WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 |   ...   | 7 | 8 ||

«Методическое пособие для самостоятельной работы студентов на уроках по предмету Биология и основы экологии для студентов СПО по специальностям 190701 Организация перевозок и управление на железнодорожном транспорте ...»

-- [ Страница 9 ] --

Перспективно получение кормовых дрожжей из отходов древесины и нефти. Сейчас оно составляет 1 млн. т в год. Известно, что добавление дрожжей в корм курам дат дополнительно 35 тыс. яиц и 1,5 т мяса на 1 т дрожжей. В корм животных идт также паста из хлореллы — одноклеточной зелной водоросли. Используют е и на удобрения.

Тема: Полиплоидия. Отдалнная гибридизация.

Полиплоидия (от греч. polyploos — «многократный» и idos — «вид») — кратное увеличение количества хромосом у особи. Различают автополиплоидию, при которой происходит кратное увеличение числа собственных хромосом, и аллополиплоидию, при которой к набору хромосом одного вида добавляется набор хромосом другого.

ПОЛИПЛОИДИЯ (от греч. polэploos- многократный и йidos - вид), эуплоидия, наследств. изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Наиб. часто встречается у растений и простейших, а из многоклеточных животных - у дождевых червей. Возникает в результате нарушения расхождения хромосом в митозе или мейозе под действием высокой или низкой темп-ры, ионизирующих излучений, химич. веществ (как в природе, так и в эксперименте). При П.

наблюдаются отклонения от диплоидного числа хромосом в соматич. клетках и от гаплоидного - в половых; могут возникать клетки, в к-рых каждая хромосома представлена трижды (3n - триплоиды), четырежды (4n - тетраплоиды), пять раз (5n - пентаплоиды) и т.д. Различают автополиплоидию (кратное увеличение числа наборов хромосом одного вида), характерную, как правило, для видов с вегетативным способом размножения (автополиплоиды стерильны в связи с нарушением конъюгации гомологичных хромосом в процессе мейоза), и аллополиплоидию (изменение числа наборов хромосом на основе межвидовой гибридизации), при к-рой обычно происходит удвоение числа хромосом у бесплодного диплоидного гибрида, и он становится в результате этого плодовитым. П. имеет важное значение в эволюции культурных и дикорастущих растений (полагают, что около трети всех видов растений возникли за счт П.), а также нек-рых групп животных (преим. партеногенетических). Полиплоиды часто характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внеш. среды и др. хозяйственно полезными признаками. Они представляют важный источник изменчивости и м.б. использованы как исходный материал для селекции (на основе П. созданы высокоурожайные сорта с.-х. растений, устойчивые к болезням). В широком смысле под термином "П." понимают как кратное (эуплоидия), так и некратное (анеуплоидия) изменение числа хромосом в клетках организма.

ГИБРИДИЗБЦИЯ, процесс образования или получения гибридов, в основе к-рого лежит объединение генетического материала разных клеток в одной клетке. Может осуществляться в пределах одного вида (внутривидовая Г.; гибриды характеризуются гетерозиготностью по многим или анализируемому гену) и между разными систематич. группами (отдалнная Г., при к-рой происходит объединение разных геномов). Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалнной Г.

гибриды, как правило, неплодовиты. Г.- процесс, на основе к-рого возникает и реализуется комбинативная изменчивость - один из факторов эволюции. Г. является необходимым условием осуществления гибридологич. и геномного анализа, позволяет решать мн. биол. проблемы; е используют для получения хозяйственно ценных форм животных и растений.

Кроме получения гибридов на основе полового процесса, можно осуществлять Г. соматич. клеток, заключающуюся в слиянии соматич. клеток с формированием общего ядра. Если при слиянии ядра остаются обособленными, клетки наз. синкарионом. Г. соматич. клеток происходит in vitro при "смешении" разл. культур клеток, и спонтанная частота этого явления очень низка. Для увеличения частоты Г.

соматич. клеток используют, напр., пониженную темпу и вирусы. Для эффективного выделения гибридов соматич. клеток применяют селективные среды, на к-рых могут размножаться гибридные клетки, но не клетки исходных культур. Работы по Г. соматич. клеток, начатые в 60-х гг. 20 в., показали, что она возможна между клетками очень отдалнных видов, скрещивания между к-рыми практически неосуществимы (напр., соматич. гибриды человек Ч мышь, человек Ч курица, соя Ч горох и др.). Г. соматич.

