WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 |

«ФИЗИОЛОГИЯ Учебно-методический комплекс Для студентов, обучающихся по специальности 050720 Физическая культура Горно-Алтайск РИО Горно-Алтайского госуниверситета 2008 Печатается по решению методического совета ...»

-- [ Страница 1 ] --

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«ГОРНО-АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра БЖД, анатомии и физиологии

ФИЗИОЛОГИЯ

Учебно-методический комплекс

Для студентов, обучающихся по специальности 050720

«Физическая культура»

Горно-Алтайск РИО Горно-Алтайского госуниверситета 2008 Печатается по решению методического совета Горно-Алтайского госуниверситета УДК 612; 591. 1 Физиология : учебно-методический комплекс (для студентов, обучающихся по специальности 050720 «Физическая культура») / Горно-Алтайск :

РИО ГАГУ, 2008. – с.

Составитель:

Чанчаева Е.А., к.б.н., доцент Рецензенты:

Кривова Н.А., д.б.н., профессор; директор НИИ биологии и биофизики Томского государственного университета Бондаренко А.В., к.г.н., доцент; декана географического факультета ГорноАлтайского государственного университета В работе предоставлены учебно-методические материалы по дисциплине «Физиология», в том числе рабочая программа, методические указания студентам, содержание и порядок проведения экзамена. Дисциплина «Физиология» является дисциплиной федерального компонента для студентов II курса специальности «Физическая культура».

Чанчаева Е.А.,

ОГЛАВЛЕНИЕ

I. Квалификационная характеристика студента II. Определение набора компетенций III. Рабочая программа 3.1 Методические указания по изучению курса 3.2 Требования к обязательному минимуму содержания дисциплины, определенные ГОС ВПО по специальности 3.3 Распределение часов курса по формам и видам работ 3.4 Содержание учебного курса 3.5 Курс лекций 3.6 Практикум 3.7 Глоссарий курса 3.8 Рекомендуемая литература IV. Методические указания к самостоятельной работе студента V. Контрольные вопросы, выносимые на зачет VI. Контрольные вопросы, выносимые на экзамен VII. Контрольно-измерительные материалы I. Квалификационная характеристика студента Физиология – одна из фундаментальных глав биологии. Эта дисциплина рассматривает как функции отдельных клеток, так и взаимодействие этих клеток в процессе формирования функций тканей и органов, объединяемых в регуляторные системы организма.

Изучение взаимодействия регуляторных систем дает возможность студентам понять механизмы, поддерживающие постоянство среды и адекватную реакцию организма на события в окружающем мире.

Изучение студентами – педагогами физической культуры дисциплины «Физиология» готовит их к профессиональной деятельности в соответствии с фундаментальной базовой общепрофессиональной и начальной профессиональной подготовкой.

Педагог физической культуры должен уметь решать задачи, соответствующие его квалификации; должен обладать суммой теоретических знаний и практических навыков в области физиологии, позволяющих ему решать профессиональные задачи:

- приобрести теоретические знания об организме как саморегулирующейся системе;

- изучить регуляторные механизмы обеспечения гомеостаза живых систем;

- освоить комплекс теоретических и практических знаний о физической работоспособности и физиологических основах утомления и восстановления в спорте, изучить возрастные закономерности развития и проявления физиологических функций органов и систем организма в процессе физического воспитания и спорта;

- ознакомиться с особенностями адаптации организма человека к физическим упражнениям;

- формировать у студентов – будущих педагогов физической культуры необходимые знания для индивидуального подхода к учащимся в процессе физического воспитания и спортивной тренировки.

Педагог физической культуры должен знать:

1. Физиологические свойства систем органов, их функции;

2. Регуляцию жизненных функций и системы обеспечения гомеостаза;

3. Физиология двигательного аппарата и периферической нервной системы;

4. Общие свойства и закономерности высшей нервной деятельности;

5. Особенности адаптационных процессов к физическим упражнениям;

6. Основы физиологических закономерностей развития детского организма.

- давать оценку физической работоспособности;

- определять артериальное давление;

- проводить спирометрию, динамометрию, расчет основного и общего обмена;

- оценивать двигательные особенности;

- диагностировать уровень тренированности;

владеть навыками:

- работы с медицинским и техническим оборудованием;

- одномоментной регистрации различных функций в процессе моделирования физических нагрузок в лабораторных условиях;

- работы со специальной литературой и библиографией.

3.1 Методические указания по изучению курса Дисциплина «Физиология» рассчитана на студентов II курса специальности «Физическая культура». Выделено 140 часа: 30ч – лекций, 40ч – практические занятия. Форма отчета – зачет, экзамен. После изучения дисциплины «Анатомия» студенты-педагоги физической культуры приступают к изучению физиологии человека по следующим темам: «Физиология системы крови», «Физиология системы кровообращения», «Физиология системы дыхания», «Физиология системы пищеварения», «Обмен веществ и энергии», «Физиология эндокринной системы», «Физиология двигательного аппарата», «Физиология периферической нервной системы», «Физиология анализаторов», «ВНД», «Адаптация к физической работе», «Физиология спортивной тренировки и спортивных упражнений», «Возрастная физиология».



3.2 Требования к обязательному минимуму содержания дисциплины, определенные ГОС ВПО по специальности Организм как саморегулирующаяся система. Гомеостаз. Физиология системы крови. Иммунитет. Физиология системы кровообращения. Состав, свойства и значение лимфы. Физиология системы дыхания. Физиология системы пищеварения. Обмен веществ и энергии. Физиология эндокринной системы. Физиология двигательного аппарата. Физиология периферической нервной системы. Физиология анализаторов. Учение о высшей нервной деятельности. Адаптация. Физиологическая адаптация к физической работе.

Работоспособность. Утомление. Физиология спортивной тренировки. Физиология спортивных упражнений. Физиологические особенности детей, подростков и взрослых. Физиологические основы организации занятий физической культурой и спортом.

3.3 Распределение часов курса по формам и видам работ Физиология системы Физиология системы кровообращения Физиология системы Физиология системы Физиология эндокринной системы Физиология двигательного аппарата и Физиология анализаторов. ВНД Адаптация к физической работе. Физиология спортивной тренировки и упражнений Возрастная физиология Введение. Предмет физиологии в системе биологических дисциплин.

Внутренняя среда организма, гомеостаз.

Кровь и лимфа. Функции крови. Состав, количество, свойства крови.

Свертывание крови. Группы крови. Резус-фактор. Форменные элементы крови. Кроветворение.

Физиология кровообращения. Большой и малый круги кровообращения. Функциональная роль предсердий и желудочков. Цикл сердечных сокращений. Систолический и минутный объемы крови. Свойства сердечной мышцы. Автоматия сердца. Проводящая система сердца. Регуляция деятельности сердца. Особенности строения различных частей сосудистого русла. Кровяное давление. Регуляция тонуса сосудов.

Физиология дыхания. Воздухоносные пути и альвеолы. Механизм дыхательных движений. Внутриплевральное давление и его значение для дыхания и кровообращения. Значение сурфактанта в функции легких. Перенос газов кровью. Рецепторы органов дыхания, их роль в создании оптимального режима дыхания. Хеморецепторы, их роль в создании адекватного уровня легочной вентиляции.

Пищеварение. Методы изучения пищеварения. Типы пищеварения.

Голод. Насыщение. Состав, свойства слюны, ее значение. Регуляция слюноотделения. Состав, свойства желудочного сока. Регуляция секреторной функции желудка. Пищеварение в двенадцатиперстной кишке. Состав и свойства панкреатического сока. Состав и свойства желчи. Значение желчи в пищеварении. Состав и свойства кишечного сока. Роль бактерий в кишечном пищеварении. Всасывательная функция пищеварительного аппарата.

Обмен веществ и энергии. Значение обмена веществ. Его основные этапы. Обмен белков. Обмен липидов. Обмен углеводов. Витамины. Минерально-водный обмен. Водный обмен и его значение. Энергетическая сторона обмена веществ. Прямая и непрямая калориметрия. Основной обмен. Зависимость интенсивности обмена веществ от различных физиологических условий. Физиологические основы питания.

Эндокринная система. Понятие об эндокринных железах и гормонах.

Понятие «внутренняя секреция» и «гормон». Основные свойства гормона.

Методы изучения внутренней секреции. Гипоталамус. Гипофиз. Щитовидная железа. Паращитовидные железы и парагормон. Кальцитонин. Тимус и его гормоны (тимозины, тимопоэтины и др.). Внутрисекреторная функция поджелудочной железы. Надпочечники. Гормонов коры надпочечников: минералокортикоиды и глюкокортикоиды. Глюкокртикоиды и стресс. Половые гормоны коры надпочечников. Значение мозгового слоя надпочечников. Гипер- и гипофункция надпочечников.

Физиология двигательного аппарата. Поперечно-полосатая мышца.

Быстрые и медленные тонические мышечные волокна. Саркомер - структурная единица мышечного волокна. Физиология сокращения и расслабления мышц. Иннервация мышц. Понятие о двигательной единице.

Периферическая нервная система. Соматическая и вегетативная нервная система. Симпатический отдел. Парасимпатический отдел. Примеры влияния вегетативной нервной системы на эффекторные органы.

Физиология анализаторов. Понятие о рецепторах, органах чувств, анализаторах. Кожные, вкусовые, обонятельные рецепторы. Орган слуха, его строение и функция. Механизмы восприятия звука. Глаз, его строение и функция. Построение изображения на сетчатке. Элементы сетчатки. Фоторецепторы. Корковое представительство рецепторных систем.

Физиология высшей нервной деятельности. Принцип целостности и нервизма в учении Павлова. Врожденный рефлекс. Условный рефлекс. Торможение условных рефлексов. Типы ВНД. Первая и вторая сигнальные системы.

Адаптация к физической работе. Физиология спортивной тренировки и упражнений. Понятие об общем адаптационном синдроме (Г.Селье). Динамика функций организма при адаптации, ее стадии. Физиологические особенности адаптации к физическим нагрузкам. Разминка и врабатывание. Устойчивое состояние. Определение и физиологические механизмы развития утомления. Физиологические механизмы и закономерности восстановительных процессов. Классификация и характеристика физических упражнений. Физиологическая характеристика поз и статических нагрузок. Физиологическая характеристика стандартных циклических и ациклических движений.

ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ. ЛИМФА

1.Состав, количество, физико-химические свойства крови 2.Свертывание крови 3.Группы крови 4.Форменные элементы крови 5.Кроветворение 6.Лимфа Термин внутренняя среда организма предложен французским физиологом Клодом Бернаром. В это понятие включена совокупность жидкостей организма – кровь, лимфа, тканевая, суставная, плевральная, спино-мозговая жидкости, которые омывают клетки и околоклеточные структуры тканей.

Основой внутренней среды организма является кровь, между тем роль непосредственной питательной среды выполняет тканевая жидкость. Внутренняя среда организма характеризуется динамическим постоянством - гомеостазом.

Кровь состоит из плазмы и форменных элементов – клеток крови: красных кровяных телец (эритроцитов), белых (лейкоцитов) и кровяных пластинок (тромбоцитов). Плазма, лишенная фибрина, называется сывороткой.

На долю крови у взрослого человека приходится примерно 6-8% общей массы тела, а у детей в связи с более высоким содержанием воды – 8-9%. У взрослого человека это соответствует 4-6л крови. Процентное соотношение между плазмой и форменными элементами крови называется гематокритом (55-60% - плазмы, 40-45% - форменных элементов). У здорового человека эта величина может претерпевать существенные и достаточно длительные изменения при адаптации к большим высотам.

Вязкость крови. Если вязкость воды принять за 1, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови – 5. Вязкость крови обусловлена наличием в ней белков и особенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутреннего сопротивления. Вязкость увеличивается при сгущении крови. Т.е. потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови.

Осмотическое давление крови. Если два раствора разной концентрации разделить полупроницаемой перепонкой, пропускающей только растворитель (воду), то вода переходит в более концентрированный раствор. Сила, определяющая движение растворителя через полупроницаемую мембрану называется осмотическим давлением. Растворы, в которых концентрация хлорида натрия выше, чем в плазме здорового человека (норма) называется гипертоническими. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Например, в гипертоническом растворе эритроциты сморщиваются, в гипотоническом - набухают и разрушаются. У человека температура замерзания крови ниже нуля на 0,56-0,580С (чем выше в растворе суммарная концентрация мелких молекул и ионов, тем ниже температура замерзания).

