16-18).
Ландшафты Большого Кавказа, по доминированию типов местностей делятся на группу с преобладанием местностей моноклинальных гряд и останцевых плато (21 и 24 ландшафты), определяющих сложность их экологического состояния и более благополучную группу (20, 22, 23) ландшафтов речных террас.
Матрица распределения ландшафтов равнин Предкавказья по типам местностей и степени экологической напряженности Тип местности 1 Структурно-денудационные высокие плато 21.8 9. 3 Эрозионно-денудационные высокие равнины акчагыльской поверхности выравнивания ской поверхности выравнивания зарские равнины тивные равнины стхвалынские равнины 10 Эоловые дефляционно-аккумулятивные и аллювиально-морские низменности * показатели не определены Матрица распределения ландшафтов равнин Большого Кавказа по типам местностей и степени экологической напряженности Тип местности * показатели не определены 4.5. Оценка экологического состояния агроландшафтов через КЭСЛ (коэффициент экологической стабилизации ландшафтов) Рассматривая вопросы устойчивости и оптимизации ландшафтов, очень важно располагать системой количественных оценок и характеристик изучаемых процессов. В этой связи заслуживает внимания возможность оценивать степень экологической устойчивости ландшафта с помощью коэффициента экологической стабилизации (КЭСЛ), интегрирующего качественные и количественные характеристики абиотических и биотических элементов ландшафта (Агроэкология, 2001).
Первый метод оценки с помощью этого коэффициента основан на определении и сопоставлении площадей, занятых различными элементами ландшафта, с учетом их положительного или отрицательного влияния на окружающую среду:
где Fст – площади занятые стабильными элементами ландшафта – сельскохозяйственными культурами и растительными сообществами, оказывающими на него положительное влияние (леса, зеленые насаждения, естественные луга, заповедники, заказники и пахотные земли, занятые многолетними культурами);
Fнст – площади, занятые нестабильными элементами ландшафта (ежегодно обрабатываемые пашни, земли с неустойчивым травяным покровом, склонами, площадями под застройкой и дорогами, зарастающими и заиленными водоемами, местами добычи полезных ископаемых, другими участками, подвергшимися антропогенному опустошению) (Агроэкология, 2001).
Оценку ландшафта производят по следующей шкале:
0,51 …1,00 Состояние нестабильное 1,01 …3,00 Состояние условно стабильное 3,01 …4,50 Состояние стабильное 4,51 и более Стабильность хорошо выражена В нашей работе использовались данные по землепользователям за г. (Экспликация земель …, 1986). По ядровым группам хозяйств в ландшафтах были просчитаны площади стабильных и нестабильных элементов агроландшафтов.
К стабильным элементам агроландшафтов мы отнесли:
2. древесно-кустарниковые насаждения;
3. многолетние насаждения;
4. залежи;
5. сенокосы;
6. пастбища;
7. посадки многолетних трав;
8. водохранилища и пруды.
Нестабильными элементами агроландшафтов являются:
1. пашня;
2. орошаемые земли;
3. приусадебные земли;
4. земли, находящиеся в стадии мелиоративного строительства;
5. прочие земли (земли находящиеся под: дорогами, прогонами и проселками; общественными дворами, улицами и площадями; общественными постройками; нарушенные земли).
Результаты расчетов отражены на рис. 24.
Рис. 24. Средневзвешенное значение КЭСЛ1 в агроландшафтах Ставропольского края.
Анализируя полученную тематическую карту можно сделать вывод, что большая часть агроландшафтов лесостепной ландшафтной провинции, все агроландшафты степной, агроландшафты западной части полупустынной и большая часть агроландшафтов предгорной провинции степей имеют хорошо выраженную нестабильность. В основном это связано со значительной степенью распаханности территории, и низким удельным весом стабилизирующих элементов – лесов, сенокосов и пастбищ и других. Нестабильное состояние имеют Грачевско-Калаусский, Егорлыкско-Сенгилеевский, КубаноЯнкульский и Воровсколесско-Кубанский ландшафты (4, 6, 13, 21 на рис. 24).
Более высокий уровень КЭСЛ1 в Курско-Терском, НижнекумскоПрикаспийском и Чограйско-Прикаспийском агроландшафтах (16, 17, 18 на рис. 24) связан с высокой долей пастбищ в сельскохозяйственных угодьях, а в Верхнеегорлыкском и Кубано-Малкинском (1 и 24 на рис. 24) – с большей пересеченностью рельефа, вследствие чего доля пашни ниже, а стабилизирующих элементов агроландшафта – выше.
Нами была предпринята попытка смоделировать с помощью ГИСтехнологий изменение коэффициента экологической стабилизации ландшафтов при выводе из состава пашни (нестабильного элемента) земель IV-VI (деградированных) и III-VI (склоновых и деградированных) агроэкологических групп и перевод их в состав стабильных элементов (пастбищ, сенокосов, многолетних насаждений и др.) согласно Схеме использования земельных ресурсов на агроландшафтной основе до 2005 года (1997). Результаты отражены на рис. 25 и 26.