клеток открыла новые подходы к таким проблемам, как дифференцировка клеток, изменчивость на клеточном уровне. Г. клеток и протопластов (наряду с пересадкой ядер и рядом др. манипуляций) получила назв. клеточной инженерии и является одним из перспективных направлений в биотехнологии.

В мол. биологии используют понятие "молекулярная Г." (Г. между разными молекулами ДНК или между ДНК и РНК). См. Генетическая инженерия.

ГИБРИД (от лат. hibrida, hybrida - помесь), организм (клетка), полученный в результате объединения генетич. материала генотипически разных организмов (клеток), т.е. гибридизации. В природных популяциях амфимиктич. организмов (т.е. раздельнополых животных или перекрстноопыляющихся растений) практически каждая особь гетерозиготна по многим генам, т.е. является Г., что необходимо для поддержания в популяции определ. уровня генотипич. изменчивости. Отдалнные Г. (разных таксонов - видов и выше) в природе встречаются довольно редко и, как правило, бесплодны. Это свидетельствует о том, что естеств. отбор препятствует как их образованию, так и их выживанию. Тем не менее появление нек-рых видов растений было связано с образованием отдалнных Г. Получение Г. лежит в основе гибридологич. анализа. Особое значение имеет получение внутривидовых и отдалнных Г. на основе слияния клеток, чаще всего протопластов, а также Г. соматич. клеток, с помощью к-рых изучаются процессы онтогенеза, опухолеобразования и т.п.



Термин «экология» (от греческого oikos— дом, жилище, место обитания и logos— наука) был введен в научный оборот немецким ученым Э. Геккелем в 1869 году. Им же было дано одно из первых определений экологии как науки, хотя те или иные ее элементы содержатся в трудах многих ученых, начиная с мыслителей Древней Греции. Биолог Э. Геккель рассматривал в качестве предмета экологии взаимоотношения животного с окружающей средой, и, первоначально, экология развивалась как биологическая наука. Однако постоянно возрастающий антропогенный фактор, резкое обострение отношений природы и человеческого общества, возникновение необходимости охраны окружающей среды неизмеримо расширили рамки предмета экологии.

В настоящий момент экологию необходимо рассматривать как комплексное научное направление, которое обобщает, синтезирует данные естественных и социальных наук о природной среде и взаимодействии ее с человеком и человеческим обществом. Она действительно стала наукой о «доме», где «дом» (oikos) — вся наша планета Земля.

Экологизация коснулась практически всех отраслей знаний, что привело к возникновению целого ряда направлений экологической науки. Эти направления классифицируются по предмету изучения, основным объектам, средам и т.п. Экологический цикл знаний включает около 70 крупных научных дисциплин, а экологический лексикон насчитывает примерно 14 тыс. понятий и терминов. Наиболее важные в реставрации экологические термины и понятия представлены в Приложении А.

К сожалению, единой общепринятой классификации направлений экологии не существует.

В экологии, отдавая дань ее возникновению как естественной науки, выделяют динамическую и аналитическую ветви. Динамическая экология (эволюционно-динамическая) изучает динамику и эволюцию отношений организмов и их групп со средой обитания. Аналитическая экология — раздел экологии, исследующий основные закономерности взаимоотношения организмов и их популяций с природной средой.

Общая экология (биоэкология) исследует основные принципы организации и функционирования различных надорганизменных систем. Содержание разделов общей экологии приведено в табл. 1.1.

Таблица 1. Структура общей (биологической) экологии Разделы экологии Их содержание факториальная экология Учение о факторах среды и закономерностях их действия на организмы Экология организмов, или Взаимодействия между отдельными организмами и факторами среды или Популяционная экология, Взаимоотношения между организмами одного вида (в пределах популяили демэкология ций) и средой обитания. Экологические закономерности существования Учение об экосистемах (био- Взаимоотношения организмов разных видов (в пределах биоценозов) и геоценозах), или синэколо- среды их обитания как единого целого. Экологические закономерности Учение о биосфере (глобаль- Роль живых организмов (живого вещества) и продуктов их жизнедеятельная экосистема) ности в создании земной оболочки (атмосферы, гидросферы, литосферы), Сфера частной экологии ограничена изучением конкретных групп определенного ранга — экология растений, экология животных, экология микроорганизмов. Существует и более дробное деление разделов частной экологии: экология позвоночных, экология млекопитающих и т.д.

