WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |

«Г. С. ЗИНОВЬЕВ ОСНОВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ ЧАСТЬ 1 Учебник НОВОСИБИРСК 2001 Зиновьев Г. С. Основы силовой электроники: Учебник. – Новосибирск: Изд-во НГТУ, 1999. Ч.1. – 199 с. ISBN 5-7782-0264-4 Настоящий учебник ...»

-- [ Страница 3 ] --

Вместе с тем в таких устройствах возможны ситуации, когда требуется рекуперация энергии из цепи постоянного тока в цепь переменного тока. В электроэнергетике это имеет место в передачах электроэнергии постоянным током. Подобная ситуация возникает и в тех случаях, когда выпрямительное устройство питает якорную цепь машины постоянного тока в системе электропривода какого-либо транспортного средства или грузоподъемного механизма. Тогда при движении транспорта под уклон или грузоподъемного механизма вниз (с грузом) машина постоянного тока переходит из двигательного режима работы в генераторный режим за счет механической энергии, подводимой к ней от исполнительного механизма. Эту энергию можно полезно использовать, преобразовав ее в электрическую и возвратив через (реверсивный) вентильный преобразователь в сеть переменного тока (см. раздел 3.12). В преобразователе при этом происходит изменение направления потока активной мощности на обратное, называемое инвертированием. А процесс преобразования энергии постоянного тока в энергию переменного тока при наличии сети переменного тока, созданной каким-то другим источником энергии переменного тока, называют зависимым инвертированием. Изучение этого процесса в зависимых инверторах однофазного и трехфазного тока является целью настоящего раздела.

Очевидно, что изменение направления потока активной мощности в звене постоянного тока при сохранении неизменным направления тока в силу наличия вентилей возможно только за счет изменения полярности напряжения в звене постоянного тока. Это достижимо, в соответствии с уравнением регулировочной характеристики управляемого вентильного преобразователя (2.9.2) при углах регулирования >900. При этом сдвинется кривая тока в первичной обмотке трансформатора, а значит, и его первая гармоника, на угол 1(1) =. Тогда в соответствии с (1.3.1) при 1(1)>900 изменится и знак активной мощности в цепи переменного тока вентильного преобразователя, т. е. действительно будет происходить отдача мощности в сеть переменного тока, а не ее потребление из сети, как было в случае режима управляемого выпрямления.

Обратим внимание на то, что теперь вместо термина управляемый выпрямитель используется термин вентильный преобразователь, ибо речь пошла о двух возможных режимах работы одного и того же устройства – режиме управляемого выпрямления и режиме зависимого инвертирования. В тех же случаях, когда режим зависимого инвертирования является единственным (длительным), такое устройство преобразования постоянного напряжения в переменное, частота, форма и величина которого определена другой существующей сетью, называют зависимым инвертором или инвертором, ведомым сетью.

Назначение зависимого инвертора в этом случае сводится к поставке дополнительной активной мощности в существующую систему переменного напряжения.

Другой ситуацией, приводящей к кратковременному появлению режима зависимого инвертирования в рассматриваемом вентильном преобразователе, является его работа на какие-либо обмотки магнитных систем (обмотки возбуждения электрических машин, обмотки электромагнитов, обмотки сверхпроводниковых накопителей). В тех случаях, когда требуется быстро и эффективно вывести накопленную энергию из обмоток путем сброса тока в них, необходимо изменить на обратную полярность напряжения на обмотке, что также обеспечивается в вентильном преобразователе увеличением угла регулирования до 900. В момент спада тока до нуля режим зависимого инвертирования естественно прекратится, так как исчезнет источник временной энергии в звене постоянного тока.

Рассмотренные ситуации показывают, что выпрямители и зависимые инверторы имеют одинаковые принципиальные схемы преобразования, но зависимые инверторы не могут быть выполнены на неуправляемых вентилях.

С учетом этого достаточно рассмотреть режим зависимого инвертирования для одной схемы однофазного вентильного преобразователя и одной схемы трехфазного вентильного преобразователя.

3.4.1. ЗАВИСИМЫЙ ИНВЕРТОР ОДНОФАЗНОГО ТОКА (m1=1, m2=2, q=1) Необходимо сразу заметить, что названия первичных и вторичных обмоток трансформатора в вентильном преобразователе сохраняются независимо от его режима работы для устранения путаницы с их нумерацией при изменении направления потока активной мощности через трансформатор.

Схема зависимого инвертора показана на рис. 3.4.1. Реальный трансформатор, как показано в разделе 2.9, представлен в виде совокупности идеального трансформатора и индуктивностей рассеивания обмоток La, приведенных ко вторичной стороне.

В отличие от работы выпрямителя на внешнюю противоЭДС в звене постоянного напряжения, в инверторе полярность внешней ЭДС в этом звене изменена на обратную. Это одно из двух условий, как было Рис. 3.4.1 основных характеристик инвертора. Для расчета характеристик зависимого инвертора удобнее вместо угла пользоваться углом регулирования, дополняющим угол до 1800, т. е.

Это делает все зависимости характеристик от угла в инверторе подобными зависимостям соответствующих характеристик от угла в выпрямителе.

Для более наглядного представления особенностей электромагнитных процессов в зависимом инверторе по сравнению с управляемым выпрямителем, нагруженным на противоЭДС, на рис. 3.4.2 приведены временные диаграммы и для режима выпрямления (рис.3.4.2, а) и для режима зависимого инвертирования (рис. 3.4.2, б).

Методика построения временных диаграмм та же, что и при выпрямительном режиме работы в рамках допущения Xd =. Для инверторного режима характерны две особенности временных диаграмм.



Во-первых, значительно меньшая длительность интервала приложения к вентилю обратного напряжения :

которая должна быть больше паспортного времени восстановления управляющих свойств вентиля с неполным управлением (тиристоры) в. Это обстоятельство ограничивает минимально возможное значение угла регулирования в инверторном режиме величиной В выпрямителе минимальная величина угла регулирования может быть равна нулю. Значит, максимально возможная активная мощность вентильного преобразователя в выпрямительном режиме всегда будет больше максимально возможной активной мощности в инверторном режиме.

Во-вторых, закон изменения анодных токов вентилей на интервалах коммутации в инверторном режиме в соответствии с (3.1.4) при > /2 и > /2 таков: теперь на интервале нарастания ток имеет выпуклый характер, на интервале спада – вогнутый характер, т. е. обратный характеру изменения в выпрямительном режиме.

Формальный анализ инверторного режима работы вентильного преобразователя удобнее, как будет видно из дальнейшего, сделать в обратной, по сравнению с выпрямительным режимом, последовательности. Здесь сначала получим уравнения основных характеристик инвертора – входной, регулировочной и ограничительной, а затем, используя их, выясним особенности расчетных соотношений для элементов схемы вентильного преобразователя.

Входная характеристика. Входом преобразователя в режиме зависимого инвертирования является цепь постоянного тока, поэтому здесь значима зависимость среднего значения инвертируемого напряжения Udx от среднего значения инвертируемого тока Id при постоянном угле регулирования, называемая входной характеристикой зависимого инвертора. Формально ее уравнение получается из уравнения внешней характеристики управляемого выпрямителя, нагруженного на противоЭДС (3.1.19) при замене в ней на по (3.4.2):

Знак минус у напряжения Ud подтверждает смену полярности напряжения в звене постоянного тока у инвертора по сравнению с выпрямителем. Смена знака здесь у среднего значения коммутационного падения напряжения Ux свидетельствует о том, что входные характеристики инвертора поднимаются с ростом тока с таким же наклоном, с каким падают внешние характеристики выпрямителя. Графики входных характеристик приведены на рис. 3.4.3.

В том случае, если вентильный преобразователь поочередно работает в выпрямительном и инверторном режимах, то их внешние и регулировочные характеристики изображаются на совместном графике соответственно в первом и четвертом квадрантах, как показано на рис. 3.4.4.

Регулировочная характеристика. Регулировочная характеристика зависимого инвертора получается из регулировочной характеристики управляемого выпрямителя (2.9.1) заменой на по (3.4.1) для режима Id = 0:

Знак минус свидетельствует об обратной полярности напряжения в звене постоянного тока у зависимого инвертора по сравнению с управляемым выпрямителем. График совместной регулировочной характеристики для обоих режимов показан на рис. 2.9.2.

Ограничительная характеристика. Характеристика, присущая только зависимому инвертору, называемая ограничительной, определяет зависимость максимально допустимого среднего значения инвертируемого напряжения от максимально допустимого среднего значения инвертируемого тока. Эти ограничения на инвертируемые напряжение и ток обусловлены ограничением на значение допустимого тока инвертора Idmax, определяющего максимально допустимый угол коммутации max при заданном угле регулирования в соответствии с (3.4.2) Чем больше угол регулирования, тем больше допустимый угол коммутации, а значит, и инвертируемый ток, нанося значения которого на соответствующие этому углу входные характеристики (т. е.

определяя при этом Ud max), можно через полученные точки провести ограничительную характеристику.

Формальное уравнение ограничительной характеристики становится очевидным, если взглянуть на временную диаграмму инвертируемого напряжения ud на рис. 3.4.2, б из-под оси времени в обратном направлении. С позиций такого рассмотрения кривая ud подобна кривой ud рис. 3.4.2, а, если считать за угол регулирования угол в, а за сумму углов + угол. Уравнение ограничительной характеристики получается из уравнения внешней характеристики управляемого выпрямителя при угле управления, равном в, график которой положен на семейство входных характеристик инвертора на рис. 3.4.3 и соответствует уравнению Рабочей областью зависимого инвертора является область под ограничительной характеристикой. Выше этой характеристики расположена область “опрокидывания” инвертора. При перегрузке по току время, отводимое на восстановление управляющих свойств вентиля, оказывается меньше требуемого, и вентиль снова начнет проводить ток с момента появления на нем прямого напряжения, т. е. с углом регулирования = 0, как видно из временной диаграммы для обратного напряжения на вентиле на рис. 3.4.2, б. Полярность кривой напряжения вентильного преобразователя Ud «перевернется» на обратную, как у неуправляемого выпрямителя, и его напряжение окажется включенным согласно с напряжением внешнего источника. Это отражено в схемах замещения по средним значением переменных в цепи постоянного тока для нормального режима работы зависимого инвертора (рис.3.4.5,а) и режима его опрокидывания (рис. 3.4.5, б).

Возникает большой аварийный ток, ограничиваемый только малыми активными сопротивлениями потерь элементов схемы.

При конечном значении индуктивности сглаживающего реактора Ld в зависимом инверторе все характеристики инвертора могут быть получены из соответствующих характеристик управляемого выпрямителя, нагруженного на противоЭДС (см. раздел 3.2) при замене в них на 180 - и знака у противоЭДС в цепи постоянного напряжения с U на –U0.

Особенности расчетных соотношений для элементов инвертора. Методика расчета зависимого инвертора аналогична методике расчета выпрямителя с той только особенностью, что минимальный угол регулирования в инверторном режиме min не может быть равен нулю, в то время как расчетный режим выпрямителя делался выше при = 0.

Величина min и действующее значение вторичного напряжения трансформатора U2 взаимно зависимы, поэтому их определение необходимо сделать из совместного решения двух уравнений с этими переменными – уравнений (3.4.7) и (3.1.6). Из уравнения (3.4.7) определяется величина Ud0, а значит, и величина U2:

Из уравнения (3.1.6) с учетом замены = 180 – В результате сделанного первого шага в пятнадцатишаговой процедуре (которая здесь не повторяется) расчета вентильного преобразователя как в выпрямительном режиме (см. раздел 2.3), так и в инверторном режиме определено значение U2, а значит, и Kт, необходимые для последующих шагов расчета. При этом получающиеся соотношения для U * max, K I, S *, S 1, S *, S *, S *.L,, K пт будут зависеть от вреb 2 TbT мени восстановления управляющих свойств вентиля в и приведенной индуктивности рассеивания трансформатора La или определяемой ею величины напряжения короткого замыкания трансформатора Uк %, более привычного параметра для энергетиков. При малых значениях в и Uк %, гарантирующих малость min, все указанные расчетные показатели для зависимого инвертора будут близки к их соответствующим значениям для выпрямителя. Поэтому рекомендации по областям применения базовых ячеек вентильных преобразователей при работе в выпрямительном режиме будут справедливы и для инверторного режима.