Таким образом, вывод из состава пашни деградированных земель (рис.
25) позволит существенно поднять уровень КЭСЛ в лесостепных и предгорных ландшафтах. Вывод из состава пашни склоновых земель III агроэкологической группы (рис. 26) переведет в стабильное состояние Верхнеегорлыкский ландшафт, не только обладающий наибольшим пейзажным разнообразием среди ландшафтов края, но и окружающий г.Ставрополь в котором проживает седьмая часть населения края. Это также переведет в условно стабильное и близкое к условно стабильному состоянию большую часть ландшафтов лесостепной провинции и предгорий.
Но, тем не менее, даже вывод из состава пашни деградированных и склоновых земель практически не изменит ситуацию в степной зоне, так как хозяйства, лежащие в ней, имеют в составе сельскохозяйственных угодий значительную долю пашни не подверженной или подверженной в слабой степени деградационным процессам.
Рис. 25. Средневзвешенное значение КЭСЛ1 в агроландшафтах Ставропольского края при условии вывода из пашни земель IV-VI агроэкологических групп.
Рис. 26. Средневзвешенное значение КЭСЛ1 в агроландшафтах Ставропольского края при условии вывода из пашни земель III-VI агроэкологических групп.
4.6. Использование ГИС-технологий при анализе агроландшафтов Изобильненского района разработке районных систем земледелия на 4.6.1. Методология построения адаптивно-ландшафтных систем В зависимости от масштаба территории, для которой разрабатываются системы земледелия, меняются и ведущие факторы, определяющие содержание этой системы, учитываются разные пороги целесообразной допустимой генерализации, детализации и усреднения данных о природной дифференциации территории.
Разработанная в СНИИСХ методология перехода на адаптивноландшафтное земледелие в крае свидетельствует о возможности и необходимости перехода к нему на всех таксономических уровнях. При этом степень приближения на всех уровнях будет разной. Для административных районов адаптивно-ландшафтная система земледелия должна учитывать особенности ландшафтов, ландшафтных зон и типов местностей.
На разных уровнях должен быть и свой выбор звеньев, определяющих характер системы земледелия. На районном уровне – это специализация групп хозяйств, лежащих в одной агроландшафтной зоне или ландшафте. Эта специализация определяется соотношением сельскохозяйственных угодий, агроэкологических групп пашни в том или ином ландшафте, или агроландшафтной зоне. Этим и отличается адаптивно-ландшафтная система земледелия от ранее разработанных районных систем земледелия, в основе которых лежали плановые задания на производство сельскохозяйственной продукции (Разработать методологические основы…, 2002).
В основе районных систем земледелия на ландшафтной основе лежит дифференциация земель на агроэкологические группы, которая определяет стратегическую направленность. Наличие в выделенных ландшафтных зонах:
больших площадей земель четвертой или пятой агроэкологических групп, может изменить соотношение угодий в хозяйстве и в итоге районе; шестой – степень затратности на мелиоративное восстановление пашни; третьей агрогруппы – изменение структуры посевных площадей за счет увеличения доли многолетних и однолетних трав и затраты на обеспечение противоэрозионной защиты; чем больше в выделенных зонах лучших, экологически благополучных земель первой и второй агрогрупп, тем шире спектр возделываемых культур и тем выше возможность адаптации земледелия к запросам рынка, и легче перестройка специализации.
Следует отметить, что первым шагом на пути перехода к адаптивноландшафтному земледелию является экологическое зонирование территории района. С одной стороны должны быть выделены все объекты, несущие экологическое неблагополучие определенным территориям и требующие изъятия земель для создания буферных (санитарно-защитных) зон, селитьба, вредные предприятия, авто- и железные дороги, животноводческие комплексы и фермы, карьеры и др. С другой стороны должны выявляться объекты, подлежащие охране и восстановлению (территории особых природных достоинств, пруды и водоемы, поймы малых рек, зоны рекреации, зеленые насаждения и пр.), которые также требуют создания вокруг них буферных переходных зон. И только после выделения этих двух типов объектов и зон защиты вокруг них, следует определяться с дифференциацией пашни на агроэкологические группы, характер использования которых и степень интенсификации этого использования находятся в прямой зависимости от их экологического благополучия. Следует также уточнить, что на уровне районной системы не предусмотрено дальнейшее разграничение земель третьей агрогруппы по другим факторам, таким как плодородие почв, на склонах разной крутизны, характер подстилающих пород, катенарная геохимическая дифференциация, что должно быть обязательно учтено при разработке систем земледелия для отдельных хозяйств (Разработать методологические основы…, 2002).
