WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 || 3 | 4 |   ...   | 7 |

«Г. С. ЗИНОВЬЕВ ОСНОВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ ЧАСТЬ 1 Учебник НОВОСИБИРСК 2001 Зиновьев Г. С. Основы силовой электроники: Учебник. – Новосибирск: Изд-во НГТУ, 1999. Ч.1. – 199 с. ISBN 5-7782-0264-4 Настоящий учебник ...»

-- [ Страница 2 ] --

Самое трудное здесь – определение структуры системы, требующей наличия своего опыта, интуиции и советов экспертов. Проблема важна для разработки систем автоматизированного проектирования вентильных преобразователей, для генерации новых схем преобразователей.

4. Задача идентификации. Заданы множества входных и выходных переменных, т. е. V, Y. Требуется определить структуру и параметры системы S и P, рассматриваемой как «черный ящик». Это задача структурной и параметрической идентификации. Задача структурной идентификации в общем случае не решена. Если структура системы задана, то задача определения множества параметров превращается в задачу параметрической идентификации, т. е. определение внутренних параметров системы, что позволяет по результатам измерения входных и выходных переменных «черного ящика» находить его внутренние параметры, т. е. делать «черный ящик» прозрачным («белым»).

В общем случае структура выпрямителя на уровне элементарных ячеек показана на блок-схеме рис. 2.2.1.

Помимо базисной ячейки ДТ/ОТ, где, собственно, и осуществляется преобразование переменного тока в однонаправленный (выпрямленный), имеются ячейка Т Целевым назначением выпрямителей в данной главе будет преобразование переменного напряжения в постоянное нерегулируемое с помощью базовых ячеек выпрямления на идеальных элементах. В конце главы будет показана общая возможность регулирования постоянного напряжения во всех базовых ячейках выпрямления.

Общая структура выпрямителя {S} задана в этом разделе с помощью блок-схемы, в последующих разделах структуры конкретных базовых ячеек будут представлены принципиальными схемами ячеек.

Структуры систем управления управляемых выпрямителей будут представлены блок-схемами в части 2 учебника.

Множество значений параметров элементов силовой схемы {PP} в рамках этой главы состоит только из двух значений параметров элементов: ноль и бесконечность, так как на этой стадии анализа все элементы схемы приняты идеальными. Множество параметров элементов системы управления {CP} будет также задано в части 2.

Для заданий множеств входных, внутренних и выходных переменных {V, X, Y} предварительно условимся о системе обозначений в выпрямителе.

При анализе электромагнитных процессов в выпрямителе будет использована следующая система обозначений переменных. Все мгновенные значения ЭДС, напряжений и токов обозначаются строчными буквами e, u, i, а интегральные значения этих переменных (действующие, средние, экстремальные) обозначаются прописными буквами E, U, I. Все переменные, относящиеся к питающей сети, входному фильтру и первичной обмотке трансформатора, обозначаются с индексом (u1, i1), переменные, относящиеся ко вторичной стороне трансформатора, обозначаются с индексом 2 (u2, i2), переменные, относящиеся к звену выпрямленного тока, обозначаются с индексом d (ud, id) (от английского слова direct – постоянный, так как система обозначений в теории выпрямления пришла к нам еще в 30–40-х годах из англоязычной литературы). Число фаз переменного тока обозначается через m, частота переменного напряжения f и = 2f. Мощности обозначаются как S – полная мощность, P – активная мощность, s = ui – мгновенная мощность, Q – реактивная мощность, вычисляется как геометрическая невязка между полной и активной мощностями Q = S 2 P 2.

Множество входных воздействий неуправляемого выпрямителя определяется множеством фазных напряжений питающей сети. Множество внутренних переменных выпрямителя определяется токами и напряжениями обмоток трансформатора, токами и напряжениями вентилей, токами и напряжениями элементов входных и выходных фильтров выпрямителя.

Различают два типа базовых ячеек выпрямления: однополупериодные и двухполупериодные. Однополупериодные схемы используют для выпрямления (отбора мощности из сети переменного тока) только одну полуволну переменного напряжения из двух в каждом его периоде.

Двухполупериодные схемы используют для выпрямления обе полуволны в каждом периоде входного переменного напряжения. Условные обозначения для этих схем соответственно q = 1 и q = 2. Для характеристики числа используемых полуволн входного многофазного переменного напряжения за его период вводится пульсность выпрямителя p = qm2, определяющая также число пульсаций выпрямленного напряжения за период напряжения питания.

действующих значений Fд и средних Fср значений функций f (t) получают вид Особенностью всех электромагнитных переменных в вентильном преобразователе является их кусочно-непрерывный характер, часто с нулевыми паузами, вследствие дискретности работы вентилей. В этом случае, если при мысленном исключении из такой функции нулевых пауз она превращается в типовую функцию с известными для нее действующим Fд.и и средним Fср.и значениями, формулы (2.1.2) и (2.1.3), с учетом обозначений рис. 2.1.2, превращаются путем очевидных преобразований в простые соотношения где q 0 = скважность импульсной функции.

Выпрямитель, выполненный на неуправляемых вентилях, называется неуправляемым выпрямителем и предназначен для получения постоянного напряжения неизменной величины. Выпрямитель, выполненный на управляемых вентилях, называется управляемым выпрямителем и предназначен для получения регулируемого и (или) стабилизированного постоянного напряжения.

2.2. МЕХАНИЗМ ПРЕОБРАЗОВАНИЯ ПЕРЕМЕННОГО ТОКА

В ВЫПРЯМЛЕННЫЙ В БАЗОВОЙ ЯЧЕЙКЕ ДТ/ОТ

Целью этого раздела является знакомство с общим механизмом преобразования переменного (двунаправленного) тока в однонаправленный пульсирующий (постоянный) посредством одних вентилей без использования других элементов схемы, что позволит в чистом виде показать специфику этого рода преобразования энергии.



Схема простейшей (одновентильной) базовой ячейки однополупериодного управляемого выпрямления однофазного тока показана на рис. 2.2.1, а, временные диаграммы выпрямленного напряжения ud и выпрямленного тока id приведены на рис. 2.2.1, б для случая чисто активной нагрузки, а на рис. 2.2.1, в – для активно-индуктивной нагрузки.

Индуктивность в цепи выпрямленного тока Ld может складываться как из собственной индуктивности нагрузки (обмотки), так и из индуктивности фильтра для сглаживания пульсаций выпрямленного тока и в дальнейшем не разделяться на составные части. Из-за ее наличия ток в нагрузке продолжает протекать и после смены знака питающего напряжения против него за счет энергии, накопленной в магнитном поле индуктивности Ld, пока она не израсходуется в сопротивлении нагрузки Rd и частично не возвратится в питающую сеть.

Характерно, что выпрямленный ток имеет прерывистый характер, т. е. импульсы тока разделены нулевыми паузами. Прерывистый выпрямленный ток выпрямителя, как будет видно из дальнейшего анализа, приводит к искажению всех основных характеристик выпрямителя и, как правило, является нежелательным. Для сокращения области его существования или его полного устранения необходимо:

• применение нулевого вентиля V0, как показано на рис. 2.2.2, а;

• увеличение полупериодности выпрямления с q = 1, как это имеет место в рассмотренных случаях, до q = 2 (замена так называемых нулевых схем выпрямления или схем с выводом нулевой точки источника, как их еще называют, на мостовые), как показано на рис. 2.2.3, а;

• увеличение числа фаз переменного напряжения выпрямителя, как на рис. 2.2.4, а;

• увеличение постоянной времени нагрузки за счет роста индуктивности фильтра Ld.

В схеме с нулевым вентилем V0 он вступает в работу при смене полярности напряжения питания и проводит ток нагрузки в течение интервала Т2 за счет энергии, запасенной в магнитном поле индуктивности фильтра Ld.

В схеме мостового выпрямления в положительную полуволну питающего напряжения проводят вентили 1, 2, а в отрицательную – вентили 3, 4, поэтому частота импульсов выпрямленного тока при двухполупериодном выпрямлении удваивается по сравнению с однополупериодным, представленным на рис. 2.2.1, а.

Дальнейшее увеличение частоты пульсаций выпрямленного тока до fп = qm2f1 обеспечивается при увеличении числа фаз питающего напряжения, как это видно из рис. 2.2.4 для трехфазной питающей сети.

При этом уменьшаются и пульсации выпрямленного напряжения, которые оцениваются коэффициентом пульсаций напряжения Кп.

Так как режим прерывистого выпрямленного тока является не очень качественным для потребителя, то необходимо определить его границы в пространстве параметров выпрямителя, т. е. в функции Rd, Ld,, m.

Очевидно, что в этом режиме вентили работают независимо друг от друга, поэтому дифференциальное уравнение для выпрямленного тока при одном проводящем вентиле будет иметь вид (при идеальном вентиле) так как Его решение Постоянная интегрирование А1 определяется (по 2.2.2) из начального условия id = 0 при =.

Тогда решение (2.2.2) примет вид Из (2.2.4) получается уравнение для длительности протекания тока вентиля, если в нем положить id = 0 при = +:

Это уравнение трансцендентно относительно, поэтому его решение численным способом дают графики (точки пересечения положительных полуволн питающего напряжения), с углом вступления вентиля в работу, отсчитываемым от нуля питающего напряжения, очевидно из рис. 2.2.4:

Для режима непрерывного выпрямленного тока постоянная интегрирования А1 в (2.2.1) определяется из условия установившегося режима Тогда решение (2.6) примет вид Исходя из механизма выпрямления переменного напряжения, подтвержденного полученными аналитическими решениями для выпрямленного тока в прерывистом (2.2.4) и непрерывном (2.2.8) режимах, следуют выводы:

1. Выпрямитель, как источник постоянного тока, помимо режима непрерывного тока, характерного для традиционных источников постоянного тока (аккумуляторы, генераторы постоянного тока), имеет еще и специфический режим прерывистого тока даже при стационарной нагрузке.

2. В режиме прерывистого выпрямленного тока индуктивность Ld в цепи нагрузки влияет не только на величину пульсаций выпрямленного тока, но и на его среднее значение.

3. В режиме непрерывного выпрямленного тока индуктивность Ld в цепи нагрузки влияет только на величину пульсаций тока, но не влияет на его постоянную составляющую, т. е. его среднее значение.

4. При одном и том же значении Ld пульсации выпрямленного тока в непрерывном режиме уменьшаются с уменьшением Rd, т. е. с ростом среднего значения тока, а значит, и мощности выпрямителя. Поэтому использование индуктивного фильтра для сглаживания выпрямленного тока в мощных выпрямителях (с малым значением Rd) является практически единственным приемлемым способом. Свойства емкостного сглаживающего фильтра (для выпрямленного напряжения) будут рассмотрены в разделее 3.3.5.

5. Дополнение вентильных ячеек входными трансформаторами существенно изменяет характер электромагнитных процессов на входе выпрямителя, поэтому далее рассматриваются базовые ячейки выпрямителей в условиях одинаковых допущений для возможности сравнения их между собой и определения рациональных областей применения каждой из них. Эти допущения следующие:

• трансформатор идеальный, т. е. характеризуется только одним параметром – коэффициентом трансформации Кт =U1/U2;

• вентили идеальные, т. е. они заменяются ключами, имеющими нулевое сопротивление в состоянии «включено» и бесконечное сопротивление (разрыв цепи) в состоянии «выключено», в результате снимается учет влияния параметров конкретного вентиля на параметры выпрямленного тока;

• входной фильтр отсутствует, выходной фильтр идеальный, т. е.

при индуктивном фильтре Ld (Xd) =, выпрямленный ток пульсаций не содержит, в результате снимается учет влияния параметров конкретного фильтра на параметры выпрямленного тока.

Использование указанных допущений в математической модели выпрямителя позволяет обойтись без сложных соотношений между переменными, порождаемых использованием аппарата дифференциальных уравнений, как это было показано выше. Кроме того, неучет реальных параметров элементов выпрямителя позволяет в чистом виде выявить свойства собственно процесса преобразования переменного тока в постоянный. Полученные на этом этапе анализа простые расчетные соотношения для элементов выпрямителя в последующем, на втором этапе анализа выпрямителя с учетом реальных параметров элементов выпрямителя, будут только скорректированы, а не аннулированы.

2.3. ДВУХФАЗНЫЙ ВЫПРЯМИТЕЛЬ ОДНОФАЗНОГО

Одни и те же схемы выпрямления не всегда одинаково (и корректно) называются в разных источниках, поэтому приводится формальный код схемы. Из него следует, что входной трансформатор преобразует однофазное напряжение питающей сети в двухфазное, которое и выпрямляется в однополупериодной схеме выпрямления, показанной на рис. 2.3.1.