3.4.2 ЗАВИСИМЫЙ ИНВЕРТОР ТРЕХФАЗНОГО ТОКА (m1=3, m2=3, q=1 ) Схема трехфазного мостового зависимого инвертора с учетом параметра La реального трансформатора показана на рис. 3.4.6, а временные диаграммы при допущении Xd = – на рис. 3.4.7.

При малых значениях углов регулирования в инверторном режиме углы вступления вентилей в работу близки к 1800, и с учетом этого построены все временные диаграммы по той же методике, что и для управляемого выпрямителя (см. раздел 3.2).

Для получения расчетных соотношений для данного зависимого инвертора по типовой пятнадцатишаговой процедуре опять на первом шаге расчета определяются U2 по (3.4.9) при Ku = и min из уравнения для инвертируемого тока Id. Для трехфазной мостовой схемы уравнение для тока Id max имеет вид откуда находится величина cos min С учетом замечаний, сделанных в конце предыдущего раздела 3.4.1, и свойств трехфазной мостовой схемы выпрямления, отмеченных в разделе 2.7, можно заключить, что и для режима зависимого инвертора данная схема является наилучшей из всех базовых схем вентильных преобразователей.

3.5* ОБЩАЯ ЗАВИСИМОСТЬ ПЕРВИЧНОГО ТОКА ВЫПРЯМИТЕЛЯ

ОТ АНОДНОГО И ВЫПРЯМЛЕННОГО ТОКОВ (ЗАКОН ЧЕРНЫШЕВА)

При анализе электромагнитных процессов в базовых ячейках выпрямителей временные диаграммы первичных токов ячеек в соответствии с рассмотренной методикой строились в последнюю очередь, после построения всех диаграмм. Поскольку индивидуальный анализ всех схем выпрямления весьма трудоемок, необходимо найти общую методику построения первичного тока в любой схеме выпрямления без процедуры ее детального анализа. Такую методику можно сформулировать на базе закона Чернышева для первичных токов выпрямителей, вывод уравнения которого и есть здесь цель анализа.

Фрагмент выпрямителя трехфазного напряжения для вывода закона Чернышева показан на рис. 3.5.1.

Здесь анодное напряжение вентиля, подлежащее выпрямлению, геометрически складывается в общем случае из напряжений вторичных обмоток, расположенных на всех стержнях трансформатора. Векторная диаграмма для результирующего напряжения на анодах представлена на рис. 3.5.2.

Угол поворота результирующего вектора относительно напряжения первичной обмотки фазы А трансформатора обозначен как где 0 – угол поворота для первого вентиля, n – номера проводящих вентилей (n = 1, 2,... m2).

Для нахождения трех неизвестных токов в первичных обмотках трансформатора i1A, i1B, i1C необходимы три уравнения для них. Два уравнения получаются по второму закону Кирхгофа для магнитных цепей, при обходе контуров из стержней трансформатора А и В, А и С в направлении, указанном на схеме рис. 3.5.1, третье уравнение получается по первому закону Кирхгофа, в результате имеем Решение по правилу Крамера для первичного тока имеет вид Выражение в круглых скобках представляет собой сумму проекций векторов вторичных напряжений на направление вектора фазы А и может быть заменено проекцией результирующего вектора напряжения U2.1 на то же направление, т. е.

Полученное соотношение характеризует вклад в первичный ток фазы А от анодного тока первого проводящего вентиля. Теперь обобщим уравнение (3.5.3) для интервалов проводимости остальных вентилей. Общая зависимость первичного тока от анодных токов вентилей в дискретной и непрерывной формах тогда получает следующий вид:

где – угол сдвига между вектором напряжения первичной обмотки, в которой находится ток, и результирующим вектором анодного напряжения проводящего вентиля с током ia.

Уравнение (3.5.4) и определяет закон Чернышева для первичных токов выпрямителя, действительный при следующих условиях:

• Первичные обмотки трансформатора соединены в звезду. Если они соединены в треугольник, то закон определяет линейный ток, а коэффициент трансформации Кт и угол 0 определяются относительно напряжений эквивалентной звезды первичных напряжений, в которую преобразуется треугольник первичных напряжений.

• Вторичные обмотки трансформатора могут быть соединены по любой схеме.

• Схема выпрямления – однополупериодная. Для двухполупериодных схем выпрямления необходимо предварительное сведение их к эквивалентной совокупности однополупериодных схем выпрямления, как это было показано на примере трехфазной мостовой схемы выпрямления в разделе 2.8, и последующее применение к ним закона Чернышева и метода наложения.

Теперь можно сформулировать методику построения первичного тока выпрямителя сразу по схеме, минуя построение всех остальных временных диаграмм, и проиллюстрировать ее на примере выпрямителя трехфазного тока со схемой соединения обмоток трансформатора треугольник – звезда с нулевым выводом при допущении Хd =, Ха = 0 (см. раздел 2.5).

Преобразуется треугольник первичных напряжений в эквивалентную звезду и для нее определяется коэффициент трансформации Кт и 2. Наносится вспомогательная косинусоида построения с амплитуId дой здесь, так как ia = Id на интервале проводимости любого вентиля.

3. Отмечаются на косинусоиде построения точки, соответствующие углам поворота векторов анодных напряжений вентилей, здесь /6, (/6)+2(/3), (/6)+2(2/3) и т.д. Эти точки, соответствующие серединам участков проводимости вентилей, определяют высоты ступенек длительностью 2/m2 (здесь 2/3) в кривой первичного тока, которая получается при соединении вертикалями концов ступеней, как показано на рис. 3.5.4. Такова форма линейного тока (тока в сети) для данной схемы, которая может быть построена и на временных диаграммах рис. 2.5.2 как геометрическая сумма первичных токов двух обмоток.

В случае управляемого выпрямителя при Хd = форма первичного тока от угла не зависит, а смещается только по фазе на угол. При наличии углов коммутации в кривых анодных токов вентилей они также появляются и в кривой первичного тока. В соответствии с косинусоидой построения проявляют себя в кривой первичного тока и пульсации выпрямленного (анодного) тока в случае конечного значения индуктивности сглаживающего реактора (Хd ).

Закон Чернышева, давая общее аналитическое выражение для кривой первичного тока выпрямителя, позволяет определить и действующее значение первичного тока в общем случае однополупериодных схем выпрямления при Хd =. Основываясь на прямоугольноступенчатом характере первичного тока, можно записать где Am = – амплитуда косинусоиды построения, т. е. действуюKт щее значение косинусоиды построения определяет действующее значение первичного тока трансформатора выпрямителя.

Таким образом, закон Чернышева позволяет находить кривую первичного тока известных и новых схем выпрямления и действующее значение этого тока без процедуры детального анализа электромагнитных процессов в схемах. Кроме того, он может быть эффективно применен для нахождения в общем виде спектров входных токов выпрямителей, как показано ниже.

3.6. СПЕКТРЫ ПЕРВИЧНЫХ ТОКОВ ТРАНСФОРМАТОРОВ

ВЫПРЯМИТЕЛЕЙ И ЗАВИСИМЫХ ИНВЕРТОРОВ

Вентильные преобразователи, потребляя из сети несинусоидальный ток, оказывают на сеть заметное обратное негативное влияние.

Степень этого обратного влияния зависит от спектра первичного тока выпрямителя, нахождение которого составляет цель этого раздела. На рис. 3.6.1 показана однолинейная схема замещения электрической сети, содержащая источник ЭДС ec (синхронный генератор) с внутренней индуктивностью Lc, и нагрузку в сети в виде линейного несинусоидального тока I1, которым эквивалентирован вентильный преобразователь.

Наличие нелинейной нагрузки в сети в виде вентильного преобразователя создает следующие проблемы:

1. Искажается форма напряжения в сети uс, так как что при несинусоидальности тока i1 приведет к несинусоидальности напряжения сети uc. Несинусоидальное напряжение сети окажет свое негативное влияние и на «хороших» (линейных) потребителей электрической энергии, эквивалентированных сопротивлением Zн.

2. Появляются дополнительные потери активной мощности в элементах сети от высших гармоник тока, что может вызвать перегрев этих элементов (трансформаторов, косинусных конденсаторов, электрических машин).

3. Возникают перенапряжения в сети из-за резонансных явлений при совпадении частот гармоник первичного тока вентильного преобразователя с собственными резонансными частотами электрической сети, в действительности являющейся системой с распределенными LC-параметрами. Эти перенапряжения могут вызывать ложные защитные отключения или выход элементов сети из строя.

В целом указанные проблемы (и ряд других) относятся к проблемам электромагнитной совместимости в электрических сетях. Под электромагнитной совместимостью электротехнических устройств, связанных общей сетью, принято понимать их способность нормально функционировать в реальных условиях эксплуатации при наличии непреднамеренных помех в питающей сети и при этом не создавать недопустимых электромагнитных помех в сети для других устройств [20].

Для расчета спектральным методом показателей, характеризующих степень обратного влияния вентильного преобразователя на питающую сеть, необходимо знать спектральный состав входного тока вентильных преобразователей. Чтобы многократно не делать расчет спектров входных токов всех базовых ячеек, необходимо выполнить спектральный анализ сразу в общем виде. Это можно сделать, используя закон связи первичного тока с анодными токами (закон Чернышева).

На рис. 3.6.2 показана форма анодного тока вентиля при допущении Хd =, Xa = 0.

Амплитуда гармоники n-го порядка ряда Фурье этой кривой равна и выражение для мгновенного значения гармоники где n – номер гармоники по отношению к частоте питающей сети.

Тогда мгновенное значение гармоники n-го порядка первичного тока вентильного преобразователя в соответствии с дискретной формой (3.5.4) закона Чернышева, действительного и для отдельных гармоник (в силу линейности связи i1 и in), равно для h-й входной фазы Суммы косинусоид одинаковой частоты, но с различными фазовыми сдвигами m2-фазной звезды векторов рис. 3.6.3,а, отличны от нуля только в том случае, если все векторы m2фазной системы синфазны, как показано на рис. 3.6.3,б.

Это возможно при условии (для определенности h = 1) В результате имеем для номеров гармоник n в первичном токе где k – целые положительные числа (k = 2, 3, 4...).

Переход от схем однополупериодного выпрямления (q = 1) к схемам двухполупериодного выпрямления (q = 2) приводит, как показано выше, к удвоению частоты коммутаций в преобразователе, а значит, к уменьшению в два раза интервалов времени между коммутациями. Такой же эффект оказывает и увеличение числа вторичных фаз трансформатора.

Значит, соотношение (3.6.5) можно обобщить за счет учета полупериодности, и оно примет вид (p = qm2 – пульсность) В первичном токе любого выпрямителя присутствуют только гармоники, порядок которых определяется по (3.6.6). Например, для трехфазной мостовой схемы и схемы с уравнительным реактором, у которых p = 6, в первичном токе кроме первой будут гармоники порядка 5, 7, 11, 13, 17, 19....

Из соотношений (3.6.2) и (3.6.4) следует, что относительная величина высших гармоник в долях первой гармоники будет Знак свидетельствует о синфазности или противофазности соответствующей гармоники по отношению к первой. С ростом номера гармоник их относительное значение монотонно уменьшается.

На основании спектрального анализа первичных токов трансформаторов выпрямителей и зависимых инверторов можно сделать следующие выводы:

• с ростом пульсности схем преобразования электроэнергии растут частоты высших гармоник первичного тока и уменьшается их относительная величина, т. е. форма тока приближается к синусоидальной, в пределе при бесконечно большой пульсности первичный ток становится синусоидальным;

• введение угла регулирования () при допущении Хd = не изменяет ни частот гармоник, ни их относительных величин, приводя только к их сдвигу по фазе соответственно для n-х гармоник на угол (n)=n по отклонению к кривой напряжения сети. Это вызывает увеличение потребления из сети реактивной мощности, пропорциональной sin (1) и вследствие этого снижение (ухудшение) коэффициента мощности, как будет показано в разделе 3.10;

• учет угла коммутации, устраняя скачки в кривой первичного тока, не изменяет номеров гармоник в ней, но уменьшает относительные величины высших гармоник из-за улучшения формы первичного тока. Точный учет влияния коммутации на ток из-за сложного (нелинейного) характера изменения тока на интервалах коммутации (см, раздел 3.1) приводит к громоздким формулам для гармоник тока [8].

Аппроксимация тока на интервалах коммутации линейной зависимостью (прямой) позволяет получать более простые формулы для гармоник тока с погрешностью в несколько процентов [42 ].