Реакция крови и поддержание ее постоянства. Кровь имеет слабо щелочную реакцию. рН артериальной крови равна 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что зависит от образования в них при метаболзме кислых продуктов. Постоянство рН крови называется активной реакцией крови. Крайними пределами изменений рН, совместимых с жизнью, является величина от 7,0 до 7,8. Смещение рН в кислую сторону называется ацидозом, в щелочную – алколозом. У здоровых людей рН крови колеблется в пределах 7,35-7,4. рН крови остается постоянным благодаря буферным свойствам плазмы и эритроцитов, а также деятельностью органов дыхания и выделения, удаляющих из организма избыток углекислого газа, кислот и щелочей.

Буферные свойства крови обусловлены тем, что в ней содержатся: 1) буферная система гемоглобина; 2) карбонатная буферная система; 3) фосфатная; 4) система белков плазмы. Буферность – способность поддерживать активную реакцию крови.

Состав плазмы крови. Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом белков и солей. В плазме находятся ряд белков: альбумины, глобулины и фибриноген; небелковые азотсодержащие соединения (аминокислоты и полипептиды), продукты распада белков и нуклеиновых кислот (мочевина, креатинин, мочевая кислота), безазотистые соединения (глюкоза, жиры и липоиды), минеральные вещества (катионы натрия, калия, кальция, анионы хлора, гидрокарбонаты, гидрофосфаты). Содержание органических и неорганических веществ плазмы крови поддерживается на относительно постоянном уровне.

Свертывание крови. Основоположников современной ферментативной теории свертывания крови является проф. А.А. Шмидт, Его теорию поддержал и уточнил П.Моравиц. Свертывание крови проходит в три фазы: 1) образование протромбиназы; 2) образование тромбина и 3) образование фибрина. Кроме них выделяют предфазу и послефазу. В предфазу осуществляется сосудисто-тромбоцитарный гемостаз (остановка кровотечения и микоциркуляторных сосудах). Послефаза включает два процесса – ретаркцию (сокращение, уплотнение) и фибринолиз (растворение) кровяного сгустка. Таким образом, в процессе гемостаза вовлечены 3 компонента: стенки кровеносных сосудов, форменные элементы крови и плазменная ферментная система свертывания плазмы.

Сосудисто-тромбоцитарный гемостаз. Этот механизм способен самостоятельно епркратить кровотечение из наиболее часто травмируемых микроциркуляторных сосудов с низким артериальным давлением. Он складывается из ряда процессов:

1.Рефлекторный спазм поврежденных сосудов. Это реакция обеспечивается сосудосуживающими веществами, освобождающимися из тромбоцитов (серотонин, адреналин, норадреналин).

2.Адгезия тромбоцитов (приклеивание) к месту травмы.

3.Обратимая агрегация (скучивание) тромбоцитов.

4.Необратимая агрегация тромбоцитов.

5.Ретракция тромбоцитарного тромба.

Коагуляционный гемостаз. Тромбоцитарные тромбы, образующиеся при сосудисто-тромбоцитарном гемостазе, не выдерживают высокого давления и вымываются. В крупных сосудах гемостаз может быть достигнут путем образования фибринового тромба, представляющего собой более прочную пробку. Его образование осуществляется ферментативным коагуляционным механизмом, протекающим в три фазы.

Фаза 1. Самой сложной и продолжительной фазой является протромбиназа. В этом процессе различают внешнюю (тканевую) и внутреннюю (кровяную) систему. Внешний путь запускается тканевым тромбопластином, который выделяется из стенок поврежденного сосуда и окружающих тканей.

Во внутренней системе фосфолипиды и другие факторы поставляются самой кровью. В 1 фазу образуются тканевая, тромбоитарная и эритроцитарная протромбиназы. В формировании тканевой протромбиназы участвуют плазменные факторы VII, V, X и кальций. Кровяная протромбиназа образуется медленнее. Начальной реакцией является активация фактора Хагемана, который активирует XI, образуя с ним комплекс. К этому времени происходит разрушение эритроцитов и образование комплекса XII+XI. Под влиянием фактора XI активируется фактор IX, который реагирует с фактором VIII и ионами Са2+, образуя кальциевый комплекс. Он адсобируется на фосфолипидах и после этого активируется фактор Х. Активированный фактор Х на матрице фосфолипидов образует последний комплекс фактор Х+ фактор V+ кальций и завершает образование кровяной протромбиназы. Ее главной частью служит активный фактор Х.

Фаза 2. Образование тромбина протекает мгновенно. Такая скорость обусловлена тем, что протромбиназа адсорбирует протромбин и на своей поверхности превращает его в тромбин. Этот процесс протекает при участии факторов V, X и Са2+.

Фаза 3. Происходит превращение фибриногена в фибрин. Этот процесс протекает в три этапа. 1- образование золеобразного фибрин-мономера, 2 – фибрин-полимера, 3 – при участии фактора ХIII и фибриназы тканей, тромбоцитов и эритроцитов образуется окончательный или нерастворимый фибрин-1.

Таким образом, свертывание крови представляет собой ферментативный процесс, в котором на матрице фосфолипидов последовательно активируются факторы свертывания и образуются их комплексы. Фосфолипиды клеточных мембран выступают как катализаторы взаимодействия и активации факторов свертывания, ускоряя течение процесса гемокоагуляции.

Противосвертывающие механизмы. Жидкое состояние крови сохраняется за счет многих механизмов: 1) свертыванию крови препятствуют гладкая поверхность эндотелия сосудов, что предотвращает активацию фактора Хагемана и агрегация тромбоцитов; 2) стенки сосудов и форменные элементы крови имеют отрицательные заряды, что отталкивает клетки крови от сосудистых стенок; 3) стенки сосудов покрыты тонким слоем растворимого фибрина адсорбирующим активные факторы свертывания, особенно тромбин; 4) свертыванию мешает большая скорость течения крови, что не позволяет факторам гемокоагуляции достигнуть нужной концентрации в одном месте; 5) жидкое состояние крови поддерживается имеющимися в ней естественными антикоагулянтами.

Имеющиеся в организме антикоагулянты делят на две группы: 1) предшествующие (первоначальные) и 2) образующиеся в процессе свертывания крови и фибринолиза (вторичные).

В первую группу входят антитромбопластины, антитромбины, гепарин.

Вторичные антикоагулянты представляют собой «отработанные» факторы свертывания. В состоянии покоя содержание антикоагулянтов невелико, но оно резко возрастает в ответ на ускорение свертывания крови.

Группы крови. Причины осложнений при переливании крови были выяснены в начале прошлого века. В1901 году австриец К.Ландштейнер и в 1903 году Я.Янский обнаружили, что при перемешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом – явление агглютинации. Это зависит от наличия в эритроцитах агглютинируемых факторов – агглютиногенов А и В. В эритроцитах они могут быть по одному или отсутствовать.

Одновременно было установлено, что в плазме содержатся агглютинирующие агенты, которые склеивают эритроциты. Указанные вещества названы агглютининами и b. В крови человека содержатся один, либо два, либо ни одного агглютинина. При переливании несовместимой крови эритроциты не только склеиваются, но и разрушаются (гемолиз). Последнее связано с тем, что в плазме, помимо агглютининов, находятся одноименные гемолизины. Склеивание эритроцитов происходит в том случае, если эритроциты донора встречаются с одноименными агглютининами реципиента:

А+; В+b; АВ+b. У людей имеется 4 комбинации агглютиногенов и агглютининов системы АВО.

Выяснение причин агглютинации позволило сформулировать два основных правила переливания крови: 1) необходимо подбирать кровь так, чтобы избежать встречи одноименных агглютиногенов донора с агглютининами реципиента, т.е. плазма реципиента должна быть пригодна для жизни перелитых эритроцитов; 2) агглютинины донора в расчет не принимаются.

Прогрессивное развитие хирургии, трансфузиологии и гематологии заставило отказаться от этих правил и перейти к переливанию только одногруппной крови.

Среди агглютиногенов, не входящих в систему АВО, одним из первых был обнаружен резус-фактор (или резус-агглютиноген). Ландштейнер и Винер обнаружили его у обезьян макак. У 15% людей он отсутствует (резусотрицательная кровь). Система резус имеет 6 разновидностей агглютиногенов – D, C, E из которых наиболее активен D. Если кровь человека, содержащего резус-фактор, перелить человеку, не имеющему его, то у него образуются иммунные антирезус-агглютинины. Повторное введение такому человеку резус-положительной крови может привести к развитию гемотрансфузионных осложнений.

При браке резус-положительного мужчины с резус-отрицательной женщиной (вероятность такого брака 50%) плод нередко наследует резусфактор отца. Кровь плода проникает в организм матери, вызывая образование антирезус-агглютининов. Через плаценту они попадают в кровь плода, вызывая разрушение эритроцитов и внутрисосудистое свретывание крови.

Если концентрация антирезус-агглютининов высока, это приводит к смерти плоад и выкидышу. При легких формах резус-несовместимости плод рождаются живым, но с гемолитической желтухой.

Форменные элементы крови. Эритроциты – красные кровяные тельца, представляют собой клетки, которые у человека и млекопитающих не имеют ядра. В крови у мужчин содержится в среднем 5х1012/л эритроцитов (5000000 в 1 мкл), у женщин – около 4,5х1012/л (4500000 в 1 мкл). Количество эритроцитов изменчиво. Увеличение их числа называют эритроцитозом, уменьшение – эритропенией. Эти сдвиги могут носить относительный и абсолютный характер.

Абсолютный эритроцитоз – увеличение числа эритроцитов в организме наблюдается при снижении барометрического давления (на высокогорье), у больных с хроническими заболеваниями легких и сердца вследствие гипоксии, которая стимулирует эритропоэз.

Относительный эритроцитоз – увеличение числа эритроцитов в единице объема крови без увеличения их общего количества в организме - наблюдается при сгущении крови (при обильном потении, ожогах, холере и дизентерии). Он возникает также при тяжелой мышечной работе вследствие выброса эритроцитов из селезеночного кровяного депо.

Абсолютная эритропения развивается вследствие пониженного образования, усиленного разрушения эритроцитов или после кровепотери.

Относительная эритропения возникает при разжижении крови за счет увеличения жидкости в кровотоке.

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным ферментов.

Он находится в эритроцитах, что обеспечивает уменьшение вязкости крови, уменьшает онкотическое давление плазмы, предотвращая обезвоживание тканей, предупреждает потерю организмом гемоглобина вследствие его фильтрации в клубочках почек и выделения с мочой.

Гемоглобин состоит из небелковой части гемма, белковой – глобина.

Гемм имеет в своем составе двухвалентное железо, способное присоединять и отдавать кислород. В норме гемоглобин содержится в виде 3 физиологических соединений: оксигемоглобин, дезоксигемоглобин, карбгемоглобин. Патологические соединения: карбоксигемоглобин, метгемоглобин. В скелетных мышцах и миокарде находится мышечный гемоглобин – миоглобин.

Разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови называют гемолизом. Разрушение может быть вызвано уменьшением осмотическоо давления, под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол, желчные кислоты, сапонин и др.), при сильных механических воздействиях на кровь (например, при сильном стряхивании ампулы с кровью), при замораживании и размораживании крови, при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т.д.

Лейкоциты белые кровяные тельца, обеспечивающие иммунитет. У взрослых кровь содержит 4-9х109/л (4000-9000 в 1 мкл) лейкоцитов, т.е. в 500-1000 раз меньше, чем эритроцитов. Увеличение их количества называют лейкоцитозом, а уменьшение – лейкопенией. Лейкоциты деялт на гранулоциты и агранулоциты.

Кроветворение - процесс образования и развития форменных элементов крови. Различают эритропоэз – образование эритроцитов, лейкопоэз- образование лейкоцитов, тромбоцитопоэз- образование кровяных пластинок.

Эритроциты, гранулоциты (эозинофилы, базофилы, нейтрофилы) развиваются в красном костном мозге, который находится в плоских костях, метафизе трубчатых костей. Лимфоциты, кроме костного мозга, образуются в лимфатических узлах, селезенке, лимфоидной ткани кишечника и миндалин.

ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

1.Схема кровообращения 2.Проводящая система сердца 3.Цикл сердечных сокращений 4.Регуляция деятельности сердца 5.Кровеносные сосуды. Регуляция тонуса сосудов Большой круг кровообращения начинается самой большой артерией организма – аортой из левого желудочка. У самого ее начала отходят две коронарных артерии, которые дают начало, так называемому третьему кругу кровообращения. Аорта от сердца поднимается немного вверх, образует дугу и устремляется вниз, проходя через диафрагму в брюшную полость, где в самом низу разделяется на толстые артериальные магистрали, идущие в нижние конечности. От аорты на всем протяжении отходит множество ветвей. Правая и левая плечеголовные, непарная и полунепарная вены объединяют свои потоки в верхнюю полую вену, впадающую в правое предсердие, подвздошные вены впадают в нижнюю полую вену. На своем пути к правому предсердию она вбирает в себя кровь от поясницы и диафрагмы, а также от полых органов брюшной полости, от всех непарных органов по селезеночной вене и нижней брыжеечным венам кровь от желудка, кишечника, селезенке, сальника уходит в печень по системе воротной вены на очистку от шлаков. Пройдя этот фильтр впадает в нижнюю полую вену.

Таким образом, большой круг кровообращения выглядит следующим образом: левый желудочекаортаосновные ветви аортыартерии мелкого и среднего калибраартериолыкапиллярывены мелкого и среднего калибраверхняя и нижняя полые веныправое предсердие.

Малый круг кровообращения начинается с правого желудочка. Отходящий от правого желудочка легочной ствол является артерией, хотя несет венозную кровь. Легочные артерии, войдя в ворота легких разделяются на долевые артерии, на сегментарные, артериолы, на оплетающие ацинусы капиллярные сети. Обогатившаяся кислородом кровь по легочной вене поступает в левое предсердие.

Сердечная мышца миокарда обладает рядом свойств, обеспечивающих ее непрерывную ритмическую деятельность. Функциональным элементом сердца служит мышечное волокно – цепочка клеток миокарда, соединенных «конец в конец» и заключенных в общую саркоплазматическую оболочку (основную мембрану).

В зависимости от морфологических и функциональных особенностей в сердце различают два типа волокон: 1) волокно рабочего миокарда предсердий и желудочков, составляющие основную массу сердца и обеспечивающие го нагнетательную функцию. 2)волокна водителя ритма (пейсмекера) и проводящей системы сердца, отвечающие за генерацию возбуждения и проведения его к клеткам миокарда.

Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий: возбуждение, возникающее в каком-либо из этих отделов, охватывает все без исключения невозбужденные волокна. Благодаря этой особенности сердце подчиняется закону «все или ничего»: на раздражение отвечает либо возбуждением всех волокон либо не отвечает вовсе.

Этим оно отличается от нервов и скелетных мышц.

Ритмические сокращения сердца возникают в нем самом. Если изолированное сердце поместить в соответствующие условия, оно будет продолжать биться с постоянной частотой. Это свойство называется автоматизмом.

В норме ритмические импульсы генерируются только специализированными клетками водителями ритма и проводящей системой сердца. На ранних стадиях эмбрионального развития этой способностью обладают все клетки закладки сердца. По мере дифференцировки клеток предсердий и желудочков автоматизм у них исчезает и появляется устойчивый высокий потенциал покоя.

Цикл сердечных сокращений. Возбуждение клеток миокарда вызывает их сокращение. Однако для того, чтобы кровь в результате чередований сокращения и расслабления сердца передвигалась в нужном направлении – от вен к артериям необходима согласованная работа клапанов. В сердце существует два вида клапанов, препятствующих обратному току крови.

Клапаны расположены на входе и выходе обоих желудочков сердца.

Атриовентрикулярные клапаны (в левом желудочке – митральный клапан, в правом – трехстворчатый) препятствуют обратному забросу крови в предсердия во время систолы желудочков. Аортальный и легочной клапаны, расположены у основания крупных артериальных стволов, предупреждают обратный ток крови в желудочки во время диастолы.

Атриовентрикулярные клапаны, образованные перепончатыми листками (створками), свешивающимися в желудочки наподобие воронки. Их свободные концы соединены тонкими сухожильными связками (нитями) с сосочковыми мышцами; это препятствует заворачиванию сворок клапанов в предсердия во время систолы желудочков.

Аортальный и легочной клапаны состоят из трех кармашков в виде полумесяца, окружающих устье сосуда (полулунные). Во время диастолы ток крови устремляется за створки клапанов, наполняет кармашки кровью, в результате чего створки захлапываются.

Сердечный цикл. Кровь по венам притекает к сердцу. Из полых вен венозная кровь попадает в правое предсердие, а легочные вены приносят артериальную кровь к левому. Оба предсердия постепенно заполняются прибывающей кровью, одна часть которой в них задерживается, другая через открытые атриовентрикулярные отверстия перетекает в желудочки. После стенки обоих предсердий напрягаются, тонус нарастает, кольцевые пучки миокарда смыкают отверстие легочных и полых вен, в результате происходит сокращение миокарда – систола предсердий.

Вся кровь из них выжимается в желудочки, стенки которых в этот момент расслаблены, а полости расширяются. Эта фаза продолжается 0,1с.

Вторая фаза – систола желудочков - следует непосредственно за первой, начинаясь с периода напряжения (0,08с). В периоде напряжения различают фазу изометрического напряжения (0,03с), когда увеличивается давление в полостях желудочков. Обратному току крови в предсердия препятствует захлапывание створчатых клапанов. После достижения некой максимальной степени напряжения начинается период сокращения всего миокарда обоих желудочков (0,25с) – систола желудочков. В левом желудочке давление нарастает до 200мм рт.ст., в правом до 60мм рт.ст., что приводит к выжиманию крови в отверстия – аорту и легочной ствол (фаза быстрого изгнания).

Остаток крови выбрасывается из сердца за остальное время уже под меньшим давлением – фаза медленного изгнания. При этом предсердия уже расслаблены и начали принимать кровь из вен, т.е. систола желудочков создает отрицательное давление, кровь из аорты и легочного ствола устремляется обратно в желудочки, смыкание полулунных клапанов препятствует обратному току крови в желудочки (0,04с). В фазу изометрического расслабления в предсердиях давление становится выше, чем в желдочках, что ведет к открытию створчатых клапанов. Весь объем крови, который успел накопиться в предсердиях за начавшуюся раньше диастолу (за 0,08с) поступает в соответствующий желудочек (фаза быстрого наполнения). Кровь из полых и легочных вен еще 0,17с продолжает потихоньку заполнять правое и левое предсердия и слегка подтекает через атровентрикулярные отверстия в желудочки (фаза медленного наполнения).

Таким образом, сердечный цикл длится 0,8с и состоит из 3 фаз. Систола предсердий (0,1с) наслаивается на диастолу желудочков (0,5с), являясь ее пресистолическим периодом. Систола желудочков продолжается 0,3с и приводит к выбросу крови в аорту и легочной ствол.

Регуляция работы сердца. Различают два вида регуляции: нервную и гуморальную. Нервная регуляция чрезвычайно сложно. Симпатическая нервная система учащает сокращения сердца, увеличивает их силу, повышает возбудимость миокарда и усиливает проводимость по нему импульса; парасимпатическая – урежает, уменьшает, снижает и ослабляет. Эта регуляция многоэтапна и ступенчата.

Первый уровень регуляции – внутрисердечный Второй – спинной мозг Третий – продолговатый мозг Последний уровень регуляции – кора больших полушарий Гуморальная регуляция связана с влиянием некоторых веществ, таких как гормоны, электролиты, растворенные газы и пр.

5.Кровеносные сосуды. Регуляция тонуса сосудов Регуляция может быть нервной и гуморальной. Нервная регуляция действует через симпатическую и парасимпатическую нервные системы. Гуморальная действует, когда либо непосредственно молекулы воздействуют на сосуды, по которым протекают, либо посредством стимуляции соответствующих нервных центров.

- барорецепторный механизм - хеморецепторный механизм - механизм стрессового расслабления сосудов - механизм перемещения жидкости в капиллярах - ренин-ангиотензиновый механизм - почечно-объемный механизм - альдостероновый механизм.

ФИЗИОЛОГИЯ ДЫХАНИЯ

1.Вентиялция легких 2.Обмен газов в легких 3.Транспорт газов кровью 4.Регуляция дыхания Вентиляция легких осуществляется в результате периодических изменений объема грудной полости. Увеличение объема грудной полости обеспечивает вдох (инспирацию), уменьшение – выдох (эксперацию). Фазы вдоха и выдоха составляют дыхательный цикл.

Изменение объема грудной полости совершается за счет сокращений дыхательных мышц, подразделяющихся на инспираторные и эксператорные.

Типы дыхания. Различают реберный (грудной) и брюшной типы дыхания.

Давление в плевральной полости. Легкие и стенки грудной полости покрыты серозной оболочкой – плеврой. Внутриплевральное давление - отрицательное. Благодаря наличию жидкости в плевральной полости и отрицательному давлению листки плевры удерживаются друг с другом.

Если в плевральную полость попадает небольшое количество воздуха, легкое частично спадается, но вентиляция продолжается, такое состояние называется закрытым пневмотораксом. При ранениях, вскрытии грудной клетки давление вокруг легкого становится равным атмосферному и легкое спадается полностью. Такой пневмоторакс называется открытым.

Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами: 1)поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол; 2)упругостью ткани стенок альвеол вследствие наличия в них эластических волокон; 3)тонусом бронхиальных мышц.

Перенос кислорода из альвеолярного газа в крови и углекислого газа в альвеолярный газ происходит исключительно путем диффузии. Ее движущей силой служат разности парциальных давлений кислорода и углекислого газа по обе стороны аэрогематического барьера, образованного альвеолокапиллярной мембраной. Никакого активного транспорта здесь не существует.

Для облегчения диффузии кислорода имеется сурфактантная выстилка альвеол. Большая диффузионная способность легких обусловлена огромным числом альвеол, а также малой толщиной альвеолокапиллярной мембраны.

Основная часть кислорода транспортируется в форме непрочного соединения с гемоглобином и лишь небольшая часть в форме физического растворения в плазме.

Двуокись углерода переносится кровью в трех формах:

1)карбгемоглобина; 2)кислых солей угольной кислоты; 3)в форме физического растворения.

Подобно другим скелетным мышцам, дыхательные мышцы иннервируются соматическими нервными волокнами. Мотонейроны, аксоны которых иннервируют диафрагму, находятся в спинном мозге в передних рогах серого вещества 3 и 4 шейных сегментов; межреберных мышц – в грудных сегментах спинного мозга. Важнейшие структуры дыхательного центра находятся в продолговатом мозге. Различают инспираторные и экспираторные скопления нейронов.

Дыхательные нейроны получают импульсы от:

- рецепторов растяжения легких (механорецепторов) - ирритантных рецепторов - рецепторов верхних дыхательных путей - коры больших полушарий - хеморецепторов.

ПИЩЕВАРЕНИЕ

Общая характеристика системы пищеварения (типы пищеварения, функции пищеварительной системы, закономерности деятельности пищеварительной системы, особенности регуляторных процессов желудочно-кишечного тракта) Состояния голода и насыщения Методы изучения функций пищеварительного тракта Пищеварение в ротовой полости Пищеварение в тонком кишечнике Пищеварение в толстом кишечнике Двигательная функция пищеварительного тракта 1. Общая характеристика системы пищеварения (типы пищеварения, функции пищеварительной системы, закономерности деятельности пищеварительной системы, особенности регуляторных процессов желудочно-кишечного тракта) Система пищеварения – это совокупность органов, обеспечивающих поступление питательных веществ в организм. Она включает пищеварительный тракт (ротовой отдел со слюнными железами, глотка, пищевод, желудок, кишечник), поджелудочную железу и печень.

Стенка пищеварительного тракта состоит из слизистой, подслизистой, гладкомышечной (несколько слоев) и серозной оболочек.

Питательные вещества – продукты гидролиза белков, жиров и углеводов (мономеры), способные всасываться в кровь и лимфу, а также это вода и минеральные соли и витамины. Они лишены видовой специфичности, но сохраняют энергетическую ценность.