Согласно концепции СНИИСХ плодородие почв и ее биогенность являются первым приоритетом адаптивно-ландшафтных систем земледелия и разрабатываемые севообороты для всех категорий земель обязательно должны быть оценены по балансу гумуса и питательных веществ. Разработанная проектным институтом СтавропольНИИгипрозем структура посевных площадей для районов края на основе типичных для них видов севооборотов для агроэкологических групп земель может быть принята в первом приближении в качестве экологически оптимальной.
Весьма значимую роль при переходе к адаптивно-ландшафтному земледелию должны играть геоинформационные системы и ГИС-технологии.
Географические информационные системы позволяют создавать обширные информационные базы, играют особенно значимую роль при сборе, хранении и анализе пространственной информации, весьма существенно ускоряют ее обработку и позволяют к минимуму свести возможные ошибки, обусловленные человеческим фактором, при расчетах.
4.6.2. Ландшафтное и агроландшафтное зонирование территории района Ландшафты Изобильненского района. Первым условием эффективности разрабатываемых адаптивно-ландшафтных систем земледелия для условий любого района является правильная агроэкологическая дифференциация территории. Наиболее «выразительным» и системным показателем дифференциации территории на уровне административного района является ландшафт с его морфологической структурой.
Разнообразие и сложность геоморфологических условий предопределяют наличие на территории района четырех природных ландшафтов, относящихся к двум провинциям: лесостепной и степной (Шальнев, 1995, Современные ландшафты …, 2003).
Первая представлена Ташлянским ландшафтом байрачных лесостепей, и речных долин, занимающим около 30% территории. В пределах этого ландшафта лежат землепользования: «Московского», «Подлужного», «Русского», «Рассвета» и части «Овцевода» (ландшафт 3 на рис. 27). Благоприятность для земледелия более мягких климатических условий (повышенного количества осадков 550-600 мм), пониженной испаряемости (в пределах 1200-1250 мм, менее контрастных температур и пр.) в этом ландшафте не реализуется в продуктивности сельскохозяйственных культур за счет ограничивающих рельефных и почвенных факторов. Вхождение в состав пашни большого количества недоразвитых каменистых почв, склоновых земель, с чрезвычайно высокой дефляционной опасностью привело к тому, что часть из них уже разрушено в той или иной степени (Технические отчеты …, 1987-1999).
Юго-западная часть района (30%) относится к ЕгорлыкскоСенгилеевскому ландшафту злаковых степей с преобладанием в пределах района двух типов местностей: структурно-денудационных низких плато с плакорами верхнесарматской поверхности выравнивания и эрозионноденудационных глубокорасчлененных равнин с крутыми склонами (ландшафт 6 на рис. 27). Положение ландшафта на западных склонах Ставропольской возвышенности и значительные абсолютные высоты останцевых плато (250м) определяют климатические условия, приближающиеся к лесостепным.
Вследствие этого на останцевых массивах, перекрытых толщей суглинков, распространены мощные черноземы с разнотравно-злаковыми степями.
В то же время во втором типе местности восточные склоны долины Егорлыка отличаются пониженной влажностью воздуха, высокими летними температурами, связанными с феновым эффектом при восточном переносе воздушных масс. Эти особенности климата в сочетании с широким распространением засоленных майкопских глин способствовали формированию азональной злаковой и злаково-полынной растительности на засоленных черноземах.
В пределах этого ландшафта размещаются территории бывших совхозов: «Дружба», «Заозерное» и большая часть (65%) территории «Овцевода».
Большие базисы эрозии (свыше 200 м), длинные затяжные склоны (до 3000 м), близкое залегание засоленных палеогеновых глин, способствуют интенсивному разрушению почв плоскостной, линейной эрозией и оползнями.
Своеобразная орография, образуя местные ветровые коридоры с крутыми склонами, способствует подверженности почв совместному проявлению ветровой и водной эрозии почв (Рябов, 2001). Кроме широкого развития эрозионных процессов фактором ограничения земледелия в этом ландшафте является засоленность почв.
Северная часть района (40% территории) представлена двумя близкими по рельефным и почвенным свойствам ландшафтами: РасшеватскоЕгорлыкским и Среднеегорлыкским злаково-разнотравных степей, эрозионно-аккумулятивных равнин с долинно-балочным расчленением (ландшафты и 8 на рис. 27). Расшеватско-Егорлыкский ландшафт (7 на рис. 27) более увлажнен, годовое количество осадков значительно (от 400 до 560 мм), Среднеегорлыкский (8 на рис. 27) имеет более выраженный континентальный климат, годовое количество осадков не превышает 450 мм. Эти ландшафты наиболее благоприятны для земледелия: равнинный рельеф, достаточно плодородные мощные и среднемощные обыкновенные карбонатные черноземы, большой удельный вес орошаемых земель способствуют успешному развитию земледелия. Факторами ограничения служат высокая дефляционная опасность почв и возможность подтопления при интенсивном орошении.
