WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 |   ...   | 2 | 3 ||

«ОСНОВЫ ПРОЕКТИРОВАНИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ МОСКВА ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1 2005 С.И. Дворецкий, Г.С. Кормильцин, В.Ф. Калинин ОСНОВЫ ПРОЕКТИРОВАНИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ Допущено учебно-методическим объединением ...»

-- [ Страница 4 ] --

Вначале студентом осуществляется попытка поиска стандартного оборудования, в достаточной степени удовлетворяющего совокупности требований, по каталогам стандартного оборудования. Если стандартное оборудование, не удовлетворяет разработанным требованиям, то принимается решение о целесообразности разработки нестандартного оборудования.

6.3.3. РАСЧЕТ И ПОДБОР ОСНОВНОГО ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Руководствуясь эскизным вариантом технологической схемы, студент приступает к технологическому, энергетическому и механическому расчету оборудования.

На первом этапе расчета студент составляет материальный баланс каждой стадии технологического процесса с использованием уравнений материального баланса. Целью материального расчета является определение расходных коэффициентов по сырью, объемно-реакционной массы, количества отходов, сточных вод и газовыделений на каждой стадии технологического процесса.

Уравнения материального баланса составляются на основании закона сохранения массы:

где Gисх, Gкон масса исходных и полученных веществ.

При составлении уравнений материального баланса необходимо учитывать все компоненты, загружаемые в аппарат, и выходящие (выгружаемые) из аппарата в ходе процесса (исходные реагенты, продукты реакции, растворители, примеси в исходном сырье и растворителях, примеси, образующиеся в ходе реакции и т.п.).

Материальный расчет можно проводить двумя способами:

Первый способ – расчет на одну тонну готового продукта. При этом получают расходные коэффициенты по сырью, объемы реакционных масс, приходящиеся на одну тонну готового продукта. При проведении расчета первоначально определяют общий выход от теоретического для всего процесса где K выход от теоретического на K-й стадии процесса; N – число стадий химико-технологического процесса.

Используя общий выход и стехиометрическое соотношение основного продукта и основного сырья, определяют его количество (расходный коэффициент) на первой стадии. Далее, с учетом исходных данных проводят последовательно материальный расчет для всех стадий процесса.

Второй способ – расчет на одну операцию для периодического процесса и часовую производительность – для непрерывного. В этом случае получают реальные загрузки в аппараты и объемы реакционных масс.

Материальный баланс является базой для составления теплового баланса, который выполняется на основании закона сохранения энергии ство теплоты, выносимое из аппарата; Qп тепловые потери в окружающую среду.

После составления материального и теплового балансов для всех технологических стадий проводят расчет конструктивных размеров и подбор технологического оборудования, необходимого для обеспечения заданной производительности по готовому продукту. При этом должны быть известны кинетические закономерности гидромеханических, тепловых, массообменных и химических процессов, которые могут быть сформулированы в виде общего закона: скорость процесса прямо пропорциональна движущей силе и обратно пропорциональна сопротивлению.

Для движения потоков материалов (жидкости или газа) через аппарат где V объем протекающей жидкости; S площадь сечения аппарата; время; R1 гидравлическое сопротивление; K1 коэффициент скорости процесса; P перепад давления в аппарате.

Для переноса тепла где Q количество передаваемого тепла; S поверхность теплообмена; R2 термическое сопротивление;

K 2 = 1 R2 коэффициент теплопередачи; t средняя разность температур между обменивающимися теплом средами (материалами).

Для переноса вещества из одной фазы в другую где M количество вещества, перенесенного из одной фазы в другую; S поверхность контакта фаз;

R3 диффузионное сопротивление; K 3 = 1 R3 коэффициент массопередачи; C разность между равновесной и рабочей концентрациями вещества в фазах.

Для химических превращений где M количество прореагировавшего в химическом процессе вещества; V объем реактора (аппарата); K 4 коэффициент скорости химического процесса; (с) движущая сила процесса; с вектор концентраций реагирующих веществ.

В общем случае расчет процессов и аппаратов химических и биотехнологий проводят в определенной последовательности:

1. На основании закона сохранения материи (энергии) составляют уравнения материального (теплового) баланса процесса и определяют количество субстанции G, перерабатываемой в единицу времени.

2. С использованием законов термодинамики определяют направление течения процесса и условия термодинамического равновесия.

3. По величинам, характеризующим рабочие и равновесные параметры, определяют движущую силу процесса f.

4. На основании законов кинетики определяют коэффициент скорости процесса K.

5. По полученным данным и рассчитывают основной конструктивный размер аппарата d:

Нахождение численных значений и является самой сложной частью расчета технологических аппаратов. При этом необходимо обоснованно решать вопросы масштабного перехода – распространения данных, полученных в лабораторных исследованиях, на промышленные объекты.

Мощным средством ускорения разработки новых химико-технологических процессов и аппаратов является математическое моделирование. Оно характеризуется системным подходом к процессу, т.е.

разбивкой его на элементарные уровни, составлением его иерархических (многоуровневых) моделей. С помощью построенных моделей на ЭВМ исследуют, оптимизируют и проектируют новые прогрессивные технологические процессы и оборудование. Следует отметить в заключение, что на нынешнем уровне прикладной гидродинамики составить полную математическую модель технологического процесса, учитывающую масштабный фактор, без экспериментов на крупномасштабном аппарате пока невозможно. Следовательно, невозможно решить вопросы масштабного перехода при помощи только математического моделирования. Оно должно сочетаться с гидродинамическим моделированием. При этом математическое моделирование должно дать идеал промышленного аппарата, а гидромоделирование призвано помочь реально приблизиться к этому идеалу. Таким образом, в настоящее время сочетание двухуровневых лабораторных исследований новой технологии с гидродинамическим моделированием промышленной аппаратуры и математическим моделированием процесса в целом, является кратчайшим путем разработки новых процессов и аппаратов химической и биотехнологии.

';

В этом разделе приводятся сведения по составу перерабатываемой среды, виду коррозии, склонности конструкционных материалов к старению, стойкости их к действию тепловых ударов, стабильности структуры материала при термическом и механическом воздействии, степени чистоты поверхности, стоимости и дефицита материала.

Определяя коррозионную стойкость материала в данной коррозионной среде, необходимо указать глубинный показатель коррозии и произвести оценку стойкости материала по десятибалльной шкале.

Затем, определив принадлежность материала к группе, дать рекомендации по защите его от коррозии.

При выборе методов защиты оборудования от коррозии необходимо учитывать простоту, надежность и экономичность выбранного способа защиты материала.

Расчет всех нагруженных элементов производится по соответствующим ГОСТам, отраслевым нормалям химического и нефтяного машиностроения.

Различают проектные и поверочные расчеты на прочность. При выполнении проектных расчетов (при разработке новых агрегатов) искомыми являются размеры отдельных элементов – толщины стенок, днищ, диаметры болтов и т.п.; проектные расчеты элементов сочетают с их конструированием.

Поверочные расчеты на прочность служат для определения возникающих в элементах напряжений и сравнения их с допускаемыми при заданных условиях эксплуатации.

ГОСТ 1424980 "Сосуды и аппараты. Нормы и методы расчета на прочность" устанавливает нормы и методы расчета на прочность цилиндрических обечаек, конических элементов, днищ и крышек сосудов и аппаратов из углеродистых и легированных сталей, применяемых в химической, нефтеперерабатывающей и смежных отраслях промышленности и работающих в условиях однократных и многократных статических нагрузок под внутренним избыточным давлением, вакуумом или наружным избыточным давлением и под действием осевых, поперечных усилий и изгибающих моментов. Указанный стандарт устанавливает также значения допускаемых напряжений, модулей продольной упругости и коэффициентов прочности сварных швов. Нормы и методы расчета на прочность применимы при соблюдении правил устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденных Госгортехнадзором, и при условии, что отклонения от геометрической формы и неточности изготовления рассчитываемых элементов сосудов и аппаратов не превышают допусков, установленных нормативно-технической документацией.

Физико-химические характеристики конструкционных материалов и допускаемые напряжения определяют по расчетной температуре, которую находят на основании тепловых расчетов или по результатам испытаний. При положительных температурах за расчетную температуру стенки аппарата принимают наибольшее значение температуры стенки, при отрицательной (при определении допускаемых напряжений) – температуру 20 °С.

Под рабочим давлением для сосуда и аппарата понимают максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и без учета допускаемого кратковременного повышения давления во время действия предохранительного устройства. Под расчетным давлением р в рабочих условиях для элементов сосудов и аппаратов понимают давление, при котором их рассчитывают на прочность. Расчетное давление, как правило, равно рабочему или больше его. Если давление в сосуде или аппарате во время действия предохранительных устройств повышается более чем на 10 % по сравнению с рабочим, то элементы аппарата следует рассчитывать на давление, равное 90 % давления при полном открытии предохранительного устройства. Если на элемент сосуда или аппарата действует давление, составляющее % рабочего и более, то расчетное давление для этого элемента следует увеличить на эту величину.

Под пробным давлением понимают давление, при котором производят испытания сосуда или аппарата, а под расчетным давлением в условиях испытаний для элементов сосудов или аппаратов – давление, которому их подвергают во время пробного испытания.