первом этапе делается качественный анализ электромагнитных процессов в схеме с помощью временных диаграмм этапе по этим диаграммам проводится количественный анализ, позволяющий получить расчетные соотношения для всех элементов схемы и на их основании сделать выводы о свойствах и рекомендуемой области применения выпрямителя.

Временные диаграммы напряжений и токов выпрямителя при отсутствии регулирования ( = 0) показаны на рис. 2.3.2.

На первой диаграмме представлены двухфазные напряжения вторичных обмоток трансформатора u2a, u2x и ток в одной вторичной обмотке, методика построения которого поясняется ниже после построения диаграмм анодных токов вентилей. Правило определения проводящего вентиля в (вентилей, соединенных катодами) таково: проводит ток тот вентиль, потенциал анода которого наиболее положителен. Вентили катодной группы обозначаются нечетными цифрами. На второй временной диаграмме представлены кривые выпрямленного напряжения ud и выпрямленного тока id при сделанном допущении идеального фильтра Xd =. Кривая выпрямленного напряжения повторяет кривые вторичных напряжений по интервалам проводимости соответствующих вентилей. Выпрямленный ток пульсаций не содержит, и его мгновенные значения совпадают с его средним значением Id. На третьей диаграмме представлена кривая напряжения на сглаживающем реакторе, который в идеальном случае воспринимает всю пульсацию (переменную составляющую) выпрямленного напряжения. На четвертой диаграмме показаны анодный ток первого вентиля iа1 и обратное напряжение на нем ub1. При проводящем вентиле 3, когда u2x положительна, через него к вентилю 1 прикладывается межфазное напряжение u2а – u2x, т. е. двойное значение амплитуды фазного напряжения u2. Из этой диаграммы становится очевидным приведенное выше правило определения проводящего вентиля в катодной группе: когда анодное напряжение вентиля не является наиболее положительным, к нему приложено обратное напряжение и он не может проводить ток. С другой стороны, когда вентиль проводит ток, то при сделанном допущении об идеальности вентилей прямое падение напряжения на нем отсутствует.

Зная анодные токи вентилей, теперь можно построить токи во вторичных обмотках трансформатора. Так как ко вторичной обмотке с напряжением u2a подсоединен один вентиль 1, то форма тока в обмотке совпадает с формой анодного тока вентиля, т. е. i2a = ia1, что и представлено на первой временной диаграмме. Аналогично определяется форма вторичного тока в обмотке с напряжением u2x, т. е. i2x = ia3, который, очевидно, аналогичен форме вторичного тока i2a, но сдвинут во времени на половину периода напряжения питающей сети. И, наконец, по известным формам токов во вторичных обмотках трансформатора на пятой временной диаграмме построены кривая тока в первичной обмотке i1 идеального трансформатора и кривая напряжения первичной обмотки u1, с которой синфазно напряжение u2a вторичной обмотки трансформатора в соответствии с выбранными положительными направлениями напряжений обмоток, обозначенными стрелками. Методика построения первичного тока следует из уравнений для МДС обмоток трансформатора, связанных законом Кирхгофа для магнитных цепей:

где w1, w2 – число витков первичной и вторичной обмоток соответственно.

В данной схеме ток первичной обмотки равен алгебраической сумме токов вторичных обмоток, взятых с коэффициентом трансформации Кт.

Необходимо отметить характерную особенность однополупериодной схемы выпрямления – однонаправленность токов во вторичных обмотках трансформатора, что свидетельствует о наличии в них постоянных составляющих. Но так как магнитная система (сердечник из трансформаторной стали) однофазного трансформатора является одноконтурной, то в результирующем магнитном потоке в сердечнике постоянного подмагничивания не будет, так как токи в двух вторичных обмотках направлены встречно.

По результатам качественного анализа электромагнитных процессов в исследуемом выпрямителе можно отметить еще следующие особенности использования трансформатора в ней. Во-первых, различие форм токов во вторичной и первичной обмотках трансформатора и, во-вторых, их несинусоидальный характер. Первая особенность связана с наличием вентилей во вторичных обмотках трансформатора, в то время как в первичной обмотке, непосредственно подключенной к источнику переменного напряжения, протекает чисто переменный ток.

Вторая особенность связана с тем, что вентильная ячейка для цепи синусоидального напряжения представляет резко нелинейную нагрузку, форма тока в которой существенно зависит от вида этой нелинейности.

Второй этап анализа выпрямителя является математическим.

Здесь, во-первых, необходимо получить энергетические показатели качества элементов устройства, т. е. расчетные соотношения для определения параметров трансформатора, вентилей, фильтра через параметры звена постоянного тока, которые при проектировании являются заданными. Во-вторых, необходимо рассчитать энергетические показатели качества процессов на входе и выходе выпрямителя. Методика анализа при первом уровне допущений – допущений об идеальности элементов схемы – состоит из следующих пятнадцати шагов.

1. Устанавливается связь между средним значением выпрямленного напряжения неуправляемого выпрямителя Ud0 с действующим значением напряжения вторичной обмотки трансформатора из соответствующей временной диаграммы на рис. 2.3.2.

откуда 2. Вычисляется среднее значение анодного тока вентиля Ia 3. Вычисляется действующее значение анодного тока вентиля Iа.д Коэффициент формы анодного тока вентиля 4. Вычисляется максимальное значение анодного тока вентиля Коэффициент амплитуды анодного тока 5. Вычисляется максимальная величина обратного напряжения на вентиле по отношению к Ud 6. Вычисляется установленная мощность вентилей с неполным управлением (тиристоры) с полным управлением (транзисторы, запираемые тиристоры) 7. Вычисляется действующее значение тока во вторичной обмотке трансформатора 8. Вычисляется действующее значение тока в первичной обмотке трансформатора определяется коэффициент преобразования выпрямителя по току 9. Вычисляется полная мощность вторичных обмоток трансформатора где Pd0 – активная мощность на выходе неуправляемого выпрямителя.

10. Вычисляется полная мощность первичных обмоток трансформатора 11. Вычисляется типовая установленная мощность трансформатора (имеющего разные полные мощности обмоток), определяемая в этом случае как 12. Оцениваются требуемая величина сглаживающего реактора Ld в звене постоянного тока и его условная установленная мощность.

Здесь приходится отступить от принятого на этом уровне анализа допущения об идеальности сглаживания выпрямленного тока, (Ld = ) для возможности оценки затрат на реактор. С инженерной точностью можно считать выпрямленный ток практически постоянным при наличии гармоник в токе (пульсаций тока) на уровне нескольких процентов от среднего значения тока.

При задании коэффициента гармоник выпрямленного тока Кгт для расчета необходимой индуктивности реактора используем метод АДУ2. Полагаем, что вся пульсация выпрямленного напряжения прикладывается к фильтру (реактору), тогда дифференциальное уравнение для высокочастотной составляющей тока получает вид После его алгебраизации где интегральный коэффициент гармоник напряжения в звене постоянного тока Коэффициент гармоник выпрямленного тока с учетом (2.3.17) Обратно, необходимая индуктивность реактора Тогда максимальное значение энергии сглаживающего реактора равно Для обеспечения возможности сопоставления затрат на сглаживающий реактор, работающий в цепи постоянного тока, с затратами на фильтровый реактор, работающий в цепи переменного тока (как и трансформатор), введем условную установленную мощность реактора.

Под ней будем понимать реактивную мощность этого реактора, равную полной мощности (активной мощности в идеальном реакторе нет), которую бы он имел с данным током и индуктивностью в цепи переменного тока. Из электротехники известно, что реактивную мощность реактора можно выразить как произведение угловой частоты и максимального значения энергии реактора, что приводит с учетом (3.21) к такому результату:

Для выпрямителя с qm2 = 2, K г = 0,24.

Конечно, условия работы магнитопровода сглаживающего реактора более легкие, чем у магнитопровода фильтрового реактора, так как переменная составляющая магнитного потока у них, обусловленная только пульсациями выпрямленного тока, составляет всего несколько процентов от постоянной составляющей потока. Именно поэтому определенная приведенным выше способом установленная мощность сглаживающего реактора названа условной и используется только при сравнении различных схем выпрямления по условным затратам на сглаживающие реакторы.

При задании коэффициента пульсаций выпрямленного тока Кпт нетрудно показать, что условная установленная мощность реактора т. е. определяется отношением коэффициентов пульсаций выпрямленного напряжения Кп и выпрямленного тока Кпт. Здесь Кп = 0,67.

13. Вычисляется входной коэффициент мощности выпрямителя что дает для Кгт = 0,48.

14. Вычисляется коэффициент преобразования выпрямителя по напряжению (по гладким составляющим) 15. Вычисляется коэффициент преобразования выпрямителя по току (по гладким составляющим) Иногда определяют коэффициент преобразования выпрямителя по току как По вычисленным значениям Ia (Ia.max), Ub.max по справочнику выбирается тип вентиля. По вычисленным значениям U2, I2, I1, Sт по справочнику выбирается готовый трансформатор, а при его отсутствии – по этим данным выдается задание на проектирование трансформатора.

По значению индуктивности сглаживающего реактора и по току в нем подбирается готовый реактор или проектируется новый.

По результатам второго этапа анализа выпрямителя можно сделать следующие выводы.

• Выпрямитель характеризуется плохим использованием трансформатора, так как S т > 1 на 34 %. Это обусловлено плохими формами токов в обмотках трансформатора, особенно во вторичных из-за однополупериодности выпрямления.

• Выпрямитель характеризуется плохим использованием вентилей по обратному напряжению, которое в раз больше требуемого выпрямленного.

• Выпрямитель характеризуется плохим качеством выпрямленного напряжения (пульсации сравнимы с постоянной составляющей выпрямленного напряжения).

• Низкий входной коэффициент мощности выпрямителя.

Обычно выпрямители однофазного тока при U1 = 220 В применяют до мощностей Pd0 3…5 кВт и при выпрямленном напряжении примерно до 300 В для данной схемы при условии доступности вентилей с рабочим напряжением не выше 15 класса.

2.4. ВЫПРЯМИТЕЛЬ ОДНОФАЗНОГО ТОКА

Схема выпрямителя показана на рис. 2.4.1.

Вентильный мост содержит две группы вентилей – катодную (нечетные вентили) и анодную (четные вентили). В мостовой схеме ток проводят одновременно два вентиля – один из катодной группы и один из анодной. Правило определения проводящего вентиля в катодной группе сформулировано в предыдущем разделе. Правило определения проводящего вентиля в анодной группе – проводит тот вентиль, потенциал катода которого наиболее отрицателен.

Задача анализа является той же, что и предыдущей базовой схемы, т. е. определение свойств схемы и на этой основе выработка рекомендаций по обласРис. 2.4. ти применения выпрямителя. Методика анализа также аналогичная, т. е. сначала качественный анализ электромагнитных процессов с помощью временных диаграмм, а на втором этапе – количественный анализ с целью получения расчетных соотношений.

обратного напряжения на вентиле и формы тока во вторичной обмотке трансформатора. При проводящих вентилях 3, 4 моста к вентилю прикладывается в обратном направлении напряжение вторичной обмотки трансформатора u2. Форма тока во вторичной обмотке трансформатора определяется суммой токов вентилей, присоединенных к этой обмотке, например, 1 из катодной группы и 4 из анодной группы.

Наличие тока в обмотке и в положительную и в отрицательную полуволну напряжения свидетельствует о двухполупериодности процесса выпрямления и вследствие этого отсутствии постоянной составляющей во вторичном токе.

Аналогия большинства диаграмм в этой и в предыдущей схемах обеспечивает и аналогию соответствующих расчетных соотношений.

Приведенные ниже отличия расчетных соотношений обусловлены указанным отличием двух временных диаграмм – кривой обратного напряжения и вторичного тока трансформатора. Максимальная величина обратного напряжения на вентиле здесь Действующее значение тока во вторичной обмотке трансформатора определяется так :

С учетом этого изменяется полная мощность вторичных обмоток трансформатора Вследствие этого типовая мощность трансформатора Все остальные энергетические показатели здесь такие же, как в предыдущей схеме.

Таким образом, использование большого подобия процессов в данной и предыдущих схемах выпрямления позволило сэкономить не только бумагу и время, но и мышление.