Типы пищеварения. В зависимости от происхождения гидролаз (гидролитических ферментов, расщепляющих белки, жиры и углеводы) пищеварение делится на: аутолитическое; симбионтное; собственное.

Процессы пищеварения классифицируются также по их локализации.

Выделяют: внутриклеточное пищеварение – гидролиз питательных веществ, попавших в клетку путем фагоцитоза или пиноцитоза; внеклеточное:

Дистантное (полостное) – гидролиз веществ под действием ферментов желудочно-кишечного тракта (ЖКТ) на значительной дистанции от места образования ферментов.

Контактное (пристеночное, мембранное) – осуществляется ферментами, фиксированными на клеточной мембране.

Особенности регуляторных процессов ЖКТ Влияние экстраорганных нервов центральной нервной системы Роль интраорганной нервной системы Гуморальные механизмы регуляции Голод служит выражением потребности организма в питательных веществах. Проявлением голода является жжения, «сосания под ложечкой», тошнота, головокружение, головная боль, чувство общей слабости. Внешним проявлением голода является поведенческая реакция поиска пищи.

Проявления голода обусловлены возбуждением нейронов различных отделов и уровней центральной нервной системы (ЦНС). Совокупность этих центров Павлов назвал пищевым центром. Это сложный гипоталамолимбико-кортикальный центр. Ведущим отделом являются латеральные ядра гипоталамуса. Гипоталамические ядра тормозятся или возбуждаются в зависимости от состава крови, а также поступления сигналов от периферических рецепторов.

Первая стадия состояния голода – сенсорная, ощущение голода возникает еще при наличии в крови достаточного количества питательных веществ. Она формируется под влиянием нервных импульсов, поступающих в пищевой центр от механорецепторов пустого желудка и двенадцатиперстной кишки, мышечная стенка которых по мере эвакуации из них химуса приобретает все боле повышенный тонус, что ведет к раздражению механорецепторов.

Вторая стадия состояния голода – метаболическая, она начинается с момента снижения уровня питательных веществ в крови. В периоды голодной моторной деятельности ЖКТ больше возбуждаются его механорецепторы, в результате чего резко повышается частота афферентных импульсов, поступающих в продолговатый мозг латеральный гипоталамус, что, в свою очередь, приводит к переходу питательных веществ из крови в пищевые депо (печень, исчерченные мышцы, жировая клетчатка). При этом – пищевые депо «закрываются» - организм экономит питательные вещества. «голодная»

кровь действует на пищевой центр латерального гипоталамуса двояким путем: рефлекторно – через раздражение хеморецепторов сосудистого русла и непосредственно – через раздражение центральных глюкорецепторов латерального гипоталамуса – центр голода, обеспечивающий формирование ощущения голода и пищевую мотивацию.

Пищевая мотивация – побуждение организма к активному поиску и приему пищи. Она вызвана доминирующей пищевой потребностью, сопровождающейся эмоционально окрашенным возбуждением соответствующих структур ЦНС – в первую очередь центра голода (латерального гипоталамуса). Раздражение его электрическим током у животных вызывает гиперфагию – непрерывное поедание пищи, а его разрушение – афагию (отказ от пищи). При стимуляции центра насыщения (вентромедиальный гипоталамус) наблюдается афагия, а при разрушении – гиперфагия. Центр голода находится в реципрокных (взаимотормозящих) отношениях с центром насыщения. Согласно К.В. Судакову, возбуждение из латерального гипоталамуса распространяется вначале на лимбические и ретикулярные структуры мозга, а затем в передние отделы коры большого мозга, что обеспечивает формирование поискового и пищедобывательного поведения, потреблению пищи и насыщение.

Состояние насыщения, как и состояние голода, формируется в две стадии.

Первая стадия – сенсорное насыщение (ощущение насыщения), возникает во время приема пищи в результате потока афферентных импульсов от рецепторов языка, глотки, пищевода и желудка в центр насыщения, который реципрокно тормозит деятельность центра голода, что приводит к снижению ощущения голода. После приема достаточного количества пищи прекращается пищедобывательное поведение и потребление пищи. Сенсорное насыщение предупреждает поступление избыточного количества пищи в организм.

Вторая стадия – стадия метаболического насыщения, наступает через 1,5-2 ч от начала приема пищи, когда в кровь начинают поступать питательные вещества. Достаточная концентрация питательных веществ в крови (мономеры: аминокислоты, моносахара – в основном глюкоза, жирные кислоты) улавливается непосредственно соответствующими рецепторами гипоталамуса и рецепторами сосудов, что обеспечивает поддержание ранее сформированного ощущения сытости.

3. Методы изучения функций пищеварительного тракта Основы современной физиологии пищеварения разработаны И.П. Павловым и его школой. До Павлова функции органов пищеварения изучали в острых опытах. Павлову принадлежит приоритет в создании методики хронического эксперимента. Он производил операцию наложения фистулы того или иного отдела пищеварительного тракта. Фистулой называют искусственное сообщение полого органа или протока железы с внешней средой.

Работы Павлова в области изучения пищеварительной функции желудка включают 3 этапа:

1. Наложение фистулы.

2. «Мнимое кормление».

3. Изолированный желудочек.

В ротовую полость открываются выводные протоки трех пар крупных слюнных желез – околоушной (серозной), подчелюстной (серознослизистой) и подъязычной (слизистой). Кроме того, большое количество мелких желез, которые вместе с подъязычной постоянно выделяют водянистую слюну. Околоушная и подчелюстная железы секретируют слюну только при возбуждении.

Слюна служит:

- для смачивания твердой пищи и обеспечения формирования пищевого комка, способного пройти через пищевод;

- для растворения ряда инградиентов, обеспечивая рецепторам возможность определить вкусовые качества пищи;

- для начала гидролиза некоторых пищевых веществ (например, углеводов);

- для выполнения защитных функций (слюна содержит бактерицидные вещества, может нейтрализовать желудочную кислотность при попадании сока в пищевод).

Состав слюны. Околоушные железы выделяют самую жидкую слюну, а подъязычные – самую вязкую. Основой слюны является вода (99,5%). В ней растворены органические и неорганические соединения: мукополисахариды, гликопротеины, белки и электролиты (Na+, K+, Ca2+, J-, Cl-, HCO3-,.

HPO4- и др.). Уровень рН смешанной слюны колеблется в пределах 6,0-7,4.

Муцин – белок, придает вязкость слюне, облегчает проглатывание пропитанного пищевого комка.

Ферменты слюны -амилаза, протеазы, липаза, кислая и щелочная фосфатаза, РНКазы. Активность большинства из них невелика.

Биологически активные соединения слюны – лизоцим (оказывает бактерицидное дейтсиве), каллекреин (участвует в образовании сосудорасширяющих кининов, которые наряду с нервными влияниями обеспечивают повышение кровотока в слюнных железах при приеме пищи), гормоноподобные вещества (участвуют в регуляции фосфорно-кальциевого обмена костей, зубов и регенерации эпителия слизистой ротовой полости, пищевода и желудка).

Ферментный состав и свойства слюны зависят от возраста человека и от вида принимаемой пищи. На сухие пищевые вещества выделяется более вязкая слюна, на отвергаемые вещества (кислоты, горечи) выделяется более жидкая слюна.

Регуляция секреции слюнных желез.

1. Безусловнорефлекторная регуляция 2. Условнорефлекторная регуляция Слизистая желудка содержит несколько типов железистых клеток.

1. Главные клетки (главные гландулоциты) вырабатывают пепсиногены 2. Обкладочные клетки (париетальные гландулоциты) – соляную кислоту, внутренний фактор Касла 3. Добавочные – мукоидный секрет Регуляция желудочной секреции. Возбуждение симпатической нервной системы (сильные эмоции, физическая работа, боль) угнетают желудочную секрецию. Этот эффект обусловлен вазоконстрикторным влиянием (сужение кровеносных сосудов в железах уменьшает секрецию). Ингибирование секреции в желудке происходит под влиянием гуморальных факторов.

Гормоны тормозящего действия (секретин, ЖИП, ХЦК-ПЗ, соматостатин, энтерогастрин, бульбогастрон, серотонин) образуются в двенадцатиперстной кишке, когда кислый химус из желудка попадает в двенадцатиперстную кишку и закисляет рН ниже 4,0. Гормоны к железам желудка попадают через кровоток.

Основные процессы переваривания пищевых веществ так же, как и всасывание, происходят в тонком кишечнике. Гидролиз в тонком кишечнике осуществляется ферментами панкреатического и кишечного соков при участии желчи.

В полость двенадцатиперстной кишки открываются протоки поджелудочной железы и желчного пузыря. Инградиенты этих соков участвуют вдоль всего тонкого кишечника.

Порция химуса, оказавшись в двенадцатиперстной кишке, нейтрализуется, а потом приобретает противоположную реакцию, что достигается тремя путями:

- железы тонкого кишечника выделяют слизь щелочной реакции;

- желчь, поступающая в двенадцатиперстную кишку тоже щелочная;

- сок поджелудочной железы за счет высокого содержания бикарбонатов имеет рН 7,8-8,4.

Вдоль всей тонкой кишки в слизистой оболочке располагаются кишечные железы, вырабатывающие кишечный сок, к которому примешиваются кишечные эпителиальные клетки (отделяющиеся от слизистой стенки кишечника в результате обновления). На мембране клеток содержится много фиксированных ферментов, поступивших в кишечник из поджелудочной железы. В кишечном соке содержится более 20 ферментов, бикарбонаты, хлориды, фосфаты натрия, калия, кальция, слизь, белки, аминокислоты. рН сока 7,2-9,0. Конечные стадии переваривания всех пищевых веществ обеспечивают: пептидазы, щелочная фосфатаза, нуклеаза, амилаза, липаза, сахараза.

Состав, свойства желчи. Желчь различается по цвету и густоте, что позволяет говорить о печеночной и пузырчатой желчи. Печень синтезирует желчь постоянно, но в кишечник она поступает только во время пищеварения, вне которого скапливается в желчном пузыре. Во время длительного нахождения в желчном пузыре вода с электролитами всасывается слизистой пузыря, делая желчь более концентрированной. Основные химические компоненты одинаковы. К ним относятся желчные пигменты и кислоты, а также холестерин Из тонкой кишки порции химуса через илеоцекальный сфинктер переходят в толстую. Сфинктер выполняет роль клапана, пропускающего содержимое кишечник только в одном направлении. В процессе пищеварения толстая кишка играет незначительную роль, так как пища почти полностью переваривается в тонкой кишке, за исключением некоторых веществ, например, растительной клетчатки.

Сок толстой кишки имеет щелочную реакцию. Плотная часть сока имеет вид слизистых комочков и состоит из отторгнутых эпителиальных клеток, ферментов и слизи. В толстой кишке интенсивно всасывается вода, электролиты, водорастворимые витамины, жирные кислоты, углеводы. Химус превращается в каловые массы.

Существенную роль в процессах пищеварения в толстом кишечнике играет микрофлора. До 90% всей микрофлоры составляют бесспоровые анаэробы, остальные 10% - молочнокислые бактерии, кишечная палочка, стрептококки и спороносные анаэробы.

Всасывание происходит на всем протяжении ЖКТ, но в разных отделах с разной интенсивностью. В ротовой полости всасывание практически отсутствует, но могут всасываться некоторые вещества (некоторые лекарства, спирт). Всосавшись в системный кровоток эти вещества сразу оказывают свое действие на организм, тогда как, всосавшись через другие отделы ЖКТ, им пришлось пройти через печень и на половину разрушиться в ней.

Невелики размеры всасывания и в желудке. Здесь всасываются в несколько большей мере вода, и растворимые в ней минеральные соли, слабые растворы алкоголя, глюкоза, в небольших количествах аминокислоты. Всасывания веществ в желудке препятствует слой мукода и плотное соединение эпителиальных клеток, слабая выраженность межклеточных щелей.

Из-за быстрого прохождения пищевого химуса через двенадцатиперстную кишку пища не успевает всасываться в этом отделе. Основной процесс всасывания происходит в тощей и подвздошной кишке.

Всасывание веществ пищи происходит двумя путями: через межклеточное пространство; через энтероцит.