Экология может быть разделена на теоретическую и прикладную по сферам деятельности человека. Прикладная экология включает промышленную (инженерную) экологию, технологическую, сельскохозяйственную, химическую, медицинскую, промысловую, геохимическую, рекреационную экологию и др. Прикладные аспекты экологической науки служат основой для развития технической инженерной дисциплины — охраны окружающей среды.

К прикладным экологическим наукам относится и строительная экология. Предметом ее изучения является воздействие строительства на окружающую среду, а факторов окружающей среды — на функционирование зданий и сооружений в оптимальном для человека режиме с обеспечением высокого качества среды его обитания.

Задачи строительной экологии, сформулированные А.Н. Тетиором, следующие:

• оптимизация архитектурно-градостроительных, конструкторских, технологических разработок с учетом исключения негативных воздействий на окружающую среду;

• прогнозирование и оценка возможных негативных последствий строительства, эксплуатации новых и реконструируемых зданий и сооружений для окружающей среды;

• применение отходов производства при изготовлении строительных материалов и изделий с целью исключения поступления отходов в окружающую среду;

• использование биопозитивных, помогающих развитию природы, градостроительных, архитектурных, конструктивных, технологических решений;

• своевременное выявление объектов, наносящих ущерб окружающей среде, при помощи экологического мониторинга и принятия соответствующих решений. Значительные масштабы и темпы современной урбанизации обусловили появление в рамках строительной экологии урбоэкологии (от лат.

урбанус — городской) — эколого-градостроительного направления деятельности, занимающегося изучением способов наилучшего расселения людей в городах и других населенных пунктах с учетом интересов населения и сохранения природной среды.

В рамках задач урбоэкологии важное место занимает вопрос формирования жилища, отвечающего экологическим требованиям. Экологичное жилище — это жилище вместе с прилегающими участками, в котором формируется благоприятная среда обитания (микроклимат, защищенность от шума и загрязнений, обеспечение социально здоровых условий жизни, применение безвредных материалов в строительстве и т.п.) и которое не оказывает негативных воздействий на городскую и природную среду, отвечает требованиям энергосбережения, использует возобновляемые источники энергии и обеспечивает жителям контакты с природой.

Происходит постоянное расширение сферы исследований экологии. Появились математическая, географическая, глобальная, космическая экология, палеоэкология, радиоэкология, экологическая минералогия, экотоксикология и др.

Среди экологических наук особое место занимает социальная экология, рассматривающая взаимоотношения в глобальной системе «человеческое общество—окружающая среда» и изучающая взаимодействия человеческого общества с природной и созданной им техногенной средой. Социальная экология разрабатывает научные основы природопользования, предполагающие повышение качества жизни человека в среде его обитания с одновременным обеспечением сохранения природы.

Экология человека включает экологию города, экологию народонаселения, экологию человеческой личности, экологию человеческих популяций (учение об этносах) и т.д.

На стыке экологии человека и строительной экологии сформировалась архитектурная экология, которая изучает методы создания для людей комфортной, долговечной и выразительной окружающей среды. Экологически недопустимо разрушение архитектурной среды города, часто возникающее при отсутствии композиционно-художественной связи новых и старых объектов и проч., поскольку архитектурная дисгармония вызывает снижение работоспособности и ухудшение здоровья человека.

К архитектурной экологии непосредственно примыкает новое научное направление — видеоэкология, изучающая взаимодействие человека с видимой средой. Видеоэкологи считают опасными для человека на физиологическом уровне так называемые гомогенные и агрессивные визуальные поля. Первые — это голые стены, стеклянные витрины, глухие заборы, плоские крыши зданий и др., вторые — всевозможные поверхности, испещренные одинаковыми, равномерно расположенными элементами, от которых рябит в глазах (плоские фасады домов с одинаковыми окнами, большие поверхности, облицованные прямоугольными плитками, и т.д.).

Среди перечисленных наук особенно актуально сегодня в общей и прикладной экологии сопряжение знаний о направлениях формирования и охраны окружающей среды обитания человека. В этой сфере знаний («средологии») особенно важным становится сохранение культурной среды обитания человека.

В настоящее время происходит формирование новой ветви экологической науки — реставрационной экологии. Эта сфера включает знание законов и механизмов системных взаимодействий среды и памятника, их места в экосистемах, изучение влияния экологических факторов и, в частности, микробиогенных, на повреждение материала памятника. Эти знания сегодня практически необходимы и являются основой формирования экологического мировоззрения в реставрационной деятельности, экологических принципов сохранения культурного наследия. Составной частью знаний в этой области должно стать изучение опыта (информационного ресурса) древних зодчих. Они хорошо знали законы природы и строили качественно и на века. Сегодня новые, агрессивные условия эксплуатации памятников архитектуры требуют новых экологически обоснованных технологий реставрации, учитывающих изменения этих условий.