Сосуды и аппараты рассчитывают на прочность по предельным нагрузкам, причем статически однократной нагрузкой условно считают и такие, при которых число циклов нагружения от давления, стесненности температурных деформаций или других воздействий не превышает 103. При определении числа циклов нагружения не учитывают колебание нагрузки в пределах 15 % расчетной. При числе циклов нагружения свыше 103 выполняют проверку по пределу выносливости.

Расчетная толщина стенки гладкой цилиндрической обечайки, нагруженной внутренним избыточным давлением, равна где p расчетное избыточное давление; D внутренний диаметр обечайки; p коэффициент прочности сварного шва.

Исполнительную толщину рассчитывают по формуле Прибавка где c1 прибавка для компенсации коррозии и эрозии; c2 прибавка для компенсации минусового допуска; c3 технологическая прибавка, учитываемая предприятием-изготовителем при разработке рабочих чертежей для компенсации утонения стенки сосуда при вытяжке, штамповке и других технологических операциях.

Прибавка для компенсации коррозии где П проницаемость материала, мм; а принятый срок службы аппарата; при П 0,05 мм/год принимают с1 = 1 мм; для материалов, стойких в заданной среде, при отсутствии данных о проницаемости рекомендуют с1 = 2 мм.

Допускаемое внутреннее избыточное давление расчетные температуры не должны превышать значений, при которых возникает ползучесть материалов.

Толщину sR стенки обечайки, нагруженной наружным давлением, рассчитывают по методике ГОСТ 1424980 с помощью номограммы. Допускаемое наружное давление Из условия прочности допускаемое давление [ p ] p определяют по выражению (1), а из условия устойчивости в пределах упругости – по формуле B1 = min 1,0; 8, Если проектируемое оборудование подведомственно Госгортехнадзору, то производится дополнительно поверочный расчет основных элементов по методике этой организации. Выполнение расчетов в записке должно начинаться со ссылки на номер чертежа оборудования и сопровождаться вычерчиванием схем приложения нагрузок, эпюр сил и т.п.

6.3.3.3. Подбор технологического оборудования или его разработка Подобранное технологическое оборудование должно обеспечить заданную мощность производства при условии его нормальной эксплуатации. С учетом затрат времени на капитальный ремонт продолжительность работы технологического оборудования принимают равной 330 суток в течение года. С учетом остановок на планово-предупредительные ремонты для непрерывных процессов продолжительность уменьшается до 300 сут.; для периодических вводят запас производительности оборудования, компенсирующий простои во время ремонтов.

В случае выбора емкостных аппаратов учитывают коэффициент их заполнения, т.е. отношения объема реакционной массы в аппарате (рабочего объема аппарата Vр ) к объему аппарата Коэффициент заполнения зависит от особенностей процесса: при кипении, вспенивании реакционной массы коэффициент заполнения составляет 0,3…0,5, при перемешивании – 0,5…0,8, для стадии хранения жидкостей – 0,9.

Для выбора технологического оборудования периодических процессов необходимо знать продолжительность технологических стадий i, которая определяется кинетикой процесса и режимом работы конкретного технологического аппарата. Данные по продолжительности процесса на каждой технологической стадии можно определить из уравнений кинетики процесса или выбрать из регламента производства, являющегося базой практики студента.

При выборе емкостного оборудования для периодических процессов поступают следующим образом. Составляется расписание работы технологической схемы в виде графика Гантта. По заданной производительности B и известному фонду рабочего времени оборудования Т эфф = 330 сут. рассчитывают массовый размер партии выпускаемого продукта где L = max j, J продолжительность стадии j; L длительность цикла технологической схемы проJ =1, m изводства.

Далее по известным значениям постадийных материальных индексов S j определяют объемы V j емкостных аппаратов по стадиям производства:

где S j объем реакционной массы, который требуется подвергнуть обработке на стадии j, чтобы на выходе технологической схемы получить единицу массы продукта; j коэффициент заполнения объема аппарата на j-й стадии.

Часто оказывается более выгодным поставить на отдельной стадии вместо одного крупногабаритного несколько однотипных малогабаритных аппаратов, которые работают в технологической схеме с равномерным временным сдвигом. При этом необходимо определить оптимальные значения числа N * j параллельно включенных аппаратов на j-й стадии, размер партии выпускаемого продукта b* и продолжительность цикла технологической схемы *, при которых суммарные затраты на приобретение обоL рудования будут минимальны, т.е.

при ограничениях на общее время работы технологической схемы:

где j, j коэффициенты, полученные методом наименьших квадратов по данным прейскурантных цен на стандартное оборудование.

Эта задача может быть решена численными методами нелинейного программирования.

Необходимым условием выбора технологического оборудования является надежность и безопасность его работы в течение установленного регламентом срока. При этом предпочтение следует отдавать серийно выпускаемому промышленностью технологическому оборудованию, подбор которого после проведения необходимых расчетов производится по каталогам машиностроительных заводов.

Несмотря на многообразие серийно выпускаемого оборудования, при проектировании и модернизации производств часто приходится разрабатывать нестандартное оборудование, отличающееся от стандартного более высокими технико-экономическими показателями.

Нестандартное оборудование ориентировано на конкретный технологический процесс и проектируется специально для него из расчета на заданную производительность.

Расчет нестандартного оборудования производится аналогично расчету стандартного оборудования. Выбрав тип оборудования и определив его размеры, студент выполняет механические расчеты и разрабатывает чертежи нестандартного оборудования.

6.3.4. РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ СО СРЕДСТВАМИ АВТОМАТИЗАЦИИ И ЕЕ ОПИСАНИЕ

Принципиальную технологическую схему разрабатывают на основе эскизной технологической схемы и чертежей общего вида выбранного оборудования. При этом выбираются способы доставки сырья в цех и отгрузки готовой продукции, обезвреживания и удаления отходов производства, вопросы обеспечения экологической безопасности и охраны труда, автоматизации и механизации производства.

Аппараты можно изображать без соблюдения масштаба, но с учетом соотношения размеров. Обязательным является распределение их по высотным отметкам. По горизонтали аппаратуру располагают последовательно в соответствии с технологическими стадиями процесса. Расстояние между аппаратами на схеме должно быть таким, чтобы она удобно читалась.

Каждый аппарат изображается по контурам или в разрезе, отражающим его принципиальное устройство. При установке на технологической стадии нескольких однотипных аппаратов работающих параллельно, изображают один, а число их указывают в экспликации на оборудование. Для непрерывных процессов при использовании каскада изображают все аппараты.

Основные материальные потоки наносят четкими сплошными линиями с указанием их направления и нумерацией потоков, расшифровка которой приводится в правом верхнем углу схемы. В работе даны рекомендации по присвоению номеров материальным потокам. Ниже приведены эти рекомендации: вода, 2 пар, 3 воздух, 4 азот, 5 кислород, 6 аргон, 7 неон, 8 гелий, 9 криптон,10 ксенон, 11 аммиак, 12 кислота, 13 щелочь, 14 масло, 15 жидкое горючее, 16 водород, 17 ацетилен, 18 фреон, 19 метан, 20 этан, 21 этилен, 22 пропан, 23 пропилен, 24 бутан, 25 бутилен, противопожарный водовод, 27 вакуум. Другим материальным потокам можно присваивать номера, начиная с 30. Для более детального указания характера среды к цифровому обозначению может добавляться буквенный или цифровой индекс, например, 1.1 вода питьевая или 1к конденсат водяного пара. Условные числовые обозначения трубопроводов следует проставлять в разрывах материального потока через расстояния не менее 50 мм.

Каждый аппарат на технологической схеме должен иметь номер, который сохраняется во всех частях проекта (технологической, строительной, электротехнической и т.д.). Аппараты на схеме нумеруют слева направо с учетом технологической последовательности.

На технологической схеме обязательно отмечают, откуда и как поступает в цех сырье, куда и каким способом удаляется готовая продукция, отходы, сточные воды. При большом расходе сырья целесообразно организовать его прием на цеховой склад. В этом случае изображают схему приема сырья в цех (исходная тара способ разгрузки приемная емкость). Если для транспортировки сырья и готовой продукции предусмотрен напольный транспорт, это указывают на технологической схеме.

На принципиальной технологической схеме изображают оборудование не только основных, но и вспомогательных технологических стадий (операций), таких, как подготовка (измельчение, растворение, суспензирование и т.д.) и дозирование сырья, промежуточное хранение продуктов, поглощение отходящих газов и т.п.

На линиях основных и вспомогательных потоков показывают условными обозначениями арматуру.

После изображения всего оборудования и материальных потоков составляется экспликация оборудования. Экспликация содержит номер, обозначение чертежа аппарата, наименование оборудования, основную характеристику, количество аппаратов и конструкционный материал.

Принципиальная технологическая схема включает функциональную схему автоматизации. Автоматизация технологической схемы должна обеспечить контроль, регулирование и сигнализацию предельных значений параметров процесса и состояния технологического оборудования, блокировку и остановку технологических машин и аппаратов в аварийных ситуациях.

Приборы и средства автоматизации при выполнении принципиальной технологической схемы могут изображаться развернуто или упрощенно. При развернутом изображении на схеме показывают: отборные устройства, датчики, преобразователи, вторичные приборы, исполнительные механизмы, регулирующие и запорные механизмы, аппаратуру управления и сигнализации, комплектные устройства (управляющие вычислительные машины, телемеханические устройства) и т.д.