3.7. СПЕКТРЫ ВЫПРЯМЛЕННОГО И ИНВЕРТИРУЕМОГО НАПРЯЖЕНИЙ

ВЕНТИЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ

Нахождение спектра выпрямленного напряжения, являющееся целью данного раздела, необходимо для расчета выходного фильтра выпрямителя и для оценки показателей качества выпрямленного напряжения, через которые определяется ущерб в нагрузке от искаженного качества преобразованной энергии.

В кривой выпрямленного напряжения, показанной на рис. 3.7.1, будут присутствовать и синусные и косинусные составляющие ряда Фурье. Тогда, расположив начало отсчета в максимуме выпрямляемого напряжения u 2, определяемого как получаем для действующего значения гармоники n-го порядка синусной части ряда Фурье выпрямленного напряжения Здесь k – номер гармоники в выпрямленном напряжении по отношению к его периоду и номер гармоники в выпрямленном напряжении по отношению к периоду сетевого напряжения.

Аналогично, действующее значение гармоники n-го порядка косинусной части ряда Фурье равно Действующее значение результирующей гармоники n-го порядка в кривой выпрямленного напряжения тогда равно (n=kp) Графики качественных зависимостей относительных величин гармоник выпрямленного напряжения Ud(n)/Ud0 от угла регулирования На этих же графиках показаны зависимости и другого показателя качества выпрямленного напряжения – интегрального коэффициента гармоник K г, удобного, как было показано в главе 2, для расчета величины сглаживающего реактора. Можно доказать, что для получения одинакового качества выпрямленного тока соотношение индуктивностей сглаживающего реактора в выпрямителях с qm2 = 2, 3, 6 должно быть 36:9:1 при = 0.

Спектр напряжения в звене постоянного тока вентильного преобразователя, работающего в режиме зависимого инвертора, формально получается по тем же формулам (3.7.1) – (3.7.4) при замене в них на 180 –.

Физически идентичность спектрального состава напряжений выпрямителя и зависимого инвертора при = обусловлена идентичностью временных диаграмм этих напряжений с позиций наблюдателей, рассматривающих их соответственно над осью времени в направлении оси времени и с позиции под осью времени в направлении, противоположном оси времени.

Явление коммутации в вентильном преобразователе с учетом реальных параметров трансформатора приводит к дополнительному искажению формы выпрямленного и инвертируемого напряжений за счет угла коммутации, как было показано в разделах 3.1, 3.4, 3.5. Но так как при этом не изменяется период пульсаций выпрямленного напряжения, то не изменяются и номера гармоник в выпрямленном напряжении, которые по-прежнему определяются по (3.7.2), а изменяется только их относительное содержание. Формулы для расчета величины гармоник напряжения в этом режиме значительно более сложные, чем (3.7.4), приведены в [8].

Таким образом, качество выпрямленного напряжения растет с увеличением пульсности выпрямленного напряжения, приближаясь к постоянному напряжению без пульсаций при стремлении к бесконечности эквивалентного числа вторичных фаз трансформатора. Идеальной синусоидой при этом становится и первичный ток трансформатора, как показано в предыдущем разделе.

ВТОРИЧНЫХ ФАЗ ТРАНСФОРМАТОРА ВЫПРЯМИТЕЛЯ.

ЭКВИВАЛЕНТНЫЕ МНОГОФАЗНЫЕ СХЕМЫ ВЫПРЯМЛЕНИЯ

При питании выпрямителей от промышленной сети общего пользования число первичных фаз трансформатора выпрямителя задано – одна или три. Вместе с тем число вторичных фаз трансформатора, как было видно уже при рассмотрении базовых ячеек выпрямителя, может быть больше числа первичных фаз. При необходимости число фаз вторичных напряжений трансформатора может быть любым, в том числе и не кратным трем, что достигается при комбинации напряжений вторичных обмоток трансформатора, подобных соединению в зигзаг. Поэтому возникает вопрос об оптимальном числе фаз вторичного напряжения трансформатора с позиций других критериев, чем в двух предыдущих разделах, а именно прежде всего, с позиции критерия относительного значения полной мощности вторичных обмоток трансформатора S 2. В качестве цели анализа определим здесь установление общей зависимости S 2 от числа вторичных фаз трансформатора сначала для однополупериодных схем выпрямления с q = 1, а затем и для двухполупериодных с q = 2.

В однополупериодных схемах выпрямления токи во вторичных обмотках трансформатора повторяют анодные токи вентилей, связанных с этими обмотками. При модели выпрямителя с допущениями Xd =, Xa = 0 (учет влияния коммутации будет сделан в следующем разделе) действующее значение вторичного тока длительностью =2/m2 будет равно Тогда полная мощность вторичных обмоток трансформатора в относительных единицах равна с учетом (2.9.1) График этой зависимости показан на рис. 3.8.1. Условно полагаем m2 непрерывной переменной и выделяем на полученной зависимости точки, соответствующие реальным значениям m2 = вблизи m2 = 3, которое и будет оптимальным значением числа вторичных фаз для однополупериодных выпрямителей.

В случае двухполупериодных выпрямителей к каждой вторичной обмотке трансформатора подключено по два вентиля, один из катодной группы и один из анодной группы вентилей.

Тогда действующее значение вторичного тока трансформатора Рис. 3.8. определится из того, что он образован двумя импульсами анодных токов длительностью 2/m2 каждый, как это видно из рис.

Активная мощность, отдаваемая вторичной обмоткой в цепь выпрямленного тока, определяется взаимодействием первой гармоники вторичного тока с синусоидой вторичного напряжения. Действующее значение первой гармоники ряда Фурье для кривой тока по рис. 3.8.2 при выборе начала отсчета времени в Выражение для активной мощности вторичной обмотки будет С учетом (3.8.4) и (3.8.6) получаем полную мощность вторичных обмоток трансформатора в относительных единицах в виде Эта зависимость показателя качества от m2 с точностью до множителя 2 повторяет зависимость (3.8.2).

Таким образом, оптимальное число вторичных фаз трансформатора по критерию S 2 одинаково для двухполупериодных и однополупериодных схем выпрямления. В то же время по критериям качества выпрямленного напряжения и первичного тока выпрямителя оптимальное число вторичных фаз трансформатора стремится к бесконечности. Отсюда становится очевидной необходимость построения мощных выпрямителей по таким схемам, у которых во вторичных обмотках трансформатора протекают токи с оптимальной для него длительностью 2/3, как у трехфазных схем, а по числу пульсности выпрямления эти схемы были бы аналогичны многофазным схемам выпрямления. Такие схемы получили название эквивалентных многофазных схем выпрямления.

Широкое распространение для мощных высоковольтных схем выпрямления (прежде всего в системах передачи энергии постоянным током) получила схема эквивалентного двенадцатифазного выпрямления на базе двух трехфазных мостовых схем, показанная на рис. 3.8.3.

Здесь две трехфазные мостовые схемы выпрямления включены по входу параллельно, а по выходу – последовательно. Для получения сдвига в 30° между шестикратными пульсациями выпрямленных напряжений каждого моста первичные (либо вторичные) обмотки трансформатора одного моста соединены в треугольник и получают питание уже от линейных напряжений сети, сдвинутых относительно фазных напряжений на требуемый угол. Временные диаграммы напряжений и токов схемы показаны на рис. 3.8.3, б и построены при тех же допущениях, что и у базовых ячеек выпрямления, рассмотренных в (Xd =, Xa = 0).

На первой диаграмме приведены трехфазная система вторичных напряжений трансформатора левого моста, кривая выпрямленного напряжения этого моста u d и кривая тока i 2a во вторичной обмотке трансформатора фазы а. На второй диаграмме те же построения сделаны для правого моста. На третьей диаграмме построена кривая результирующего выпрямленного напряжения как сумма выпрямленных напряжений u d и u d отдельных мостов. Видно, что период пульсаций выпрямленного напряжения u d равен 30°, т. е. пульсации стали двенадцатикратными по отношению к частоте сетевого напряжения. На четвертой диаграмме построена кривая результирующего тока питающей сети как алгебраическая сумма первичных токов i1A, i1C, образующих линейный ток левого трансформатора, и тока i1A правого трансформатора. При этом учтено, что коэффициент трансформации левого трансформатора K т больше коэффициента трансформации правого трансформатора K т в 3 раз, так как Результирующая кривая тока на входе эквивалентного двенадцатифазного преобразователя содержит двенадцать ступеней за период, что в соответствии с законом Чернышева (3.5.3) подтверждает двенадцатифазность выпрямления.

i'1A i 1A U'd Таким образом, объединяя несколько схем выпрямления трехфазного тока с оптимальной длительностью токов во вторичных обмотках трансформаторов =2/3 и комбинируя схемы включения первичных и вторичных обмоток трансформаторов для получения эквивалентной многофазной системы выпрямляемых напряжений, можно получить эквивалентные 24-, 48- и даже 96-фазные (такая схема имеется на 140 кА для электролиза) выпрямители.

3.9*. ВЛИЯНИЕ КОММУТАЦИИ НА ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ

ТОКОВ ТРАНСФОРМАТОРА И ЕГО ТИПОВУЮ МОЩНОСТЬ

Наличие индуктивности рассеивания обмоток трансформатора приводит, как было показано в разделе 3.1, к устранению скачков тока в обмотках трансформатора и появлению коммутационных участков с плавным изменением тока на них. Кривая тока как бы фильтруется по высшим гармоникам, что приводит к улучшению ее гармонического состава (см. раздел 3.6). Это вызовет и изменение действующих значений токов в обмотках, а значит, и полных мощностей обмоток, определение которых и является целью данного раздела.

Для получения в простой форме корректирующих поправок от коммутации в формулах для расчета действующих значений токов трансформатора заменим нелинейный характер изменения тока на интервале коммутации по (3.1.4) на линейную зависимость. Кривые первичных (и вторичных при Кт = 1) токов рассмотренных базовых схем двухполупериодного выпрямления однофазного тока и трехфазного тока показаны на рис. 3.9.1, а, б соответственно.

Для этих форм тока нетрудно показать, что их действующие значения с учетом коммутации I1 будут для двухпульсных схем и для шестипульсных схем выпрямления.

Тогда типовая мощность трансформатора с учетом коммутации равна для двухполупериодного выпрямителя однофазного тока и для двухполупериодного выпрямителя трехфазного тока Последнее равенство представляет обобщение для двухполупериодных схем выпрямления, где вид функции (), определяющей значение корректирующего множителя при S1, зависит от числа фаз выпрямителя.

Таким образом, коммутация, улучшая форму токов в обмотках трансформатора, уменьшает типовую мощность трансформатора. Этот вывод справедлив и для однополупериодных схем выпрямления. Очевидно, коммутация изменит и входной коэффициент мощности выпрямителя, что анализируется в следующем разделе.

Линейная аппроксимация входного тока выпрямителя на интервалах коммутации позволяет упростить и вычисление дифференциального коэффициента гармоник этого тока, который, как будет показано в разделе 3.13, определяет степень обратного влияния выпрямителя на искажение напряжения питающей сети. В соответствии с (1.5.25) дифференциальный коэффициент гармоник тока можно вычислить через действующее значение первой производной тока I Значение I легко находится для кривых тока, изображенных на рис. 3.9.1. Так, для тока рис.3. 9.1, б имеем Действующее значение первой гармоники тока, изображенного на рис. 3.9.1, б, точно находим по [42], а приближенно, пренебрегая влиянием Тогда Этот показатель, как будет показано в разделе 3.13, интегрально определяет степень обратного влияния преобразователя на питающую сеть.

3.10. КПД И КОЭФФИЦИЕНТ МОЩНОСТИ

ВЕНТИЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ В РЕЖИМЕ ВЫПРЯМЛЕНИЯ

И ЗАВИСИМОГО ИНВЕРТИРОВАНИЯ

Целью данного раздела является изучение зависимости двух основных энергетических показателей вентильного преобразователя от параметров его схемы и режима.

Коэффициент полезного действия (КПД) определяется отношением активной мощности на выходе преобразователя к активной мощности на входе. Применительно к выпрямительному режиму работы вентильного преобразователя это означает а для режима зависимого инвертора Здесь P – потери активной мощности внутри вентильного преобразователя.

Эти потери складываются из потерь в трансформаторе Pт, потерь в вентилях Pв, потерь в фильтре Pф, потерь в системе управления Pу, т. е.