9. Двигательная функция пищеварительного тракта Стенка ЖКТ состоит из 3 слоев: наружного и внутреннего продольного, среднего – циркулярного. Ротовая полость, глотка, начальная часть пищевода и наружная сфинктер прямой кишки представлены поперечнополосатыми мышцами, остальные участки – гладкими.

Поперечно-полосатые мышцы управляются как местными рефлексами, так и сознательно, а гладкие – центральными и местными нейрорефлекторными и гуморальными механизмами. Перенос пищи по ЖКТ происходит с помощью волнообразных, согласованных сокращений – перистальтических движений продольных и циркулярных мышц.

В местах перехода различных отделов ЖКТ (глотки в пищевод, пищевода в желудок, желудка в тонкий кишечник, тонкого кишечника в толстый и выхода из толстого кишечника) наблюдаются длительные тонические сокращения циркулярных мышц (сфинктеров).

Особенностью гладких мышц является способность к автоматии, т.е.

способности интегрировать ПД (возбуждение) без воздействия нервной системы. Между мышечными слоями расположены нервные сплетения, регулирующие моторную и секреторную функции ЖКТ (местные рефлексы). Органы ЖКТ иннервируются симпатическими и парасимпатическими нервными волокнами. В местах, где имеются поперечно-полосатые мышцы, подходят соматические нервы.

Для перемешивания продвижения пищи по ЖКТ не обязательно вмешательство центров симпатического и парасимпатического отделов цнс. Здесь ведущая роль принадлежит местным рефлекторным дугам.

Перистальтические сокращения – это волнообразно распространяющихся по кишке сокращения циркулярных мышц, которым предшествует волна расслабления со скоростью 1-2 см/с.

Ритмическая сегментация заключается в одновременном сокращении циркулярных мышц в нескольких соседних участках кишки, разделяющих ее на сегменты, с последующим их расслаблением и сокращением циркулярных мышц других участков кишки, что обеспечивает перемешивание химуса кишки и более эффективное полостное переваривание.

Маятникообразные сокращения – это ритмические сокращения главным образом продольных мышц при участии циркулярных, приводящих к перемешиванию химуса вперед-назад, что также обеспечивает перемешивание химуса и улучшение гидролиза.

Все виды названных сокращений накладываются на тонические сокращения, являющиеся локальными или медленно перемещаю. Микродвижения кишечных ворсинок также способствуют перемешиванию химуса и всасыванию продуктов гидролиза.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

1. Значение обмена веществ, его основные этапы 2. Обмен белков 3. Обмен углеводов 4. Обмен липидов 5. Витамины 6. Минерально-водный обмен 7. Энергетический обмен 8. Физиологические основы питания 1. Значение обмена веществ, его основные этапы Для поддержания процессов жизнедеятельности обмен веществ и энергии обеспечивает пластические и энергетические потребности организма. В ходе обмена веществ в организм доставляются пластические вещества, необходимые для биосинтеза, построения и обновления биологических структур. Энергия питательных веществ используется для синтеза белков, нуклеиновых кислот, липидов, а также для компонентов клеточных мембран и органелл клетки, для выполнения механической, химической, осмотической и электрической работ.

Израсходованные энергетические ресурсы организм должен постоянно восстанавливать за счет приема пищи.

В обмене веществ и энергии выделяют два процесса: анаболизм, основу которого составляют процессы ассимиляции, и катаболизм, в основе которого лежат процессы диссимиляции.

Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргов и накопление энергетических субстратов.

Катаболизм – процесс расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ.

Обеспечение процессов жизнедеятельности осуществляется за счет анаэробного и аэробного катаболизма поступающих в организм с пищей белков, жиров и углеводов.

В организме животных и человека в процессе аэробного обмена почти все органические вещества, в том числе продукты анаэробного обмена, полностью распадаются до СО2 и Н2О.

При окислении белков в организме выделяется меньше энергии, чем в калориметре, из-за ее затрат на синтез мочевины из минерального азота. Поэтому калорический коэффициент белков пищи равен 16,7 кДж (4,0 ккал).

Основное назначение белков пищи заключается в обеспечении пластических процессов. Лишь небольшая часть аминокислот может расходоваться на образование энергии. Большинство белков организма обновляется в среднем за 80 суток.

Белки участвуют в воспроизводстве живой материи, входя в состав нуклеопротеинов. Белки костей, хрящей выполняют опорную функцию. Актин и миозин обеспечивают сокращение мышц. Белки обладают каталитической активностью (все ферменты являются белками). Защитные реакции организма связаны с белками (антитела являются белками). Белки образуют с токсинами малоактивные комплексы, которые выводятся из организма (антитоксическая функция). Процесс свертывания крови протекает с участием белков плазмы. Некоторые белки плазмы крови и форменных элементов обеспечивают перенос питательных веществ и кислорода. Белки оказывают влияние на процессы торможения и возбуждения в коре головного мозга (многие гормоны и их производные являются белками).

Для изучения потребности организма в белках измеряют их баланс, т.е. сопоставляют количества поступивших в организм протеинов и выделившихся продуктов их распада.

Белки содержатся как в животной, так и в растительной пище. Они подразделяются на полноценные неполноценные.

Регуляция белкового обмена. Процессы синтеза и распада белка регулируются на уровне «клеточной автоматии». Суть ее в изменении активности внутриклеточных ферментов, синтезирующих и расщепляющих белок под влиянием продуктов обмена и физико-химических свойств окружающей среды. Эта форма регуляции является ведущей только у одноклеточных организмов. В целостном организме «клеточная автоматия» подчинена регуляторным воздействиям со стороны нервной и эндокринной систем.

Влияние гормонов на обмен белков отличается большим разнообразием: одни оказывают анаболическое действие, другие являются гормонами катаболического действия.

Обмен углеводов в организме человека состоит из: 1) переваривания пищевых продуктов в ЖКТ; 2) всасывания моносахаридов в кровь; 3) межуточного обмена углеводов; 4) ультрафильтрации и обратного всасывания глюкозы в почках.

Основным назначением углеводов пищи является восполнение энергетических потребностей организма. Углеводы имеют тесную метаболическую взаимосвязь с жирами и в плане энергетического обмена легко взаимосвязаны. Углеводы пищи являются основными энергетическими продуктами. Главным источником их является крахмал. Минимальное количество необходимых организму углеводов могут легко синтезироваться. Минимальное количество необходимых организму углеводов составляет углеводов должно составлять 400-450 г. Кроме того, углеводы выполняют и пластическую функцию, входя в различные структуры клетки. Так, соединительная ткань содержит мукополисахариды, в состав которых входят углеводы и их производные. Регуляторная функция разнообразна. Они противодействуют накоплению кетоновых тел при окислении жиров. Так, при нарушении обмена углеводов, например при сахарном диабете, развивается ацидоз. Ощущение сладкого, воспринимаемое рецепторами языка, тонизирует ЦНС. Некоторые углеводы и их производные обладают биологической активностью, выполняя в организме специализированные функции. Например, гепарин предотвращает свертывание крови в сосудах, гиалуроновая кислоты препятствует проникновению бактерий через клеточную оболочку, она способно соединяться с некоторыми токсинами и выводить их из организма, тем самым, выполняя защитную функцию.

Для физиологического действия углеводов имеет значение их качество и количество. В состав пищевых продуктов входят три группы углеводов:

моносахариды (глюкоза, фруктоза), олигосахариды (дисахариды, трисахриды), полисахариды (крахмал, гликоген, клетчатка, пектиновые вещества), мукополисахариды, основу которых составляют аминосахара и галактуроновая кислота.

В организме человека в норме содержится 10-20% жира, но при некоторых нарушениях жирового обмена его количество может возрастать до 50%. Липиды являются источником энергии. При окислении липидов выделяется 37,66 кДж (9ккал). Количество воды, образующейся при полной дегидратации жиров, относительно велико. Так, при окислении 100 г жира выделяется 107 г эндогенной воды, что имеет особое значение в экстремальных условиях, например при недостаточном поступлении ее извне.

Липиды выполняют структурно-пластическую роль, так как входят в состав клеточных и внеклеточных мембран всех тканей. Жиры являются растворителями витаминов А, Д, Е, К и способствуют их усвоению. Липиды, входящие в состав нервных клеток и их отростков, обеспечивают направленность потоков нервных сигналов. Из липидов образуются некоторые гормоны (половые, коры надпочечников), а также витамин Д. Липиды кожи и внутренних органов выполняют защитную роль. В организме человека и животных липиды предохраняют тело от переохлаждения, так как препятствуют отдаче тела, а также от механического повреждения (например, почки).

Липиды выделяемые сальными железами, придают коже эластичность, предохраняют ее от высыхания.

В организме человека жир находится в двух видах: структурный и резервный.

Структурный жир в клетках входит в состав особых включений или сложных, прочных соединений с белками, которые называются липопротеиновыми комплексами. Они содержатся в крови, участвуют в построении клеточных органелл (ядер, рибосом, митохондрий). Количество протоплазматического жира поддерживается на постоянном уровне, которое не изменяется даже при голодании.

Резервный (запасный) жир накапливается в жировых депо: под кожей (подкожный жировой слой), в брюшной полости (сальник), около почек (околопочечный жир).

Для нормального обмена веществ нужны пищевые добавки. Эти вещества не синтезируются организмом или синтезируются недостаточно. Такие добавки были названы витаминами. Витамины относятся к разным типам соединений и выполняют катализирующую роль в обмене веществ, чаще всего, являясь составной частью ферментных систем. Таким образом, витамины являются регуляторными веществами.

Источниками витаминов служат продукты животного и растительного происхождения. В пищевых продуктах витамины находятся либо в активной, либо в неактивной форме (провитамины). В последнем случае для их использования в организме требуется предварительное превращение в активное состояние. Некоторые витамины синтезируются микрофлорой кишечника.

Традиционно витамины обозначались буквами латинского алфавита, но по мере выяснения их структурной формулы они получали рациональное химическое название. С точки зрения физиологии питания важно, что витамины разделяются на жирорастворимые (витамины А, Д, Е, К) и водорастворимые (витамины группы В, витамины С и Р). Источниками жирорастворимых витаминов являются животные жиросодержащие продукты (особенно печень как депо витаминов), растительные масла и отчасти зеленые листья овощей. Носителями водорастворимых витаминов являются продукты питания растительного происхождения (зерновые и бобовые культуры, овощи, фрукты, ягоды) и в меньшей степени продукты животного происхождения. Основными источниками водорастворимых витаминов, таких как никотиновая кислота и цианокобаламин, являются животные продукты.

Нарушение нормального функционирования организма при недостаточном ведении с пищей того или иного витамина называется гиповитаминозом, при полном его отсутствии в пище – авитаминозом. Для жирорастворимых витаминов характерны и гипервитаминозы – нарушение обмена веществ при избыточном потреблении этих витаминов.

Организм, прежде всего, нуждается в кислороде, углероде, водороде и азоте. На их долю приходится 96% массы тела млекопитающих. Остальные 4% содержат смесь элементов кальций, фосфор, натрий, серу, калий, хлор, магний. Это так называемые макроэлементы. Они необходимы для формирования скелета (кальций, фосфор) и осмотического давления биологических жидкостей (натрий). Эти ионы влияют на физико-химическое состояние белков, нормальное функционирование возбудимых структур (К+, Na+, Са2+, Mg2+), мышечное сокращение (Са2+, Мg2+), аккумулирование энергии (Р).

Организму требуется еще 15 элементов, общее количество которых составляет менее 0,01% массы тела. Это так называемые микроэлементы.

Среди них следует выделить железо (составная часть гемоглобина и тканевых цитохромов), кобальт (компонент цианокобаламина), медь (компонент цитохромоксидазы), цинк (компонент карбоангидразы и некоторых пептидаз), хром (фактор, потенцирующий действие инсулина на проницаемость мембраны для глюкозы), молибден (компонент ксантиноксидазы), марганец (активатор некоторых ферментных систем), кремний (регулятор синтеза коллагена костной ткани), фтор (участие в синтезе костных структур и стойкости зубной эмали), йод (составная часть тиреоидных гормонов), а также никель, ванадий, олово, мышьяк, селен и др. В большинстве случаев это составные части ферментов, гормонов, витаминов или катализаторы их действия на ферментные процессы.