По результатам анализа можно сделать следующие выводы:

• использование трансформатора в двухполупериодной схеме выпрямления лучше, чем в однополупериодной из-за лучшей (более близкой к синусоиде) кривой вторичного тока трансформатора;

• использование вентилей по обратному напряжению в мостовой схеме в два раза лучше, чем в нулевой схеме выпрямления (схеме с выводом нулевой точки трансформатора);

• качество выпрямленного напряжения в рассматриваемой и предыдущей схемах выпрямления одинаково, так как они имеют одинаковую пульсность p=qm2 = 2;

• недостатком мостовой схемы является протекание выпрямленного тока через два последовательно включенных вентиля, что приводит к двойным потерям напряжения и мощности в вентилях с реальными параметрами, заметно снижая КПД выпрямителя при низких значениях выпрямленного напряжения.

Таким образом, на основании сформулированных свойств мостовой схемы выпрямления следует заключение о том, что эта схема предпочтительнее нулевой схемы при средних значениях выпрямленного напряжения и бесспорно рациональна при высоких значениях выпрямленного напряжения (за пределами рекомендаций по использованию нулевой схемы выпрямления).

2.5. ВЫПРЯМИТЕЛЬ ТРЕХФАЗНОГО ТОКА СО СХЕМОЙ СОЕДИНЕНИЯ

ОБМОТОК ТРАНСФОРМАТОРА ТРЕУГОЛЬНИК – ЗВЕЗДА

Общие замечания по выпрямлению трехфазного тока. При активных мощностях нагрузки P d более 3…5 кВт токи на входе выпрямителя однофазного тока превышают предельно допустимые для бытовых потребителей значения 16…25 А (для промышленных однофазных потребителей эти пределы могут быть несколько больше, в зависимости от сети). В этих случаях для получения постоянного тока необходимо питание выпрямителя от трехфазной сети. При этом появляется множество схем выпрямления в зависимости от способа соединения первичных и вторичных обмоток входного трансформатора выпрямителя (треугольник, звезда, зигзаг, двойной зигзаг) изучениe двух вариантов которых и составляет цели в этом и следующем разделах.

временных диаграмм токов и напряжений, а на втором этапе – количественный анализ для получения расчетных соотношений и определения по ним свойств данного выпрямителя. Допущения при анализе те же самые, что и у однофазных выпрямителей.

Временные диаграммы характерных напряжений и токов выпрямителя представлены на рис. 2.5.2 в той же последовательности, что и для предыдущих схем На первой диаграмме показана трехфазная система напряжений вторичных обмоток трансформатора u2a, u2b, u2c и размечены интервалы проводящего состояния вентилей катодной группы, определенные в соответствии со сформулированным выше правилом проводимости вентилей катодной группы.

Точки пересечения положительных полуволн вторичных напряжений, начиная с которых на вентилях появляется прямое напряжение, называют точками естественного зажигания (термин введен еще в дополупроводниковую эпоху газоразрядных вентилей, когда их вступление в работу происходило за счет «зажигания» разряда в них). Необходимо обратить внимание на то, что при числе фаз вторичных напряжений три и более точки естественного зажигания и точки перехода вторичных напряжений через нулевые значения не совпадают, поэтому отсчет задержки вступления вентилей в работу относительно соответствующих нулей вторичных напряжений был обозначен углом на рис. 2.2.4, а отсчет задержки вступления вентилей в работу относительно точек естественного зажигания в управляемых выпрямителях обозначается углом.

На второй диаграмме построены кривая выпрямленного напряжения u d 0, как совокупность участков вторичных напряжений по интервалам проводимости вентилей и кривая выпрямленного тока id для случая Xd =. На третьей диаграмме приведена форма напряжения на сглаживающем реакторе, воспринимающем переменную составляющую (пульсации) выпрямленного напряжения. На четвертой диаграмме показаны диаграмма анодного тока первого вентиля ia1 и кривая обратного напряжения на нем ub1. Последняя определяется как разница мгновенных значений напряжения на аноде вентиля (u2a) и выпрямленного напряжения udo, отсчитанных относительно общей (нулевой) точки вторичных обмоток трансформатора. Анодный ток вентиля равен выпрямленному току на интервале проводимости одного вентиля.

Очевидно, что в данной схеме ток во вторичной обмотке трансформатора i2a повторяет форму анодного тока вентиля ia1, соединенного последовательно с обмоткой, что и отражено на первой диаграмме.

Опять обращает на себя внимание однонаправленный характер тока во вторичной обмотке, т. е. присутствие в нем как бы постоянной составляющей I2(=), численно равной среднему значению этого тока, т. е.

среднему значению анодного тока вентиля Ia. С учетом этого ток во вторичной обмотке трансформатора условно можно разложить на сумму постоянной составляющей I2(=) и переменной (оставшейся после вычитания I2(=)) составляющей i2() На основе этого разложения можно сформулировать здесь эмпирическое правило построения первичного тока трансформатора по найденному вторичному току (пренебрегая по-прежнему током намагничивания трансформатора). Так как в первичную обмотку из вторичной может трансформироваться только переменная составляющая тока, то, вычтя из кривой вторичного тока постоянную составляющую и учтя коэффициент трансформации, получим Необходимо отметить, что строгое математическое выражение для первичного тока трансформатора здесь также можно получить из уравнений для намагничивающих сил, составленных по второму закону Кирхгофа для магнитных цепей, аналогично тому, как это было сделано в разделе 2.3 и в общем виде будет сделано в разделе 3.5.

На пятой временной диаграмме построены кривая напряжения первичной обмотки трансформатора и кривая первичного тока в этой обмотке, расположенной на стержне фазы А магнитопровода трансформатора.

Из-за наличия постоянной составляющей в токе вторичных обмоток трансформатора в каждом из трех стержней магнитопровода трехфазного трансформатора возникает нескомпенсированный однонаправленный поток вынужденного подмагничивания трансформатора.

Это явление приводит к соответствующему смещению Вподм исходного положения рабочей точки на кривой намагничивания магнитопровода, ограничивая тем самым допустимый диапазон изменения индукции магнитопровода до значений В = Внас – Вподм, меньших значений индукции, соответствующей порогу насыщения Внас. В результате для сохранения переменной составляющей потока на прежнем уровне, требуемом заданным напряжением на первичных обмотках, необходимо пропорционально увеличивать сечение магнитопровода, т. е. его массу и габариты (здесь это увеличение будет равно 1/3 в соответствии с тем, что постоянная составляющая потока равна трети от амплитуды результирующего потока).

Суммарные затраты на трансформатор (здесь понимаем под «затратами» или стоимость меди и магнитопровода или их массу, или их габаритные размеры в конструкции), при условии эквивалентности затрат на медь и магнитопровод в суммарных затратах, возрастут в этих условиях на 1/32, т. е. на 16,5 %. С учетом условности эквивалентности указанных составляющих затрат можно говорить об увеличении в этом случае типовой мощности трансформатора на 16,5 %, так как использованная типовая методика ее расчета не учитывает вынужденного подмагничивания трансформатора однонаправленным потоком.

Можно также качественно рассмотреть и вопрос о схеме соединения первичных обмоток трансформатора. Если сделать подобный же анализ электромагнитных процессов в трансформаторе при соединении его первичных обмоток в звезду, то можно показать, что при наличии во вторичных токах гармоник, кратных трем (режимы с Хd ), в магнитопроводе трансформатора дополнительно возникают еще и переменные потоки вынужденного подмагничивания от этих гармоник, так как в первичных обмотках не будет этих гармоник из-за отсутствия пути протекания для них. Поэтому первичные обмотки соединены в треугольник, который образует контур для протекания гармоник, кратных трем, что компенсирует потоки от этих гармоник во вторичных токах, тем самым устраняя вынужденное подмагничивание магнитопровода этими гармониками [8].

Теперь можно провести этап количественного анализа процессов в выпрямителе. Задача, допущения и методика анализа такие же, как и в расчете выпрямителей однофазного тока, что позволяет сопоставлять результаты, полученные в одинаковых условиях. Те же пятнадцать пунктов расчета имеют здесь следующее содержание.

1. Среднее значение выпрямленного напряжения неуправляемого выпрямителя U d откуда Заметим, что начало отсчета времени при записи исходного расчетного интеграла выбирается только из соображений простоты вычисления и на результат вычисления не влияет.

2. Среднее значение анодного тока вентиля 3. Действующее значение анодного тока вентиля Коэффициент формы 4. Амплитудное значение анодного тока Коэффициент амплитуды 5. Максимальная величина обратного напряжения на вентиле 6. Установленная мощность вентилей:

с неполным управлением с полным управлением 7. Действующее значение тока во вторичной обмотке трансформатора 8. Действующее значение тока в первичной обмотке трансформатора 9. Полная мощность вторичных обмоток 10. Полная мощность первичных обмоток трансформатора 11. Типовая мощность трансформатора Эта расчетная величина не учитывает вынужденного подмагничивания трансформатора однонаправленным потоком. С учетом сделанных выше качественных оценок влияния однонаправленного потока вынужденного подмагничивания 12. Индуктивность сглаживающего реактора оценивается также по формуле (2.3.19), а его относительная условная установленная мощность – по формуле (2.3.21) или (2.3.22). Здесь 13. Входной коэффициент мощности по аналогии с (2.3.23) 14. Коэффициент преобразования выпрямителя по напряжению 15. Коэффициенты преобразования выпрямителя по току Рассмотренную схему однополупериодного выпрямления трехфазного тока сопоставим с проанализированной выше схемой однополупериодного выпрямителя однофазного тока (m1=1, m2=2, q=1).

1. В рассмотренной схеме произошло дополнительное по сравнению с противопоставляемой схемой ухудшение использования трансформатора по типовой мощности S * из-за наличия подмагничивания магнитопровода трансформатора постоянным потоком.

2. Использование вентилей по обратному напряжению в рассмотренной схеме в 1,5 раза лучше, чем в противопоставляемой. Это соответственно снизило и установленную мощность вентилей с неполным управлением.

3. Качество выпрямленного напряжения в рассмотренной схеме выше в 4 раза по критерию K г и в 2,5 раза по критерию K п, чем в противопоставляемой схеме. Это связано с увеличением пульсности выпрямления в 1,5 раза (с qm2 = 2 до qm2 = 3), т. е. с возрастанием частоты пульсаций и с уменьшением амплитуды пульсаций почти в раза. Видно, что суждения о качестве выпрямленного напряжения по распространенному критерию K п недостаточно, так как он не учитывает частоту пульсаций напряжения, также влияющую на качество выпрямленного тока. Критерий K г учитывает и частоту пульсаций, поэтому он прямо определяет качество выпрямленного тока и условную установленную мощность сглаживающего реактора.

4. Входной коэффициент мощности здесь заметно ниже, чем в противопоставляемой схеме, что, как будет показано в разделе 3.13, означает большее обратное негативное влияние выпрямителя на питающую сеть.

Итак, с учетом этих свойств схемы она имеет ограниченное самостоятельное применение (только при низких значениях выпрямленного напряжения с невысоким качеством), но является составной частью более сложных и более качественных выпрямителей (см. раздел 2.7).

2.6. ВЫПРЯМИТЕЛЬ ТРЕХФАЗНОГО ТОКА

СО СХЕМОЙ СОЕДИНЕНИЯ ОБМОТОК ТРАНСФОРМАТОРА

Ухудшение использования трансформатора в предыдущей схеме однополупериодного выпрямления, связанное с наличием нескомпенсированных однонаправленных потоков вынужденного намагничивания в каждом стержне магнитопровода, создаваемых постоянными составляющими токов вторичных обмоток трансформатора, может быть устранено. Механизм устранения вынужденного однонаправленного подмагничивания достаточно очевиден – расположить на каждом стержне трансформатора по две вторичные обмотки, однонаправленные токи которых направить встречно. В двухфазном выпрямителе однофазного тока это получалось естественным путем за счет преобразования в трансформаторе однофазного напряжения в двухфазное с помощью двух вторичных обмоток трансформатора. В однополупериодном выпрямителе трехфазного тока это требует наличия второй системы вторичных обмоток трансформатора. Различные варианты связи этих систем обмоток между собой и с вентилями порождают различные схемы выпрямителей трехфазного тока с компенсированными однонаправленными потоками вынужденного намагничивания. Специальное соединение (зигзагом) этих систем обмоток между собой дает схему, рассматриваемую в этом разделе. Соединение второй системы обмоток, включенной противофазно первой системе, со второй группой вентилей, с последующим параллельным или последовательным соединением этих комплексов из обмоток и групп вентилей дает соответственно схему выпрямления с уравнительным реактором, рассматриваемую в следующем разделе, и каскадную схему выпрямления [8], в чистом виде в новых разработках уже не применяемую.