При упрощенном изображении на схеме показывают: отборные устройства, измерительные и регулирующие приборы, исполнительные механизмы и регулирующие органы.

Приборы, средства автоматизации, электрические, вычислительные и микропроцессорные устройства на принципиальной технологической схеме показываются в соответствии с ГОСТ 21.40485. Всем приборам и средствам автоматизации, изображенным на принципиальной технологической схеме, присваиваются позиционные обозначения, сохраняющиеся во всех чертежах и материалах проекта. Отборное устройство для всех постоянно подключенных приборов не имеет специального обозначения, а представляет собой тонкую сплошную линию, соединяющую технологический трубопровод или аппарат с первичным измерительным преобразователем.

Выбор методов и средств автоматизации производственных процессов студент осуществляет под руководством консультанта кафедры АСП ТГТУ.

После разработки принципиальной технологической схемы составляют полное описание. При описании собственно технологической стадии кратко сообщается о конструкции аппарата, способе загрузки сырья и выгрузки продуктов переработки, дается характеристика протекающего процесса и способов его проведения (периодический, непрерывный, циклический), перечисляются основные параметры процесса (давление, температура и др.), методы их контроля и регулирования, а также все отходы и побочные продукты технологической стадии.

В записке должны быть перечислены все имеющиеся на чертеже аппараты с указанием присваиваемых им по схеме номеров. Описываются также принятые в проекте способы внутрицеховой транспортировки сырья, вспомогательных материалов, реакционных масс, отходов и готовых продуктов.

Под компоновкой производства понимают проектное размещение технологического оборудования и сооружений, обеспечивающее нормальное течение технологического процесса, безопасность эксплуатации оборудования, нормальные условия для монтажа и ремонта аппаратуры при оптимальном объеме строительства. Различают три варианта компоновки химических производств: закрытый (в промышленных зданиях), открытый (на открытых площадках) и смешанный.

Основными исходными данными для проектного размещения оборудования являются:

• принципиальная технологическая схема;

• чертежи общих видов машин и аппаратов;

• схемы складских и транспортных операций.

Трудно рекомендовать какие-либо универсальные методы компоновки оборудования, так как в каждом конкретном случае следует учитывать специфику производства, климатические условия района строительства и многие другие факторы.

Большое внимание при компоновке следует уделять вопросам монтажа оборудования. Например, иногда конструкция емкостного реактора предусматривает монтаж и демонтаж мешалки вместе с приводом и крышкой аппарата. Поэтому при извлечении такого комплекса из корпуса требуется большая высота над реактором. Для этого следует предусматривать свободные монтажные проемы над аппаратом. Также следует предусматривать дополнительную площадь для демонтажа оборудования, например, при извлечении трубного пучка из кожуха громоздкого теплообменника.

При отсутствии в проектируемом цехе мостового крана необходимо предусматривать в цехе ворота и проезды для самоходных монтажных кранов.

Особое внимание следует уделить созданию условий для монтажа аппаратов колонного типа. Они, как правило, располагаются на открытых площадках рядом с производственными зданиями, вдоль их длинных сторон. Перед колоннами нужно предусматривать свободную площадку, на которой колонны подготавливают к подъему и устанавливаются монтажные средства.

Большое влияние на компоновку оказывают требования ремонта:

• чистка реакторов, колонн, сборников от шлама и смол, а также теплопередающих поверхностей от накипи, а это связано со снятием крышек, открытием люков, что требует дополнительной рабочей площади вокруг этих аппаратов и установки кран-балок, монорельсов с талями;

• устранение неплотностей фланцевых соединений, подтяжка сальников и замена их набивки и т.п.

требует соответствующие площадки для выполнения данных работ;

• замена изношенных деталей компрессоров, дробилок, мельниц, транспортеров требует также дополнительной площади и установки упомянутых выше подъемно-транспортных механизмов;

• восстановление футеровки, изоляции, покраски связано с устройством приспособлений для подъема изоляции, футеровочной плитки, со строительством лесов, что требует дополнительных производственных объемов.

Размещая технологическое оборудование, стремятся снизить первоначальные капитальные вложения за счет уменьшения объема строительных сооружений, сокращения трубопроводных коммуникаций. Этого можно достичь, располагая оборудование на минимальном расстоянии друг от друга. Обычно этот минимальный проход между аппаратами, а также между аппаратом и строительным элементом равен 0,8 м. При этом основные проходы по фронту обслуживания и между рядами машин (компрессоры, насосы и аппараты с местными контрольно-измерительными приборами) должны быть шириной Однако минимизация трубопроводных коммуникаций вступает в противоречие с другими требованиями компоновки оборудования. Например, наряду со стремлением сгруппировать аппараты по определенным признакам, допустим выполняющие сходные операции (выпарные установки, сульфураторы и т.п.), могут реализоваться и другие принципы группировки: оборудование с большим выделением пыли, вибрирующие агрегаты. Объединение подобных аппаратов в отдельном помещении дает определенные выгоды. Например, сгруппированное пылящее оборудование позволяет свести к минимуму количество вентиляционных камер.

Большое внимание уделяется вибрирующему оборудованию: компрессоры, дробилки, вентиляторы, насосы и другие машины. Это оборудование размещают на массивных фундаментах, изолированных от строительных конструкций.

Прицеховые емкости сырья тяжелое и крупногабаритное оборудование размещают на первом этаже, поскольку расположение его на верхних этажах вызовет необходимость усложнения и удорожание строительных конструкций. Следует также помнить, что тяжелое оборудование, обслуживаемое подъемными кранами, необходимо размещать в зоне приближения крюка крана.

Итак, суть вышеизложенных положений сводится к следующему:

• исходной базой для компоновки служат общие виды оборудования, принципиальная технологическая схема, которая указывает на размещение оборудования по различным высотным отметкам;

• компоновка оборудования проводится по одному из вариантов: закрытому, открытому или смешанному;

• определяя при компоновке производственную площадь, следует учитывать специфику монтажа и ремонта конкретного оборудования;

• с целью минимизации объема строительных сооружений и трубопроводных коммуникаций принимают расстояние между аппаратами не менее 0,8 м, а ширину прохода между рядами оборудования • учитывая ограниченные нагрузки на строительные элементы, тяжелое оборудование располагают на первом этаже, а вибрирующее на изолированных фундаментах;

• при компоновке следует группировать в отдельных помещениях оборудование по сходным признакам (пылящее, перерабатывающее взрывоопасные вещества и т.д.).

Выбрав вариант компоновки (открытый, закрытый или смешанный) и, учитывая изложенные рекомендации, приступают непосредственно к проектному размещению основного и вспомогательного оборудования.

Вначале определяют с учетом технологии производства и условий застройки этажность здания или железобетонного постамента. После этого группируют аппараты по сходным признакам. Затем на чертежах в масштабе 1:100 изображают планы каждого этажа с нанесением сетки колонн и наружных контуров аппаратов.

На строительных планах колонны обозначают пересечением двух взаимно-перпендикулярных продольных и поперечных разбивочных осевых линий. Систему продольных и поперечных осей по рядам колонн называют сеткой колонн. Расстояние между опорами (по продольным осям), перекрываемое балками или фермами называется пролетом.

Расстояние между поперечными разбивочными осями называют шагом колонн (обычно, 6 или 12 м) и обозначают слева направо арабскими цифрами.

Аппараты ориентируют и привязывают по двум направлениям к осям колонн и к уже нанесенным на план аппаратам.

Кроме изображения оборудования в плане по этажам делают поперечные и продольные разрезы, на которых стараются показать все аппараты. Как и на планах, в разрезах оборудование изображается контурно и дается способ его установки: на фундаменте, на консолях и т.д. К планам и разрезам цеха дается экспликация, номера аппаратов, в которой обязательно должны совпадать с их номерами на технологической схеме. В экспликации указывается наименование аппарата, его конструкционный материал, характеристика, количество таких аппаратов и масса аппарата. Цеховой напольный транспорт не изображается на планах при компоновке.

При определении общей производственной площади следует учитывать, что 40...50 % ее занимает трубопроводная обвязка.

Различные варианты компоновки оборудования отличаются друг от друга длиной соединяющих их трубопроводов, транспортеров, линий пневмотранспорта, количеством и типом газодувок, насосов, промежуточных емкостей, этажностью строительных сооружений и т.д.

СПОСОБОВ МОНТАЖА, ДИАГНОСТИКИ И РЕМОНТА

ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

В данном разделе описываются организационные мероприятия по монтажу всей установки (цеха, отделения). Даются рекомендации по выбору монтажных механизмов и устройств. Приводится описание приемов монтажа и испытания оборудования данного на специальную разработку в задании на дипломное проектирование. На чертежах общего вида аппаратуры дается схема строповки.

Также описывается организация ремонтной службы в проектируемом цехе (отделении). Для оборудования спецразработки указываются правила эксплуатации, диагностики, виды ремонтов, их периодичность и методы восстановления его работоспособности.

Этот раздел включает анализ совместимости проектируемого объекта с экосистемой, мероприятия и технические решения задач промэкологии, расчет и выбор оборудования для очистки и переработки газовых, жидких и твердых отходов проектируемого производства.