Ноосферология (ноосфера — «сфера разума») изучает возможности формирования высшей стадии развития биосферы, связанной с возникновением и становлением в ней цивилизованного общества, когда разумная деятельность человека становится главным определяющим фактором развития. Понятие ноосферы ввел французский математик и философ Е. ле Руа, а теоретически разработал и развил в своих работах В.И. Вернадский.

Развивается новое направление в экологии — глубокая экология, основными положениями которой являются:

признание самостоятельной ценности всех форм жизни, независимо от их полезности для человека;

осознание богатства и разнообразия форм жизни, имеющих собственную ценность и способствующих расцвету человечества;

человек не имеет права уменьшать богатство и разнообразие форм жизни (исключая случаи удовлетворения его насущных потребностей);

расцвет человечества и его культуры может происходить в условиях сокращения его численности;

современное вмешательство человека в другие формы жизни носит избыточный характер, и ситуация быстро ухудшается, что вызывает необходимость изменения технологий, экономики и идеологических структур взаимоотношения человека с другими формами жизни;

основное идеологическое изменение — признание качества жизни человека важнейшим показателем.

С идеями глубокой экологии во многом смыкается концепция инвайронментализма (environment — окружающая среда), основные направления которого — радикальное преобразование системы ценностей общества, отрицание антропоцентризма и ограничение экономического роста и экологически неоправданного поведения.

Экологический фактор — условие среды обитания, оказывающее воздействие на организм. Среда включает в себя все тела и явления, с которыми организм находится в прямых или косвенных отношениях.

Экологичеких факторов — температура, влажность, ветер, конкуренты и т. д. — отличаются значительной изменчивостью во времени и пространстве. Степень изменчивости каждого из этих факторов зависит от особенностей среды обитания. Например, температура сильно варьируется на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов.

Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных растений, а в жизни гетеротрофных организмов (грибов и водных животных) свет не оказывает заметного влияния на их жизнедеятельность.

Экологические факторы действуют на организмы по-разному. Они могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфологические и анатомические изменения организмов.

Принято выделять биотические, антропогенные и абиотические экологические факторы.

Биотические факторы — вс множество факторов среды, связанных с деятельностью живых организмов. К ним относятся фитогенные (растения), зоогенные (животные), микробиогенные (микроорганизмы) факторы.

Антропогенные факторы — вс множество факторов, связанных с деятельностью человека. К ним относятся физические (использование атомной энергии, перемещение в поездах и самолтах, влияние шума и вибрации и др.), химические (использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта; биологические (продукты питания; организмы, для которых человек может быть средой обитания или источником питания), социальные (связанные с отношениями людей и жизнью в обществе) факторы.

Абиотические факторы — вс множество факторов, связанных с процессами в неживой природе. К ним относятся климатические (температурный режим, влажность, давление), эдафогенные (механический состав, воздухопроницаемость, плотность почвы), орографические (рельеф, высота над уровнем моря), химические (газовый состав воздуха, солевой состав воды, концентрация, кислотность), физические (шум, магнитные поля, теплопроводность, радиоактивность, космическое излучение) Часто встречающаяся классификация экологических факторов (факторов среды) ПО ВРЕМЕНИ: эволюционный, исторический, действующий ПО ПЕРИОДИЧНОСТИ: периодический, непериодический ПО ОЧЕРЕДНОСТИ ВОЗНИКНОВЕНИЯ: первичный, вторичный ПО ПРОИСХОЖДЕНИЮ: космический, абиотический (он же абиогенный), биогенный, биологический, биотический, природно-антропогенный, антропогенный (в том числе техногенный, загрязнения среды), антропический (в том числе беспокойства) ПО СРЕДЕ ВОЗНИКНОВЕНИЯ: атмосферный, водный (он же влажности), геоморфологический, эдафический, физиологический, генетический, популяционный, биоценотический, экосистемный, биосферный ПО ХАРАКТЕРУ: вещественно-энергетический, физический (геофизический, термический), биогенный (он же биотический), информационный, химический (солености, кислотности), комплексный (экологический, эволюции, системообразующий, географический, климатический) ПО ОБЪЕКТУ: индивидуальный, групповой (социальный, этологический, социально-экономический, соци-ально-психологический, видовой (в том числе человеческий, жизни общества) ПО УСЛОВИЯМ СРЕДЫ: зависящий от плотности, не зависящий от плотности ПО СТЕПЕНИ ВОЗДЕЙСТВИЯ: летальный, экстремальный, лимитирующий, беспокоящий, мутагенный, тератогенный; канцерогенный ПО СПЕКТРУ ВОЗДЕЙСТВИЯ: избирательный, общего действия Экологическая ниша – это комплекс всех физических, химических и биологических факторов среды, которые необходимы тому или иному биологическому виду для жизни, роста и размножения в данной экосистеме. Понятие ниши включает в себя и роль организма в экосистеме.