Схема однополупериодного выпрямителя трехфазного тока с соединением двух систем вторичных обмоток трансформатора в зигзаг показана на рис. 2.6.1. Цель анализа новой схемы остается прежней – выявление свойств схемы в рамках тех же допущений для определения областей ее возможного использования.

Определенное интеллектуальное напряжение, связанное с началом анализа каждой новой схемы выпрямления, можно ослабить, если постараться увидеть в новой схеме прообраз уже известной схемы.

Векторная диаграмма для результирующих вторичных напряжений U20трансформатора, показана на рис. 2.6.2. С этих позиций сопоставим системы переменных напряжений на вторичной стороне трансформаторов, подлежащих выпрямлению, в предыдущей и в рассматриваемой схемах выпрямителей.

Из диаграммы следует, что здесь также выпрямляется звезда трехфазных напряжений, векторы которой только больше векторов напряжений обмоток в 3 раз и повернуты на 150о в сторону отставания относительно анодных напряжений вентилей предыдущей схемы.

грамме. Вторая диаграмма с выпрямленным напряжением и током, третья диаграмма с напряжением на сглаживающем реакторе, четвертая диаграмма с анодным током вентиля и обратным напряжением на нем качественно подобны соответствующим диаграммам предыдущей схемы выпрямления. На пятой диаграмме показано первичное напряжение фазы А, опережающее результирующее вторичное напряжение U20x на 150о, как это видно из векторной диаграммы на рис. 2.8.2.

Ток в первичной обмотке фазы А i1A можно построить по тому эмпирическому правилу (2.5.2), которое было использовано при построении первичного тока в предыдущей схеме, применяя его к двум вторичным обмоткам a и x, расположенным на том же стержне магнитопровода трансформатора, что дает здесь Строгое обоснование кривой первичного тока можно получить из решения уравнений, составленных по второму закону Кирхгофа для замкнутых магнитных цепей. Два таких уравнения получим для контура из стержней А-В и А-С, обходя их против часовой стрелки, третье уравнение – для первичных токов Решение этой системы уравнений (см. раздел 3.5) даст здесь для первичного тока тот же результат, что и эмпирическое правило.

Этап количественного анализа процессов в рассматриваемой схеме дает идентичные результаты для тех элементов, которые имеют одинаковые временные диаграммы с предыдущей схемой (цепь выпрямленного напряжения, сглаживающий дроссель, вентили), отличаясь только для трансформатора.

Среднее значение выпрямленного напряжения выражается через U2:

Действующее значение первичного тока, вычисленное по (1.1.3), будет Полная мощность шести вторичных обмоток трансформатора Полная мощность первичных обмоток трансформатора Коэффициент искажения входного тока выпрямителя Коэффициент преобразования выпрямителя по напряжению Коэффициент преобразования выпрямителя по току В итоге подобие электромагнитных процессов и расчетных соотношений в обеих однополупериодных схемах выпрямления трехфазного тока делает близкими и области их применения. Соединение вторичных обмоток в зигзаг обеспечивает лучшее использование трансформатора по магнитопроводу из-за отсутствия его однонаправленного подмагничивания. Но геометрическое (не арифметическое) суммирование напряжений вторичных обмоток в результирующем напряжении ухудшает использование трансформатора по меди обмоток. Практика показала, что при Id > 85…120 А трансформатор получается меньше в рассмотренной схеме выпрямления, а при токах, менее указанных, трансформатор меньше в предыдущей схеме выпрямления.

2.7. ШЕСТИФАЗНЫЙ ВЫПРЯМИТЕЛЬ ТРЕХФАЗНОГО ТОКА

С СОЕДИНЕНИЕМ ВТОРИЧНЫХ ОБМОТОК ТРАНСФОРМАТОРА

ЗВЕЗДА - ОБРАТНАЯ ЗВЕЗДА С УРАВНИТЕЛЬНЫМ РЕАКТОРОМ

Рассматриваемый выпрямитель (рис. 2.7.1) образован как бы из двух трехфазных однополупериодных выпрямителей, включенных на параллельную работу по выходу через уравнительный реактор.

Для обеспечения компенсации однонаправленных потоков вынужденного намагничивания две звезды вторичных напряжений трансформатора образованы противофазными напряжениями обмоток u2a и u2x, u2b и u2y, u2c и u2z, расположенных попарно на соответствующих трех стержнях магнитопровода. Это достигнуто объединением в нулевой точке одной звезды начал обмоток, а в нулевой точке второй звезды – концов обмоток. При этом, несмотря на однонаправленность токов в каждой паре обмоток, расположенных на соответствующих стержнях магнитопровода, результирующий магнитный поток каждого стержня не содержит постоянной составляющей, т. е. вынужденное подмагничивание однонаправленным потоком отсутствует. За этот симбиоз двух трехфазных групп выпрямления данную схему еще называют двойной трехфазной.

Задача анализа выпрямителя остается прежней: получить расчетные соотношения для элементов схемы и на основе сопоставления их с аналогичными соотношениями для ранее проанализированных схем выпрямления наметить возможные области применения схемы.

Особенностью анализа этой схемы является наличие двух режимов работы:

• двойного трехфазного выпрямления, являющегося основным;

• шестифазного однополупериодного выпрямления, возникающего при малых нагрузках, близких к холостому ходу.

Особое внимание в выполненном ниже анализе уделено, естественно, основному режиму работы – двойному трехфазному, когда две половинки схемы работают как бы независимо друг от друга. В конце этого анализа обращено внимание на характерную практическую специфику режима шестифазного выпрямления – повышение напряжения на выходе выпрямителя на 15 % по сравнению с режимом двойного трехфазного выпрямления.

Предваряет количественный анализ, как обычно, качественный анализ электромагнитных процессов с помощью временных диаграмм, показанных на рис. 2.7.2.

На первой диаграмме построены две трехфазные системы вторичных напряжений для двух систем вторичных обмоток, являющихся ны интервалы проводящего состояния вентилей в двух катодных группах по известному правилу для катодной группы. Огибающая положительных полуволн напряжений первой трехфазной системы дает кривую выпрямленного напряжения u d левой половины схемы, а аналогичная огибающая второй трехфазной системы – кривую выпрямленного напряжения u d правой половины схемы. Хотя средние значения выпрямленных напряжений обеих половинок схемы одинаковы, мгновенные значения выпрямленных напряжений различны изза сдвига их пульсаций на половину периода пульсаций, как это видно из диаграммы. Различие пульсаций у двух трехфазных выпрямителей требует включения их на параллельную работу через реактор, называемый уравнительным. Этот реактор, во-первых, воспринимает разницу пульсаций в выпрямленных напряжениях и ограничивает уравнительный ток между трехфазными выпрямителями и, во-вторых, позволяет получить на нагрузке, подключаемой к средней точке уравнительного реактора, напряжение ud, равное (по методу наложения) полусумме выпрямленных напряжений каждой половинки схемы. Изза указанного сдвига их пульсаций на половину своего периода напряжение на нагрузке имеет шестикратную, т. е. удвоенную частоту пульсаций, и p = qm2 = 6. Кривые выпрямленного тока id при допущении идеальности фильтра (Xd = ) пульсаций не содержат.

На третьей диаграмме приведена кривая уравнительного напряжения uур, равная разнице выпрямленных напряжений левой и правой половинки выпрямителя. Форма уравнительного тока, протекающего в контуре, образованном выпрямленными напряжениями двух половинок схемы, минуя нагрузку, определяется интегралом от уравнительного напряжения. Так как интегрирование несинусоидальной кривой, как было показано в разделе 1.3.3, означает ослабление в результирующей кривой высших гармоник, то при построении уравнительного тока принято, что он имеет синусоидальную форму и сдвинут на четверть периода в сторону отставания от выпрямленного напряжения.

Обычно индуктивность уравнительного реактора выбирают из условия ограничения (бесполезного для нагрузки и паразитного для трансформатора ) уравнительного тока на уровне 1–2 % от номинального значения выпрямленного тока. На третьей временной диаграмме уравнительный ток показан большей величины, так как он не заметен на уровне выпрямленного тока на диаграммах анодного и вторичного токов.

На четвертой временной диаграмме приведена кривая анодного тока вентиля 1 без учета пульсации от уравнительного тока (вследствие ее малости), налагающейся на половину от выпрямленного тока, разделившегося пополам в двух ветвях уравнительного реактора. При этом деление выпрямленного тока в динамике поддерживается за счет напряжения взаимоиндукции уравнительного реактора. Здесь же приведена кривая обратного напряжения на вентиле той же формы, что и у предыдущих выпрямителей трехфазного тока.

После определения формы анодных токов вентилей строятся на первой диаграмме токи во вторичных обмотках трансформатора, которые в однополупериодных схемах выпрямления совпадают с соответствующими анодными токами.

На пятой диаграмме показана форма напряжения на первичной обмотке фазы А трансформатора и кривая тока в этой обмотке i1A. Его можно построить по эмпирическому алгоритму формулы (2.5.2), примененной к двум вторичным токам i2a и i2x одной фазы. При этом пульсации во вторичных токах от уравнительного тока в первичном токе не проявляются, так как эти пульсации в двух указанных вторичных токах противофазны и в результирующем магнитном потоке стержня магнитопровода отсутствуют.

Расчетные соотношения для основного режима работы выпрямителя – режима двойного трехфазного выпрямления получаются с помощью построенных временных диаграмм токов и напряжений в прежней пятнадцатишаговой процедуре анализа.

1. Среднее значение выпрямленного напряжения в этой схеме такое же, как и у половинок схемы, так как среднее значение напряжения на уравнительном реакторе равно нулю, т. е.

2. Среднее значение анодного тока вентиля 3. Действующее значение анодного тока вентиля, вычисляемое также через скважность по (1.1.3):

4. Максимальное значение анодного тока 5. Максимальная величина обратного напряжения на вентиле 6. Установленная мощность вентилей с неполным управлением с полным управлением 7. Действующее значение тока во вторичной обмотке трансформатора 8. Действующее значение тока в первичной обмотке трансформатора в соответствии с (1.1.3) будет 9. Полная мощность шести вторичных обмоток трансформатора 10. Полная мощность трех первичных обмоток трансформатора 11. Типовая или установленная мощность трансформатора По сравнению с предыдущими схемами трехфазных выпрямителей здесь еще появился дополнительный элемент – уравнительный реактор, работающий на тройной частоте (150 Гц) напряжения. Так как реактор, как и трансформатор, – электромагнитное устройство, только с одной обмоткой, то затраты на него определяются величиной его установленной мощности, которую можно добавить к установленной мощности трансформатора при сравнении различных схем выпрямителей. Показано [8], что установленная мощность реактора, работающего на частоте 150 Гц и приведенная к частоте работы трансформатора, т. е. 50 Гц, будет 12. Индуктивность сглаживающего реактора определяется по соотношению (2.3.19) в зависимости от требований к качеству выпрямленного тока. Условная установленная мощность сглаживающего реактора вычисляется по (2.3.21) или (2.3.22), при этом с учетом шестикратности частоты пульсаций выпрямленного напряжения 13. Входной коэффициент мощности выпрямителя 14. Коэффициент преобразования выпрямителя по напряжению, очевидно, аналогичен его значению для трехфазного однополупериодного выпрямителя с соединением вторичных обмоток в звезду 15. Коэффициент преобразования выпрямителя по току в два раза выше из-за параллельного соединения двух половинок схемы На основании полученных результатов расчета и сравнения их с результатами расчета двух предыдущих схем трехфазных выпрямителей можно сделать следующие выводы:

1. Рассматриваемая схема имеет лучшее использование трансформатора по типовой мощности, чем в противопоставляемых схемах.

2. Использование вентилей по обратному напряжению и по установленной мощности во всех трех схемах однополупериодного выпрямления одинаковое. Особенностью данной схемы является в два раза большее значение коэффициента преобразования схемы по току и в два раза большее отношение среднего значения выпрямленного тока к среднему значению анодного тока вентилей.

3. Качество выпрямленного напряжения здесь существенно выше, чем в предыдущих схемах, из-за уменьшения его амплитуды пульсаций (характеризуется показателем Кп) и увеличения в два раза частоты пульсаций с трехкратной до шестикратной. Оба этих обстоятельства суммарно характеризуются показателем K г, который в 9 раз меньше по сравнению с трехпульсными выпрямителями. Это означает, что индуктивность сглаживающего дросселя и его установленная мощность будут также в это число раз меньше.

Входной коэффициент мощности выпрямителя наивысший среди всех рассмотренных выпрямителей:

т. е. качество входного тока в энергетическом (а не геометрическом) плане достаточно близко к синусоидальному, у которого I = 1. Действительно, коэффициент гармоник входного тока т. е. доля действующего значения высших гармоник тока равна 30 % от первой гармоники.