Потери в трансформаторе состоят из потерь в стали трансформатора и потерь в меди обмоток. Первые можно приравнять потерям в опыте холостого хода Pхх, когда магнитный поток номинальный, а токов в обмотках нет (пренебрегая током намагничивания). Вторые при номинальной нагрузке можно приравнять потерям в опыте короткого замыкания Pкз, когда в обмотках трансформатора протекают номинальные токи, а магнитного потока практически нет при малых значениях напряжения короткого замыкания трансформатора, прикладываемого в этом опыте к первичным обмоткам трансформатора. Тогда Потери активной мощности в вентилях складывают из потерь при протекании прямого анодного тока через открытый вентиль Pпр, потерь от протекания обратного тока через закрытый вентиль Pоб, потерь на переключение, связанных с конечными временами включения и выключения вентиля, Pпер.

Для упрощения расчета Pпр нелинейная вольт-амперная характеристика вентиля в прямом направлении аппроксимируется кусочнолинейными зависимостями, как показано на рис. 1.1.3. Это приводит к схеме замещения вентиля в прямом направлении, состоящей из источника постоянного напряжения U0 (напряжение отсечки) и активного динамического сопротивления Rдин.. Тогда активная мощность, выделяемая в такой цепи, будет Потери активной мощности при действии на вентиле обратного напряжения Pоб, как правило, пренебрежимо малы в силу малости обратного тока вентиля.

Потери активной мощности при переключении вентиля также относительно невелики по сравнению с Pпр при частотах переключения (частоте питающего напряжения), не превышающей 400 Гц. При работе же вентилей на высоких частотах эти потери становятся заметными или даже определяющими в общих потерях. В этих случаях расчет потерь на переключение существенно определяется формами токов и напряжений вентиля и в последующих главах, посвященных работе преобразовательных устройств при высоких частотах коммутации, эти особенности расчета будут отмечаться.

Активная мощность в звене постоянного тока Pd в общем случае при конечном значении сглаживающего реактора Xd равна сумме активных мощностей от взаимодействия одноименных гармоник напряжения и тока, т. е.

При идеально сглаженном токе (Xd = ) получаем Знание Pd и P позволяет рассчитывать КПД преобразователя в зависимости от изменения нагрузки или при регулировании Ud.

Коэффициент мощности в цепи переменного тока вентильного преобразователя (на входе выпрямителя и на выходе инвертора) определяется отношением активной мощности к полной. Для выпрямителя это дает где I – есть отношение действующего значения первой гармоники тока первичной обмотки трансформатора к действующему значению первичного тока, называемое коэффициентом искажения тока.

Сдвиг первой гармоники первичного тока относительно кривой первичного напряжения, имеющего синусоидальную форму, обусловлен в вентильном преобразователе двумя причинами. Во-первых, наличием угла коммутации, во-вторых, наличием угла регулирования, что позволяет записать приближенно Коэффициент 1/2 берется при, близких к 90°, а коэффициент 2/3 – при, близких к малым углам. При линейной аппроксимации коммутационного участка тока (см. предыдущий раздел) всегда надо брать коэффициент 0,5.

Для режима зависимого инвертора аналогично (3.10.10) получаем Итак, в соответствии с (3.10.9) коэффициент мощности можно интерпретировать как степень полезного использования пропускной способности электротехнического оборудования, которое выбрано на полную мощность, а через него будет пропущена для преобразования в другие виды энергии активная мощность P1 = S1. Кроме того, коэффициент мощности определяет степень негативного обратного влияния вентильного преобразователя на сеть переменного тока, как это показано в разделе 3.13.

Особенно показательным становится выражение для коэффициента мощности вентильного преобразователя при допущении Xa = 0, Xd =, когда =0, 1(1) =. Тогда (3.10.9) преобразуется с учетом (2.9.3) к следующему виду:

Эта важнейшая энергетическая характеристика преобразователя показывает, какой ценой на входе дается регулирование напряжения на выходе.

Таким образом, коэффициент мощности вентильного преобразователя линейно зависит от степени регулирования напряжения в звене постоянного тока. Это «ахиллесова пята» всех (рассмотренных) вентильных преобразователей на вентилях с неполным управлением (тиристорах). Наличие большой доли вентильной нагрузки в электрической сети обостряет для энергетиков проблему поддержания коэффициента мощности в сети на нормативном или оптимальном уровне, обычно порядка 0,9. Это делает актуальным задачу построения вентильных преобразователей с улучшенными энергетическими показателями (коэффициентом мощности и КПД), пути решения которой рассмотрены в следующем разделе.

3.11. ВЫПРЯМИТЕЛИ НА ПОЛНОСТЬЮ УПРАВЛЯЕМЫХ ВЕНТИЛЯХ

Целью данного раздела является изучение выпрямителей, выполненных на полностью управляемых вентилях (запираемых тиристорах, транзисторах).

Рассмотренные управляемые выпрямители на вентилях с неполным управлением характеризовались тем, что при включении очередного вентиля к проводящему ток нагрузки вентилю прикладывается обратное напряжение и он выключается (запирается) естественным образом. Поэтому такая коммутация тока с вентиля на вентиль получила название естественной коммутации. Но задержка включения вентилей относительно точек естественного зажигания на угол приводит к потреблению выпрямителем из питающей сети реактивной мощности и снижению его входного коэффициента мощности с ростом угла.

Коммутация токов в вентилях в схемах выпрямления на вентилях с полным управлением, способных включаться и выключаться воздействием по цепи управления при наличии на вентиле прямого напряжения, называется принудительной коммутацией. (Раньше вентилям с неполным управлением искусственно придавались свойства вентилей с полным управлением за счет специального схемотехнического решения –узла искусственной коммутации. Такая коммутация называется искусственной коммутацией [12, 17, 19].) Принудительная коммутация придает возможность регулировать выпрямленное напряжение дру-гими способами, которым не присуща указанная особенность отстающего фазового регулирования. Здесь будут рассмотрены три таких способа:

• опережающее фазовое регулирование;

• широтно-импульсное регулирование выпрямленного напряжения;

• принудительное формирование кривой первичного тока выпрямителя.

3.11.1. ВЫПРЯМИТЕЛЬ С ОПЕРЕЖАЮЩИМ ФАЗОВЫМ РЕГУЛИРОВАНИЕМ

Схема трехфазного мостового выпрямителя на запираемых тиристорах показана на рис. 3.11.1, временные диаграммы – на рис. 3.11.2.

Базовая схема трехфазного мостового выпрямителя на тиристорах здесь дополнена устройством для сброса накопленной энергии из индуктивностей рассеивания реального трансформатора. Это устройство УСЭ состоит из трехфазного блока конденсаторов Сф, соединенных в звезду или треугольник и включенных на входе вентильного блока.

Очередной вентиль отпирается в момент подачи на него импульса управления с опережающим углом регулирования оп относительно соответствующей точки естественного зажигания, с одновременной подачей импульса управления на запирание проводящего вентиля. В результате ток в выключаемом вентиле скачком упадет до нуля (пренебрегая процессами рассасывания накопленных носителей в вентиле), а ток во включаемом вентиле скачком нарастает до тока нагрузки.

Коммутация же токов в обмотках трансформатора, связанных с этими вентилями, из-за наличия индуктивностей рассеивания обмоток, будет длиться в течение конечного времени коммутации.

Нетрудно убедиться, что внешняя, регулировочная и энергетические характеристики выпрямителя с опережающим фазовым регулированием при допущении Xd = получаются из соответствующих характеристик выпрямителя с отстающим фазовым регулированием при замене в них угла на угол (–оп) и будут иметь аналогичный вид за исключением характеристик, для которых важен знак реактивной мощности на входе выпрямителя. Теперь входной ток выпрямителя опережает напряжение питающей сети на угол оп (пренебрегая ), т. е.

выпрямитель превратился из потребителя реактивной мощности в генератор реактивной мощности. Это позволяет построить составной выпрямитель из двух однотипных выпрямительных ячеек, включенных параллельно по входам и последовательно (или параллельно) по выходу. Если управлять одной ячейкой с углами, а другой – с углами |оп| =, то, очевидно, такой составной выпрямитель не будет потреблять по входу реактивной мощности сдвига, так как результирующий входной ток будет в фазе с напряжением питающей сети [17].

При этом форма выпрямленного напряжения будет такой же, как и при однократном широтно-импульсном регулировании выпрямленного напряжения, которое рассматривается в следующем разделе.

3.11.2. ВЫПРЯМИТЕЛЬ С ШИРОТНО-ИМПУЛЬСНЫМ РЕГУЛИРОВАНИЕМ

ВЫПРЯМЛЕННОГО НАПРЯЖЕНИЯ

Рассматриваемый выпрямитель состоит из базовой ячейки выпрямления трехфазного напряжения по мостовой схеме и устройства сброса накопленной энергии УСЭ, как и предыдущая схема. Внешне эти два типа выпрямителя не различимы. Различие электромагнитных процессов в них обусловлено только различием алгоритмов управления вентилями.

Временные диаграммы напряжений и токов выпрямителя с широтно-импульсным регулированием (ШИР) выпрямленного напряжения показаны на рис. 3.11.3.

Формирование импульса напряжения на выходе выпрямителя обеспечивается включением одного вентиля в катодной группе и одного – в анодной, как и в обычном выпрямителе на вентилях с неполным управлением и фазовым регулированием выпрямленного напряжения.

Например, вентилей 1 и 6 на интервале t2t3. Формирование нулевой паузы напряжения на выходе выпрямителя на интервале t3t5 обеспечивается закрыванием по цепи управления запираемого тиристора Т (или Т1) с одновременным отпиранием другого тиристора работающего плеча схемы, т. е. Т4 (или Т2). При этом ток нагрузки, поддерживаемый накопленной энергией в сглаживающем реакторе с индуктивностью Ld, будет протекать через два проводящих вентиля одного плеча схемы, в рассматриваемый отрезок времени это будут вентили 1 и (или 2 и 6).

Энергия, накопленная в индуктивностях рассеивания обмоток трансформатора, участвующих в коммутации (здесь фазы а и в), сбрасывается сначала в конденсаторы Сф, подзаряжая их, а из них отбирается частично обратно в сеть и частично в нагрузку выпрямителя.

Очевидно, что на интервалах замыкания тока нагрузки через вентили одного плеча моста выпрямитель оказывается отключенным от трансформатора и в его обмотках тока не будет, если пренебрегать токами намагничивания трансформатора и токами конденсаторов фильтра Сф.

Таким образом, токи трансформатора подвергаются также широтноимпульсному регулированию (ШИР), как и выпрямленное напряжение.

Рассмотренные временные диаграммы токов и напряжений выпрямителя относятся к случаю, когда частота импульсов выходного напряжения выпрямителя в шесть раз выше частоты питающего напряжения. Для повышения быстродействия регулирования выпрямленного напряжения и тока эта частота может быть увеличена в 2, 3, 4...

раза, тогда на интервале t1t4 в кривой первичного тока будет соответственно 2, 3, 4... импульса (т. е. вместо шестикратного ШИР будут двенадцати-, восемнадцати-,... n-кратные ШИР).

Входной коэффициент мощности выпрямителя с ШИР будет с учетом коэффициента преобразования по напряжению Кп.н, и уравнения регулировочной характеристики при ШИР (пренебрегая пульсацией амплитуды импульсов) Итак, из сравнения (3.11.1) с (3.10.12) видно улучшение входного коэффициента мощности при ШИР. Помимо количественного различия входного коэффициента мощности при фазовом регулировании (ФР) и ШИР имеется и качественное различие. При отстающем ФР ухудшение коэффициента мощности при регулировании обусловливается ростом отставания первичного тока относительно напряжения сети, т. е. ростом потребления реактивной мощности сдвига из сети.

При ШИР первичный ток всегда находится в фазе с напряжением, а ухудшается его гармонический состав при уменьшении длительности импульсов тока, т. е. нарастает потребление из сети мощности искажения.

3.11.3. ВЫПРЯМИТЕЛЬ С ПРИНУДИТЕЛЬНЫМ ФОРМИРОВАНИЕМ КРИВОЙ ТОКА,

ПОТРЕБЛЯЕМОГО ИЗ ПИТАЮЩЕЙ СЕТИ

Во всех ранее рассмотренных схемах выпрямления коммутация тока в вентилях сопровождалась коммутацией токов в фазах питающей сети. В выпрямителях на вентилях с неполным управлением обе коммутации осуществлялись параллельно, в выпрямителях на вентилях с полным управлением, рассматриваемых в этом разделе, сначала осуществлялась коммутация тока в вентилях, а затем – токов в фазах.

В обоих случаях это приводило к импульсному характеру токов в фазах входного трансформатора и в сети, т. е. к сниженному качеству тока по сравнению с токами линейных потребителей электрической энергии.