Известная аналогия утверждает, что местообитания организма – это его «адрес» в экосистеме, тогда как его экологическая ниша – его «род занятий» и «стиль жизни». Например, местообитание дрозда включает в себя леса, парки, луга, сады, огороды и дворы. Его же экологическая ниша включает такие факторы, как гнездование и высиживание птенцов на деревьях, питание насекомыми, земляными червями и плодами, перенос плодово-ягодных семян со своими экскрементами.

Каждый биологический вид играет определенную роль в своей экосистеме. Экологи доказали, что некоторые виды, называемые ключевыми видами, кардинально влияют на многие другие организмы в экосистеме. Исчезновение ключевого вида из экосистемы может спровоцировать целый каскад резких падений численности популяции и даже вымирание тех видов, которые зависели от него в той или иной форме.

Примером ключевого вида можно считать земляную черепаху. Земляная черепаха обитает на песчаных возвышенностях во Флориде и других южных районах США. Это медлительное, размером с обеденную тарелку, животное вырывает себе нору глубиной до 9 метров. В жарких, негостеприимных экосистемах юга США такие норы становятся убежищами от жары для почти 40 других видов животных, таких, как серая лиса, опоссум, змея индиго и многих насекомых. В тех местах, где земляная черепаха была истреблена или доведена до грани вымирания многочисленными охотниками за ее изысканным мясом, многие зависящие от черепахи виды перестали существовать.

Специализированные и общие ниши.

Экологические ниши всех организмов можно разделить на специализированные и общие – в зависимости от их основных источников питания, размеров местообитания и чувствительности к температуре и другим физико-химическим факторам среды.

Специализированные ниши: большинство видов растений и животных Общие ниши: мухи, тараканы, мыши, крысы и люди.

Чем более узко специализирована экологическая ниша, тем уязвимее вид.

Два вида не могут продолжительное время занимать одну экологическую нишу.

Взаимодействие видов.

К основным способам взаимодействия видов относятся межвидовая конкуренция, хищничество, паразитизм, мутуализм и комменсализм.

Межвидовая конкуренция.

Пока экосистема обладает достаточным количеством ресурсов общего пользования, разные виды потребляют их сообща. Однако если два или более видов в одной экосистеме начнут потреблять один и тот же дефицитный ресурс, они окажутся в отношениях межвидовой конкуренции.

Вид получает преимущество в межвидовой конкуренции, если для него характерны - более интенсивное размножение;

- адаптация к более широкому диапазону температуры, освещенности, солености воды или концентрации определенных вредных веществ;

- лишение конкурента доступа к ресурсу.

Способы снижения межвидовой конкуренции:

- переселение в другой район;

- переход на более труднодоступную или трудно усваиваемую пищу;

- смена времени и места добычи корма.

Хищничество.

Наиболее характерной формой взаимодействия видов в пищевых цепях и сетях является хищничество, при котором отдельная особь одного вида (хищник) питается организмами (или частями организмов) другого вида (жертвы), причем хищник живет отдельно от жертвы. Эти два вида организмов вовлечены в отношения типа хищник – жертва.

Виды-жерты пользуются целым рядом защитных механизмов, чтобы не стать легкой добычей для хищников:

- умение быстро бегать или летать;

- обладание толстой кожей или панцирем;

- обладание защитной окраской или способом изменять цвет;

- умение выделять химические вещества с запахом или вкусом, отпугивающим хищника или даже отравляющим его.

У хищников тоже есть несколько способов добычи жертвы:

- умение быстро бегать (например, гепард);

- охота стаями (например, пятнистые гиены, львы, волки);

- отлов в качестве жертв преимущественно больных, раненых и прочих неполноценных особей;

Четвертый путь обеспечения себя животной пищей – это путь, по которому пошел человек разумный, путь изобретения орудий охоты и ловушек, а также одомашнивания животных.