ЖИЗНЕДЕЯТЕЛЬНОСТИ И ПРОИЗВОДСТВЕННОЙ САНИТАРИИ

В данном разделе, в зависимости от конкретной темы проекта, должны быть проанализированы: характеристики наиболее пожаро- и взрывоопасных веществ, применяемых в технологическом процессе, категория производства, класс помещения или наружной установки по ПУЭ, исполнение и тип электрооборудования, разработаны мероприятия по защите обслуживающего персонала от статического электричества, приведены расчеты заземления или зануления электрооборудования, допустимые значения концентраций вредных перерабатываемых веществ в окружающей среде. Также должны быть даны рекомендации по индивидуальным средствам защиты и сделан расчет местной и общеобменной вентиляции.

При необходимости делаются расчеты и описываются мероприятия по безопасной эксплуатации оборудования, специфичного для проектируемого производства.

Этот раздел разрабатывается в соответствии с требованиями секции БЖД.

При выполнении организационно-экономической части дипломного проекта студенты рассчитывают экономическую эффективность варианта производства, разрабатываемого в дипломном проекте.

Определяют показатели экономической эффективности, объем годового экономического эффекта от осуществления какого-либо усовершенствования или мероприятия и ряда других показателей, конкретный состав которых определяется консультантом по экономической части дипломного проекта применительно к работе предприятий в условиях хозрасчета, самоокупаемости и самофинансирования.

Оформление всех расчетов экономической части производится на основе методических рекомендаций по экономике производства при использовании материалов производственной практики.

Этот раздел разрабатывается в соответствии с требованиями кафедры экономики.

В этом разделе приводятся основные результаты, достигнутые в дипломном проекте.

Выводы должны быть сделаны на основе сравнительного анализа технико-экономических показателей действующего производства и проектируемого. Обязательно указывают, за счет каких технических решений достигнуто улучшение технико-экономических показателей проектируемого объекта.

Необходимо также отметить преимущества, связанные с реализацией проектных предложений, и охарактеризовать перспективы развития работ в этой области.

Сведения об источниках следует располагать в порядке появления ссылок на них в тексте пояснительной записки и нумеровать арабскими цифрами с точкой. Оформление списка используемых источников должно соответствовать ГОСТ 7.184.

Графическая часть проектов должна выполняться в соответствии с требованиями Государственных стандартов, Единой системы конструкторской документации (ЕСКД) и Стандарта предприятия.

Состав графической части определяется темой проекта (см. выше). Как правило, графическая часть дипломного проекта содержит следующие чертежи: технологическую схему цеха (отделения) и функциональную схему автоматизации 12 листа (допускается совмещать данные схемы на одном чертеже);

компоновочный чертеж 12 листа; чертежи общего вида аппарата (машины) и чертежи сборочных единиц (78 листов). Кроме того, в зависимости от вида проектируемого оборудования в графическую часть могут входить также чертежи наиболее сложных деталей. В этом случае чертеж детали должен содержать кроме изображения детали и другие данные, необходимые для ее изготовления и контроля.

Если исходными данными дипломного проекта являются материалы машиностроительных заводов, то чертеж технологической схемы и компоновочный чертеж могут отсутствовать, а объем чертежей на специальную разработку соответственно увеличивается.

В качестве основного формата следует использовать формат А1 (594 841 мм). Можно также применять форматы А0 (841 1189 мм), А2 (420 594 мм), А3 (420 297 мм), А4 (210 297 мм). Допускается применение дополнительных форматов, образуемых увеличением коротких сторон основных форматов на величину, кратную их размерам: А4 N, А2 N, А0 N.

Чертежи дипломного проекта имеют основную надпись, которую располагают в правом нижнем углу. Содержание, расположение и размеры граф основной надписи должны соответствовать ГОСТ 2.10468 ЕСКД. Пример заполнения граф основной надписи для чертежей приведен в приложении Г.

Допускается для последующих листов чертежей и схем применять форму 4 ГОСТ 2.10468 для основной надписи.

В графе 1 основной надписи указывают наименование изделия, которое должно соответствовать принятой терминологии и быть по возможности, кратким. При этом наименование изделия следует записывать в именительном падеже единственного числа. Если наименование состоит из нескольких слов, то на первом месте должно быть имя существительное, например: "Сушилка барабанная". Для чертежей сборочных единиц под наименованием в этой же графе пишется: "Сборочный чертеж", а для чертежей общего вида "Чертеж общего вида".

В графе 2 основной надписи указывают обозначение документа. Графические документы конструкторских проектов должны быть обозначены по классификатору НИИХИММАШ. Состав обозначения соответствующих конструкторских документов изложен ниже.

Повторное обозначение конструкторских документов указывают в дополнительной графе, расположенной в верхней части листа и имеющей размеры 70 14 мм. Графа располагается в дальнем от основной надписи углу формата вдоль ближайшей к этой надписи длинной стороне листа. Обозначение в этой графе необходимо указывать повернутым либо на 180 градусов, либо на 90 градусов относительно основной надписи в зависимости от расположения графы.

Не рекомендуется применять масштабы уменьшения 1:25; 1:15; 1:75 и масштаб увеличения 2,5:1.

Если общий вид аппарата и чертежи сборочных единиц выполняются на нескольких листах, то на последующих листах должен быть указан такой же масштаб, какой указан на первом листе чертежа. Разрез или выноска узла, масштаб которого отличается от масштаба основной надписи, обозначается следующим образом: АА (1:2).

Допускается совмещение спецификации с чертежом, т.е. размещать ее на поле чертежа. В связи с этим в дипломном проекте спецификацию следует выполнять на первых листах чертежей общего вида или сборочных единиц над основной надписью.

Форму и порядок заполнения спецификации изделия устанавливает ГОСТ 2.10868. В общем случае спецификация состоит из разделов, которые располагают в следующей последовательности: документация, комплексы, сборочные единицы, детали, стандартные изделия, материалы, комплекты. Наименование каждого раздела необходимо указывать в виде заголовка в графе "Наименование". Наименования разделов подчеркиваются, между разделами целесообразно оставлять 35 свободных строк.

После каждого раздела следует резервировать и номера позиций. Так как спецификация совмещается с чертежом, то раздел "Документация" в ней может отсутствовать. Наличие других разделов определяется составом специфицируемого изделия.

При заполнении граф спецификации следует придерживаться следующих рекомендаций.

Графу "Формат" не заполняют для документов, записанных в разделах: "Стандартные изделия", "Прочие изделия" и "Материалы". Для сборочных единиц и деталей, на которые в проекте отсутствуют чертежи, в данной графе необходимо указывать: БЧ ("Без чертежа"). Если чертеж выполнен на нескольких листах различных форматов, то в графе "Формат" проставляют "Звездочку" со скобкой, а в графе "Примечание" перечисляют все форматы в порядке их увеличения: (*)А2, А1).

Для составных частей изделия (сборочные единицы, детали), на которые в проекте не разработаны чертежи графу "Обозначение" не заполнять. При заполнении спецификации в данной графе для сборочных единиц и деталей, на которые в проекте разработаны чертежи, а также в графе 2 основной надписи (см. п. 4.3), указывают обозначения основных конструкторских документов. Обозначение состоит из наименования проекта (курсовой КП, дипломный ДП), года выполнения проекта (указывается последняя цифра текущего года) и шифра автора проекта (двух цифр, соответствующих номеру автора в приказе на дипломное проектирование, а при выполнении курсового проекта порядковый номер в списке группы) (полученные три цифры образуют первый блок обозначения), индекса проектируемого оборудования (выбирается по классификатору НИИХИММАШа) и трех блоков цифр по две или три цифры в зависимости от предполагаемого деления специфицируемого изделия на составные части. Индекс и блоки цифр разделяются между собой точкой. Первый после индекса проекта блок цифр служит для обозначения порядкового номера комплекса, второй для обозначения порядкового номера сборочной единицы определяемого комплекса, а третий для обозначения номера детали, принадлежащей определенной сборочной единице какого-либо комплекса, обозначение заканчивается шифром документа, который записывается после блока цифр через точку: ГЧ габаритный чертеж, КЧ компоновочный чертеж, ВО вид общий, ТС схема технологическая принципиальная, СЗ схема технологическая и автоматизации принципиальная, и т.д. В обозначении деталей буквенный шифр отсутствует. Следовательно, обозначение ДП201.131.01.05.007 соответствует детали 7 из сборочной единицы 5, входящей в комплекс 1 барабанной сушилки (131 индекс барабанной сушилки по классификатору НИИХИММАШа). Первый блок цифр (201) указывает, что дипломный проект выполнен в 2002 г. студентом, фамилия которого значится в приказе на проектирование под номером 1. Обозначение "ДП201.131.00.01.000.ВО" соответствует сборочной единице 1 барабанной сушилки. Разрешается конструкцию проектируемого аппарата (машины) не разбивать на комплексы. В этом случае первый блок цифр после индекса проекта в обозначении может отсутствовать (ДП201.131.01.000.ВО).

Марку материала для деталей и стандартных изделий следует указывать в графе "Примечание" спецификации. При этом в обозначении марки материала ГОСТ можно не указывать. Последняя строка до 10 мм.

При большом числе позиций спецификация может располагаться в двух и более столбцах. В этом случае нумерация позиций в последующем столбце спецификации производится также сверху вниз.

Если запись в какойлибо графе спецификации не помещается на одной строке, ее следует помещать на двух и более строках.

Форма спецификации и порядок ее заполнения приведены в приложении Д.