Типизация структурных единиц ландшафтов. Как видно из рассмотрения морфологической структуры ландшафтов каждый из них состоит из набора иерархически подчиненных единиц - типов местностей. Количество местностей в каждом ландшафте различно: в 7-м ландшафте – две, в 8-м – три, в 3-м и 6-м – по четыре местности. Общее число местностей составляет 12 единиц. Анализ особенностей этих местностей позволяет их типизировать на:
1. структурно-денудационные плато (1.4; 1.5);
2. эрозионно-денудационные и аккумулятивные равнины (2.5; 2.6, 4.1; 4.2);
3. эрозионно-аккумулятивные вторичные равнины (верхнечетвертичного расчленения) (5.1);
4. пойменные аллювиальные современные равнины (7.1) 5. речные долины (2.3; 6.1);
6. верховья речных долин (3.4).
Рассмотрение границ хозяйств по отношению к границам местностей показывает, что территория хозяйств, как правило, лежит в пределах границ местностей, и ее природные особенности определяются не ландшафтом, а типом местности.
Рис. 27. Ландшафтная структура Изобильненского района (Шальнев, 1995;
Агроландшафтные зоны. Ландшафтные особенности территории района, рассмотренные с точки зрения их рационального использования в земледелии, позволяют выделить три агроландшафтные зоны с различным потенциалом природных условий.
Зона I – занимает северную часть территории района, площадь 584 км2.
Включает в себя территорию и соответствующие типы местностей РасшеватскоЕгорлыкского и Среднеегорлыкского ландшафтов злаково-разнотравных степей:
1) 4.1 - междолинные водораздельные слаборасчленные первичные равнины с покровными четвертичными лессовидными суглинками, площадь 208 км2; 4.2 - междолинные водораздельные первичные равнины с покровными четвертичными лессовидными суглинками, площадь 41 км2;
2) 5.1 - эрозионно-аккумулятивные вторичные (верхнечетвертичного расчленения) равнины, площадь 229 км2.
3) 7.1 - днища долин Егорлыка и его притоков на солонцеватосолончаковатых черноземах, площадь 106 км2.
Зона II – занимает западную часть района, к ней относятся территория и следующие типы местностей Ташлянского ландшафта, площадь 736 км2:
1) 1.4 - структурно-денудационные междолинные плато с плакорами верхнесарматской поверхности выравнивания, сложенные известняками среднего сармата, площадь 458 км2;
2) 2.6 - эрозионно-денудационные равнины, площадь 156 км2;
3) 3.4 - верховья речных долин с байрачными дубово-ясеневыми лесами, площадь 38 км2;
4) 2.3 - речные долины Ташлы, сложенные породами нижнего сармата, со смытыми почвами склонов, площадь 84 км2.
Зона III – занимает южную часть района, ей соответствует ЕгорлыкскоСенгилеевский ландшафт злаковых степей, представленный тремя типами местностей, площадь 622 км2:
1) 1.5 - структурно-денудационными низкими плато с крутыми склонами, площадь 211 км2;
2) 2.3 - речными долинами, сложенными породами нижнего сармата, площадь 22 км2; 6.1 - речные долины Егорлыка и его притоков с солонцеватыми черноземами и аллювиальными почвами, площадь 83 км2;
3) 2.5 - эрозионно-денудационными глубокорасчлененными равнинами и крутыми склонами с оврагами и оползнями, сложенными породами среднего палеогена, площадь 289 км2;
2.6 - эрозионно-денудационные равнины, площадь 17 км2.
Распределение хозяйств по выделенным агроландшафтным зонам.
Отнесение хозяйства в ту или иную зону определялось по преобладающей площади. Распределение хозяйств района по агроландшафтным зонам показано на рис. 28 и в таблице 18.
Рис. 28. Ландшафтное и агроландшафтное зонирование территории района.
1 – агроландшафтные зоны; 2 – ландшафты; 3 – границы хозяйств; 4 – границы ландшафтов; 5 – границы агроландшафтных зон. Типы местностей: 6 – структурно-денудационные плато; 7 – эрозионно-денудационные и аккумулятивные равнины; 8 – эрозионноаккумулятивные вторичные равнины; 9 – пойменные аллювиальные современные равнины; 10 – речные долины; 11 – верховья речных долин Список сельскохозяйственных предприятий района по принадлежности агроландшафтной зоне и формам собственности и хозяйствования № зоны 4.6.3. Анализ земельных ресурсов агроландшафтных зон района.
Изучение с помощью ГИС-технологий пространственного размещения почв на территории района показывает, что ландшафтные особенности четко отражаются на почвенных параметрах, точно копирующих различия в рельефе, почвообразующих породах, растительности и климате, присущих каждой агроландшафтной зоне.