Вода поступает в организм животных и человека в двух видах: свободном и связанном составе пищевых продуктов. Питьевой режим для разных видов животных различен. Взрослый человек в обычных условиях потребляет в сутки около 2,5 л воды. Кроме того, в организме образуется около 300 мл метаболической воды как одного из конечных продуктов энергообмена. Вода необходима не только для поддержания изоосмотического состояния жидких сред организма, но и для выделения шлаков с мочой. В соответствии с потребностями человек в течение 1 суток теряет около 1,5 л воды в виде мочи, порядка 0,9 л путем испарения через легкие и кожу (без потоотделения) и примерно 0,1 л с калом. Таким образом, обмен воды в обычных условиях не превышает 5% от массы тела в сутки.

Использование химической энергии в организме называется энергетическим обменом. Преобладающим результатом энергетических процессов в организме является теплообразование, поэтому вся энергия, образующаяся в организме, может быть выражена в единицах тепла. Единица энергии – калория (кал). Ее определяют как количество энергии, необходимой для повышения температуры 1 г воды на 1С. При изучении энергетических процессов в организме животных и человека используют более крупную единицу – килокалорию (ккал), равную 1000 кал. По Международной системе единиц при измерении энергии принят джоуль (1 Дж = 4,187 кал).

Превращение использование энергии. Организмы получают энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, белков, углеводов. Сложные органические молекулы постепенно окисляются, выделяя энергию, высвобождающуюся при разрыве химических связей. Происходит распад молекул до трехуглеродных соединений, которые включаются в цикл Кребса (так называемый цикл лимонной кислоты), окисляясь дальше до СО2 и Н2О. Все процессы, генерирующие энергию и требующие участия молекулярного кислорода, образуют систему аэробного обмена. Генерацию энергии без участия кислорода, как при гликолизе, при котором происходит расщепление глюкозы до молочной кислоты, называют анаэробным обменом.

Накопление энергии происходит главным образом в «высокоэнергетических» фосфатных связях АТФ. АТФ служит также средством переноса энергии, так как диффундирует в те места, где требуется энергия. В свою очередь, образование и распад АТФ сопряжен с процессами, требующими затраты энергии. При возникновении необходимости в энергии путем гидролиза разрывается связь концевой фосфатной группы и высвобождается заключенная в ней химическая энергия. В этой форме она может быть использована клетками.

Основной обмен – суммарная интенсивность обменных процессов, измеренная в условиях покоя. Определение величины основного обмена необходимо проводить утром, натощак, при состоянии физического и психического покоя, лежа, при условиях температурного комфорта (25-260С).

Основной обмен зависит от роста, соотношения компонентов тела (костного, мышечного, жирового), массы тела, возраста, пола, активности механизмов регуляции обмена веществ. За основу уровня основного обмена может быть принята величина 1300-1700 ккал/сут или 1 ккал/кг/ч ( кДж/кг/ч).

Около половины доли основного обмена приходится на энергопотребление печени и скелетных мышц. Во сне при минимальном тонусе скелетных мышц обмен веществ становится ниже уровня основного обмена. При голодании, когда функциональная активность печени снижена, основной обмен также снижается. При некоторых заболеваниях, особенно при заболеваниях, связанных с функцией щитовидной железы, уровень основного обмена изменяется: при гиперфункции он увеличивается, а при гипофункции понижается.

Уровень активности в условиях естественной жизни человека называется общим обменом. Наибольший прирост привносят сокращающиеся скелетные мышцы. Даже при мысленном решении задачи повышается тоническое напряжение скелетных мышц. При этом в самих нервных клетках ЦНС активность обменных процессов хотя и изменяется, но не настолько, чтобы существенно повлиять на уровень энергозатрат всего организма. В то же время, если умственная работа сопровождается эмоциональным напряжением, то обмен активизируется в большей степени. Это обусловлено увеличением образования ряда гормонов, которые усиливают обменные процессы.

Калориметрия – определение энергообразования в организме.

Прямая калориметрия – непосредственное определение в биокалориметрах количества тепла, выделенного организмом.

Непрямая калориметрия – косвенное определение теплообразования в организме по его газообмену – учету количества потребленного кислорода и выделенного углекислого газа с последующим расчетом теплопродукции организма.

Питание – это процесс усвоения организмом веществ, необходимых для построения и обновления тканей его тела, а также для покрытия энергетических затрат. Эволюция пищевых потребностей животных организмов включала в себя процесс ограничения собственного синтеза ряда соединений с одновременным расширением потребления органических соединений определенных типов. Это привело к выделению группы веществ, незаменимых для животных и человека.

В конечном итоге в состав пищи высокоорганизованных организмов входят органические вещества, подавляющая часть которых относится к белкам, липидам и углеводам. Продукты их гидролиза тратятся на энергообеспечение организма. В процессах энергообмена аминокислоты, жирные кислоты и моносахара взаимосвязаны общими путями их превращения. Поэтому как энергоносители пищевые вещества могут взаимозаменяться в соответствии с энергетической ценностью (правило изодинамии).

Энергетическая ценность жиров (38,9 кДж/г, 9,3 ккал/г) в два раза выше, чем белков и углеводов (17,2 кДж/г, 4,1 ккал/г). Белки и углеводы имеют одинаковую энергетическую ценность и могут заменяться 1:1 в весовом соотношении.

Для поддержания организма общие затраты энергии должны покрываться поступлением пищевых веществ. Если количества поступающей пищи для покрытия энергетических затрат недостаточно, то энерготраты компенсируются за счет внутренних резервов, главным образом – жира. Если же масса поступающей пищи по энергоносителям превышает расход энергии, то идет процесс запасания жира независимо от состава пищи. Длительное исключение одного из трех питательных веществ из пищевого рациона и замена энергетически эквивалентным количеством другого вещества недопустимы, так эти три источника энергии являются пластическим материалом животного организма.

Принципы составления пищевого рациона. Пищевой рацион должен составляться исходя из потребностей организма. Можно выделить следующие основные физиологические постулаты, которых необходимо придерживаться при составлении рациона: калорийность принимаемой пищи должна соответствовать энергозатратам организма; в суточном рационе необходимо учитывать потребности организма в количестве белков, жиров и углеводов;

необходимо учитывать соответствующую потребность в витаминах, солях, микроэлементах; учитывая возможность «токсического» влияния на организм чрезмерно больших доз витаминов, солей и микроэлементов, их количество не должно быть выше оптимального уровня.

С учетом этого в суточном рационе должно быть: белков – 1г/кг (в том числе не менее 30 г животных белков); жиров – 25-35% общей калорийности (как минимум 15% ненасыщенных жирных кислот); углеводы должны покрывать остальные энергетические потребности организма.

В настоящее время в связи с уменьшением доли физического труда у большинства людей снизились энергетические затраты. Однако люди весьма часто употребляют больше калорий, чем требуется для восстановления энергетических затрат. Это приводит к отложению жира. Ожирение является одним из факторов риска, приводящих к развитию патологических процессов и снижающих продолжительность жизни. Ожирение часто сопрягается с нарушениями обмена, также приводящими к различного рода патологическими процессами.

Поэтому для грубого суждения о сбалансированности процессов анаболизма и катаболизма предлагается ввести понятие об идеальном весе.

Наиболее простой формулой его определения является индекс Кетеля (или ИМТ индивидуальная масса тела), который в идеале равен 2, ИМТ = Масса тела (г)/ Рост тела2(см) Существуют также различные методы определения отдельных компонентов тела: костного, мышечного, жирового.

Кроме того, современный человек сталкивается с таким отклонением от сбалансированного питания, как одностороннее питание. При небольших отклонениях от нормального сбалансированного рациона серьезных нарушений в организме может и не происходить. Однако при значительном снижении поступления каких-либо пищевых веществ могут развиться нежелательные для организма последствия. Так, недостаточное потребление жира может привести к нарушению процессов всасывания жирорастворимых витаминов. Недостаточное потребление белков сопровождается ухудшением работоспособности, снижением защитных сил организма. При питании только вегетарианской пищей также может проявиться белковая недостаточность вследствие недостаточного поступления незаменимых аминокислот.

ЭНДОКРИННАЯ СИСТЕМА

Гормональная регуляция функций организма 1. Гормональная регуляция функций организма В регуляции функций организма кроме нервной системы принимает участие комплекс биологически активных соединений, образующих эндокринную систему. Взаимодействие нервной и эндокринной систем позволяет говорить о единой нейроэндокринной систем регуляции функций организма.

Биологически активные соединения действуют: поступая в жидкие среды и доставляясь ими к отдаленно расположенным клеткам-мишеням (телекринный эффект); местно, на соседние клетки (паракринно); на саму клетку (аутокринно).

Гормоны (от греч. hormao – привожу в действие) являются химическими посредниками, которые секретируются и выделяются клетками в ответ на различные сигналы систем регуляции. Влияние гормонов на клетки обусловлено тем, что на мембране клеток имеются рецепторы к конкретному гормону. Можно выделить 4 основных механизма направленности влияния гормона: метаболическое действие (действие на обмен веществ); морфогенетическое (стимулируется формообразование, дифференцировка, рост);

кинетическое (включение определенной деятельности); корректирующее (изменяющее интенсивность функций органов и тканей).

По химической природе большинство гормонов является пептидами (белками). Кроме того, есть гормоны стероиды и производные аминокислот.

Различают самостоятельные железы: гипофиз, эпифиз, щитовидная и паращитовидные железы, надпочечники, половые железы, поджелудочная железа. Кроме того, гормоны могут вырабатываться клетками, расположенными в головном мозгу, сердце, почках, желудочно-кишечном тракте (тканевые гормоны). Различают железы смешанной секрецией (поджелудочная железа, половые железы), которые имеют выводные протоки для выделения ферментов пищеварительного сока, половых клеток, а также могут выделять гормоны в русло крови или лимфу.

Методы исследования. Экспериментальные методы заключаются в проведении различных опытов на животных. Чаще всего применяется метод удаления эндокринной железы (или ее части) и наблюдения за изменением функций организма – симптом недостаточности). Затем исследуется заместительная терапия путем введения гормона. Можно получать результаты и путем передозировки – введение гормона на фоне уже имеющейся в организме нормально функционирующей железы. Можно исследовать сравнительное содержание гормона в притекающей и оттекающей крови (как на уровне железы, так и любого органа, где гормон используется). У человека функция железы исследуется путем определения концентрации гормона в крови, скорости выведения его. Большую роль играют и исследования больных людей с гипофункцией или гиперфункцией железы.

Некоторые участки нервной системы функционируют как эндокринные железы: они вырабатывают гормоны и выделяют их в кровь для доставки к органу-мишени. Одной из таких структур является гипофиз. Он расположен внутри черепа в костной ямке турецкого седла, хорошо защищающей его от повреждения. Гипофиз – сложный орган, состоящий из 3 разных частей. Заднюю долю, богато снабженную нервными волокнами, связывающими ее с гипоталамусом, называют нейрогипофизом. Переднюю чисто железистую – аденогипофизом. Передняя и задняя доли гипофиза разделены тонким слоем клеток, образующих промежуточную долю, которая иннервируется нервами, идущими из гипоталамуса. Промежуточная доля имеет большое значение у низших позвоночных и значительно меньше у млекопитающих. Какие-либо патологические проявления, связанные с промежуточной долей гипофиза, неизвестны.

Передняя доля гипофиза, или аденогипофиз состоит из ацидофильных:

хромофобных (55-60%), хромофильных (30-35%); базофильных (5-10%).

Хромофобные клетки являются предшественниками хромофильных клеток (гормонов не продуцируют). Ацидофильные продуцируют соматотропный гормон (СТГ) и пролактин. Базофильные – адренокортикотропный гормон (АКТГ), тиреотропный гормон (ТТГ), гонадотропный гормон (ГТГ), фолликуллостимулирующий (ФСГ), лютеинизирующий (ЛТГ). Кроме того, в аденогипофизе образуются меланоцитстимулирующий (МСГ) и пролактин. Секреция всех семи указанных гормонов аденогипофиза регулируется гормонами гипоталамуса. Стимуляторы называются рилизинг-гормонами (либеринами), ингибиторы – статинами.