В общем случае, чертеж общего вида должен содержать следующие сведения: изображение изделия (аппарата, машины), необходимые виды, разрезы и сечения, основные размеры, таблицу назначения штуцеров, патрубков, техническую характеристику, технические требования, спецификацию изделия.

Все размеры делятся на исполнительные и справочные. Исполнительными размерами называются размеры, подлежащие выполнению по данному чертежу, т.е. необходимые для изготовления и контроля изделия.

Справочными называются размеры, не подлежащие выполнению по данному чертежу. Справочные размеры указываются для большего удобства пользования чертежом. На чертеже их отмечают знаком *, а в технических требованиях записывают:

* Размеры для справок.

Если все размеры на чертеже справочные, их знаком * не отмечают, а в технических требованиях записывают:

Размеры для справок На чертежах общего вида проставляются следующие виды справочных размеров: габаритные, установочные, присоединительные и посадочные.

Размеры, определяющие предельные внешние (или внутренние) очертания машины или аппарата, называются габаритными. Установочные и присоединительные размеры определяют величины элементов, по которым данное изделие устанавливают на месте монтажа или присоединяют к другому изделию. Посадочными называются размеры, определяющие номинальную величину и предельные отклонения сопрягаемых деталей.

На чертежах узлов кроме вышеперечисленных справочных размеров проставляются исполнительные размеры (например, размеры, относящиеся к штифтовому соединению, если они выполняются при сборке узла и отверстия под штифт в разных деталях обрабатываются совместно), а также справочные размеры, способствующие лучшему прочтению чертежа при изготовлении узла. Не допускается повторять размеры одного и того же элемента на разных изображениях, в технических требованиях и спецификации.

На чертежах общего вида изделия необходимо изображать временные защитные детали (ответные фланцы, заглушки и т.д.).

Надписи, техническую характеристику, технические требования и таблицы на чертеже следует выполнять в соответствии с ГОСТ 2.316–68. ЕСКД.

Техническая характеристика обязательно должны быть на чертеже общего вида машины или аппарата и, по необходимости, на чертежах их сборочных единиц. В технической характеристике аппарата или машины, как правило, следует указывать назначение, объем аппарата номинальный и рабочий, производительность, площадь поверхности теплообмена, максимальное давление, максимальную температуру среды, мощность привода, вес агрегатов и их габаритные размеры, токсичность и взрывоопасность среды, другие необходимые данные. Каждый пункт технической характеристики записывают с новой строки.

В технических требованиях указывают: обозначения ГОСТ, согласно которым должен быть изготовлен и испытан аппарат, обозначения ГОСТ на основные материалы, требования к контролю и испытанию, требования к эксплуатации машины или аппарата и т.п.

Техническую характеристику и технические требования помещают под заголовками "Техническая характеристика" и "Технические требования", которые не подчеркивают. Если на чертеже приводятся только технические требования, то заголовок "Технические требования" не пишут.

При выполнении чертежа на двух или более листах текстовую часть следует помещать только на первом листе.

Текстовая часть технические требования и техническая характеристика должны располагаться над спецификацией. В случаях, если над спецификацией недостаточно места, текст технических требований следует размещать рядом со спецификацией в виде колонки шириной 185 мм.

Надписи на чертежах должны быть краткими и точными. В них не допускаются сокращения слов, за исключением общепринятых и установленных в ГОСТах и ОСТах.

Рядом с изображением на полках линий-выносок наносят надписи, относящиеся непосредственно к изображению предмета. Например, указания о количестве конструктивных элементов (отверстий, канавок и т.п.), если они не внесены в таблицу, указания лицевой стороны, направления проката, волокон и т.д.

На первом листе общего вида при необходимости располагается таблица штуцеров, которая должна выполняться по следующей форме:

Обознаусловное чение Таблицу штуцеров целесообразно располагать над основной надписью чертежа; допускается размещение таблицы штуцеров слева от основной надписи. Обозначение штуцера в виде прописной буквы русского алфавита проставляется в таблице и на чертеже. На чертежах обозначение штуцера проставляется на полках линий-выносок, проводимых от штуцера. При этом не допускается повторения буквенных обозначений с видами, разрезами и сечениями. Над таблицей помещают заголовок "Таблица штуцеров".

Для обозначения видов, разрезов и сечений на чертеже применяют прописные буквы русского алфавита, за исключением букв: Й, О, Х, Ъ, Ы, Ь. Буквенные обозначения необходимо присваивать в алфавитном порядке без повторения. В случае недостатка букв следует применять цифровую индексацию, например: "А1", "Б1"и т. д. Для буквенных обозначений необходимо применять шрифт размером в два раза больше размера цифр размерных чисел, применяемых на том же чертеже.

На чертеже все составные части изделия необходимо нумеровать в соответствии с номерами позиций, указанными в спецификации этого изделия. Номера позиций на чертеже следует располагать вне контура изображения параллельно основной надписи, группируя их в колонки или строки, по возможности, на одной линии. Номера позиций следует наносить шрифтом, размером на 12 номера больше, чем размер шрифта, принятого для размерных чисел на том же чертеже.

Линии на чертежах должны соответствовать ГОСТ 2.30368. Все надписи следует выполнять по ГОСТ 2.30468, а изображение видов, разрезов и сечений по ГОСТ 2.30568. Виды, разрезы и сечения допускается поворачивать. В этом случае обозначение соответствующего изображения должно быть дополнено условным графическим обозначением, которое читается словом "Повернуто". Направление поворота (по часовой или против часовой стрелки) указывается направлением стрелки. При необходимости указывают угол поворота, например, 135°.

При наличии на чертеже какого-либо слишком мелкого фрагмента конструкции и потому плохо читаемого, его целесообразно изображать отдельно в увеличенном масштабе в виде "выносного элемента". Соответствующее место выносного элемента на виде, разрезе или сечении отмечают замкнутой сплошной тонкой линией окружностью, овалом, прямоугольником и т.д. Обозначают выносной элемент прописной буквой на полке линии-выноске. Над изображением выносного элемента указывают обозначение и масштаб, в котором он выполнен: А(2:1).

Если чертеж общего вида или сборочной единицы выполняется на двух и более листах, то часто возникают трудности отыскания нужного дополнительного изображения (сечений, разрезов, дополнительных видов и выносных элементов). В этом случае на изображениях, где показано положение секущих плоскостей, стрелок, указывающих направление проекции, или линий-выносок, рядом с буквенным обозначением в скобках необходимо указывать номер листа, на котором помещено соответствующее дополнительное изображение. Номер листа следует указывать только один раз, например, АА(2), Б(3) и т.д.

Над дополнительным изображением справа от буквенного обозначения в скобках указывается номер листа, на котором данное изображение отмечено стрелкой, секущей плоскостью или линиейвыноской. В качестве примера приведем обозначение разреза или сечения, выполненного в масштабе 1:2 (при этом в угловом штампе указан другой масштаб), повернутого на 50° против часовой стрелки, секущие плоскости которого показаны на листе 1: АА(1:2) 50° (1). При нанесении штриховки и обозначении материалов в разрезах и сечениях необходимо руководствоваться ГОСТ 2.30668. Размеры и предельные отклонения на чертежах следует проставлять по ГОСТ 2.30768. Покрытия, термическую обработку и другие виды обработки необходимо обозначать по ГОСТ 2.31068. Предельные отклонения формы и расположения поверхностей на чертежах следует указывать по ГОСТ 2.30879. Шероховатость поверхностей необходимо обозначать по ГОСТ 2.30973.

На чертежах сварного изделия сварные швы должны быть показаны по правилам ГОСТ 2.31272.

Условное обозначение шва сварного соединения следует наносить на полке линии-выноски, проведенной от изображения шва с лицевой стороны, и под полкой линии-выноски, проведенной от изображения шва с оборотной стороны. При этом линия-выноска имеет одностороннюю стрелку по месту касания линии шва. Структура условного обозначения стандартного шва, в общем случае, складывается из вспомогательных знаков шва, стандарта на тип шва, буквенно-цифрового обозначения шва по стандарту, способа сварки (можно не указывать), катета шва.

Сварочные материалы можно указывать на чертеже в технических требованиях или таблице швов.

Допускается сварочные материалы не указывать.

Если на чертеже имеются одинаковые швы, то обозначение следует наносить у одного из изображений, а от изображений остальных одинаковых швов необходимо проводить линии-выноски с полками. Всем одинаковым швам следует присвоить один порядковый номер и наносить его на линиивыноске, имеющей полку с нанесенным обозначением шва; на полке или под полкой линии-выноски, не имеющей обозначения шва.

Допускается одинаковым швам на чертеже не присваивать порядковые номера, а отмечать их линиями-выносками без полок.

При необходимости на свободном поле чертежа можно располагать таблицу сварных швов, выполняемую по следующей форме:

ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ЦЕХА (ОТДЕЛЕНИЯ) И

ФУНКЦИОНАЛЬНОЙ СХЕМЫ АВТОМАТИЗАЦИИ

На технологической схеме (это, как правило, принципиальная схема), должно быть показано основное и вспомогательное оборудование цеха (отделения) в технологической последовательности, указаны основные технологические связи между изделиями (трубопроводы), а также элементы, имеющие самостоятельное функциональное значение (насосы, арматура и т.д.).

На чертеже технологической схемы над основной надписью следует располагать перечень основного оборудования (экспликацию), которая заполняется сверху вниз и выполняется по следующей форме:

Зона Поз.