Почвы I агроландшафтной зоны. Черноземы обыкновенные карбонатные, на 88% неэродированные в основном мощные (более 80%) слабогумусированные (82%) тяжелосуглинистые. Засоление отсутствует. В почвенном поглощающем комплексе преобладает кальций, на долю которого приходится от до 90%. По обеспеченности фосфором 78% пахотных земель относятся и средне- высоко обеспеченным с содержанием в пахотном слое 23 мг/кг. Количество калия варьирует от 288 до 420 мг/кг, преобладает пашня с повышенной и высокой обеспеченностью (79%) данным элементом. Черноземы обыкновенные карбонатные, сформированные на богатых лессовидных отложениях и залегающие на слабоволнистых равнинах, являются наиболее плодородными в районе. Почвенный балл значительно превышает среднерайонный.
Почвы II агроландшафтной зоны. Представлены черноземами обыкновенными карбонатными. Однако неоднородность почвообразующих пород и пересеченность рельефа повлияли на основные почвенные свойства. 30% площади почв сформировалось на плотных карбонатных породах, элювий которых в разном соотношении присутствует в почвенном профиле и на его поверхности. Данные породы являются своеобразным барьером, препятствующим мощному развитию почвообразовательного процесса. На долю недоразвитых почв с мощностью гумусовых горизонтов менее 40 см приходится 16%, среднемощных (40-80 см) - 57%, мощных (80-120 см) - 27%. По содержанию гумуса 66% почв относятся к слабогумусированным, 34% - к малогумусным. Эродированных черноземов - 19% общей площади II зоны, из них 15% подвержены водной и 4% - ветровой эрозии. Пахотные земли отличаются низкой обеспеченностью фосфором (более 60% площади) и средней обеспеченностью калием. Почвенный балл заметно ниже среднерайонного.
Почвы III агроландшафтной зоны. Почвы данной зоны - черноземы обыкновенные слабогумусированные (57%) и малогумусные (43%). По мощности гумусовых горизонтов неоднородны: 6% площади - маломощные почвы, 60% среднемощные, 34% - мощные. Особенность данной зоны заключается прежде всего в сильной расчлененности рельефа и мозаичности почвообразующих пород, в составе которых преобладают аллювиально-делювиальные засоленные глины и тяжелые суглинки, а лессовидные отложения и скелетные карбонатные тяжелые суглинки занимают небольшую площадь. В почвенном поглощающем комплексе солонцеватых почв присутствует натрий, на долю которого приходится от 5 до 20% от емкости поглощения. Почвы, засоленные в слабой, средней и сильной степени, составляют 33%. Тип засоления в основном хлоридносульфатный. Солонцы и солончаки распространены в долинах степных рек.
Интенсивно протекающие эрозионные процессы привели к появлению 16% смытых и 12% дефлированных почв. В пахотных землях содержится в среднем 17 мг/кг фосфора и 349 мг/кг калия. По фосфору – более 50% почв относятся к низко обеспеченным, по калию – наблюдается равномерное распределение по группам средней и повышенной обеспеченности. Почвенный балл – самый низкий в районе (Материалы почвенного обследования хозяйств района; Почвенная карта …, 1979; Почвенное обследование …, 1993; Разработать методологические основы…, 2002; Группировки почв по содержанию …, 2003).
Сравнительная характеристика почвенного покрова по агроландшафтным зонам показана в таблицах 19-21.
Характеристика свойств почв по агроландшафтным зонам, % от площади зоны Эродированность Агрохимическая характеристика пахотных земель в районе по агроландшафтным зонам Подверженность пашни эрозионным процессам по агроландшафтным зонам района, % Агрозоны В среднем по району Агроэкологическая группировка пашни по агроландшафтным зонам.
Качество пашни по выделенным агроландшафтным зонам Изобильненского района может быть охарактеризовано принадлежностью ее к той или иной агроэкологической группе. В районе в зависимости от рельефных условий, характера почвенного покрова, балльной оценки почв и возможности их использования в земледелии выделено пять агроэкологических групп земель пашни (табл. 22).
Расчет средневзвешенного индекса агроэкологических групп (Разработать методологические основы…, 2002) проводился в ГИС Mapinfo с помощью SQL-запросов по формуле где I-VI – агроэкологические группы земель;
(*, +, /) – операторы умножения, сложения и деления.
Агроэкологическая группировка пахотных земель по агроландшафтным зонам района Показатели
I II III
Агроэкологические группы земель, оставляемых в пашне, всего:из пашни, всего Благоприятность пашни по Данный индекс показывает, что почвы третьей агроландшафтной зоны самые уязвимые, требующие дифференцированного использования и применения широкого спектра почвозащитных мер. По отношению к среднерайонному уровню их качество составляет 80%, по второй зоне - 90%, а по первой зоне - 117%.
4.6.4. Оценка экологической опасности использования земель.
Для оценки экологической опасности использования земель Изобильненского района была выбрана методика, разработанная в Белорусской сельскохозяйственной академии (Свитин, 1991).
Данная методика предусматривает анализ экологической ситуации с использованием системы показателей, включающей группу данных о природной составляющей экологической опасности (относительно постоянная группа) и данные, характеризующие антропогенное воздействие (наиболее динамичная группа).