Регуляция гормональной активности большинства желез внутренней секреции осуществляется по принципу отрицательной обратной связи: сам гормон, его количество в крови, регулирует свое образование.

СТГ. Гормон роста стимулирует синтез белка в органах и тканях, рост молодого организма. Обладает анаболитическим действием, оказывает влияние на обмен жиров и углеводов. Он участвует в липолизе (расщеплении жира), при длительном действии гормона роста (ГР) повышает устойчивость клеток к гормону поджелудочной железы – инсулину, тем самым препятствуя снижению уровня глюкозы в крови.

Меланоцитстимулирующий гормон (интермедин). МСГ повышает секрецию меланина из тирозина (он стимулирует активность тирозиназы) в клетках кожи и потемнение ее. Этот эффект, как и образование МСГ в средней доле гипофиза, хорошо выражен у земноводных. У рыб и амфибий интермедин вызывает потемнение кожи вследствие расширения ее пигментных клеток – меланофоров и более широкого распределения находящихся в их протоплазме пигментных зернышек. Значение интермедина состоит в приспособлении окраски покровов тела к цвету окружающей среды. У взрослого человека промежуточная доля гипофиза практически отсутствует, а сам МСГ в гипофизе обнаружен в очень незначительном количестве. У человека эта часть железы определяется лишь в эмбриональном развитии.

У млекопитающих и человека интермедин имеет значение в регуляции движений клеток черного пигментного слоя в глазу. При ярком свете клетки пигментного слоя выпускают псевдоподии благодаря чему избыток световых лучей поглощается пигментом и сетчатка не подвергается интенсивному раздражению.

ТТГ(тиреотропный гормон, тиротропин) стимулирует функцию щитовидной железы. ТТГ усиливает выделение гормонов щитовидной железы тироксина и трийодтиронина в кровь, способствует накоплению йода в щитовидной железе, повышает активность ее клеток и увеличивает их число.

Введение ТТГ в кровь вызывает разрастание щитовидной железы, а удаление гипофиза у молодых животных ведет к ее недоразвитию, у взрослых – к ее уменьшению и частичной атрофии. Если длительно вводить ТТГ, то появляются симптомы, напоминающие базедову болезнь. Стимуляция секреции ТТГ осуществляется гипоталамусом с помощью гормона тиреолиберина (ТТГ-рилизинг-гормона). Уровень секреции ТТГ зависит от количества гормонов щитовидной железы в крови. При достаточном количестве гормонов щитовидной железы секреция ТТГ угнетается. Недостаточное содержание в крови гормонов щитовидной железы, наоборот, стимулирует секрецию ТТГ (принцип отрицательной обратной связи).

АКТГ вызывает разрастание пучковой и сетчатой зон коры надпочечников и усиливает синтез их гормонов. АКТГ секретируется эпизодически по 7-9 раз в час. У здоровых людей наименьший уровень гормона наблюдается в конце дня и непосредственно перед сном, наибольший – в 6-8 часов утра. При некоторых условиях (стрессе, интенсивных физических тренировках и т.п.) образование этого пептида увеличивается. Такие раздражители рефлекторно, а также вследствие повышенного выделения адреналина мозговым слоем надпочечников действуют на ядра гипоталамуса, в которых усиливается образование кортикотропинвысвобождающего фактора (АКТГрилизинг-гормона).

ГТГ (гонадотропный гормон, гонадотропины) действуют на половые железы. Они стимулируют развитие пубертатной железы и фолликулов в период полового созревания. Под влиянием этих гормонов происходит секреция эстрогенов и андрогенов половыми железами. При введении ГТГ гипофиза кастратам характерных физиологических изменений не наблюдается.

Если вводить ГТГ до наступления периода полового созревания будут наблюдаться признаки раннего полового развития. Это доказывает возможность функционирования половых желез только под влиянием ГТГ.

Пролактин (лютеотропный гормон) усиливает выработку молока молочными железами и стимулирует развитие желтого тела. Пролактин уменьшает потребление глюкозы тканями, что вызывает повышение ее количества в крови, т.е. действует в этом отношении подобно СТГ Нейрогипофиз. Нейрогипофиз является железой, гормоны которой имеют прямое влияния на организм, а не через другие железы. По сути дела, нейрогипофиз это не железа, а вырост нервной системы – нервные окончания нейронов, тела которых расположены в передней области гипоталамуса.

Именно здесь синтезируются гормоны пептидной природы – вазопрессин (антидиуретический гормон – АДГ) и окситоцин, которые затем транспортируются в гипофиз.

Антидиуретический гормон. АДГ влияет на клетки трех типов: клетки почечных канальцев, гладкомышечные клетки кровеносных сосудов, клетки печени. В норме этот гормон обычно регулирует содержание воды в крови и выделение ее почками (гормон, сохраняющий воду). В очень большой концентрации проявляет еще и сосудосуживающий эффект, отсюда второе название гормона – вазопрессин.

Окситоцин влияет на матку, способствуя ее сокращению, и на молочную железу, обеспечивая секрецию молока при кормлении.

Основной структурной и функциональной единицей щитовидной железы является фолликул. Стенка фолликула образована тиреоидным эпителием, в полости фолликула находится так называемый коллоид, в котором содержатся тиреоидные гормоны. Фолликулы окружены соединительной тканью с кровеносными сосудами. Щитовидная железа обильно снабжена кровеносными сосудами. Особенностью щитовидной железы является способность активно извлекать из плазмы крови против химического и электрического градиентов, накапливать его и преобразовывать в органически связанный йод и физиологически активные тиреоидные гормоны.

Тироксин, трийодтиронин, трийодуксусная кислота и некоторые другие йодсодержащие соединения, образуемые щитовидной железой, резко усиливают окислительные процессы. В наибольшей мере активируются окислительные процессы в митохондриях, что ведет к усилению энергетического обмена клетки. Увеличивается основной обмен, теплообразование, усиливается расходование углеводов, жиров и белков, ускоряет развитие организма, оказывают стимулирующее влияние на центральную нервную систему (цнс).

Тирокальцитонин. Кроме йодсодержащих гормонов, в щитовидной железе образуется тирокальцитонин, снижающий содержание кальция в крови. Под влиянием этого гормона угнетается функция остеокластов, разрушающих костную ткань, и активируется функция остеобластов, способствующих образованию костной ткани и поглощению ионов кальция из крови.

Триокальцитонин – кальцийсберегающий гормон (гормон парафолликулярной ткани).

Околощитовидные железы.У человека имеется 4 околощитовидные железы, продуцирующие паратгормон. При избытке гормона повышается, а при недостатке понижается содержание кальция в крови. Паратгормон активирует функцию остеокластов, разрушающих костную ткань, увеличивая концентрацию кальция в крови. В норме уровень кальция в крови поддерживается на постоянном уровне. Падение уровня кальция в крови приводит к усилению секреции паратгормона. Повышение кальция угнетает выделение паратгормона (усиливает образование тирокальцитонина), в результате чего содержание кальция в крови снижается. Таким образом, между содержанием кальция в крови и секрецией около- и паращитовидных желез имеется двусторонняя связь.

Наряду с секреторным эпителием, выделяющим пищеварительные ферменты, существуют особые группы клеток – белые отросчатые клетки эпидермоциты (островки Лангерганса). Эти клетки не имеют выводных протоков и выделяют свой секрет непосредственно в кровь.

Инсулин. Это первый белок, который удалось синтезировать химическим путем. Инсулин повышает проницаемость мембраны мышечных и жировых клеток для глюкозы. Способствуя транспорту глюкозы внутрь клеток, инсулин тем самым обеспечивает ее утилизацию. В печени и мышцах глюкоза под действием инсулина преобразуется в гликоген. В клетках жировой ткани инсулин стимулирует образование жира из глюкозы. Кроме того, инсулин стимулирует синтез белков и информационной РНК. После введения больших доз инсулина резко возрастает утилизация глюкозы скелетной и сердечной мышцами, гладкой мускулатурой, молочными железами и др. органами, что приводит к недостаточному поступлению глюкозы в клетки нервной системы (на проницаемость которых инсулин не действует). В результате появляются судороги, падение мышечного тонуса, понижение температуры тела, потеря сознания.

Глюкагон. Усиливает расщепление гликогена в печени, стимулирует синтез гликогена из аминокислот, тормозит синтез жирных кислот в печени, но активирует печеночную липазы, способствуя расщеплению жиров, стимулирует расщепление жира в жировой ткани.

Регуляция внутренней секреции поджелудочной железы. Образование инсулина и глюкагона регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а также при гипергликемии, связанной с напряженной физической работой и эмоциями, повышает секрецию инсулина. Наоборот, понижение уровня глюкозы в крови тормозит секрецию инсулина, но повышает секрецию глюкагона.

Концентрация инсулина зависит не только от интенсивности образования этого гормона, но и от скорости его разрушения.

Надпочечник – это парный орган, лежащий над почкой и состоящий из двух частей – коры и мозгового вещества.

Мозговое вещество надпочечников состоит из хромаффинных клеток, эмбриогенетически сходных с симпатической нервной системой. Эти клетки встречаются и на аорте у места разделения сонных артерий, в ганглиях симпатической нервной системы. Все эти клетки относятся к адреналовой системы, так как они вырабатывают адреналин и близкие к нему физиологически активные вещества.

Адреналин усиливает расщепление гликогена в мышцах и влечет за собой использование гликогенного резерва мышц в качестве источника энергии. Из печени глюкоза поступает в кровь и также может быть использована мышцами при их активной деятельности. Адреналин вызывает усиление и учащение сердечных сокращений, улучшает проведение возбуждения в сердце, вместе с тем он может повышать тонус ядер блуждающих нервов и потому может вызвать замедление сердечных сокращений. Адреналин суживает артериолы кожи, брюшных органов и тех скелетных мышц, которые находятся в покое. Адреналин не суживает сосуды работающих мышц.

Адреналин ослабляет сокращение желудка и тонкого кишечника. Бронхиальная мускулатура при действии адреналина расслабляется, вследствие чего просвет бронхиол расширяется. Адреналин вызывает сокращение радиальной мышцы радужной оболочки, в результате чего зрачки расширяются.

Вследствие сокращения гладких мышц кожи, поднимающих волоски (пиломоторы), появляется так называемая гусиная кожа.

Таким образом, адреналин вызывает экстренную перестройку функций, направленную на улучшение взаимодействия организма с окружающей средой, повышение работоспособности в чрезвычайных условиях.

Регуляция функции хромаффинной ткани надпочечников. При всех состояниях, которые сопровождаются чрезмерной деятельностью организма и усилением обмена веществ, например при эмоциональном возбуждении, мышечной работе и т.д., секреция адреналина увеличивается. Это объясняется физиологическими изменениями при эмоциональных состояниях у человека. Так, при повышении уровня глюкозы в крови и выделении ее с мочой у студентов во время экзаменов и у спортсменов в предстартовый период, обусловлены выделением адреналина надпочечниками.

Кора надпочечников. В коре различают: наружную – клубочковую, среднюю – пучковую и внутреннюю – сетчатую зоны. Гормоны коры надпочечников делятся на три группы: 1) минералокортикоиды – альдостерон и дезоксикортикостерон, выделяемые клубочковой зоной и регулирующие минеральный обмен; 2) глюкокортикоиды - гидрокортизон, кортизон и кортикостерон, выделяемые пучковой зоной и влияющие на углеводный, белковый и жировой обмен; 3) половые гормоны - андрогены, эстрогены, прогестерон, выделяемые сетчатой зоной.

Минералокортикоиды участвуют в регуляции минерального обмена (натрия и калия). Глюкокортикоиды (кортизон, гидрокортизон, кортикостерон) оказывают влияние на углеводный, белковый и жировой обмен. Наиболее активен кортизон. Половые гормоны коры надпочечников. Андрогены и эстрогены надпочечников играют важную роль в развитии половых органов в детском возрасте, когда функция половых желез еще слабо выражена. У людей после достижения половой зрелости роль этих гормонов невелика.

Однако в старости после прекращения внутрисекреторной функции половых желез, кора надпочечников вновь становится единственным источником секреции андрогенов и эстрогенов.