В экспликации принципиальной схемы следует указывать: в графе "Поз." – позиционное обозначение элементов схемы, "Обозначение" – обозначение разрабатываемого оборудования, "Наименование" наименование оборудования согласно чертежу или каталогу, "Кол." количество оборудования, имеющего одинаковую размерность, конструкцию и назначение, "Примечание" основные технические характеристики оборудования (по необходимости).

Все оборудование (аппараты, насосы, вентиляторы и др.) на схеме необходимо изображать сплошными тонкими линиями толщиной 0,3...0,5 мм, а трубопроводы и арматуру сплошными основными линиями, т.е. в два раза толще, чем оборудование.

Аппараты, машины, трубопроводы и запорную арматуру на принципиальной технологической схеме следует изображать условно в соответствии со стандартами на изображение или по контурам оборудования с основными технологическими штуцерами, загрузочными люками, входами и выходами основных продуктов. На чертеже технологической схемы необходимо указывать ориентировочные высотные отметки расположения оборудования.

Линии трубопроводов, а также расположенные на них арматуру и приборы следует показывать на схеме горизонтально и вертикально. Условное обозначение трубопроводов состоит из графического обозначения трубопровода по ГОСТ 2.78470 и цифрового обозначения транспортируемой среды.

Условные графические обозначения приборов и средств автоматизации на схемах выполняют линиями толщиной 0,5…0,6 мм, а линии связи 0,2…0,3 мм.

Условные изображения и обозначения трубопроводов, принятые на схеме, должны быть расшифрованы в таблице условных обозначений по форме:

Обозначение потока жидкости или газа следует выполнять по ГОСТ 2.72174.

Не допускается пересекать изображения машин (аппаратов) и других изделий линиями трубопроводов. На каждом трубопроводе у места его отвода от магистрального трубопровода или места подключения к аппарату следует проставлять стрелки, указывающие направление движения потока и условное обозначение вида среды: светлые газ, темные жидкость.

Условное графическое обозначение приборов и средств автоматизации на технологической схеме необходимо выполнять по ГОСТ 21.40488.

Условные графические обозначения приборов и средств автоматизации на схемах выполняют линиями, толщиной 0,5...0,6 мм, а линии связи 0,2...0,3 мм.

6.4.8. ПРАВИЛА ВЫПОЛНЕНИЯ КОМПОНОВОЧНЫХ ЧЕРТЕЖЕЙ

Компоновочный чертеж должен содержать планы этажей и разрезы помещений. При этом аппараты изображаются в виде их наружных контуров с ориентацией относительно осей здания и привязкой к осям колонн, стенам здания или другим, уже нанесенным, аппаратам. Планы этажей, на которых указано проектируемое оборудование, изображают на компоновочном чертеже в масштабе 1:100. На планах необходимо наносить сетку колонн и наружные контуры аппаратов. Колонны обозначают пересечением двух взаимноперпендикулярных продольных и поперечных разбивочных осевых линий. Продольные разбивочные оси обозначаются прописными буквами русского алфавита, за исключением букв З, И, Х, О, Ц, Ч, Ы, Ъ, Ь. Продольные оси следует обозначать снизу вверх.

Поперечные разбивочные оси обозначают слева направо арабскими цифрами. Буквенные и цифровые обозначения осей следует помещать в кружках диаметром 10 мм.

Кроме изображения оборудования в плане по этажам необходимо выполнить поперечные и продольные разрезы цеха, на которых целесообразно показать все аппараты. Разрезы цеха рекомендуется выполнять в масштабе 1:50. Как и на планах этажей, в разрезах оборудование изображается наружными контурами. При этом необходимо показывать способ установки оборудования (на фундаменте, постаменте и т.д.), высоту его установки и высоты расположения всех междуэтажных перекрытий и площадок.

На компоновочном чертеже аппараты следует ориентировать и привязывать по двум направлениям к осям колонн или к уже нанесенным на план аппаратам. Размеры необходимо указывать в метрах.

Компоновочный чертеж должен содержать перечень оборудования – экспликацию. Номера аппаратов в экспликации обязательно должны совпадать с их номерами на технологической схеме. В экспликации следует указывать наименование аппарата, количество таких аппаратов и их массу (в графе "Примечание").

СПИСОК ЛИТЕРАТУРЫ

1. Беркман Б.Е. Основы технологического проектирования производств органического синтеза. М.:

Химия, 1970. 368 с.

2. Грекова И. Методологические особенности прикладной математики на современном этапе ее развития. М.: Вопросы философии, 1976. № 6.

Г.С. Кормильцин, А.А. Лапин, Э.Л. Тудоровский. М.: МИХМ, 1985. 80 с.

4. Дворецкий С.И., Кормильцин Г.С., Королькова Е.М. Основы проектирования химических производств. Тамбов: ТГТУ, 1999. 183 с.

5. СНиП 11-01–95 "Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений".

6. Карпов В.С., Беленов Е.А., Новиков Ю.А. Структура и принципы проектирования объектов химической техники. М.: МИХМ, 1984. 136 с.

7. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. М.: Химия, 1992. 432 с.

8. Перевалов В.П., Колдобский Г.И. Основы проектирования и оборудование производств тонкого органического синтеза. М.: Химия, 1997. 288 с.

9. Новые технологии комплексной переработки метанола / М.Г. Макоренко, Т.В. Андрушкевич, Б.Г.

Гришин и др. // Химическая промышленность, 1997. № 12. С. 789–794.

10. Задорский В.М. Интенсификация химико-технологических процессов на основе системного подхода. Киев: Техника, 1989. 208 с.

11. Макаревич В.А. Строительное проектирование химических предприятий. М.: Высш. школа, 1977.

208 с.

12. Лыков М.В. Сушка в химической промышленности. М.: Химия. 1970. 430 с.

13. Сажин Б.С. Основы техники сушки. М.: Химия. 1984. 320 с.

14. Плановский А.Н., Николаев П.И. Процессы и аппараты химической и нефтехимической технологии. М.: Химия, 1987. 496 с.

15. Процессы и аппараты химической технологии. Основы теории процессов химической технологии / Под ред. А.М. Кутепова. М.: Логос, 2000. Т. 1. 480 с.

16. Кафаров В.В., Мешалкин В.П., Перов В.А. Математические основы автоматизированного проектирования химических производств. М.: Химия, 1979. 320 с.

17. Фильтры для жидкостей: Каталог. 4I (фильтры непрерывного действия для жидкостей). М.:

ЦИНТИХИМНЕФТЕМАШ. 1989.

18. Фильтры для жидкостей: Каталог. 4II (фильтры периодического действия, фильтры-прессы, патронные керамические фильтры). М.: ЦИНТИХИМНЕФТЕМАШ. 1991.

19. Сушильные аппараты и установки: Каталог. М.: ЦИНТИХИМ-НЕФТЕМАШ. 20. Эмалированное оборудование: Каталог. М.: ЦИНТИХИМНЕФТЕМАШ. 1991.

23. Машины и оборудование для цехов и предприятий малой мощности по переработке сельскохозяйственного сырья: Каталог. М.: НИИЦТЭИПИТОАГК, 1992. Ч. I, II. 256 с., 224 с.

24. Проектирование систем автоматизации технологических процессов / Под ред. А.С. Клюева. М.:

Энергоатомиздат. 1990. 464 с.

25. Кафаров В.В., Бодров В.И., Дворецкий С.И. Новое поколение гибких автоматизированных химических производств // Теоретические основы химической технологии. 1992. Т. 26, № 2. С. 254.

26. Гринберг Я.И. Проектирование химических производств. М.: Химия, 1970. 268 с.

27. Тимонин А.С. Конструирование и расчет химико-технологического и природоохранного оборудования: Справочник. Калуга, 2002. Т. 2. 1028 с.

28. Halemane K.P., Grossmann I.E. Optimal process design under uncertainty // A.I.Ch.E. Journal. 1983. Vol. 29, N. 3. P. 425–433.

29. Grossmann I.E., Floudas C.A. Active constraint strategy for flexibility analysis in chemical engineering N 6. Р. 675–693.

30. Swaney R.E., Grossmann I.E. An index for operational flexibility in chemical process design. Part 1:

formulation and theory // A.I.Ch.E. Journal. 1985. Vol. 31, N. 4. P. 621–641.

31. Базара М., Шетти К. Нелинейное программирование. М.: Мир, 1982. 583 с.

32. Floudas C.A. Nonlinear and mixed-integer optimization. New York-Oxford University press, 1995. 33. Duran M.A., Grossmann I.E. An outer approximation algorithm for a special class of mixed-integer nonlinear programs // Math. Prog., 1986. Vol. 36, N. 7. Р. 307–316.

34. Biegler L.T., Grossmann I.E., Westerberg A.W. Systematic methods of chemical process design. New Jersey: Carnegie Mellon University, 1997. 796 p.

35. Бодров В.И., Дворецкий С.И. Стратегия синтеза гибких автоматизированных химикотехнологических систем // ТОХТ, 1991. Т. 25, № 5. С. 716–730.

36. Вязгин В.А., Федоров В.В. Математические методы автоматизированного проектирования. М.: Высш. школа, 1989. 184 с.

37. Девятов Б.Н. Теория переходных процессов в технологических аппаратах с точки зрения задач управления. Новосибирск: Редакционно-издательский отдел сибирского отделения АН СССР, 1964. 324 с.

38. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М., 1972. 576 с.

39. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М., 1972. 576 с.

40. Shields R.W., Pearson J.B. Structural controllability of multinput systems // IEEE Trans. Autom.

Contr. 1976. Vol. AC-21. P. 203.

41. Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике: в 2 кн. М.: Мир, 1986. 667 с.

42. Гилл Ф., Моррей У., Райт М. Практическая оптимизация. М.: Мир, 1985. 509 с.

43. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983. 384 с.

44. Химельблау Д. Прикладное нелинейное программирование. Мир, 1975. 534 с.

45. Schittkowski K. Nonlinear programming codes: information, tests, performance, lecture notes in economics and mathematical systems. Springer-Verlag, New York, 1980. Vol. 183.

46. Archetti F., Szego G.P. Global optimization algorithms of nonlinear optimization: Theoty and Algorithms. Birkhauser, Boston, 1980.

47. Westerberg A.W. Shah J.V. Assuring a global optimum by the user of an Upper Bound on the lower (dual) bound // Comp.&Chem. Eng. 1978. Vol. 2. P. 83–92.

48. Cabot A.V., Francis R.L. Solving nonconvex quadratic minimization problems by rankiny extreme points // Oper. Res., 1970. Vol. 18. P. 82–86.

49. Самарский А.А., Михайлов А.П. Математическое моделирование: Методы. Примеры. М.: Физматлит, 2001. 320 с.

50. Моисеев Н.Н. Математика ставит эксперимент. М.: Наука, 1979. 224 с.

51. Дворецкий Д.С., Ермаков А.А., Пешкова Е.В. Расчет и оптимизация процессов и аппаратов химических и пищевых производств в среде MatLab: Учебное пособие / Под ред. проф. С.И. Дворецкого.

Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. 80 с.

52. Гухман А.А. Введение в теорию подобия. М.: Высшая школа, 1973. 295 с.

53. Цирлин А.М., Миронова В.А., Крылов Ю.М. Сегрегированные процессы в химической промышленности. М.: Химия, 1986. 232 с.

54. Фарлоу С. Уравнения с частными производными. М.: Мир, 1985. 384 с.

55. Тихонов А.Н., Самарский А.А. Уравнения математической физики. Учебное пособие для университетов. М.: Наука, 1972. 736 с.

56. Бояринов А.И., Кафаров В.В. Методы оптимизации в химической технологии. М.: Химия, 1975.

576 с.

57. Анисимов И.В., Бодров В.И., Покровский В.Б. Математическое моделирование и оптимизация ректификационных установок. М.: Химия, 1975. 216 с.

58. Касаткин А.Г., Плановский А.Н., Чехов О.С. Расчет тарельчатых ректификационных и абсорбционных аппаратов. М.: Стандартгиз, 1961. 81 с.

59. Фролов В.Ф. Моделирование сушки дисперсных материалов. М.: Химия, 1987. 208 с.

60. Норенков И.П. Основы автоматизированного проектирования. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. 360 с.

61. Соловов А.В. Информационные технологии обучения в профессиональной подготовке // Высшее образование в России. 1995. № 2. С. 31.

62. Соловов А.В. Компьютерная графика в инженерном образовании // Высшее образование в России. 1998. № 2. С. 90.

63. Зенкин А.А. Когнитивная компьютерная графика / Под ред. А.А. Поспелова. М.: Наука, 1991. 64. Курдюмов Г.М., Курдюмова А.Г. Использование гуманитарной оболочки в компьютерной технологии обучения // Высшее образование в России. 1996. № 1. С. 126.

65. Кроль В.Н., Мордвинов В.М., Трифонов Н.А. Психологическое обеспечение технологий образования // Высшее образование в России. 1998. № 2. С. 34.

66. Ларичев О.И. и др. Новые возможности компьютерного обучения // Вестник РАН. 1999. Т. 69. № 2. С. 106–119.

Кафедра

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту по _ подпись, дата, инициалы, фамилия

СОДЕРЖАНИЕ

115= фаз Томпсона, Ранка, ударных волн фаз. Импульсное изменение температуры, концентрации, давления Совмещение Электрические явления при фазовых Совмещение процессов: химичетехнологиче- превращениях, Марангони, Рэлея, ских, массообменных, теплообменских процессов Соре, Дюфура, термодиффузии, ных, тепло- и массообменных Введение Гетерогенизация, адсорбция, трибо- Дополнительное вещество: каталидополнитель- эффект, кавитация, эффект ударных затор, стабилизатор, инициатор. Поного вещества волн, диффузиофорез верхность образующий твердый ских параметров 3. Аппаратурно-конструктивные методы интенсификации Метод Используемый физический Приемы использования метода Обеспечение Концевой, входной, капил- Секционирование. Чередование зон конмногократности такта-сепарации. Пропускание через калярный, инверсии фаз фазы Конструктивная Инверсия фаз, Крауссольда, Ударно-струйное взаимодействие фаз.

оптимизация Рейнольдса, турбулизация и Соударение потоков. Пленочное движегидродинамиче- ние с турбулизацией. Многократная инсрыв пограничного слоя ского режима Использование Жуковского, Бернулли Турбулизация. Закручивание. Взаимное фаз Использование Двойной электрический слой, Поля: магнитное, электрическое. Перевнешних источ- электрофорез, термофорез, мешивающие устройства. Пульсаторы параметров Совмещение Энерджентность, инерэкт- Однотипное комбинирование. Агрегатирование. Блочно-модульный подход.

1.1. Разделение жидких неоднородных систем 1.1.1. Гидроклас- 1.2.1. Пневмокласвание 1.1.5. Флотация без изменения агрегатного 2.1.1. Нагревание 4.1.1. Сортирование 4.1.2. Грохочение 4.1.3. Сепарация Рис. 15. Принципиальная технологическая схема ректификационной установки:

1 – емкость исходной смеси; 2 – насосы исходной смеси (а), кубового остатка (б) и для перекачки продуктов на склад (в, г);

3 – подогреватель исходной смеси; 4 – колонна; 5 – встроенный кипятильник; 6 – дефлегматор; 7 – разделительный стакан;

– холодильник дистиллята; 9 – холодильник кубового остатка; 10 – емкость дистиллята; 11 – емкость Рис. 16. Схема непрерывного производства азопигментов:

1 – активатор; 2, 3 – емкости; 4 – диазотатор; 5 – центрифуга; 6 – растворитель; 7 – насос; 8 – анализатор;

1 – колонна; 2 – ригель; 3 – плита перекрытия; 4 – ограждение; 5 – мостовой кран; 6 – балка 1 – емкость исходной смеси; 2а – насос исходной смеси; 2б – насос кубового остатка; 2в – насос дистиллята; 2г – насос;

3 – подогреватель исходной смеси; 4 – колонна; 8 – холодильник дистиллята; 9 – холодильник кубового остатка;

Рис. 33. Схема распределения площади цеха по помещениям:

1 – электростанция; 2 – теплопункт; 3, 4 – бытовые помещения; 5 – кладовая; 6 – операторное отделение;

7 – цеховая лаборатория; 8 – аппаратное отделение; 9 – насосное отделение; 10 – административные

ПРОЕКТИРУЕМОЕ ХИМИЧЕСКОЕ

ПРОИЗВОДСТВО

Рис. 41. Структурно-параметрическое описание химического производства

ХИМИЧЕСКОЕ ПРОИЗВОДСТВО

x, y – векторы входных и выходных переменных (переменных состояния); u – вектор управляющих переменных;

z – вектор оптимальных режимов (оптимальных заданий регуляторам АСР) Рис. 46. Схема организации процесса компьютерного моделирования Корпоративные серверы

ЛВС ЛВС ЛВС

Рис. 56. Потоки данных в PDM Desing Manager (САПР Euclid Quantum)

Pages:     | 1 |   ...   | 2 | 3 ||
Похожие работы:

«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра Экономическая теория и мировая экономика КОНТРОЛЬНЫЕ РАБОТЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ по дисциплине Макроэкономика для студентов заочного отделения экономических специальностей (2 семестр) 2013 – 2014 учебного года Преподаватель: к.э.н., доцент Сафонова О.Н. Литература: 1. Макроэкономика: учебное пособие / А. А. Рыжков, Ю. А. Рыжкова. – Пенза : ИИЦ ПГУ, 2008. 2. Экономическая теория: учебно-методическое пособие / А.И. Дралин, С.Г....»

«Современные подходы к подготовке учителя физической культуры СОВРЕМЕННЫЕ ПОДХОДЫ К ПОДГОТОВКЕ УЧИТЕЛЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ Комиссарова И.М. МБОУ г. Астрахани СОШ № 52, учитель физической культуры Жизнь предъявляет новые требования к организации и проведения уроков физической культуры. Я, учитель физической культуры, у младших школьников. Это период равномерного, но достаточно интенсивного развития органов, функций. Дети этого возраста очень эмоциональны, легко возбуждаются, процессы торможения у...»