Так как методика Свитина предназначена для территории Белоруссии, расположенной в провинции широколиственно-хвойных лесов, нам пришлось адаптировать данную методику для территории Изобильненского района, находящегося в степной провинции и провинции байрачных лесостепей.
Нами не учитывался фактор лесистости территории, в виду весьма незначительного распространения лесных площадей. Для оценки нагрузки скота и загрязнения химическими элементами мы использовали методику анализа, изложенную выше.
Природную (естественную) составляющую экологической опасности характеризуют в наибольшей степени следующие факторы: освоенность (отношение площади сельскохозяйственных угодий к общей площади земель хозяйства), распаханность (отношение площади пашни к площади сельскохозяйственных угодий), удельный вес земель с уклоном более 2° (напряженность рельефа), густота гидрографической сети (включая балки), а также вес угодий средостабилизирующего назначения (многолетние насаждения, пастбища, древесно-кустарниковые насаждения, многолетние травы).
Антропогенная группа показателей экологической опасности использования земель включает следующие основные факторы: плотность населения и особенности расселения людей, степень нагрузки скота, особенности размещения ферм, комплексов и других экологически опасных объектов (К), а также величина загрязнения почв агроландшафтной зоны химическими элементами (Zc).
Для количественной оценки этих факторов использован метод лиминированной группировки и индексации выделенных групп. Сущность его заключается в том, что весь возможный интервал изменения каждого из признаков подразделяется на определенное число групп и соответствующему значению в группе присваивается индекс (вес фактора) от 0 до 1. Причем максимальное значение индекса соответствует наибольшей экологической опасности данного фактора, а его снижение свидетельствует об уменьшении степени опасности. Такой подход позволяет сопоставить разные факторы и произвести с определенной степенью точности интегральную оценку всех факторов. Значения основных факторов экологической опасности использования земель приведены в таблице 23.
Для расчета коэффициента размещения экологически опасных объектов учитывались особенности размещения загрязняющих объектов (Свитин, 1991) изложенные в таблице 24. Источником данных для сбора информации послужил проект перераспределения земель сельскохозяйственных предприятий Изобильненского района Ставропольского края (1993).
Для оценки суммарного (общего) влияния перечисленных выше факторов загрязнения окружающей среды и степени экологической опасности использования земель целесообразно использовать среднегеометрическое значение их признаков с обобщающим коэффициентом 100:
где Эо – коэффициент суммарной экологической опасности использования земель;
Кn – значение экспертной оценки фактора из их общего числа n в долях единицы.
Показатели фактора экологической опасности использования земель Элементы, составляющие экологическую опас- Значение фактора в Природная (естественная) составляющая Освоенность территории, %:
Распаханность территории, %:
Удельный вес земель с уклоном более 2° (напряженность рельефа), %:
Густота гидрографической сети, км/км2:
Удельный вес угодий средостабилизирующего назначения, %:
Антропогенная (социально-экономическая) составляющая Индекс плотности населения, чел/км2 число сел:
более Элементы, составляющие экологическую опас- Значение фактора в Степень концентрации животноводства, условных голов / 100га сельскохозяйственных угодий:
Коэффициент размещения экологически опасных объектов:
Загрязнение почв химическими элементами, Zc:
Сопоставляя значения природных (Эп) и антропогенных (Эа) факторов для каждой агроландшафтной зоны, можно сделать вывод о степени опасности для окружающей среды сложившихся способов хозяйствования. Ключевым в этом плане является уравнение для определения индекса загрязнения (Iз):
Из этого уравнения вытекает, что в агроландшафтных зонах со значением индекса Iз менее 5 целесообразно наметить и в первую очередь осуществлять мероприятия по охране природы.
Значение коэффициента размещения экологически опасных объектов Размещение по отношению к водоохранной зоне водотоков и водоемов Размещение по отношению к населенным пунктам:
Размещение к другим охраняемым объектам:
Результаты оценки экологической опасности использования земель изложены в таблице 25.
Исходя из проведенных вычислений индекса загрязнения, согласно методике В.А. Свитина, можно сделать вывод, что все агроландшафтные зоны имеют «критический» уровень антропогенной нагрузки, так как лежат в диапазоне от -10 до 5 единиц. Однако, II-я агроландшафтная зона наиболее близка к порогу в 5 единиц – точке отсчета «опасности» использования земель и при снижении нагрузки может перейти в более благополучную группу со «значительным» уровнем Iз.
Значения факторов в долях единицы для элементов, составляющих экологическую опасность для агроландшафтных зон.