Теперь перейдем к рассмотрению специфики второго режима – режима шестифазного однополупериодного выпрямления. При малых значениях выпрямленного тока становится невозможным создать требуемый ток намагничивания уравнительного реактора для обеспечения его работы именно как уравнительного. При этом вентили начинают вступать в работу в точках естественного зажигания шестифазной звезды вторичных напряжений, объединенной из левой и правой систем трехфазных звезд. Кривой выпрямленного напряжения теперь становится огибающая положительных полуволн шестифазной системы напряжений, среднее значение которого По сравнению с режимом двойного трехфазного выпрямления напряжение на выходе выпрямителя возрастает на 15 %.

Из остальных расчетных соотношений ввиду малости загрузки выпрямителя током значима только изменившаяся величина максимального обратного напряжения на вентиле, которая теперь равна удвоенному значению амплитуды вторичного напряжения т. е. тоже на 15 % больше, чем в основном режиме. Это приводит к такому же увеличению и установленных мощностей вентилей.

В итоге, как и все однополупериодные схемы выпрямления, эта схема также рациональна при низких значениях выпрямленного напряжения, но больших значениях выпрямленного тока, поскольку здесь выпрямленный ток складывается из анодных токов шести вентилей (а не трех, как во всех рассматриваемых базовых выпрямителях трехфазного напряжения). При этом надо иметь в виду возможность возрастания напряжения на выходе выпрямителя на 15 % в режимах, близких к холостому ходу.

2.8. ВЫПРЯМИТЕЛЬ ТРЕХФАЗНОГО ТОКА

Двухполупериодные схемы выпрямления, характеризующиеся переменным током во вторичных обмотках трансформатора (по определению), значительно менее критичны к схеме соединения первичных и вторичных обмоток трансформатора. Наиболее распространено соединение первичных и вторичных обмоток трансформатора в звезду, схема такого выпрямителя показана на рис. 2.8.1, а.

Для облегчения анализа новой схемы двухполупериодного выпрямления опять (как и разделе 2.6) воспользуемся приемом сведения новой схемы к чему-то уже известному. Условно мостовой выпрямитель можно изобразить в виде последовательного соединения двух нулевых схем выпрямления, расщепив вторичные обмотки трансформатора, как показано на рис. 2.8.1, б. Одна нулевая схема образована катодной группой вентилей (плюс) и нулевой точкой вторичных обмоток трансформатора, соединенных в звезду (минус). Вторая нулевая схема образована анодной группой вентилей (минус) и опять нулевой точкой тех же вторичных обмоток трансформатора (плюс).

Цель анализа остается прежней, как и во всех базовых схемах выпрямления: изучить свойства схемы и по ним определить рациональные области ее применения. Методика двухэтапного анализа также остается прежней.

На рис. 2.8.2 показаны временные диаграммы напряжений и токов напряжений uРис. и ud(a), у которых пульсации сдвинуты на половину своего периода, дает шестипульсную кривую выпрямленного напряжения ud0. В отличие от нулевых схем выпрямителей, где выпрямляются фазные напряжения, в мостовой схеме, как видно из диаграммы, выпрямляются межфазные, т. е. линейные напряжения.

На третьей диаграмме приведена кривая напряжения на сглаживающем реакторе uLd.

На четвертой диаграмме приведены кривая анодного тока вентиля и кривая обратного напряжения на нем, построенные по той же методике, что и в нулевых схемах. Зная форму анодных токов вентилей, теперь можно построить токи во всех вторичных обмотках трансформатора. Так, ток во вторичной обмотке фазы а трансформатора i2a равен алгебраической сумме (с учетом их направления) анодных токов ia1 и ia4, протекающих по обмотке соответственно в положительную и отрицательную полуволны вторичного напряжения в согласии с определением двухполупериодного выпрямления, как показано на первой диаграмме.

На пятой диаграмме приведены кривые напряжения первичной обмотки фазы А u1A, задаваемого сетью, и тока этой же обмотки i1A. Ток во вторичной обмотке трансформатора чисто переменный (без постоянной составляющей), он трансформируется с той же формой в первичную обмотку. Строгое обоснование этого результата опять можно сделать с помощью составления уравнений для намагничивающих сил трансформатора по второму закону Кирхгофа для магнитных цепей.

Пользуясь соответствующими аналогиями процессов в данном и в ранее рассмотренном выпрямителях трехфазного тока, нетрудно получить необходимые расчетные соотношения в прежней пятнадцатишаговой процедуре расчета.

1. Среднее значение выпрямленного напряжения в мостовой схеме в два раза больше, чем в нулевой, т. е.

2, 3, 4. Среднее, действующее и максимальное значения тока вентилей такое же, как в нулевой схеме, т. е.

5. Но относительная величина максимального обратного напряжения на вентиле здесь в два раза меньше (из-за возрастания в два раза выпрямленного напряжения) 6. Установленная мощность вентилей – с неполным управлением – с полным управлением 7, 8. Одинаковая форма токов в первичных и вторичных обмотках трансформатора (с точностью до Кт) означает и подобие расчетных соотношений для действующих значений этих токов, с учетом (1.1.3.):

9, 10, 11. Тождественность форм напряжений на первичной и вторичной сторонах трансформатора и форм токов в них означает равенство полных мощностей обмоток первичной и вторичной стороны, т.

12. Качество выпрямленного напряжения здесь такое же, как и в предыдущей шестипульсной схеме выпрямления с уравнительным реактором, т. е.

13. Входной коэффициент мощности выпрямителя здесь также высок 14. Коэффициент преобразования выпрямителя по напряжению здесь в два раза выше 15. Коэффициент преобразования выпрямителя по току На основании проведенного формального анализа можно сделать следующие выводы, сравнивая полученные результаты с результатами анализа рассмотренных ранее выпрямителей трехфазного тока.

• Мостовая схема выпрямления трехфазного тока имеет наилучшее использование установленной мощности трансформатора среди всех схем.

• Качество выходного напряжения и входного тока выпрямителя здесь такое же, как и у шестипульсной схемы с уравнительным реактором.

• Использование вентилей по обратному напряжению в двухполупериодной (мостовой) схеме выпрямления в два раза лучше, чем во всех однополупериодных (нулевых) схемах выпрямления трехфазного тока, что аналогично ситуации с однополупериодными и двухполупериодными схемами выпрямления однофазного тока.

• Спецификой мостовой схемы являются протекание выпрямленного тока через два последовательно включенных вентиля и вследствие этого двойные потери напряжения и мощности по сравнению с однополупериодными схемами выпрямления.

Таким образом, совокупность достоинств трехфазной мостовой схемы выпрямления делает ее прима-схемой среди всех схем выпрямления и обеспечивает ей преимущественное применение, кроме случаев с малыми значениями выпрямленного напряжения и очень большими значениями выпрямленного тока.

Результирующая таблица свойств базовых схем выпрямителей приведена в разделе 4.1.

РЕГУЛИРОВОЧНАЯ ХАРАКТЕРИСТИКА

Управляемый выпрямитель – это схема базового выпрямителя, выполненного на управляемых вентилях. Возможны два способа регулирования среднего значения выпрямленного напряжения в выпрямителях на неполностью управляемых вентилях: фазовое регулирование, релейное регулирование.

При фазовом регулировании изменение угла регулированияя управляемых вентилей в базовых схемах выпрямления дает возможность регулирования среднего значения выпрямленного напряжения.

Целью нашего анализа здесь и является нахождение зависимости среднего значения выпрямленного напряжения от параметров управления.

Кривая выпрямленного напряжения в общем случае m2-фазного выпрямителя показана на первой диаграмме рис. 2.9.1, диаграмма анодного тока вентиля и обратного напряжения на нем приведена на второй диаграмме.

выпрямителя, связанное с возможностью регулирования выходного напряжения, сопровождается тремя неблагоприятными обстоятельствами.

ухудшением качества выпрямленного напряжения (количественное увеличение Kп и K г будет показано в разделе 3.7) и как следствие приводит к увеличению индуктивности сглаживающего реактора.

2. Увеличение угла регулирования при снижении выпрямленного напряжения сопровождается таким же увеличением сдвига анодного тока относительно переменного напряжения на входе выпрямителя.

Аналогично смещаются по фазе и токи обмоток трансформатора, которые при построении определялись через анодные токи вентилей. А отстающие по фазе токи относительно напряжения (как и отстающие в обществе от лидеров люди) снижают свою полную «работоспособность», так как при этом снижается в функции косинуса угла сдвига передаваемая активная мощность в соответствии с (1.3.7). Оценка влияния регулирования на входной коэффициент мощности будет дана в разделе 3.3.10.

3. После приложения к вентилю обратного напряжения, в течение которого он должен восстановить свои управляющие свойства, к вентилю прикладывается прямое напряжение. При этом напряжении вентиль должен оставаться закрытым до момента подачи на его управляющий электрод сигнала на включение вентиля.

Определим теперь количественную зависимость среднего значения выпрямленного напряжения идеального выпрямителя Ud0 от угла регулирования, которая называется регулировочной характеристикой управляемого выпрямителя. В соответствии с диаграммой ud на рис. 2.9.1 имеем Отношение среднего значения выпрямленного напряжения управляемого выпрямителя к среднему значению выпрямленного напряжения неуправляемого выпрямителя называется степенью регулирования выпрямленного напряжения и обозначается Ср. Тогда уравнение регулировочной характеристики в относительных единицах имеет вид График этой зависимости показан на рис. 2.9.2.

При 0 < < 90o имеет место выпрямительный режим работы схемы на идеальных элементах, при 90о < < < 180o – режим зависимого инРис. 2.9. вертирования, который будет рассмотрен в разделе 3.3.4.

Второй способ регулирования среднего значения напряжения на выходе выпрямителя обеспечивается релейным (циклическим) алгоритмом управления. При этом напряжение на выходе выпрямителя за период управления (период цикла) принимает два значения: максимальное выпрямленное (при = 0) или нулевое значение, как показано на временной диаграмме рис. 2.9.3 для двухпульсного выпрямителя. В случае выполнения выпрямителя по однополупериодной (нулевой) схеме выпрямления нулевое значение выпрямленного напряжения при сохранении возможности протекания в нагрузке неизменного выпрямленного тока (Xd = ) обеспечивается добавлением на выход выпрямителя нулевого вентиля, аналогично показанному на рис. 1.2.1, а. В случае выполнения выпрямителя по двухполупериодной (мостовой) схеме функцию нулевого вентиля выполняют два последовательных вентиля одного плеча мостовой схемы.

Среднее значение выпрямленного напряжения регулируется при этом изменением соотношения длительности наличия напряжения на нагрузке с длительностью периода Т (цикла). Уравнение регулировочной характеристики здесь очевидным способом выражается через скважность [см. (1.1.4 )] и степень регулирования выпрямленного напряжения является линейной функцией управления.

По сравнению с рассмотренным выше фазовым способом регулирования выпрямленного напряжения релейный способ имеет то преимущество, что входной ток выпрямителя всегда находится в фазе с напряжением сети и реактивная мощность сдвига выпрямителя равна нулю. Вследствие этого повышается и входной коэффициент мощности, который теперь будет равен с учетом (2.9.3) Недостатком этого способа управления является появление субгармоник (гармоник более низкой частоты, чем обычные) в выпрямленном напряжении и первичном токе, что обусловлено существенным увеличением периода всех электромагнитных процессов в схеме с Т1/р для выпрямленного напряжения и Т1 – для входного тока до периода цикла Т, который обычно значительно больше периода сетевого напряжения Т1. Для сохранения при этом малых пульсаций в выпрямленном токе электромагнитная постоянная цепи нагрузки (с фильтром) должна быть, в свою очередь, существенно больше периода цикла Т.

Таким образом, релейное управление, как более простое, применимо, когда нагрузкой выпрямителя являются обмотки электромагнитов, электрических машин, имеющие соответствующую электромагнитную инерционность.

ВОПРОСЫ К ГЛАВЕ

1. Какие элементы содержит блок-схема управляемого выпрямителя?

2. Какой режим работы выпрямителя называется режимом прерывистого тока нагрузки?

3. Какими мерами можно уменьшить зону прерывистых токов в выпрямителе?

4. Чем отличаются двухполупериодные схемы выпрямления от однополупериодных?

5. В какой схеме выпрямления однофазного напряжения лучше используются вентили:

по обратному напряжению, 6. Как обстоит дело с наличием вынужденного подмагничивания сердечника трансформатора однонаправленным потоком в выпрямителях однофазного напряжения?