«№п/п Название источника УДК 001 НАУКА И ЗНАНИЕ В ЦЕЛОМ 001 О-75 1. Спец. номер (методичка) : 4314 Основы научных исследований и инновационной деятельности: программа и организационно-методические указания для студентов специальности 1-36 20 04 Вакуумная и компрессорная техника/кол. авт. Белорусский национальный технический университет, Кафедра Вакуумная и компрессорная техника, сост. Федорцев В.А., сост. Иванов И.А., сост. Бабук В.В. - Минск: БНТУ, 2012. - 38 с.: ил. руб. 1764.00 УДК 004...»

«56 Приложение 3 № 2897 621.396.62(07) М 545 Перечень элементов принципиальной схемы Поз., обо- Наименование Кол. Примечание значение МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Методические указания по курсовому проектированию радиоприёмных устройств аналоговых сигналов Для студентов ФБФО и дневной формы обучения радиотехнических специальностей ЦТРК 2007.097232. Лит. Масса Масштаб Радиовещательный приИзм. Лист № докум. Подпись Дата...»

«Методическая копилка Из опыта работы методических служб библиотек Тверской области Выпуск 5 Тверь 2013 От составителя Уважаемые коллеги! В предлагаемый вашему вниманию сборник вошли выступления методистов муниципальных центральных библиотек на областных семинарах с представлением своего опыта, творческие работы и разработанные ими планы системы повышения квалификации на 2013 год, ориентированные как на развитие профессиональной компетенции всех сотрудников, так и отдельные группы библиотекарей....»

«Государственное образовательное учреждение высшего профессионального образования ОРЕНБУРГСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Федерального агентства по здравоохранению и социальному развитию Кафедра факультетской терапии МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПОДГОТОВКИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ОБЩЕЙ ФИЗИОТЕРАПИИ ДЛЯ СТУДЕНТОВ IV КУРСА По дисциплине Общая физиотерапия. (наименование дисциплины) по специальности Лечебное дело – 040100 (060101.65). ( наименование специальности, код) Стоматология –...»

«0 Министерство образования и науки РФ ГОУ ВПО Сочинский государственный университет туризма и курортного дела ГОУ ВПО Филиал Сочинского государственного университета туризма и курортного дела в г. Нижний Новгород Судонина М.Л., Каулина Е.М. Методические рекомендации к прохождению практики по специальности для студентов 032102 Физическая культура для лиц с отклонениями в состоянии здоровья (Адаптивная физическая культура) Методическое пособие для студентов всех форм обучения специальности...»

«Государственный контракт № П 828 Разработка и апробация методического обеспечения внедрения системы частногосударственного партнерства (ЧГП) в образовании, включая предложения по нормативному правовому обеспечению ее внедрения (для дошкольного, общего, дополнительного образования) Заказчик Федеральное агентство по образованию Внедрение системы ЧГП в дошкольном, общем, дополнительном образовании (методическое, нормативноправовое обеспечение) 2-этап ЧАСТНО-ГОСУДАРСТВЕННОЕ ПАРТНЕРСТВО В...»

«Сведения об учебно-методической и иной документации, разработанной образовательной организацией для обеспечения образовательного процесса по 280401.65 Мелиорация, рекультивация и охрана земель № Наименование дисциплины по Наименование учебно-методических, методических п/п учебному плану и иных материалов (автор, место издания, год издания, тираж) Гидрометрия 1) Учебно-методический комплекс по дисциплине 1. Гидрометрия, 2013 г. 2) Виноградов Ю.Б., Виноградова Т.А. Современные проблемы...»

«М. А. Мукаррамов Кожные и венерические болезни МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН УЧЕБНО- МЕТОДИЧЕСКИЙ КАБИНЕТ ПО ВЫСШЕМУ И СРЕДНЕМУ МЕДИЦИНСКОМУ ОБРАЗОВАНИЮ ТАШКЕНТСКИЙ ПЕДИАТРИЧЕСКИЙ МЕДИЦИНСКИЙ ИНСТИТУТ Кожные и венерические болезни (учебная разработка для студентов медицинских институтов) Тошкент TIB- KITOB 2007 2 Составитель: Мукаррамов М.А – доцент кафедры дерматовенерологии ТашПМИ Рецензенты: 1. Арифов С.С. – д.м.н., профессор, зав. Кафедрой дерматовенерологии ТашИУВ МЗ...»

«В. А. Горелик, Т. П. Фомина Основы исследования операций: Учебное пособие Москва, МПГУ, 2004 Рекомендовано УМО по специальностям педагогического образования для студентов вузов по специальности 030100 Информатика. 1 Электронная PDF-версия издания подготовлена в 2011 году для сайта кафедры ТИДМ математического факультета МПГУ — http://tidm.ru 2 ВВЕДЕНИЕ Принятие решений всегда было и остается наиважнейшим аспектом человеческой деятельности. Существуют различные подходы к принятию решений: на...»

«Негосударственное образовательное учреждение высшего профессионального образования Международный институт экономики и права Основная образовательная программа высшего профессионального образования Направление подготовки (специальность) 080200.62 Менеджмент Профиль подготовки Маркетинг Квалификация выпускника Бакалавр Москва – 2013 СОДЕРЖАНИЕ 1. Общие положения 1.1. Основная образовательная программа бакалавриата 1.2. Нормативные документы для разработки ООП бакалавриата по направлению...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Кафедра микробиологии, эпизоотологии и вирусологии Государственное управление ветеринарии Краснодарского края Государственное учреждение Краснодарского края Кропоткинская краевая ветеринарная лаборатория А.А. ШЕВЧЕНКО, Л.В. ШЕВЧЕНКО, Д.Ю. ЗЕРКАЛЕВ, О.Ю. ЧЕРНЫХ, Г.А. ДЖАИЛИДИ ПРОФИЛАКТИКА И...»

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Экономика и управление на транспорте А.Н. КОВАЛЕВ А.Н. КОЖЕВНИКОВА А.В. СОРОКИНА БИРЖЕВОЕ ДЕЛО Часть 1 Учебное пособие МОСКВА – 2010 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Экономика и управление на транспорте А.Н. КОВАЛЕВ А.Н. КОЖЕВНИКОВА А.В. СОРОКИНА БИРЖЕВОЕ ДЕЛО Часть Рекомендовано редакционно-издательским советом университета в качестве учебного пособия для студентов экономических...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) УТВЕРЖДАЮ проректор СПбГТИ (ТУ) по учебной работе, д.х.н., профессор Масленников И.Г. 200 г. УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС РЕСУРСОСБЕРЕЖЕНИЕ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ, НЕФТИХИМИИ И БИОТЕХНОЛОГИИ образовательной профессиональной программы (ОПП) 240803 – Рациональное использование материальных и...»

«МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Детский сад № 105 общеразвивающего вида с приоритетным осуществлением деятельности по социально - личностному развитию детей города Чебоксары Чувашской Республики Деловая игра Самообразование- одна из форм повышения уровня компетентности молодых специалистов Подготовила : Виноградова А.Ю, старший воспитатель МБДОУ Детский сад№105 г.Чебоксары 2012 Деловая игра Самообразование- одна из форм повышения уровня компетентности молодых...»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное образовательное учреждение высшего профессионального образования Московский государственный агроинженерный университет имени В.П.Горячкина Кафедра Информационно-управляющие системы Андреев С.А., Судник Ю.А., Юсупов Р.Х. ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ Методические указания для студентов факультета заочного образования по специальностям Электрификация и автоматизация сельского хозяйства и Профессиональное обучение со...»

«Муниципальное автономное образовательное учреждение дополнительного образования детей Детская школа искусств №7 РАБОЧАЯ ПРОГРАММА ПО ПРЕДМЕТУ МУЗЫКАЛЬНАЯ ЛИТЕРАТУРА (первый год обучения) 35 часов в год Набережные Челны 2011 Составитель: БУРКОВА ЛЮБОВЬ ВАСИЛЬЕВНА, преподаватель теоретических дисциплин 1. Пояснительная записка Рабочая программа составлена на основе Примерной программы и методических рекомендаций для детских музыкальных школ и музыкальных отделений школ искусств. Музыкальная...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет В.Е. Семенов АНАЛИЗ И ИНТЕРПРЕТАЦИЯ ДАННЫХ В СОЦИОЛОГИИ Учебное пособие Владимир 2009 УДК 316.1 ББК 60.504 С30 Рецензенты: Доктор педагогических наук, профессор, зав. кафедрой социально-гуманитарных дисциплин Владимирского филиала Российской академии государственной службы при президенте РФ Е.А. Плеханов Доктор философских наук, профессор...»

«ФЕДЕРАЛЬНОЕ МЕДИКО-БИОЛОГИЧЕСКОЕ АГЕНТСТВО ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ ФЕДЕРАЛЬНОГО МЕДИКО-БИОЛОГИЧЕСКОГО АГЕНТСТВА АНТИГИПОКСАНТЫ В КЛИНИКЕ ВНУТРЕННИХ БОЛЕЗНЕЙ НОВЫЙ СТАНДАРТ МЕТАБОЛИЧЕСКОЙ ТЕРАПИИ. (Методическое пособие для врачей) Москва, 2007 2 ББК 54.1 А 72 АНТИГИПОКСАНТЫ В КЛИНИКЕ ВНУТРЕННИХ БОЛЕЗНЕЙ - НОВЫЙ СТАНДАРТ МЕТАБОЛИЧЕСКОЙ ТЕРАПИИ (методическое пособие для врачей) – М., 2007. - 15 с. Методическое пособие предназначено для терапевтов, кардиологов, врачей общей практики,...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.