Можно существенно «выправить» нелинейность вентильного преобразователя по входу, если дать вентильному преобразователю возможность формировать кривую его входного тока. Для этого, очевидно, во-первых, необходимо, чтобы преобразователь был выполнен на полностью управляемых вентилях и, во-вторых, после выключения вентилей оставался путь для продолжения протекания тока фазы через другой, дополнительный вентиль. Однофазная полумостовая схема такого преобразователя на запираемых тиристорах показана на рис. 3.11.4.

Здесь дополнительными вентилями являются диоды Д1, Д2. Второе плечо моста образовано конденсаторами С1, С2, с которых одновременно как с выходного емкостного фильтра выпрямителя снимается постоянное напряжение Ud. Входной реактор с индуктивностью Lф, роль которой может выполнить и индуктивность рассеивания входного трансформатора при его наличии, предназначен для сглаживания пульсаций, обусловленных коммутациями вентилей, в незт 2 C прерывной (без токовых пауз) кривой входного тока.

Можно промодулировать методом широтно-импульсной модуляции (ШИМ) длительность проводящего состояния запираемых тиристоров, коммутируемых с повышенной частотой, по синусоидальному закону с частотой, равной частоте напряжения питающей сети. Тогда, при условии постоянства напряжения Ud на выходе моста, на входе моста образуется широтно-модулированная последовательность двухполярных импульсов u.

Положительный импульс напряжения u создается при включенном состоянии запираемого тиристора ЗТ2 или диода Д2 (в зависимости от ветствующим управлением напряжения u будет протекать непрерывно ток i1 с пульсациями, ограничиваемый величиной индуктивности Lф. При определенных соотношениях между этими напряжениями фаза первой гармоники этого тока, как видно из векторной диаграммы на рис. 3.11.5, может равняться нулю.

При достаточном превышении (в десять раз и более) частоты коммуРис. 3.11. тации тиристоров над частотой напряжения сети пульсации тока могут стать малы, т. е. входной ток выпрямителя будет практически синусоидальным.

Схема подобного выпрямителя с питанием от трехфазной сети образуется из трех аналогичных вентильных плеч, как показано на рис. 3.11.6. При этом потребность в емкостном делителе напряжения, имеющемся в однофазной схеме, здесь уже отпадает.

Как видно из векторной диаграммы рис. 3.11.5, при отрицательном знаке угла и той же величине напряжения на входе вентильного комплекта u, ток в цепи переменного тока преобразователя будет в противофазе с напряжением. Это будет означать переход вентильного преобразователя с ШИМ в инверторный режим, так как активная мощность в цепи переменного тока теперь отдается в сеть переменного напряжения. Уменьшением угла управления до нуля можно свести до нуля и активную мощность как в выпрямительном, так и в инверторном режимах. При этом напряжение в звене постоянного тока сохраняет знак и меняется в ограниченных пределах, что отличает выпрямительно-инверторные режимы в таком преобразователе с ШИМ от выпрямительно-инверторных режимов в преобразователе на вентилях с неполным управлением и фазовым способом регулирования (см.

раздел 3.4).

Основные характеристики такого выпрямителя будут получены в разделе пособия (часть 2), посвященном автономным инверторам, где этот выпрямитель рассматривается как обращенный инвертор напряжения.

Если нет требования к необходимости рекуперации энергии из цепи постоянного тока выпрямителя, т. е. к необходимости обеспечения возможности инверторного режима, то схема выпрямителя с принудительным формированием входного тока упрощается и для однофазной сети приобретает вид, показанный на рис. 3.11.7, а, а ее временные диаграммы представлены на рис. 3.11.7, б.

Схема содержит однофазную мостовую схему неуправляемого выпрямителя, накопительный реактор Ld, транзистор (вентиль с полным управлением), накопительный конденсатор С с разделительным диодом D. Эта часть схемы после диодного выпрямителя являет, как будет показано во второй части пособия, разновидность повышающего преобразователя постоянного напряжения в постоянное. На качественном уровне его режим работы такой. При проводящем состоянии транзистора все выпрямленное напряжение диодного моста прикладывается к накопительному дросселю, при этом ток в нем нарастает (интервал импульса управления Uупр на рис. 3.11.7, б). При выключении транзистора ток накопительного дросселя через разделительный диод D заряжает накопительный конденсатор С и питает цепь нагрузки. Модулируя соответствующим образом длительность проводящего состояния транзистора с частотой, во много раз превышающей частоту питающего напряжения, можно сформировать практически синусоидальные полуволны тока в накопительном дросселе Ld, синфазные с выпрямленным напряжением. Выпрямленный ток в такой однофазной схеме (при проводимости диодов выпрямителя по полпериода сети коммутационная функция моста п – прямоугольное колебание) есть модуль входного тока по (1.4.2). Тогда получается практически синусоидальный ток на входе выпрямителя, находящийся в фазе с напряжением сети. При этом выходное напряжение преобразователя Ud должно быть больше амплитуды выпрямленного напряжения на выходе диодного моста. Это необходимо для обеспечения управления спадом тока накопительного реактора Ld на интервале выключения транзистора, когда к реактору прикладывается разность указанных напряжений в направлении, обратном, чем на интервале нарастания тока.

Формально данный составной преобразователь образован каскадным включением двух простых указанных вентильных преобразователей и должен бы быть рассмотрен по нашей методике в третьей части пособия, посвященной составным преобразователям. Но широкое распространение этой схемы выпрямления, прежде всего для целей питания стабилизированным напряжением маломощных нагрузок (устройства управления, теле-, радио- и бытовая аппаратура), оправдывает ее качественное рассмотрение здесь и сейчас. На Западе эта схема получила название корректора коэффициента мощности за свое свойство обеспечивать входной коэффициент мощности практически равным единице. Да и родилась она в результате упрощения рассмотренных выше схем однокаскадных выпрямителей с принудительным формированием входного тока, обладающих способностью к рекуперации энергии из нагрузки [20]. Снятие этого требования позволило перенести функцию принудительного формирования кривой тока из цепи переменного тока, как в схемах рис. 3.11.4 и 3.11.6, в цепь постоянного тока, как в схеме рис. 3.11.7. Схема с двухкаскадным преобразованием и всего одним управляемым вентилем оказалась дешевле схемы с однокаскадным преобразованием, но с двумя управляемыми вентилями.

Таким образом, выпрямители на вентилях с полным управлением (запираемых тиристорах, силовых транзисторах) позволяют улучшить входные энергетические характеристики такого выпрямителя по сравнению со случаем выполнения его на не полностью управляемых вентилях (тиристорах). Новые схемные решения делают значительный шаг на пути к построению выпрямителя – идеала с полной электромагнитной совместимостью с питающей сетью, т. е. с регулируемым в полном диапазоне постоянным напряжением на выходе и синусоидальным током на входе, синфазным с напряжением сети.

3.12. РЕВЕРСИВНЫЙ ВЕНТИЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ

(РЕВЕРСИВНЫЙ ВЫПРЯМИТЕЛЬ)

Целью этого раздела является рассмотрение вентильных преобразователей, которые имеют возможность задавать на выходе любые сочетания полярностей постоянного напряжения и тока.

Одиночный вентильный преобразователь обеспечивает возможность реверса полярности напряжения на нагрузке при сохранении в ней направления тока (см. рис. 3.4.4). В то же время многие области техники и в первую очередь электропривод требуют источников, которые могли бы реверсировать не только напряжение, но и ток в нагрузке, что требует уже четырехквадрантных внешних характеристик.

Для этого вентильный преобразователь, несмотря на свою «вентильность», должен быть способен пропускать через себя постоянный ток любого направления, аналогично традиционным для энергетики другим источникам постоянного напряжения типа электромашинного генератора постоянного тока или аккумулятора. Подобный регулируемый реверсивный источник может быть получен на базе двух базовых вентильных преобразователей, включенных таким образом, чтобы обеспечить протекание тока нагрузки в обоих направлениях. Эта система получила название реверсивного вентильного преобразователя (РВП). Если каждый нереверсивный ВП, входящий в состав реверсивного, питается от отдельной системы вторичных обмоток силового трансформатора, то такая схема называется перекрестной, а при питании обоих вентильных комплектов от одной системы вторичных обмоток трансформаторов схема называется встречно-параллельной.

Первые схемы допускают использование однотипных интегральных модулей силовых вентилей, т. е. групп вентилей, соединенных катодами (анодами) и собранных в одном корпусе.. При выполнении вентильных преобразователей на тиристорах чаще всего используют встречно-параллельную схему. Схема реверсивного вентильного преобразователя при трехфазном однополупериодном выпрямлении и встречно-параллельном включении вентильных комплектов показана на рис. 3.12.1.

Построение РВП путем встречно-параллельного соединения двух вентильных комплектов ВК1 и ВК2 (см. рис. 3.12.1) приводит к созданию дополнительного контура для тока, не включающего контур нагрузки. Этот контур образуется обмотками трансформатора и вентилями вентильных комплектов ВК1 и ВК2 и называется уравнительным, а ток, протекающий в нем, – уравнительным током. Величина уравнительного тока определяется разностью мгновенных значений напряжений, даваемых вентильными комплектами ВК1 и ВК2 и величиной сопротивления в уравнительном контуре.

Практическое отсутствие активного сопротивления в уравнительном контуре требует согласования средних значений напряжений вентильных комплектов с целью исключения возможности возникновения непрерывного уравнительного тока. Для этого средние значения напряжений вентильных комплектов ВК1 и ВК2 должны удовлетворять уравнению (пренебрегая вначале U и током нагрузки):

Иначе говоря, с учетом того, что вентильные комплекты включены параллельно, требуется равенство средних значений их напряжений, а с учетом того, что они включены еще и встречно, необходима противоположность знаков собственных напряжений, а для этого нужно, чтобы 1(2) < 900, 2(1) > 900. Тогда с учетом уравнения регулировочной характеристики (2.9.2) или где 1 и 2 – углы регулирования ВК1 и ВК2 соответственно. Равенство может быть выполнено при двух условиях Уравнение (3.12.2) и есть условие согласования управления двумя вентильными комплектами РВП. При его выполнении уравнительный ток будет предельно непрерывным, так как разница мгновенных значений напряжений вентильных комплектов ВК1 и ВК2 в этом случае – чисто переменная функция.

Выражение (3.12.3) в случае выполнения РВП на не полностью управляемых вентилях физически нереализуемо, ибо требует или 1 > 1800, или 2 < 0, чего не может быть в силу особенностей естественной коммутации. Только использование вентилей с полным управлением позволяет согласовать управление двумя комплектами и в соответствии с условием (3.12.3). При этом в случае четного p нулю равна и разница мгновенных значений напряжений вентильных комплектов, что вообще устраняет причину возникновения уравнительного тока в РВП, как показано в [16].

Уравнение (3.12.2) является условием точного равенства средних значений напряжений вентильных комплектов на холостом ходу (без нагрузки). Поэтому оно может быть названо условием согласования при совместном (одновременном) управлении вентильными комплектами.

Условие согласования (3.2.12) углов управления 1 и 2 вентильными комплектами означает, что при 1 < 90°, 2 > 90° и наоборот, т. е. когда один вентильный комплект работает в выпрямительном режиме, то второй – в режиме зависимого инвертора. Его угол управления в инверторном режиме равен с учетом (3.4.1) т. е. действительно, когда один вентильный комплект управляется в выпрямительном режиме с углом 1(2), то второй вентильный комплект управляется с равным ему углом 1(2) в инверторном режиме.

Средние значения напряжений вентильных комплектов Ud1 и Ud одинаковы, а мгновенные различаются, поэтому между комплектами включен уравнительный реактор УР, воспринимающий эту разницу напряжений uур. Уравнительный ток является паразитным, так как дополнительно загружает вентили и трансформатор.

Результирующие внешние характеристики реверсивного выпрямителя показаны на рис. 3.12.2. Они образованы из двух семейств внешних характеристик типа рис. 3.4.4 с учетом того, что второй вентильный комплект включен встречно-параллельно первому и обеспечивает Таким образом, реверсивный вентильный преобразователь является универсальным источником постоянного напряжения и постоянного тока, обеспечивая любое сочетание их полярностей в соответствии с четырьмя квадрантами внешних характеристик.

3.13. ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ ВЕНТИЛЬНОГО

ПРЕОБРАЗОВАТЕЛЯ С ПИТАЮЩЕЙ СЕТЬЮ

Целью данного раздела является изучение обратного влияния вентильного преобразователя на питающую сеть.