7. По какому критерию разграничиваются зоны применения выпрямителей трехфазного тока со схемами соединения обмоток /0 и /Z0?

8. Как обстоит дело с наличием подмагничивания сердечника трансформатора однонаправленным потоком в шестипульсных выпрямителях трехфазного тока?

9. Как обстоит дело с наличием подмагничивания сердечника трансформатора однонаправленным потоком в трехпульсных выпрямителях трехфазного тока?

10. Когда рационально применение выпрямителя трехфазного тока с уравнительным реактором ?

11. Когда рационально применение трехфазной мостовой схемы выпрямления ?

12. От какого момента времени отсчитывается угол регулирования и почему ?

13. Какие новые качества присущи управляемому выпрямителю по сравнению с неуправляемым ?

14. Что определяет регулировочная характеристика управляемого выпрямителя? В каком диапазоне надо изменять угол регулирования для изменения выпрямленного напряжения от максимального до нуля?

15. В чем отличие релейного способа регулирования выпрямленного напряжения от фазового?

УПРАЖНЕНИЯ К ГЛАВЕ

1. Рассчитать параметры диодов в однофазной мостовой бестрансформаторной схеме выпрямления при Xd = и Rd = 20 Ом.

2. Рассчитать параметры диодов в однофазной мостовой бестрансформаторной схеме выпрямления при Xd = 0 и Rd = 20 Ом.

3. Построить кривую входного тока выпрямителя по п. 2 и рассчитать его входной коэффициент мощности.

4. По какой схеме необходимо выполнить выпрямитель с Ud0 = = 500 В и Rd = 100 Ом? Какова будет типовая мощность трансформатора при Xd = и Xd = 0?

5.* Построить кривую выпрямленного напряжения трехпульсного выпрямителя с Xd = при невключении (обрыве) одного диода и определить среднее значение напряжения.

6. Построить кривую тока, потребляемого трехпульсным выпрямителем из сети при соединении обмоток трансформатора /0.

7.* Рассчитать коэффициент гармоник выпрямленного напряжения шестипульсного выпрямителя.

8.* Рассчитать величину первой гармоники уравнительного напряжения по отношению к среднему значению выпрямленного напряжения в схеме с уравнительным реактором.

9. Рассчитать коэффициент искажения выпрямленного напряжения управляемого двухпульсного выпрямителя.

10. Рассчитать значение угла регулирования управляемого выпрямителя для снижения напряжения в 10 раз.

11.* Рассчитать коэффициент искажения тока однофазной сети при релейном регулировании выпрямленного напряжения.

3. ТЕОРИЯ ПРЕОБРАЗОВАНИЯ ПЕРЕМЕННОГО ТОКА

В ПОСТОЯННЫЙ С УЧЕТОМ РЕАЛЬНЫХ ПАРАМЕТРОВ

ЭЛЕМЕНТОВ ПРЕОБРАЗОВАТЕЛЯ

3.1. ПРОЦЕСС КОММУТАЦИИ В УПРАВЛЯЕМОМ ВЫПРЯМИТЕЛЕ

С РЕАЛЬНЫМ ТРАНСФОРМАТОРОМ. ВНЕШНЯЯ ХАРАКТЕРИСТИКА

В выпрямителях на идеальных элементах, рассмотренных в предыдущей главе, процесс коммутации тока, т. е. переход тока из фазы трансформатора с вентилем, заканчивающим работу, в фазу трансформатора с вентилем, вступающим в работу, осуществлялся мгновенно, что сопровождалось скачком тока. В реальных цепях всегда имеется индуктивность (внесенная или собственная), в которой невозможны скачки тока, а значит, невозможна и мгновенная коммутация.

Очевидно, реальный трансформатор будет заметно влиять на коммутацию своими реактивными сопротивлениями, что здесь и является задачей нашего анализа.

Известная Т-образная схема замещения трансформатора представлена на рис. 3.1.1.

В отличие от энергетиков, которые приводят параметры трансформатора к первичной, разовательной технике необходимо приведение параметров схемы замещения ко вторичной стороне.

Это связано с обратным направлением в построении электромагнитных процессов в трансформаторе выпрямителя: сначала, как было показано, строятся токи во вторичных обмотках трансформатора, а только затем – в первичных.

Прямое использование полной схемы замещения трансформатора с тремя индуктивностями в расчетной модели выпрямителя настолько увеличит сложность анализа (как это видно из раздела 1.2.1, где сделан учет всего одной индуктивности), что в аналитическом виде расчет станет практически невозможным. Поэтому необходимо разумное, в соответствии с целями анализа, упрощение схемы замещения. Профессиональное искусство специалиста как раз и состоит в способности разумного упрощения математической модели задачи, сам же расчет после этого носит в основном технический характер и с привлечением средств вычислительной техники становится доступным всем. А вот само упрощение основано на четком понимании физики процессов, разделении их на значимые и малозначимые для целей анализа.

Процесс коммутации тока в трансформаторе выпрямителя сопровождается отключением и подключением вторичных обмоток трансформатора к нагрузке, первичные обмотки трансформатора все время остаются подключенными к питающей сети. Значит, изменения основного магнитного потока в трансформаторе при коммутации практически не происходит, да и сама величина намагничивающего тока мощного трансформатора iµ составляет несколько процентов от тока, обусловленного нагрузкой. Поэтому индуктивность намагничивания Lµ из схемы замещения можно на этом этапе устранить. В результате первого шага упрощения приходим к схеме замещения с одной индуктивностью La, равной сумме индуктивностей рассеивания приведенной первичной и вторичной обмоток трансформатора, и одним активным сопротивлением R, также равным сумме активных сопротивлений приведенной первичной и вторичной обмоток. Индуктивность рассеивания трансформатора, приведенную ко вторичной (анодной) стороне трансформатора выпрямителя, называют анодной индуктивностью.

Необходимость второго шага в упрощении расчетной схемы замещения трансформатора связана с тем обстоятельством, что расчетные соотношения в LR-цепи с вентилем, как видно из результатов раздела 1.2.1, имеют трансцендентный характер, что не позволяет получить конечных аналитических соотношений. Поэтому, зная из опыта, что реактивное сопротивление рассеивания трансформаторов средней и большой мощности в 3…5 раз больше активного сопротивления обмоток, последним можно пренебречь. Поскольку влияние La на выпрямленное напряжение через коммутацию имеет место на уровне нескольких процентов, влияние Ra тогда будет на уровне одного процента и сделанное второе упрощение также обосновано.

Таким образом, оценку влияния реального трансформатора РТ на процесс коммутации токов в выпрямителе сделаем путем замены реального трансформатора на совокупность идеального трансформатора ИТ (как в прежней модели гл. 2) и суммарной индуктивности рассеивания обмоток, приведенной ко вторичной стороне (La), как показано на рис. 3.1. На рис. 3.1.3 приведена схема управляемого выпрямителя, у которого реальность трансформатора учтена включением реактивных сопротивлений Xa = La во вторичные обмотки трансформатора. Вентили и сглаживающий дроссель пока по-прежнему считаем идеальными, чтобы выяснить влияние в чистом виде одного нового элемента – Xa.

Очевидно, что теперь при включении очередного вентиля, например 3, ток в нем будет нарастать с конечной скоростью, а в вентиле 1, выходящем из работы, ток будет спадать тоже с конечной скоростью.

приемной сети, в случае зависимого инвертора, см. раздел 3.3.4), то такая коммутация называется естественной коммутацией.

Дифференциальное уравнение для тока в контуре коммутации iк имеет вид:

анодным током вентиля, вступающего в работу, имеет вид, при условии помещения начала отсчета времени в точку естественного зажигания:

Постоянная интегрирования С1 определяется из начального условия ia3 = 0 при =, т. е.

С учетом ее решение (3.1.2) примет вид Длительность процесса коммутации определяется из условия достижения током вентиля 3, вступающего в работу, тока Id, при этом ток вентиля, выходящего из работы, спадает до нуля, так как при идеальном фильтре и контур коммутации разомкнется. Интервал (относительного) времени, в течение которого в контуре коммутации ток проводят оба вентиля, участвующие в коммутации, называется углом коммутации и обозначается. Условие ia3 = Id при = + подставляется в уравнение (3.1.4) и отсюда получается формула для расчета угла коммутации Таким образом, определены законы изменения токов вентиля, вступающего в работу (3.1.4), и вентиля, выходящего из работы (3.1.5), на интервале коммутации и длительность интервала. Характер изменения мгновенного значения выпрямленного напряжения на интервале коммутации ud, когда ток проводят две фазы трансформатора, здесь u2a и u2b, находим по методу наложения, полагая цепь нагрузки источником тока Id, тогда Выпрямленное напряжение на интервале строится как полусумма фазных напряжений трансформатора, участвующих в коммутации.

На рис. 3.1.5 показаны временные диаграммы выпрямленного напряжения ud и анодных токов вентилей с учетом коммутации.

Характерно, что на внекоммутационном интервале, т. е. на интервале с одним проводящим вентилем, мгновенная кривая выпрямленного Рис. 3.1. напряжения идет по кривой вторичного напряжения трансформатора, несмотря на наличие в анодной цепи вентиля индуктивности La. Напряжение самоиндукции на ней от протекания тока id при этом равно нулю, так как производная идеально сглаженного выпрямленного тока также равна нулю.

Из диаграммы выпрямленного напряжения видно, что реальная коммутация токов привела к потере в площади кривой выпрямленного напряжения на величину коммутационного падения напряжения ux, заштрихованного на диаграмме. Потеря площади означает уменьшение среднего значения выпрямленного напряжения, которое теперь становится зависящим от величины угла коммутации, а значит, по (3.1.7) и от среднего значения выпрямленного тока при постоянном угле регулирования. Эта зависимость U d = f (I d ) = const называется внешней характеристикой выпрямителя. (Слово внешняя – мнемоническая подсказка местонахождения цепи нагрузки, внешне подключаемой к выпрямителю.) Уравнение внешней характеристики выпрямителя записывается из очевидного соображения: напряжение на выходе выпрямителя при наличии нагрузки равно разности напряжения его холостого хода Ud0 и падения напряжения в выпрямителе от коммутации Ux при появлении тока нагрузки, т. е.

где U x – среднее значение коммутационного падения напряжения, которое равно в общем случае После подстановки (3.1.10) в (3.1.9) получаем в явной форме уравнение внешней характеристики выпрямителя с учетом коммутации Характерно, что внешние характеристики, являющиеся прямыми линиями, идут параллельно для различных значений угла регулирования, так как коммутационное падение напряжения U x от него не зависит. Графики внешних характеристик показаны на рис. 3.1.6.

Другой характерный результат состоит в том, что влияние индукРис. 3.1. тивности La через процесс коммутации на среднее значение выпрямленного напряжения формально аналогично влиянию эквивалентного коммутации внутреннего квазиактивного сопротивления Rв.э:

Это позволяет представить выпрямитель по выходу схемой замещения, содержащей генератор постоянного напряжения величиной U d 0 cos и последовательно включенного с ним квазиактивного сопротивления Rв.э., как показано на рис. 3.1.7.

Сопротивление названо квазиактивным потому, что несмотря на наличие падения напряжения на нем, равного Ux, потерь активной мощности в нем нет, как нет ее и в самом коммутационном процессе, обусловленном реактивностью La.

Рис. 3.1.7 как и квазиактивное внутреннее сопротивление Rв.э.

Это позволяет объединить в суммарное внутреннее сопротивление выпрямителя Rв активные сопротивления обмоток трансформатора, приведенные ко вторичной стороне, R’1 + R2, динамическое сопротивление вентиля в прямом направлении Rдин, активное сопротивление обмотки сглаживающего реактора выходного фильтра Rф, т. е.

С учетом этого обобщенное уравнение внешней характеристики получает вид Здесь последнее слагаемое учитывает второй параметр реального вентиля в проводящем состоянии – напряжение отсечки прямой вольтамперной характеристики U0.

Для электроэнергетиков более привычным является такой параметр трансформатора, как напряжение его короткого замыкания U1k %, а не индуктивное сопротивление рассеивания трансформатора, приведенное ко вторичной стороне Xa. Эти два параметра связываются очевидным способом Таким образом, на втором этапе анализа – анализе выпрямителя с реальными элементами – учтены реальные параметры трансформатора, вентилей, выходного фильтра (кроме допущения Ld = ), которые, углубив результаты первого этапа анализа с идеальными элементами, расширили границы применения теории до задач практики. Осталось снять последнее допущение и выяснить влияние конечного значения индуктивности в цепи нагрузки Ld прежде всего на две основные для пользователя характеристики выпрямителя, а именно на его внешнюю и регулировочную характеристики. Это и будет сделано в следующем разделе.