Элементы, составляющие экологическую опасность Агрозона Значение фактора Удельный вес угодий средостабилизирующего назначеII 33,4 (0,8) ния, % (доли единицы) Удельный вес земель с уклоном более 2°, % (доли единицы) Густота гидрографической сети, км/км2 (доли единицы) II 0,28 (0,4) Среднегеометрическое значение природной составII 4, ляющей (единиц) Нагрузка скота на сельскохозяйственные угодья, условII 18,0 (0,50) ных голов (доли единицы) Нагрузка овец на пастбища, условных голов (доли едиII 4,5 (0,25) ницы) Индекс плотности населения, чел/км2 число сел (доли единицы) Коэффициент размещения экологически опасных объекII 0,3 (0,5) тов, K (доли единицы) Загрязнение химическими элементами, Zc (доли единиII 2,8 (0,25) цы) Среднегеометрическое значение антропогенной соII 0, ставляющей (единиц) Коэффициент суммарной экологической опасности использования земель (Эо)
ВЫВОДЫ
1. Основой анализа пространственной и тематической информации по агроландшафтам края и агроландшафтным зонам административного района при использовании ГИС-технологий являются цифровые ландшафтные карты. В связи с этим для анализа созданы цифровые ландшафтные карты:- масштаба 1:500000, для территории Ставропольского края, с векторными слоями ландшафтных провинций, ландшафтов (базовый слой для сбора, накопления и хранения атрибутивной информации) и морфологических единиц ландшафтов в ранге местностей;
- масштаба 1:100000 для территории административного района края, включающая векторные слои ландшафтов, агроландшафтных зон (базовый слой для сбора, накопления и хранения атрибутивной информации) и местностей.
2. Разработана структура и собран электронный банк данных земельноинформационной системы состоящий из баз данных:
- по крупнейшим землепользователям края, (117 атрибутивных полей);
- по агроклиматическим ресурсам и потенциалам края, (15 атрибутивных полей);
- по агроландшафтам края, включающая сгруппированные по ядровым группам хозяйств агроландшафтов атрибуты из базы данных по землепользователям и полученную путем применения технологии оверлея информацию из базы данных по агроклиматическим ресурсам;
- по агроландшафтным зонам административного района края, созданная путем группировки показателей из базы данных по землепользователям и анализа картографического материала.
3. Результаты анализа показали, что распределение бонитетов почв по ландшафтам края носит зональный характер, увеличиваясь с востока и северо-востока на запад края, крайние значения средневзвешенных бонитировочных баллов в агроландшафтах различаются более чем в три раза. Разница в плодородии почв пашни и пастбищ в основной массе ландшафтов лежит в диапазоне 25-50%, что свидетельствует об исчерпании резервов расширения пашни за счет других угодий в ландшафтах края, а при существующем дисбалансе угодий (особенно в ландшафтах с распаханностью более 70%) целесообразно сокращение пашни за счет вывода малопродуктивных земель.
Анализ природно-климатических ресурсов ландшафтов края как в целом для земледелия, так и для возделывания отдельных сельскохозяйственных культур показал, что, во-первых, территория края пригодна для ведения земледелия, особенно в западных ландшафтах; во-вторых, природно-ресурсный потенциал возделывания озимых культур значительно выше, чем яровых зерновых, кроме того, установлено, что при возделывании озимых зерновых их низкий почвенно-климатический ресурс может быть оптимизирован с помощью чистых паров; в-третьих, необходимо очень взвешенно подходить к размещению подсолнечника и кукурузы в ландшафтах края, поскольку хороший потенциал их возделывания занимает только 30% территории на западе края, а в восточных и северо-восточных ландшафтах возделыванием этих культур заниматься не целесообразно.
4. Анализ степени сельскохозяйственных нагрузок установил, что наименьшую суммарную сельскохозяйственную нагрузку имеют ландшафты с высокой расчлененностью рельефа, а кризисную – большинство степных ландшафтов, из-за значительной агрогенной нагрузки и нагрузки скота. Пересчет сельскохозяйственных нагрузок с учетом бонитировочных баллов почвенного плодородия выявил зональный характер возрастания суммарного коэффициента нагрузок с увеличением более чем в три раза от предгорных ландшафтов к полупустынным, что связано с уменьшением балла почвенного плодородия в восточном направлении и с высокими нагрузками на ландшафты сухих степей и полупустынь.
5. В результате анализа определена степень проявления и развитие в агроландшафтах агрохимической деградации пашни. В большинстве агроландшафтов, особенно в западной части края отмечается убыль гумуса и обменного калия, хотя эти изменения и не выходят за рамки групп обеспеченности. Можно говорить о тенденции снижения почвенного плодородия, не поддерживаемого внесением органических и калийных удобрений. По подвижному фосфору тенденции изменения менее тревожны.
Анализ химического загрязнения почвенного покрова показал, что большая часть ландшафтов (75%) восточной и северной и западной частей края относятся к категории загрязненности почв, определяемой как «неопасная», ландшафты с категорией «допустимая» занимают две полосы, простирающиеся с северо-запада на юг с увеличением Zc к югу и по долине реки Кумы. Наиболее загрязнены 13 и 22 ландшафты.