Специфика преобразовательных устройств силовой электроники, выполняемых на полупроводниковых управляемых вентилях, связана с ключевым (дискретным) характером работы вентилей, что предопределяет дискретизацию как процесса потребления энергии преобразователем от ее первичного источника, так и процесса передачи ее потребителю (нагрузке). Дискретное потребление энергии преобразователем от источника электроэнергии приводит к заметному обратному влиянию вентильного преобразователя на качество генерируемой электроэнергии, последствия чего ощущают и сам преобразователь, и другие потребители, получающие питание от того же источника. С другой стороны, дискретная передача энергии с выхода преобразователя в нагрузку, как правило, снижает эффективность ее использования в нагрузке, где осуществляется уже преобразование электрической энергии в другой вид энергии (механическую – в электрических двигателях, тепловую – в нагревателях, химическую – в аккумуляторах и электролизных ваннах, электромагнитную – в излучателях и т.д.). Кроме того, большие скорости изменения напряжений и токов вентилей в процессе коммутации приводят к заметному электромагнитному излучению в окружающую среду, создавая наведенные помехи в цепях устройств слаботочной электроники, в том числе в устройствах управления этими вентильными преобразователями, порождающими указанные помехи.

Таким образом, обозначилась научно-техническая проблема, называемая проблемой электромагнитной совместимости устройств силовой электроники с источниками питания, нагрузкой и окружающей средой. Первоначально проблема электромагнитной совместимости возникла в радиотехнике как проблема «засорения» эфира [20]. Там электромагнитная совместимость радиоэлектронных средств определяется способностью этих средств одновременно функционировать в реальных условиях эксплуатации при воздействии непреднамеренных радиопомех и не создавать недопустимых радиопомех другим средствам. Таким образом, здесь на первом месте находится информационный аспект электромагнитной совместимости полезного сигнала и радиопомехи (шума) в части их сосуществования без потери или искажения информации, содержащейся в радиосигнале, и связана в основном с проблемой индуцированных (наведенных) помех от электромагнитного поля.

Для электротехнических устройств на первом месте стоит энергетический аспект электромагнитной совместимости. Сегодня электромагнитная совместимость в электротехнике определяется как способность различных электротехнических устройств, связанных сетями электроснабжения, одновременно функционировать в реальных условиях эксплуатации при наличии непреднамеренных помех в питающей сети и не создавать недопустимых электромагнитных помех в сети другим устройствам, подсоединенным к этой сети. Очевидны два пути распространения электромагнитных помех: индуктивный (через излучение электромагнитного поля) и кондуктивный (по проводам), хотя эти два явления взаимосвязаны и можно говорить только о доминировании влияния того или иного явления на работу конкретных энергетических или информационных устройств Позднее эта проблема стала актуальной и для электроэнергетики в виде проблемы «засорения» электрических сетей при кондуктивном сопряжении с ними (по проводам) получивших широкое распространение вентильных преобразователей и других нелинейных нагрузок, являющихся источником высших гармоник и субгармоник тока, т.е.

гармоник с частотой ниже частоты напряжения питающей сети.

Для количественной характеристики степени электромагнитной совместимости питающей сети и нагрузки имеется система показателей качества электрической энергии, закрепленная стандартом [43]. В рамках этого раздела мы ограничимся рассмотрением одного вопроса обратного негативного влияния вентильного преобразователя на питающую сеть – вопроса искажения формы напряжения сети от несинусоидального характера входного тока вентильного преобразователя.

Знание формы и спектрального состава входных токов типовых вентильных преобразователей позволяет рассчитывать и этим прогнозировать степень обратного влияния вентильного преобразователя на питающую сеть автономной системы. Для такого расчета необходимо иметь математические модели питающей сети и вентильного преобразователя по входу. Математическая модель питающей сети может быть получена по заданной топологии сети и известным параметрам ее элементов. В случае сложных структур сети математической моделью сети служит частотная характеристика сети в узле присоединения. В первом приближении сеть эквивалентируется источником ЭДС с индуктивным реактансом сети Хс, активные сопротивления сети обычно не учитываются На рис. 3.13.1, а приведена схема с потребителем в виде трехфазной мостовой схемы выпрямления, а на рис. 3.13.1, б – временные диаграммы входного тока i выпрямителя (при X d = ), ЭДС сети e и напряжения на доступных для потребителей зажимах сети u.

Наличие трансформатора на входе выпрямителя смоделировано включением приведенной индуктивности рассеивания трансформатора Lк. Напряжение в сети в этом случае искажается на интервалах коммутации в выпрямителе.

Питающая сеть представлена в виде источника синусоидальной ЭДС e и последовательной индуктивности Lc, объединяющей все последовательные индуктивности цепи от точки выработки электроэнергии до точки ее потребления.

Провалы в кривой напряжения сети u обусловлены тем, что теперь все коммутационное падение напряжения ux (см. раздел 3.1) делится между индуктивностями Lc и Lk и напряжение на входе преобразователя будет На этом уровне приближения вентильный преобразователь по входу замещается источником тока известной формы. Расчетная схема системы источник – преобразователь будет иметь вид, показанный на рис. 3.13.2.

Исходя из дифференциального уравнения для напряжения сети u получаем действующее значение напряжения высших гармоник сети методом АДУ2 [21] и действующее значение напряжения первой гармоники сети методом АДУ В итоге коэффициент гармоник напряжения сети, который не должен превосходить значения Kг.ст, задаваемого ГОСТ 13109а именно 0,08, будет Используя определение коэффициента кратности тока короткого замыкания сети номинальному току преобразователя Ккз, равного к тому же отношению полной мощности короткого замыкания сети к номинальной полной мощности на входе преобразователя запишем выражение (3.13.4) в виде Предельно простое выражение для КГ получается при пренебрежении разницей между U1 и Е1 в определении КГ по (3.12.4), т.е.

Из (3.13.7) находится предельная мощность вентильного преобразователя, подключаемого к сети с известной мощностью короткого замыкания При прочих равных условиях эта мощность преобразователя обратно пропорциональна дифференциальному коэффициенту гармоник его входного тока. Это позволяет для каждого типа преобразователя просто определить его предельную мощность при питании от сети с заданной мощностью короткого замыкания.

В отличие от рассмотренного случая с единственным нелинейным потребителем в сети переменного тока в электрических сетях общего пользования присутствует множество нелинейных потребителей, результирующее обратное действие на сеть которых может как суммироваться, так и ослабляться. Расчет обратного влияния для этого случая дан в [20]. В Европейских нормативах на качество электрической энергии обычно указывают (из опыта) предельную мощность подключаемого вентильного преобразователя (р = 6, 12) в долях мощности короткого замыкания сети.

Таким образом, вентильный преобразователь, вопреки житейскому правилу «не кусать руку, которая тебя кормит», потребляя из сети активную мощность, «изливает» в нее мощность по высшим гармоникам, которая портит форму напряжения в сети и тем самым осложняет работу других потребителей электроэнергии в сети. Для ограничения этого негативного влияния вентильных преобразователей на питающую сеть применяют следующие меры, кроме ограничения соотношения мощностей преобразователя и питающей сети:

1) увеличение числа эквивалентных фаз преобразователя (см. разделы 3.6 и 3.8);

2) применение схем преобразователей с улучшенной формой входного тока (см. раздел 3.11.3);

3) фильтрацию входных токов преобразователя, как правило, с помощью параллельного подключения к сети последовательных LCфильтров, настроенных на доминирующие гармоники входного тока (5, 7, 11, 13) [20];

4) использование схем активной фильтрации входного тока, компенсирующих отклонения входного тока преобразователя от синусоидальной формы [20] (см. часть 2 курса).

ВОПРОСЫ К ГЛАВЕ

1. Какова схема замещения реального трансформатора в составе математической модели выпрямителя?

2. Дайте определение угла коммутации выпрямителя.

3. Что определяет внешняя характеристика управляемого выпрямителя?

4. Почему внешние характеристики управляемого выпрямителя с идеальным фильтром параллельны при различных значениях ?

5. Напишите обобщенное уравнение внешней характеристики выпрямителя.

6. Дайте определение режима прерывистого тока выпрямителя.

7. Как сказывается режим прерывистого выпрямленного тока на внешние и регулировочные характеристики выпрямителя?

8. К какому эквивалентному режиму можно свести режим работы выпрямителя на нагрузку с емкостным фильтром?

9. Какой преобразователь называется зависимым инвертором?

10. Как перевести в режим зависимого инвертора выпрямитель, нагруженный на противоЭДС?

11. Перечислите основные характеристики зависимого инвертора.

12. Почему невозможна работа зависимого инвертора с углом =0?

13*. По каким причинам возможен переход зависимого инвертора в режим «опрокидывания»?

14*. Что устанавливает в выпрямителе закон Чернышева?

15. Какие номера гармоник имеются в первичных токах выпрямителей?

16. Какие номера гармоник имеются в выпрямленном напряжении выпрямителя?

17. При каком числе вторичных фаз трансформатора выпрямителя трансформатор используется оптимально?

18*. Как сказывается угол коммутации на использовании трансформатора выпрямителя?

19. Дайте определение КПД выпрямителя и зависимого инвертора.

20. Дайте определение коэффициента мощности выпрямителя и зависимого инвертора.

21*. Почему требуются вентили с полным управлением при регулировании выпрямленного напряжения углом опережения оп?

22*. В чем отличие входного тока выпрямителя с широтноимпульсным регулированием от входного тока выпрямителя с фазовым регулированием (отстающим или опережающим)?

23. Чему равен входной коэффициент мощности выпрямителя с принудительным формированием кривой первичного тока?

24. В чем проявляется обратное влияние вентильного преобразователя на питающую сеть?

25. От каких параметров входного тока выпрямителя зависит степень его обратного влияния на питающую сеть?

26*. От каких параметров нескольких потребителей зависит их парциальное обратное влияние на питающую сеть?

27. Каковы пути улучшения электромагнитной совместимости вентильных преобразователей с питающей сетью?

УПРАЖНЕНИЯ К ГЛАВЕ

1.* Выведите соотношение между напряжением короткого замыкания трансформатора и его индуктивностью рассеивания (анодной индуктивностью La), пренебрегая активными сопротивлениями обмоток.

2. Однофазный мостовой выпрямитель с Id = 10 А питается от трансформатора с U1 = 220 В, Кт = 2, La = 0,01 Гн. Найти среднее значение напряжения на нагрузке (Xd = ).

3.* Из какого условия можно получить зависимость среднего значения выпрямленного тока в предельно-непрерывном режиме от угла регулирования ?

4.* Вычислить значение вынужденного угла регулирования В в бестрансформаторной трехпульсной схеме выпрямления при величине противоЭДС 200 В.

5.* Выпрямитель по трехфазной мостовой схеме с трансформатором, имеющим Кт = 2 и La = 0,005 Гн, работает с углом = 800 на противоЭДС. С какого значения выпрямленного тока начнется режим зависимого инвертирования?

6. Трехпульсный выпрямитель трехфазного тока со схемой обмоток трансформатора /0 нагружен на противоЭДС. Угол регулирования = 300, Кт = 1, La = 0,01 Гн, U0 = 200 В. Чему будет равно при этом среднее значение выпрямленного тока?

7. Какое минимальное значение угла регулирования min требуется установить в бестрансформаторном однофазном мостовом зависимом инверторе, если время восстановления управляющих свойств тиристоров равно 200 µксек (Xd = )?

8.* Какое максимальное значение инвертируемого тока допустимо в трехфазном мостовом зависимом инверторе при = 300, La = = 0,005 Гн, Кт = 2 при тиристорах с нулевым временем восстановления управляемости?

9.* Рассчитайте коэффициент гармоник сетевого тока эквивалентного двенадцатифазного выпрямителя на базе двух трехфазных мостов.

10. Рассчитайте входной коэффициент мощности шестипульсного управляемого выпрямителя, работающего с = 600 и имеющего = 200.

11. В шестипульсном выпрямителе были определены потери активной мощности на холостом ходу Рхх = 200 Вт и при номинальном токе нагрузки: в трансформаторе – 600 Вт, в сглаживающем дросселе фильтра – 200 Вт, в вентилях – 400 Вт, причем соотношение составляющих потерь мощности в динамическом сопротивлении вентиля и в источнике, моделирующем напряжение отсечки прямой вольтамперной характеристики вентиля, равно 1:1. Мощность нагрузки кВт. Определить КПД при данной и половинной нагрузке выпрямителя, считая Ud = const.