3.2. ТЕОРИЯ РАБОТЫ ВЫПРЯМИТЕЛЯ НА ПРОТИВОЭДС

ПРИ КОНЕЧНОМ ЗНАЧЕНИИ ИНДУКТИВНОСТИ Ld.

Работа выпрямителя на противоЭДС в цепи нагрузки является самой частой моделью реальных нагрузок. Такими нагрузками, содержащими противоЭДС, являются:

1) якорная цепь машины постоянного тока, содержащая в схеме замещения кроме RL-параметров якорной обмотки еще и ЭДС вращения машины;

2) аккумуляторы, замещаемые источником ЭДС с малым активным внутренним сопротивлением;

3) гальванические ванны в химическом и металлургическом производстве, имеющие встречную ЭДС раствора или расплава;

4) электрические дуги сварки, газоразрядных приборов освещения, плазменных установок и т.п.

Условно к этому режиму можно отнести даже работу выпрямителя на активно-индуктивную нагрузку (обмотки возбуждения электрических машин, обмотки реле и т.д.) на этапе спада тока в обмотке (гашение поля обмотки). При этом энергия магнитного поля обмотки возвращается (рекуперирует) в питающую сеть. Выпрямитель имеет также свою собственную внутреннюю противоЭДС, в соответствии с (3.1.14) равную qU0, которая оказывает значительное влияние на выпрямленный ток при малых величинах выпрямленного напряжения (низковольтные выпрямители или зарегулированные до малых напряжений выпрямители с высоким номинальным выпрямленным напряжением).

Модельная схема управляемого выпрямителя, охватывающая все указанные случаи, имеет вид, показанный на рис. 3.2.1.

Задачей данного раздела является изучение влияния конечного значения индуктивности в цепи нагрузки Ld на Рис. 3.2. две основные характеристики выпрямителя: внешнюю и регулировочную. При необходимости результат анализа электромагнитных процессов в этой модели можно распространить и на изучение влияния конечного значения Ld на процессы в других цепях, помимо выходной, по той методике, которая была использована выше при анализе базовых ячеек выпрямления.

Конечное значение индуктивности в цепи нагрузки может приводить к появлению качественно нового режима работы выпрямителя – режима прерывистого выпрямленного тока, как это было отмечено в разделе 2.2. Поэтому последовательно проведем анализ для режимов прерывистого тока, граничного предельно-непрерывного тока, непрерывного тока.

Воспользуемся временными диаграммами рис. 3.2.2 для этапа качественного анализа, на которых построены кривые выпрямленного нулевая пауза. Поодиночная работа всех вентилей означает независимость их Рис. 3.2.2 друг от друга, поэтому схема замещения любого выпрямителя на интервале проводящего состояния вентиля имеет вид, показанный на рис. 3.2.3.

Здесь в сопротивление Rd можно объединить при необходимости все внутренние активные сопротивления выпрямителя, входящие в (3.1.13). Аналогично, в противоЭДС нагрузки можно объединить напряжения отсечки прямой вольт-амперной характеристики проводящих вентилей qU0. Ин- Рис. 3.2. дуктивность рассеивания трансформатора La входит с множителем q, так как при m2=3, q=2 ток течет по двум фазам трансформатора.

Как было показано в разделе 2.2.2, в режиме прерывистого выпрямленного тока в RL-нагрузке длительность протекания тока определяется из решения трансцендентного уравнения, что означает и невозможность получения аналитического выражения для среднего значения выпрямленного тока. Это, в свою очередь, означает отсутствие замкнутого аналитического выражения для внешней характеристики выпрямителя. Анализ работы выпрямителя для такого самого общего случая сделан в работах А. А. Булгакова [40] и С. В Захаревича. [41] и довольно сложен. Поэтому ограничимся здесь случаем без активного сопротивления в цепи выпрямленного тока (Rd = 0). В таком случае внешнюю характеристику можно получить уже в виде уравнений в параметрической форме, т. е.

Тогда, задаваясь значениями j < 2/qm2, можно вычислять по (3.2.1) соответствующие им значения U d j, I d j при = сonst и получать таким образом точки внешней характеристики.

Сначала определим среднее значение выпрямленного напряжения, интегрируя кривую его мгновенного значения за время протекания тока (во время бестоковой паузы мгновенные значения выпрямленного напряжения и противоЭДС совпадают, а значит, совпадают и их средние значения на интервале паузы) в соответствии с диаграммой на рис. 3.2. где = + – угол вступления вентиля в работу, отсчиqm танный относительно нуля вторичного напряжения, куда здесь помещено начало отсчета времени.

Так как среднее значение выпрямленного напряжения уравновешивается средним значением противоЭДС, то из (3.2.2) следует Для расчета среднего значения выпрямленного тока необходимо знать выражение для мгновенного значения этого тока, которое находится как решение дифференциального уравнения для тока, имеющего в соответствии с расчетной схемой замещения (рис. 3.2.3) следующий вид:

Прямое интегрирование этого уравнения при Rd = 0 дает где = – относительное значение противоЭДС, Постоянная интегрирования определяется из начального условия: id = 0 при = Тогда решение (3.2.5) примет вид Из уравнения (3.2.6) находится среднее значение выпрямленного тока Если подставить в (3.2.7) значение, определяемое из (3.2.3), то получим в явном виде зависимость Обычно ограничиваются для выпрямленного тока зависимостью (3.2.7).

3.2.2. РЕЖИМ ПРЕДЕЛЬНО-НЕПРЕРЫВНОГО ТОКА (=2/qm2) Соотношения для средних значений выпрямленного напряжения и выпрямленного тока указанного граничного режима получаются соответственно из (3.2.2) и (3.2.7) с учетом (3.2.3) при подстановке в них =2/qm Соотношения (3.2.9) и (3.2.10) определяют уравнение дуги эллипса в параметрической форме на графике внешних характеристик рис. 3.2.4 и разделяют зоны непрерывного и прерывистого выпрямленного тока..

В режиме непрерывного выпрямленного тока его период состоит из двух подынтервалов: внекоммутационного и коммутационного. Во внекоммутационном интервале ток проводит один вентиль (в однополупериодных схемах выпрямления), в коммутационном – два вентиля.

Число дифференциальных уравнений для тока уже становится в три раза больше (три уравнения), чем в режиме прерывистого тока, что приводит к такому усложнению формул, что они становятся громоздкими и трудоемкими для инженерных расчетов. Поэтому здесь можно использовать приближенную методику построения внешней характеристики, если значения Xd заметно превышают значения Xa. Более точная, но более сложная методика приведена в [8]. Это обычно выполняется, так как значение реактанса сглаживающего дросселя выбирают из условия получения пульсаций выпрямленного тока на уровне нескольких процентов от его среднего значения. С инженерной точностью в этом случае пульсациями выпрямленного тока можно пренебречь, т. е. считать его идеально сглаженным, как при Xd =. Тогда противоЭДС в цепи нагрузки можно заменить на эквивалентное активное сопротивление нагрузки Rd.э:

протекая по которому, выпрямленный ток создает на нем такое же постоянное падение напряжения, как U0. Режим работы выпрямителя в статике при этом не изменится, т. е. выпрямитель этой подмены нагрузки «не почувствует».

Уравнение же для внешней характеристики выпрямителя с активно-индуктивной нагрузкой при Xd = было получено в разделе 3.1.1 в форме (3.1.11) и в более общей модели выпрямителя – в форме (3.1.14). Графики результирующих внешних характеристик выпрямителя, нагруженного на противоЭДС, Показателен крутой спад характеристик в области прерывистого выпрямленного тока. Это обусловлено Xd. В режиме непрерывного тока ограничение величины выпрямленного тока определяется процессом коммутации, в котором участвует только реактанс Xa.

Еще одной особенностью работы выпрямителя на противоЭДС в случае конечного значения Xd является возможность появления режима работы с вынужденным углом регулирования в.

В этом случае вентиль вступает в работу не с углом регулирования, задаваемым по каналу управления, а с вынужденным углом регулирования в, определяемым моментом появления прямого напряжения на вентиле, как это иллюстрирует временРис. 3.2. ная диаграмма на рис. 3.2.5.

Значение угла в (в) определяется соотношением вторичного напряжения трансформатора и противоЭДС нагрузки.

В этих случаях, если в >, в формулах для расчета внешней характеристики необходимо заменять на в.

Таким образом, конечное значение индуктивности сглаживающего реактора в цепи выпрямленного тока приводит к появлению режима прерывистого тока нагрузки, вызывающего:

• существенное нелинейное искажение внешней характеристики выпрямителя, что ухудшает свойства выпрямителя как элемента системы автоматического управления;

• резкое ухудшение качества выпрямленного тока, имеющего в этом режиме большое превышение амплитуды импульсов тока над его средним значением (полезной составляющей), что увеличивает потери активной мощности;

• заметное снижение входного коэффициента мощности выпрямителя в зоне малых (по сравнению с =2/qm2) (подробнее в разделе 3.3.10);

• увеличение быстродействия регулирования выпрямленного тока до одного периода его пульсаций, в то время как в режиме непрерывного тока скорость его изменения определяется электромагнитной постоянной времени цепи нагрузки (здесь – сглаживающего реактора).

Второй задачей исследования, поставленной в начале этого раздела, является изучение влияния конечного значения Xd на регулировочные характеристики выпрямителя. Формально зависимость среднего значения выпрямленного напряжения от угла регулирования можно проследить для режима прерывистого тока по уравнению (3.2.3). Очевидна зависимость выпрямленного напряжения не только от, но и от длительности протекания импульсов выпрямленного тока. Таким образом, положение регулировочной характеристики становится зависящим от режима в цепи выпрямленного тока, т..е. регулировочные характеристики также искажаются за счет неоднозначности их положения от угла регулирования.

В целом режим прерывистого тока, ухудшая все основные характеристики выпрямителя (кроме быстродействия, которое, наоборот, улучшается), является неблагоприятным режимом работы выпрямите- ля. Сократить зону прерывистых токов можно увеличением значения индуктивности сглаживающего реактора, увеличением эквивалентного числа фаз выпрямляемого напряжения (qm2) и ограничением максимального значения угла регулирования.

С КОНДЕНСАТОРНЫМ СГЛАЖИВАЮЩИМ ФИЛЬТРОМ

Индуктивный сглаживающий фильтр Ld, включаемый последовательно с нагрузкой в цепи выпрямленного тока, оказывает сглаживающее влияние в основном на выпрямленный ток, в то время как выпрямленное напряжение Ud по-прежнему остается пульсирующим. В случаях, когда нагрузка, представляемая в расчетной модели постоянным или переменным активным сопротивлением Rd, требует постоянного напряжения, необходимо использовать сглаживающий конденсатор Cd, включенный параллельно в цепи нагрузки, как показано на рис. 3.3.1 на примере выпрямителя однофазного тока. Упрощенный анализ влияния емкости конденсатора на выпрямленное напряжение является целью этого раздела.

Реальность параметров трансформатора в соответствии с результатами раздела 3.1 отражена добавлением во вторую обмотку идеального трансформатора индуктивности рассеивания La, приведенной ко вторичной стороне, т. е. La это не внешний элемент схемы, а параметр схемы при отсутствии входного трансформатора потребуется включение соответствующего реактора на входе.

Cd можно пренебречь, то режим работы этой схемы становится подобным режиму работы выпрямителя на противоЭДС, рассмотренному в предыдущем разделе. Оценим требуемое значение емкости сглаживающего конденсатора в зависимости от мощности нагрузки Pd:

Потребуем, чтобы постоянная времени цепи нагрузки была много больше периода пульсаций выпрямленного напряжения отсюда Например, в неуправляемом выпрямителе сетевого напряжения 220 В с бестрансформаторным входом среднее значение выпрямленного напряжения будет близко к амплитуде напряжения сети (при малых нагрузках), т. е. примерно 300 В. Тогда из (3.3.3), беря десятикратное превышение постоянной времени над периодом пульсаций, получаем Таким образом, большие требуемые значения емкости сглаживающего конденсатора обычно ограничивают мощность однофазных выпрямителей с таким фильтром на маломощном уровне порядка единиц киловатт. Индуктивный сглаживающий фильтр Ld становится рациональным, наоборот, при малых значениях Rd, имеющих место уже в мощных выпрямителях с питанием от трехфазной сети (при Pd > > 3…5 кВт). В промежуточном диапазоне мощностей выпрямителей (от сотен ватт до 3…5 кВт) используют комбинированные типы LdCd – фильтров на выходе выпрямителя, которые выполняются по Г-, П- и Т-образным схемам [10, 11].