Мужские половые железы наряду с семевыносящими протоками, семенными пузырьками, предстательной железой, бульбоуртеральными железами относятся к внутренним половым органам. К женским внутренним половым органам относятся яичники, маточные трубы матка, влагалище. Половые железы являются местом образования половых клеток – сперматозоидов и яйцеклеток, а также местом образования половых гормонов – андрогенов и эстрогенов.

Мужские половые железы человека развиваются в брюшной полости в виде парных органов. В яичке имеется еще разновидность клеток – интерстициальные эндокриноциты (клетки Лейдига), синтезирующие андрогены.

Для синтеза половых гормонов нужны два гормона гипофиза – ФСГ и ЛГ.

Эти гормоны гипофиза выделяются под действие гонадолиберина, образующегося в гипоталамусе. Под действием ЛГ у мужчин в семенниках интерстициальными клетками (Лейдига) секретируются андрогены.

Метаболическими и функциональными эффектами тестостерона являются: 1) половая дифференцировка в эмбриогенезе; 2) развитие первичных и вторичных половых признаков; 3) формирование структур цнс, обеспечивающих половое поведение и функции; 4) генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуру, распределение подкожного жира; 5) регуляция сперматогенеза; 6) задержка в организме азота, калия, фосфата, кальция; 7) активация синтеза РНК; 8) стимуляция эритропоэза.

Яичники покрыты однослойным однорядным кубическим эпителием, который представляет собой продолжение на яичник мезотелия брюшины.

Под эпителием располагается соединительнотканная белочная оболочка. В яичнике различают внутренний слой, богатый кровеносными сосудами и нервами, и наружный, в котором расположены женские половые клетки – ооциты, находящиеся на стадии роста. Ооциты окружены одним или несколькими слоями фолликулярных клеток, которые входят в состав вторичной оболочки. Ооциты вместе с окружающими их фолликулярными клетками называются фолликулами. Фолликулярные клетки выполняют трофическую функцию.

В результате секреции ФСГ аденогипофизом происходит развитие в яичнике первичных фолликулов во вторичные. По неизвестным пока причинам только один из последних становится третичным и превращается в граафов пузырек. Созревающие фолликулы секретируют эстрогены.

Эстрогены необходимы для процессов половой дифференцировки в эмбриогенезе, полового созревания и развития женских половых признаков, установления женского полового цикла, роста мышцы и железистого эпителия матки, развития молочных желез. В итоге, эстрогены неразрывно связаны с реализацией полового поведения, с овогенезом, процессами оплодотворения и имплантации яйцеклетки развития и дифференцировки плода, нормального родового акта.

Прогестерон является гормоном сохранения беременности, т.к. ослабляет готовность мускулатуры матки к сокращению. Необходим гормон в малых концентрациях и для овуляции.

ФИЗИОЛОГИЯ ДВИГАТЕЛЬНОГО АППАРАТА



Pages:     || 2 |


Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет вычислительной математики и информатики УТВЕРЖДАЮ Декан факультета ВМК Е.И. Моисеев 2013 Учебно-методический комплекс Искусственный интеллект Направление подготовки 010300 Фундаментальные информатика и информационные технологии Квалификация (степень) выпускника Бакалавр Форма обучения очная Москва...»

«Методические и иные документы для обеспечения образовательного процесса юридического факультета специальности 030501.65 – Юриспруденция, направление подготовки 030900.62 - Юриспруденция 030500.68 Юриспруденция 1. Учебно-методическое обеспечение для самостоятельной работы студентов: Теория государства и права: учебное пособие/ Курск: Курск.гос. тех. 1. ун-т., 2010. 140 с. сост.: О.Г.Ларина Административное право: государственный экзамен/ Ташбекова И.Ю. 2. Курск, МБУ Издательский центр ЮМЭКС,...»

«ФГБОУ ВПО ГКА имени Маймонида УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины Экономика культуры по направлениям: 073400.68 - Магистратура Вокальное искусство (по видам вокального искусства: академическое пение) 073500.68 - Магистратура Дирижирование 073100.68 - Магистратура Музыкально-инструментальное искусство (по всем видам инструментов: фортепиано, оркестровые струнные инструменты, оркестровые духовые и ударные инструменты) Составитель: к.и.н., доцент С.Б.Ксенофонтова Москва 2012...»

«СОДЕРЖАНИЕ 1. Общие положения 1.1. Основная образовательная программа (ООП) бакалавриата, реализуемая Университетом по направлению подготовки 100400.62 Туризм профилю подготовки технология и организация услуг питания. 1.2. Нормативные документы для разработки ООП бакалавриата по направлению подготовки 100400.62 Туризм. 1.3. Общая характеристика вузовской основной образовательной программы высшего профессионального образования (бакалавриат). 1.4. Требования к абитуриенту. 2. Характеристика...»

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Н.Н. Смирнов ПОСОБИЕ по выполнению курсовой работы по дисциплине “ОСНОВЫ ТЕОРИИ ЭКСПЛУАТАЦИИ АВИАЦИОННОЙ ТЕХНИКИ” для студентов IV курса специальности 160901 дневного обучения МОСКВА-2007 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра технической эксплуатации летательных аппаратов и авиадвигателей Н.Н. Смирнов ПОСОБИЕ по выполнению курсовой работы по дисциплине “ОСНОВЫ ТЕОРИИ ЭКСПЛУАТАЦИИ...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО ОТКРЫТОГО УНИВЕРСИТЕТА В Г. МАХАЧКАЛЕ имени В.С. Черномырдина Гуманитарно-экономический факультет Кафедра экономики МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ И ЗАЩИТЕ ДИПЛОМНОЙ РАБОТЫ ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ 080100.62 – Мировая экономика БАКАЛАВРИАТ Махачкала – 2 УДК ББК П Рецензент: заведующий кафедрой...»

«Министерство образования и науки Российской Федерации Федеральное агентство по образованию САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ЛЕСОТЕХНИЧЕСКАЯ АКАДЕМИЯ В. А. ВТЮРИН, кандидат технических наук, доцент Автоматизированные системы управления технологическими процессами ПРОГРАММНО-ТЕХНИЧЕСКИЕ КОМПЛЕКСЫ Учебное пособие для студентов специальности 220301 Автоматизация технологических процессов и производств Санкт-Петербург 3 4 СПИСОК СОКРАЩЕНИЙ АРМ – автоматизированное рабо- ПИД –...»

«ГБОУ ВПО Казанский государственный медицинский университет Минздравсоцразвития России Кафедра общественного здоровья и организации здравоохранения с курсом медицинской информатики Вариационный ряд. Средние величины. Расчет показателей вариационного ряда, используя мастер функций (fх) MS Excel. Учебно-методическое пособие для студентов лечебного факультета Казань 2011 Оглавление Цель занятия: Студент должен уметь Студент должен знать: Информационный материал Основные обозначения вариационного...»

«Министерство образования Российской Федерации Томский политехнический университет ЭНЕРГОСБЕРЕЖЕНИЕ НА ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЯХ Учебное пособие Томск 2000 УДК 621 Энергосбережение на промышленных предприятиях: Учебное пособие / Под ред. проф. М.И. Яворского. – Томск: Изд. ТПУ, 2000. – 134 с. Пособие по энергосбережению на промышленных предприятиях предназначено для студентов, обучающихся по специализации Энергосбережение в системах электроснабжения промышленных предприятий, которые в...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА Институт постдипломного образования УТВЕРЖДАЮ Проректор по учебной работе В.З. Кантор _ 2013 м.п. Дополнительная образовательная программа (семинар) Современные достижения науки и техники в содержании школьного образования Рег. № Санкт-Петербург ПОЯСНИТЕЛЬНАЯ ЗАПИСКА...»

«Переславская Краеведческая Инициатива. — Тема: церковь. — № 3576. Переславль-Залесский. Проектирование православных храмов В Переславле-Залесском Ярославской области из 28 приходских церквей, действовавших до революции, в советский период богослужение совершалось лишь в одной — Покровской. Многие храмы были разрушены, а монастыри упразднены. Сейчас остро встал вопрос о восстановлении утраченного. Существуют две главные причины трудностей проектирования и строительства православных церквей....»

«Образовательная программа ГБОУ гимназии №1452 Богородская составлена на основе рекомендаций Департамента образования города Москвы, Московского Института Открытого Образования, факультета подготовки педагогических кадров Московского педагогического государственного университета. Образовательная программа построена на модульной основе и рассчитана на 3 года. Образовательная программа принята решением педагогического совета № 4 от 23 декабря 2013 г. 2 СОДЕРЖАНИЕ Модуль I ИНФОРМАЦИОННАЯ СПРАВКА. 5...»

«Бюджетное учреждение Чувашской Республики Чувашский республиканский центр новых образовательных технологий Министерства образования и молодежной политики Чувашской Республики РЕЗУЛЬТАТЫ ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА ПО ЧУВАШСКОЙ РЕСПУБЛИКЕ в 2013 ГОДУ СБОРНИК СТАТИСТИЧЕСКИХ МАТЕРИАЛОВ Чебоксары – 2013 Бюджетное учреждение Чувашской Республики Чувашский республиканский центр новых образовательных технологий Министерства образования и молодежной политики Чувашской Республики РЕЗУЛЬТАТЫ...»

«Государственное образовательное учреждение высшего профессионального образования Челябинский государственный педагогический университет Профессионально – педагогический институт Кафедра педагогики и психологии профессионального образования С. Г. Литке ОБЩАЯ ПСИХОЛОГИЯ Методические рекомендации Серия: УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по выполнению самостоятельной работы по специальности 050501 - Профессиональное обучение (очная и заочная формы обучения) Челябинск Государственное образовательное...»

«М.К. Бункина А.М. Семенов В.А. Семенов МАКРОЭКОНОМИКА Учебник 3-е издание, переработанное и дополненное ББК 65.012.2 Бункина М.К., Семенов А.М., Семенов В.А. Макроэкономика: Учебник. – 3-е изд., перераб. и доп. – М.: Издательство Дело и Сервис, 2000. – 512 с. ISBN 5-8018-0098-0 В данном издании исследование макроэкономики подведено к началу XXI века и обращено в будущее. Макроэкономическая наука направлена на изучение российской специфики, экономического и финансового состояния страны, наших...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ ИМ. В.П. ГОРЯЧКИНА ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ АВТОМОБИЛЕЙ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА МОСКВА 2003 УДК 629.114.4.004.24 ББК 39.335.4 Рецензент: Доктор технических наук, профессор кафедры Менеджмент в АПК В.Д. Игнатов Авторы: Дидманидзе О.Н., Митягин Г.Е., Боярский В.Н., Пуляев Н.Н., Асадов Д.Г., Иволгин В.С. Техническая эксплуатация автомобилей. Методические...»

«Дралин А.И., Михнева С.Г. МИНОБРНАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВПО Пензенский государственный университет) Факультет экономики и управления Кафедра Экономическая теория и мировая экономика МИРОВАЯ ЭКОНОМИКА И МЕЖДУНАРОДНЫЕ ЭКОНОМИЧЕСКИЕ ОТНОШЕНИЯ Часть I МИРОВАЯ ЭКОНОМИКА Учебное пособие ПЕНЗА ИИЦ ПГУ 2012 УДК.... Учебное пособие Мировая экономика и международные...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ЮРИДИЧЕСКИЙ Кафедра теории и истории государства и права; международного права ИСТОРИЯ ГОСУДАРСТВА И ПРАВА РОССИЙСКОЙ ФЕДЕРАЦИИ Методические указания к изучению курса. Планы семинарских занятий, тематика курсовых работ для студентов 1 курса дневного отделения юридического факультета Издательство Самарский университет, 2006...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановская государственная текстильная академия (ИГТА) Кафедра материаловедения и товароведения МАТЕРИАЛОВЕДЕНИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению контрольных работ для студентов специальности 230700 (100101) Сервис заочной формы обучения Иваново 2007 Методические указания предназначены для студентов заочного факультета специальности 230700 (100101). В них приведены рабочая...»

«ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет математики и компьютерных наук Кафедра информационных систем МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению дипломных работ для студентов специальности 351400 – Прикладная информатика в экономике ИЗДАТЕЛЬСТВО ТЮМЕНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА, 2004 Работа утверждена на заседании кафедры информационных систем 30.04.2004 Печатается по решению учебно-методического совета...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.