12. Рассчитать входной коэффициент мощности выпрямителя с принудительным формированием кривой первичного тока, если амплитуда первой гармоники тока, совпадающей по фазе с напряжением, равна 10 А, а амплитуда высокочастотной пульсации этого тока равна 13. Оценить предельную мощность шестипульсного выпрямителя, подключаемого к питающей сети и работающего с углом коммутации = 200, если мощность короткого замыкания узла сети равна кВА.

4. МОДЕЛЬНЫЙ ПРИМЕР ЭЛЕКТРИЧЕСКОГО

ПРОЕКТИРОВАНИЯ ВЫПРЯМИТЕЛЯ

Задание. Необходимо спроектировать выпрямитель для обеспечения пуска двигателя постоянного тока типа П2 с током не более номинального тока якоря и обеспечить длительную работу с номинальным моментом (током) при номинальной скорости вращения с постоянным потоком возбуждения. Параметры двигателя: Рн = 100 кВт, Uян = В, nн = 1000 об/мин. Допустимые пульсации тока якоря не более 7 % Idн. Обмотка возбуждения: UB = 220 В. Требуется определить параметры сетевого трансформатора, параметры вентилей выпрямителей якорной цепи и обмотки возбуждения, параметры сглаживающих дросселей выпрямителей. Ограничивающее требование: входной коэффициент мощности выпрямителя в номинальном режиме должен быть не ниже 0,8. Трехфазная питающая сеть 220/380 В с доступной нейтралью. Мощность короткого замыкания сети в узле присоединения преобразователя Sкз = 5 000 кВАр, т.е. коэффицинт Ккз=50.

Проектирование нового выпрямителя содержит два качественно различных этапа.

1. Этап структурного синтеза, на котором определяется структура (принципиальная схема) выпрямителя.

2. Этап параметрического синтеза, на котором рассчитываются параметры элементов выбранной структуры (принципиальной схемы) выпрямителя.

4.1. ВЫБОР СХЕМЫ ВЫПРЯМИТЕЛЯ (ЭТАП СТРУКТУРНОГО СИНТЕЗА)

Формальных (математических) методов синтеза структур вентильных преобразователей по требованию задания пока в силовой электронике практически нет, хотя исследования в этом направлении проводятся [19,49]. Поэтому процедура синтеза схемы выпрямителя сводится к процедуре ее выбора из множества известных на основании знания их свойств. Таким образом, необходима база данных по схемам выпрямителей. В тех случаях, когда не удается выбрать подходящую схему выпрямителя из числа известных, потребуется или изобретение новой схемы, или корректировка задания на проектирование выпрямителя.

По результатам анализа базовых схем выпрямителей однофазного и трехфазного напряжения составлена сводная таблица 4.1.1 их свойств. Ввиду многомерности вектора свойств каждой схемы, образованного параметрами колонок таблицы, выбор схемы при проектировании нового выпрямителя с требуемыми выходными параметрами потенциально неоднозначен и для молодого специалиста обычно затруднен. Поэтому ниже дан пример алгоритма выбора схемы выпрямителя исходя из трех заданных параметров выхода выпрямителя (Pd0, Ud0, Id) с учетом в векторе свойств схемы только двух компонентов:

использования типовой мощности трансформатора и использования вентилей по обратному напряжению. При этом предполагается, что в распоряжении проектировщика имеются вентили с максимальным значением обратного напряжения до 1000…1500 В, а коэффициент запаса по напряжению вентилей при проектировании равен 1,5…2.

Несмотря на всю условность этого алгоритма выбора схемы, он будет полезен как возможный образец подхода до тех пор, пока у проектировщика не появится собственный опыт.

В соответствии с заданием на проектирование и алгоритмом выбора схемы выпрямителя по рис. 4.1.1 наш выпрямитель должен быть трехфазным (Pd0 = 100 кВт) и двухполупериодным (мостовая схема), так как требуется достаточно высокое выпрямленное напряжение.

В общем случае решение подобных задач принятия решений можно формализовать, создав в виде программы для ЭВМ соответствующую экспертную систему, основанную на базе знаний силовой электроники.

Выпрямитель обмотки возбуждения также трехфазный, но в связи с невысоким значением выпрямленного напряжения может быть выполнен по однополупериодной схеме. Поскольку коэффициенты преобразования по напряжению выбранных схем выпрямителей различаются в два раза и их требуемые выпрямленные напряжения также различаются в два раза, возможен вариант питания обеих схем от одной системы вторичных обмоток трансформатора. А с учетом того, что коэффициент трансформации трансформатора больше единицы, но близок к ней (понижающий трансформатор), возможен вариант питания выпрямителей непосредственно от сети (без трансформатора выпрямителя). Таким образом, для проектировщика здесь имеются три альтернативных решения и по результатам расчета надо выбрать одно, что потребует привлечения еще каких-то дополнительных предпочтений лицом, принимающим решение (ЛПР), если проектировщик и ЛПР являются разными лицами.

треугольник-звезда звезда-зигзаг q=

4.2. РАСЧЕТ ПАРАМЕТРОВ ЭЛЕМЕНТОВ СХЕМЫ

УПРАВЛЯЕМОГО ВЫПРЯМИТЕЛЯ (ЭТАП ПАРАМЕТРИЧЕСКОГО СИНТЕЗА)

Расчет выпрямителя для якорной цепи с учетом реальных параметров элементов схемы на базе результатов главы 3 требует знания параметров элементов. Расчет выпрямителя на идеальных элементах на базе результатов главы 2 не требует параметров реальных элементов.

Поэтому проектировать выпрямитель приходится в два этапа. На первом этапе на основании результатов главы 2 оценивается тип элементов для идеального выпрямителя и для этих элементов по справочникам находятся их реальные параметры. На втором этапе делается корректирующий расчет выпрямителя с учетом реальных параметров элементов на основании результатов главы 3.

4.2.1. ОЦЕНКА ЭЛЕМЕНТОВ ИДЕАЛЬНОГО ВЫПРЯМИТЕЛЯ

Напряжение питающей сети по стандарту [43] на качество электрической энергии может максимально отклоняться от номинала до ± 10 %. Поэтому необходимо обеспечить номинальное выпрямленное напряжение и при минимально возможном напряжении сети, при этом угол регулирования в выпрямителе рационально иметь равным нулю. Тогда по (2.2.8), учитывая, что Uя.н. = Ud0, имеем полагая, что обмотки трансформатора будут соединены по схеме звезда – звезда и коэффициент трансформации входного трансформатора Опираясь на соотношения раздела 2.2.8, находим и все остальные расчетные величины.

Среднее значение выпрямленного тока Среднее значение анодного тока вентиля Действующее значение анодного тока вентиля Выбираем тиристор по среднему значению анодного тока с учетом того, что здесь коэффициент амплитуды Ка = 3. Это тиристор Т9-100, имеющий следующие параметры [25, 27 ]: Rдин = 0,002 Ом, U0 = 1, В. Класс вентиля по напряжению определим после уточнения максимального обратного напряжения на вентиле.

Действующее значение вторичного тока трансформатора Действующее значение первичного тока трансформатора Типовая мощность трансформатора определится с учетом того, что напряжение сети может быть больше номинального По справочнику [25, 27] для трансформатора ближайшей большей мощности типа ТСП-160 имеем следующие параметры:

Если по коэффициенту трансформации Кт готовый промышленный трансформатор не подходит, то потребуется проектирование и изготовление своего трансформатора, который будет иметь примерно те же значения интересующих нас параметров. Поэтому через эти параметры трансформатора определим нужные нам параметры элементов Т-образной схемы замещения трансформатора.

Модуль полного сопротивления короткого замыкания трансформатора Активное сопротивление обмоток трансформатора, приведенное ко вторичной стороне, Реактивное сопротивление рассеивания обмоток трансформатора, приведенное к первичной стороне, Тогда то же сопротивление, приведенное ко вторичным обмоткам трансформатора и называемое уже анодным сопротивлением Ха, будет Осталось оценить параметры реального сглаживающего реактора Ld, расчет которого делается для наихудшего по качеству выпрямленного тока режима с максимально возможным углом регулирования max. Этот угол регулирования появится при работе выпрямителя с максимальным напряжением в сети и будет определяться из регулировочной характеристики выпрямителя Тогда Коэффициент пульсаций выпрямленного тока задан не хуже 0,07, т. е.

где Id(6) – амплитуда первой гармоники пульсаций выпрямленного тока, являющейся в шестипульсном выпрямителе шестой гармоникой по отношению к частоте напряжения питающей сети. Эта гармоника в токе определяется через соответствующую гармонику в выпрямленном напряжении, которая в соответствии с соотношением (3.7.4) при максимальном напряжении сети 242 В будет Ud(6) = 0,18 556 = Отсюда требуемая суммарная индуктивность контура выпрямленного тока откуда индуктивность сглаживающего реактора По справочнику [27] подбираем подходящий сглаживающий реактор на ток не менее 225 А. Это реактор типа ФРОС-250. У него активное сопротивление обмотки будет Rф = 0, 012 Ом при индуктивности 3,210-3 Гн.

Теперь можно скорректировать расчет выпрямителя с учетом реальных параметров элементов.

4.2.2. РАСЧЕТ ВЫПРЯМИТЕЛЯ С УЧЕТОМ РЕАЛЬНЫХ ПАРАМЕТРОВ ЭЛЕМЕНТОВ СХЕМЫ

Наличие реальных элементов приводит к появлению при нагрузке выпрямителя потери напряжения внутри выпрямителя U, что потребует завышения напряжения холостого хода выпрямителя, которое в соответствии с обобщенным уравнением внешней характеристики (3.1.14) равно (при минимальном напряжении сети) Внутри выпрямителя теряется напряжение U Тогда соответствующее ему действующее значение вторичного напряжения трансформатора при минимальном напряжении сети и коэффициент трансформации Отсюда видно, что теперь бестрансформаторный вариант выпрямителя обеспечит возможность сохранения напряжения на нагрузке при снижении напряжения сети только на 7 %, что соответствует снижению напряжения в пределах нормы (–5 %, +5 %) стандарта [43].

При максимально допустимом снижении напряжения в сети на 10 % напряжение на нагрузке снизится от номинального в этом случае около 3 %. Это будет «плата» за экономию на входном трансформаторе.

Типовая мощность трансформатора останется прежней, если не учитывать влияния коммутации на нее. Для оценки этого влияния найдем сначала угол коммутации по (3.1.7) для случая максимального напряжения в сети:

Типовая мощность трансформатора с учетом поправок на коммутацию в соответствии с (3.9.4) изменяется мало и может не учитываться.

Теперь можно определить параметры вентилей по обратному напряжению, которое может достигать при максимальном напряжении сети следующего значения:

С учетом возможных импульсных перенапряжений внутри выпрямителя и в сети выбирают вентиль с коэффициентом запаса по напряжению 1,5…2. В итоге это будет вентиль Т9-100 не ниже 10 класса.

Класс вентиля, умноженный на 100, определяет максимально допустимое прямое и обратное напряжение на нем.

Уменьшение Кт приведет к корректировке максимального значения угла регулирования ’max, который теперь будет Шестая гармоника выпрямленного напряжения теперь должна определяться с учетом появившегося угла коммутации [8] и будет равна Пропорционально на 30 % увеличится и индуктивность сглаживающего реактора Ld.

Осталось проверить ограничение задания на входной коэффициент мощности. Для этого необходимо знать активную мощность на входе выпрямителя с учетом ее потерь внутри выпрямителя. Потери мощности в трансформаторе будут Потери активной мощности в вентилях Потери активной мощности в сглаживающем реакторе Общие потери мощности внутри выпрямителя Тогда входной коэффициент мощности выпрямителя при номинальном значении напряжения сети будет а при максимальном напряжении сети т. е. выше, чем заданное ограничение.

КПД выпрямителя при номинальном напряжении сети Таким образом, спроектированный выпрямитель удовлетворяет всем требованиям задания.

Теперь осталось проверить, удовлетворяет ли выпрямитель требованиям ГОСТ 13109 [43] в части вносимого искажения напряжения сети в узле присоединения.

По соотношению (3.12.7) определяется коэффициент гармоник напряжения узла сети, обусловленный несинусоидальностью входного тока выпрямителя. Дифференциальный коэффициент гармоник первого порядка входного тока выпрямителя при н = 100 (при U1н = 220 В, н = 150) равен по (3.9.8) Так как Тогда коэффициент гармоник напряжения сети, в ГОСТ 13109 называемый коэффициентом несинусоидальности, будет здесь равен что допустимо по новому ГОСТ 13109-98, который вводится с 01.01.2000 г.