С другой стороны, в выпрямителях малой мощности (десятки ватт) в схеме замещения трансформатора активные сопротивления обмоток доминируют над реактивными сопротивлениями индуктивностей рассеивания обмоток. Для этого случая анализ работы выпрямителя на активную нагрузку с конденсаторным фильтром сделан в работе [11].

3.4. ОБРАЩЕНИЕ НАПРАВЛЕНИЯ ПОТОКА АКТИВНОЙ МОЩНОСТИ

В ВЕНТИЛЬНОМ ПРЕОБРАЗОВАТЕЛЕ С ПРОТИВОЭДС В ЗВЕНЕ

ПОСТОЯННОГО ТОКА - РЕЖИМ ЗАВИСИМОГО ИНВЕРТИРОВАНИЯ

Рассмотренные устройства преобразования переменного тока в постоянный характеризуются передачей активной мощности из питающей сети переменного тока в цепь постоянного тока – цепь нагрузки.



Pages:     | 1 || 3 | 4 |   ...   | 7 |


Похожие работы:

«В.В. Пиляева ГРАЖДАНСКОЕ ПРАВО ЧАСТИ ОБЩАЯ И ОСОБЕННАЯ УЧЕБНИК 4 е издание КНОРУС МОСКВА 2010 УДК 347(470+571)(075.8) ББК 67.404(2Рос)я73 П32 Пиляева В.В. Гражданское право. Части общая и особенная : учебник / В.В. Пиляе П32 ва. — 4 е изд., стер. — М. : КНОРУС, 2010. — 992 с. ISBN 978 5 406 00159 2 Учебник Гражданское право написан на основе современных принципов и методов, которые необходимы при изучении гражданского права. В издании освещены все разделы гражданского права – от общего учения...»

«Законодательное Собрание Пермского края ДетИ. Права. Законы. Методические рекомендации к проведению Парламентского урока во 2–5-х классах образовательных учреждений Пермского края Пермь Издательство Пушка 2011 УДк 372.834 ББк 74.266.7 Д38 Издание подготовлено при содействии Законодательного Собрания Пермского края Издание осуществлено в рамках краевой целевой Программы развития политической культуры и гражданского образования населения Пермского края на 2007-2011 гг. Авторский коллектив:...»

«НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МЕЖДУНАРОДНАЯ АКАДЕМИЯ БИЗНЕСА И НОВЫХ ТЕХНОЛОГИЙ (МУБиНТ) Ю. В. Соколова, И. В. Мартынова НАПИСАНИЕ И ОФОРМЛЕНИЕ КУРСОВЫХ И ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ РАБОТ Методические указания Ярославль Академия МУБиНТ 2011 УДК 001.8 ББК 72 С 59 Соколова, Ю. В. С 59 Написание и оформление курсовых и выпускных квалификационных работ : методические указания / Ю. В. Соколова, И. В. Мартынова ; Международная академия бизнеса и...»

«Сведения об учебно-методической и иной документации, разработанной образовательной организацией для обеспечения образовательного процесса по 110201.65 Агрономия № Наименование Наименование учебно-методических, пп дисциплины по учебному методических и иных материалов (автор, место плану издания, год издания, тираж) ГЭС.Ф.1 Иностранный язык 1. Учебно-методический комплекс по дисциплине Иностранный язык Краснодар, 2011 г. 2. Учебно-методическое пособие для студентов биологических и с/х...»

«В. Н. Княгинин Модульная революция: распространение модульного дизайна и эпоха модульных платформ Санкт-Петербург 2013 Промышленный и технологический форсайт Российской Федерации на долгосрочную перспективу В. Н. Княгинин Модульная революция: распространение модульного дизайна и эпоха модульных платформ Рекомендовано Учебно-методическим объединением по университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки магистров...»

«Федеральное агентство по образованию ГОУ ВПО Уральский государственный горный университет Т.А.ВЕТОШКИНА, Л.Н.ВЕЗНЕР, Д.Н.МОТОВ, С.В.ТИМОФЕЕВ КАК УСТРОИТСЯ НА РАБОТУ Методическое пособие для студентов всех специальностей (направлений) и форм обучения г.Екатеринбург 2009 2 СОДЕРЖАНИЕ ВВЕДЕНИЕ АНАЛИЗ СОСТОЯНИЯ РЫНКА ТРУДА. ТРЕБОВАНИЯ К ПРОФЕССИОНАЛУ 1. Обзор ситуации на рынке труда 2. Технология поиска работы. Способы и методы поиска работы 3. Самомаркетинг и самореклама ОСНОВНЫЕ РЕКЛАМНЫЕ...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Б.А. БИРИМКУЛОВА ПОИСК И РАЗВЕДКА ПОДЗЕМНЫХ ВОД Учебное пособие для студентов специальностей: 050805 – Водные ресурсы и водопользование и 050810 – Мелиорация, рекультивация и охрана земель Алматы 2010 3 УДК 551.4 : 378 (075.8) ББК 26.35 Б 64 Рекомендован к изданию решением Научного совета Казахского национального аграрного университета (26.01.2010г) Биримкулова Б.А. Поиск и разведка подземных вод:...»

«Петрозаводский государственный университет Рак лёгкого учебное пособие И.Е.Бахлаев - доцент, кандидат медицинских наук А.П.Толпинский - доцент, кандидат медицинских наук кафедра госпитальной хирургии Петрозаводск, 2000 Введение Рак легкого, которым ежегодно заболевает около 1 млн. человек, одна из причин смерти онкологических больных в большинстве стран мира. В России рак легкого занимает первое место как в общей структуре онкологических заболеваний, так и среди злокачественных опухолей у...»

«Введение Справочно-методическое пособие представляет собой обзор требований к ввозу товаров в страны Европейского Союза (ЕС) из третьих стран, в том числе России. Структурно пособие состоит двух основных смысловых блоков. В первом разделе представлена информация по Европейскому Союзу, общему рынку и основным требованиям, предъявляемым к продуктам, ввозимым в ЕС. Второй раздел содержит конкретные требования к различным группам товаров с точки зрения их сертификации, обеспечения безопасности,...»

«Министерство образования и науки РФ ФГБОУ ВПО Байкальский государственный университет экономики и права К докладу проректора по научной работе д.э.н., проф. Киреенко А.П. О научно-инновационной деятельности университета в 2012 г. и перспективах ее развития Таблица 1 Объемы НИР БГУЭП (Головной вуз и филиалы) 2008-2012 гг., тыс. руб. 2008 г. 2009 г. 2010 г. 2011 г. 2012 г. Объем НИР всего 36863,2 38183,2 152732,1 112988,2 115703,1 Из них: Из средств Минобрнауки России Из средств фондов РФФИ, РГНФ...»

«Министерство образования Республики Беларусь Учреждение образования Полоцкий государственный университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для студентов специальностей 1-70 04 02 Теплогазоснабжение, вентиляция и охрана воздушного бассейна, 1-70 04 03 Водоснабжение, водоотведение и охрана водных ресурсов Составитель В.К. Родионов Под общей редакцией Л.С. Турищева Новополоцк 2005 УДК 539.3/.4 (075.8) ББК 30.121 я 73 С 64 РЕЦЕНЗЕНТЫ: В.В. Поляков, генеральный директор ОАО...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Белгородский государственный технологический университет им. В.Г. Шухова А.В. Губарев, Ю.В. Васильченко ТЕПЛОГЕНЕРИРУЮЩИЕ УСТАНОВКИ Часть 1 для студентов заочной формы обучения с применением дистанционных образовательных технологий специальности 270109 – Теплогазоснабжение и вентиляция Белгород 2008 УДК 697.32(07) ББК 31.3я7 Г93 Губарев, А.В., Васильченко, Ю.В. Г93 Теплогенерирующие установки. Часть 1: учебное пособие / А.В. Губарев, Ю.В. Васильченко; Под...»

«УДК 336 ББК 65.052 Б94 Авторы: С. А. Самусенко, О. Н. Харченко, Т. В. Кожинова, Е. С. Берестова, О. С. Задоркина Электронный учебно-методический комплекс по дисциплине Бухгалтерский учет подготовлен в рамках инновационной образовательной программы Создание института экономики и управления в рамках Сибирского федерального университета, реализованной в ФГОУ ВПО СФУ в 2007 г. Рецензенты: Красноярский краевой фонд науки; Экспертная комиссия СФУ по подготовке учебно-методических комплексов дисциплин...»

«Новые информационные технологии в образовании Материалы международной научно-практической конференции Екатеринбург, 13–16 марта 2012 г. Екатеринбург РГППУ 2012 Министерство образования и наук и Российской Федерации ФГАОУ ВПО Российский государственный профессионально-педагогический университет ОГУК Свердловская областная научная библиотека им. В.Г. Белинского НОУ ВПО Гуманитарный университет Филиал ФГБОУ ВПО Южно-Уральский государственный университет (НИУ) в г. Нижневартовске ФГБОУ ВПО...»

«Р.Ф. КАТАЕВ Федеральное агентство по образованию Уральский государственный технический университет - УПИ Р.Ф. КАТАЕВ Учебное пособие Научный редактор проф., д-р техн. наук М.П. Шалимов Екатеринбург УГТУ-УПИ 2008 УДК 621.791.46/.48 (075.8) ББК 35.710я73 К29 Рецензенты: В.И. Шумяков, доц., канд.техн.наук., зам. директора ООО Уральский институт сварки; Л.Т. Плаксина, ст. преп. каф. сварочного производства РППУ Катаев Р.Ф. К29 Сварка пластмасс: учебное пособие/ Р.Ф.Катаев. Екатеринбург: УГТУ-УПИ,...»

«ДЕПАРТАМЕНТ НАУКИ, ПРОМЫШЛЕННОЙ ПОЛИТИКИ И ПРЕДПРИНИМАТЕЛЬСТВА ГОРОДА МОСКВЫ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКАЯ АКАДЕМИЯ РЫНКА ТРУДА И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ (ГОУ МАРТИТ) Ул. Молодогвардейская, д. 46, корп. 1, г. Москва, 121351 Тел./Факс (499) 346-30-50. E-mail: [email protected] www.martit.ru Президенту ПАУ ЦФО Исх № Волжанину А.В. На № от В соответствии с Федеральным стандартом деятельности саморегулируемых организаций арбитражных...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет С. А. Курганов, В. В. Филаретов СХЕМНО-АЛГЕБРАИЧЕСКОЕ МОДЕЛИРОВАНИЕ И РАСЧЕТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ Учебное пособие Ульяновск 2005 УДК 621.372.061 (075) ББК 31.27.01я7 К 93 Рецензенты: кафедра микроэлектроники Ульяновского государственного университета (зав. кафедрой доктор физико-математических наук, профессор Н. Т....»

«Федеральное агентство по образованию Московский государственный технический университет МАМИ Кафедра Информационные технологии в экономике Профессор, д.т.н. Катанаев Н.Т., к.э.н. Коростелев А.А. ОДОБРЕНО методической комиссией экономического факультета Дисциплина: Информационные технологии в экономике (в маркетинге) МЕТОДИЧЕСКОЕ ПОСОБИЕ по курсовой работе Информационные системы в маркетинге для студентов экономических специальностей по специальности 061500 (080111.65) Маркетинг Москва...»

«Русский (родной) язык 1.–9. классы Pamatizgltbas mcbu priekmeta programmas paraugs Satura rdtjs Введение Цель учебного предмета Задачи учебного предмета Учебное содержание Коммуникативная компетенция Языковая компетенция Социокультурная компетенция Учебная компетенция Распределение учебного материала по классам Порядок и время освоения учебного содержания 1 КЛАСС 2 КЛАСС 3 КЛАСС 4 КЛАСС 5 КЛАСС 6 КЛАСС 7 КЛАСС 8 КЛАСС 9 КЛАСС Формы и методические примы оценивания учебных достижений учащихся...»

«ВЫПИСКА ИЗ УСТАВА бюджетного образовательного учреждения Омской области среднего профессионального образования Омский строительный колледж УСТАВ утвержден распоряжением Министерства образования Омской области от 24 января 2012 г. № 153. УСТАВ согласован распоряжением Министерства имущественных отношений Омской области от 23 января 2012 г. № 68-8. УСТАВ принят общим собранием Учреждения. Протокол от 12 января 2012 г. № 1. V. Образовательный процесс в Учреждении 5.1. Общие требования к...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.