Интегральная оценка деградационных процессов в пашне и сельскохозяйственных угодьях показала, что особенно тревожное состояние сельскохозяйственных угодий в 11, 2, 6, 17, 21, 4, 1 и 13 ландшафтах края, пашни в 6, 4, 21, 1 и 13. Выявленная связь степени проявления и развития деградационных процессов с морфологической структурой ландшафтов показала, что высокие структурно-денудационные плато, эрозионно-денудационные высокие равнины акчагыльской и апшеронской поверхностей выравнивания, аллювиально-морские равнины и эоловые дефляционно-аккумулятивные низменности в первую очередь подвержены деструктивным процессам (ландшафты 1, 2, 4, 6, 13, 16, 17).
6. Используя ГИС-технологии, проведена типизация ландшафтных морфологических единиц на уровне местностей с выделением трех агроландшафтных зон для территории Изобильненского района Ставропольского края. Оценка экологической опасности использования земель района по агроландшафтным зонам, выявила «критический» уровень антропогенной нагрузки в агроландшафтных зонах. Однако, II-я агроландшафтная зона наиболее близкая к порогу в 5 единиц – точке отсчета «опасности» использования земель при снижении нагрузки может перейти в более благополучную группу со «значительным» уровнем.
ЛИТЕРАТУРА
1. Аверьянов А.Н. Системное познание мира: Методологические проблемы М.: Политиздат, 1985. - 263 с.2. Агроклиматические ресурсы Краснодарского края. – Л.: Гидрометеоиздат, 1975. – 276 с.
3. Агроклиматические ресурсы Ставропольского края. - Л.: Гидрометеоиздат, 1971. – 238 с.
4. Агрохимическая характеристика почв пашни Ставропольского края. - Ставрополь: Ставропольская правда, 1988. - 26 с.
5. Агроэкология /В.А. Черников, Р.М. Алексахин, А.В. Голубев и др.; Под ред.
В.А. Черникова, А.И. Черкеса. – М.: Колос, 2000. – 535 с.
6. Адаптивно-ландшафтная система земледелия Рязанской области - Модель столетия /Под ред. С.Я. Полянского. - Рязань, 2001. - 181 с.
7. Атлас земель Ставропольского края. - М.: ДИ ЭМ БИ, 2000. - 118 с.
8. Ахтырцева Н.И. О классификации антропогенных ландшафтов /Н.И. Ахтырцева //Вопросы географии: Влияние человека на ландшафт.– М., 1977. - Сб.
106. – С. 53-57.
9. Белолипский В.А. Принципы оптимизации агроландшафта /В.А. Белолипский //Земледелие. - 1992. - № 7-8. – С. 17-20.
10. Берлянт А.М. Геоиконика /А.М. Берлянт. – М.: МГУ: АЕН РФ: Астрея, 1996.
11. Беручашвили Н.Л. Ландшафтная карта Кавказа /Н.Л. Беручашвили. – Тбилиси, 1979. - 2 c.
12. Беручашвили Н.Л. Объяснительная записка к Ландшафтной карте Кавказа.
Ч.1. / Н.Л. Беручашвили. - Тбилиси: ТГУ, 1980. – 56 с.
13. Булатов В.И. Прогноз антропогенной трансформации ландшафтов как один из видов географического прогноза /В.И. Булатов //Теория и методы прогнозирования геогр. среды. - Иркутск, 1973.
14. Бураков В.И. Система земледелия и агроландшафт /В.И. Бураков //Земледелие. – 1990. - № 4. – С. 40–44.
15. Володин В.М. Конструирование экологически устойчивых агроэкосистем / В.М. Володин, И.П. Здоровцов //Земледелие. – 1999. - № 1. – С.18-20.
16. Гвоздецкий Н.А. Физико-географическое районирование Европейской части СССР и Кавказа / Н.А. Гвоздецкий // Известия ВГО. - Л., 1960. - №5.
17. Геоинформатика. Толковый словарь основных терминов /Под ред.
А.М.Берлянта, А.В.Капралова. – М.: ГИС-Ассоциация, 1999. – 204 с.
18. Геоинформационная система деградации почв России /В.С. Столбовой, И.Ю.
Савин, Б.В. Шеремет, В.В. Сизов, С.В. Овечкин //Почвоведение. - 1999. - №5.
– С. 646-651.
19. Геренчук К.И. Некоторые итоги и задачи географических исследований для оценки земель /К.И. Геренчук // Вопросы географии. - М., 1965. - Сб. 67. - С.
24–31.
20. ГИС-модели прогнозов в землепользовании и оценке состояния почвенного покрова: Тез. докл. II съезда Об-ва почвовед. при РАН /В.А. Рожков, В.С.
Столбовой, А.З. Швиденко, Г. Фишер. - СПб., 1996. - С. 62-63.
21. Глазовская М.А. Опыт сельскохозяйственной характеристики земель на основе крупномасштабных комплексных физико-географических исследований / М.А. Глазовская //Вопросы географии. - М., 1958. - Сб. 43. С. 145-153.