По найденным параметрам элементов схемы можно оценить массогабаритные показатели спроектированного выпрямителя по удельным показателям массы и габаритов элементов (см. раздел 1.1.2).

Аналогично рассчитывается и выпрямитель обмотки возбуждения электрического двигателя.

ЗАКЛЮЧЕНИЕ

Теория и схемотехника выпрямителей и зависимых инверторов с фазовым способом регулирования, являющихся старейшими видами вентильных преобразователей электрической энергии, к настоящему времени полностью сложились. Наиболее глубокое изложение теории классических схем выпрямления с одновременным учетом всех параметров схемы замещения трансформатора дано в разделах [40, 41], а с учетом параметров входного синхронного генератора – в [42]. Теория мощных выпрямителей с цепями продольной и поперечной емкостной компенсации рассмотрена в книге [43], а с цепями внутренней компенсации – в [45]. Многие проблемы практики выпрямителей (защита, охлаждение, диагностика) даны в [46]. Вопросы классификации, синтеза новых схем выпрямителей и теории их внешних характеристик в полном диапазоне изменения нагрузки вплоть до режима КЗ рассмотрены в емких по содержанию статьях [47, 48], где приведены основные итоги анализа 130 схем выпрямления. Классические и новые методы анализа и синтеза схем вентильных преобразователей всех классов, а также новые подходы к теории энергопроцессов в системах с вентилями рассмотрены в академически глубоких монографиях соответственно [49, 50] и [39], а также в книге [50], с которой в СССР и начались поиски новых подходов к методам анализа энергопроцессов в вентильных преобразователях. Дополнительные ссылки на литературу по выпрямителям и зависимым инверторам можно почерпнуть из списков литературы в указанных источниках.

Обилие доли выпрямительной нагрузки, особенно в бытовых электрических сетях, и вследствие этого значительное ее обратное влияние на качество электрической энергии в сети привели к тому, что прежде всего в странах Западной Европы были приняты жесткие стандарты, строго регламентирующие допустимую степень искажения тока нелинейного потребителя. В случае использования классических схем выпрямителей с фазовым регулированием это требует применения у них входных LC-фильтров, ослабляющих высшие гармоники входных токов выпрямителей до допустимых значений. В ответственных случаях применяют активные фильтры, компенсирующие искажения входного тока выпрямителя (см. часть 2 пособия).



Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |


Похожие работы:

«Международный консорциум Электронный университет Московский государственный университет экономики, статистики и информатики Евразийский открытый институт В.И. Хабаров Н.Ю. Попова Банковский маркетинг Учебное пособие Руководство по изучению дисциплины Учебная программа Москва 2005 УДК 336.71 ББК 65.262.1 Х 121 Хабаров В.И., Попова Н.Ю. БАНКОВСКИЙ МАРКЕТИНГ: Учебное пособие, руководство по изучению дисциплины, учебная программа / Московский государственный университет экономики, статистики и...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет Горный УТВЕРЖДАЮ Ректор профессор В.С. Литвиненко ПРОГРАММА вступительного испытания при поступлении в магистратуру по направлению подготовки 38.04.01 – ЭКОНОМИКА по магистерским программам Бухгалтерский учёт, анализ и аудит в горной промышленности и геологоразведке; Экономика и управление на...»

«СОДЕРЖАНИЕ 1. Определение сторон 5 2. Преамбула 5 3. Общие положения 6 4. Цели коллективного договора 6 5. Трудовые отношения 7 5.1. Прием на работу 7 5.1.1. Общие положения 7 5.1.2. Порядок приема на работу лиц из числа ППС 8 5.1.3. Порядок приема на работу научных работников 8 5.1.4. Порядок приема на работу руководителей структурных подразделений Университета 5.1.5. Должностные инструкции 5.2. Оплата труда 5.2.1. Общие требования 5.2.2. Организация выдачи денежных средств 5.2.3. Сроки...»

«Книжные новинки У А 29 Адизес, Ицхак К. Управляя изменениями : перевод с английского / Ицхак К. Адизес. - СанктПетербург [и др.] : Питер, 2012. - 223 с. : ил. + 1 электрон. опт. диск (CD). Книга Управляя изменениями посвящена процессам принятия управленческих решений. А.Ицхак наглядно показывает, как эффективно разрешить ситуации, связанные с созданием работоспособной команды, столкновением интересов, поступлением конструктивных предложений, неуважением к чужому мнению, взаимным недоверием...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра философии гуманитарных факультетов ФИЛОСОФИЯ Методические материалы Для студентов исторического факультета Издательство Самарский университет 2003 Печатается по решению Совета кафедр гуманитарных и социально-экономических наук Самарского государственного университета Составители: Заслуженный деятель наук РФ, проф., д.философ.н. В.А. Конев; доц., канд. филос. наук С.В. Соловьева Рецензент проф.,...»

«ЧАСТНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ МИНСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ УТВЕРЖДАЮ Ректор Минского института управления Н.В. Суша _ 2009 г. Регистрационный № УД-/р. ХОЗЯЙСТВЕННОЕ И ФИНАНСОВОЕ ПРАВО Учебная программа для специальности 1-25 01 07 - Экономика и управление на предприятии Факультет правоведения Кафедра экономического права Курс – Семестр – Лекции – 64 часа Экзамен – 9 семестр Практические занятия – 32 часа Всего ауд. часов по дисциплине – 96 ч. Всего часов по дисциплине – 96 ч. Форма получения...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ О.П. Исакова, Ю.Ю. Тарасевич, Ю.И. Юзюк Обработка и визуализация данных физических экспериментов с помощью пакета Origin. Анализ и обработка спектров Астрахань, Ростов-на-Дону – 2007 Исакова О.П., Тарасевич Ю.Ю., Юзюк Ю.И, 2007 ББК 22.3в6 УДК 53.088 Рекомендовано к печати Рецензенты: Исакова О.П., Тарасевич Ю.Ю., Юзюк Ю.И. Обработка и визуализация данных физических экспериментов с помощью...»

«ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ Е.В. Ермилова, Т.В. Кадырова, В.В. Дудко АНАЛИЗ ЛЕКАРСТВЕННЫХ СРЕДСТВ АПТЕЧНОГО И ЗАВОДСКОГО ПРОИЗВОДСТВА Учебное пособие Томск СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ 2010 УДК 615.07 (071) ББК Р 282 Е 732 Ермилова Е.В., Кадырова Т.В., Дудко В.В. Анализ лекарственных средств: учебное пособие....»

«Владимир Ровдо сравнительная политология Учебное пособие в трех частях Часть I теория сравнительной политологии Вильнюс Европейский гуманитарный университет 2007 УДК 32.001(075.8) ББК 66.0я7 р58 Реценз ен ты: Matonite I., PHD in Political Sciense, Associate professor of Kaunas Teсhnical University and Head of Sociology and Political Sciense Department of EHU in Vilnius. Круглашов А. Н., доктор политических наук, профессор, директор магистерской программы “Европейские исследования” ЕГУ в...»

«Авангардизм в изобразительном искусстве - выставки Аварийно-спасательные бригады - организация работы Аварийно-спасательные работы - технические средства Авиадвигателестроительные заводы - Пермь - история Авиаконструкторы русские зарубежные Авиаприборостроение Авиаприборостроительные заводы - экономика Авиастроение - автоматизация Авиационная промышленность - предприятия Авиационная техника - производство - ремонт - рынок - статистические методы изучения Авиационная экология...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ОДЕССКИЙ НАЦИОЛНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ И. И. МЕЧНИКОВА Биологический факультет КАФЕДРА ЗООЛОГИИ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ к выполнению контрольных работ курсу Популяционная морфология студентами заочной формы обучения биологического ф-та Одесса - 2012 Методические рекомендации по выполнению контрольных работ по специальному курсу „ Популяционная морфология” Одесский национальный университет имени И. И. Мечникова, 2012. Составитель: доцент, к.б.н....»

«СЛЕДСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ СЛЕДСТВЕННОГО КОМИТЕТА РОССИЙСКОЙ ФЕДЕРАЦИИ РАССЛЕДОВАНИЕ ЭКОНОМИЧЕСКИХ (ФИНАНСОВЫХ) ПРЕСТУПЛЕНИЙ, СОВЕРШАЕМЫХ ОРГАНИЗОВАННЫМИ ПРЕСТУПНЫМИ ГРУППАМИ (МЕЖДУНАРОДНЫМИ ОРГАНИЗОВАННЫМИ ПРЕСТУПНЫМИ ГРУППАМИ) Материалы Международной научно-практической конференции (Москва, 14 июня 2012 года) Москва, 2012 Расследование экономических (финансовых) преступлений, совершаемых организованными преступными группами (международными...»

«УДК 14.35.07 Анкетирование студентов в системе контроля качества обучения Окуловская Н.В., Кулаев Д.Х., Шлейкин А.Г., Саркисян З.М. [email protected] Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий Обучение как двусторонний процесс, оцениваемый и преподавателем, и студентами, контролируемый и управляемый обеими сторонами. Ключевые слова: анкетирование, процесс и качество образования, оценка учебного процесса. Student assessment in an education quality...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОПРОСЫ ОБРАЗОВАНИЯ И НАУКИ: ТЕОРЕТИЧЕСКИЙ И МЕТОДИЧЕСКИЙ АСПЕКТЫ Сборник научных трудов по материалам Международной научно-практической конференции 31 мая 2014 г. Часть 3 Тамбов 2014 УДК 001.1 ББК 60 В74 В74 Вопросы образования и наук и: теоретический и методический аспекты: сборник научных трудов по материалам Международной научно-практической конференции 31 мая 2014 г.: в 11 частях. Часть 3. Тамбов: ООО Консалтинговая компания Юком, 2014....»

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ  УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ  ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ                      ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ:   ПРОГРАММА, КОНТРОЛЬНЫЕ ЗАДАНИЯ, ПРАКТИКУМ  Учебно­методическое пособие для студентов   заочного отделения   фармацевтического факультета      Составители:  Н.Б. Морозова  С.Н. Грушевская  О.В. Долгих   В.Ю. Кондрашин   Е.В. Бобринская  А.В. Введенский                               ...»

«Министерство здравоохранения Республики Беларусь УО Витебский государственный медицинский университет Белорусское научно- практическое общественное объединение Ассоциация акушеров-гинекологов и неонатологов Охрана материнства и детства Рецензируемый научно-практический медицинский журнал № 1 (21) 2013 г. Министерство здравоохранения Республики Беларусь УО Витебский государственный медицинский университет Белорусское научно- практическое общественное объединение Ассоциация акушеров-гинекологов и...»

«Федеральное агентство по образованию Федеральное государственное образовательное учреждение среднего профессионального образования Прокопьевский горнотехнический колледж им. В.П.Романова МЕТОДИЧЕСКИЕ УКАЗАНИЯ Единые требования к содержанию и оформлению курсовых и дипломных проектов Тимофеева Е.Л., Самородова Е.П. Методические указания по составлению и оформлению курсовых и дипломных проектов стр. 1 из 80 По решению методического Совета Федерального государственного образовательного учреждения...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ – ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ЛЕСОТЕХНИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ С. М. КИРОВА КАФЕДРА ЛЕСНОГО ХОЗЯЙСТВА ЗАЩИТА ЛЕСА САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению 656200 Лесное хозяйство и ландшафтное строительство специальности 250201 Лесное хозяйство СЫКТЫВКАР УДК 630....»

«СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ КАФЕДРА БУХГАЛТЕРСКОГО УЧЕТА, АНАЛИЗА, АУДИТА И НАЛОГООБЛОЖЕНИЯ ЦЕНООБРАЗОВАНИЕ САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по специальностям 080109 Бухгалтерский учет, анализ и аудит, 080502 Экономика и управление на предприятии (по отраслям) СЫКТЫВКАР 2007 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ – ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО...»

«СОДЕРЖАНИЕ 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Нормативные документы для разработки ООП ВПО бакалавриата по направлению подготовки Экономика 1.2. Общая характеристика основной образовательной программы высшего профессионального образования по направлению Экономика.. 6 1.3. Требования к уровню подготовки, необходимому для освоения ООП ВПО 2. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКА ООП БАЛАКАВРИАТА ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ ЭКОНОМИКА 2.1. Область профессиональной деятельности выпускника 2.2....»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.