Еще один тип взаимодействия видов – паразитизм.

Паразиты питаются за счет другого организма, называемого хозяином, однако в отличие от хищников они живут на хозяине или внутри его организма на протяжении значительной части их жизненного цикла. Паразит использует для своей жизнедеятельности питательные вещества хозяина, тем самым постепенно ослабляя и нередко даже убивая его.

Например, ленточные черви, болезнетворные бактерии и другие паразиты живут внутри своих хозяев. Вши, клещи и такие растения-паразиты, как омела белая, прикрепляются к своим хозяевам снаружи. Собачьи блохи, например, способны перемещаться от хозяина к хозяину.

Мутуализм.

Нередко случается, что два различных вида организмов непосредственно взаимодействуют таким образом, что приносят друг другу взаимную пользу. Такие взаимовыгодные межвидовые взаимодействия называются мутуализмом. Например, цветы и насекомые-опылители.

Комменсализм.

Комменсализм характеризуется тем, что один из двух видов извлекает из межвидового взаимодействия пользу, тогда как на другом это практически никак не отражается (ни положительно, ни отрицательно). Например, рачки в челюстях кита.

ДИАПАЗОНЫ ТОЛЕРАНТНОСТИ И ЛИМИТИРУЮЩИЕ ФАКТОРЫ.

Диапазон толерантности – амплитуда колебаний различных факторов (температура, влажность, свет) при которой существует полноценный рост популяций.

Закон толерантности – существование, распространенность и распределение видов живых организмов в экосистеме определяется тем, может ли уровень одного или нескольких физических или химических факторов быть выше или ниже уровней толерантности этих видов.

Уровень толерантности отдельного организма зависит от его возраста, здоровья, физиологического состояния, генотипа (например, толерантность к спиртному). К постепенно изменяющимся условиям можно адаптироваться (привыкнуть).

Гомеостаз – способность биологического объекта к саморегуляции при изменении условий окружающей среды; для организма сохранение постоянства внутренней среды организма и устойчивость основных физиологических функций при изменении внешних условий.

Х1 и Х2 – пороговые значения Пороговый эффект – малое изменение или воздействие может оказаться критическим и вызвать негативные последствия (если система находится в предпороговой области).

Например, массовая гибель деревьев после длительного воздействия загрязненного воздуха.

Принцип лимитирующего фактора – избыток или недостаток одного абиотического фактора может повлечь за собой ограничение или остановку роста численности популяции в экосистеме, даже если значения других факторов оптимальны.

Лимитирующий фактор – любой фактор, тормозящий рост популяции в экосистеме.

Лимитирующие факторы для наземных экосистем:

- температура;

- питательные вещества в почве.

Лимитирующие факторы для водных экосистем:

- температура;

- солнечный свет;

- содержание растворенного кислорода;

Экосистема или экологическая система (от греч. ikos — жилище, местопребывание и система), природный комплекс (биокосная система), образованный живыми организмами (биоценоз) и средой их обитания (косной, например атмосфера, или биокосной — почва, водом и т. п.), связанными между собой обменом веществ и энергии. Одно из основных понятий экологии, приложимое к объектам разной сложности и размеров. Примеры Экосистем — пруд с обитающими в нм растениями, рыбами, беспозвоночными животными, микроорганизмами, донными отложениями, с характерными для него изменениями температуры, количества растворнного в воде кислорода, состава воды и т. п., с определнной биологической продуктивностью; лес с лесной подстилкой, почвой, микроорганизмами, с населяющими его птицами, травоядными и хищными млекопитающими, с характерным для него распределением температуры и влажности воздуха, света, почвенных вод и др. факторов среды, с присущим ему обменом веществ и энергии. Гниющий пень в лесу, с живущими на нм и в нм организмами и условиями обитания, тоже можно рассматривать как Экосистему Экологическая система (экосистема) — совокупность популяций различных видов растений, животных и микробов, взаимодействующих между собой и окружающей их средой таким образом, что эта совокупность сохраняется неопределнно долгое время. Примеры экологических систем : луг, лес, озеро, океан. Экосистемы существуют везде — в воде и на земле, в сухих и влажных районах, в холодных и жарких местностях. Они по-разному выглядят, включают различные виды растений и животных. Однако в «поведении» всех экосистем имеются и общие аспекты, связанные с принципиальным сходством энергетических процессов, протекающих в них. Одним из фундаментальных правил, которым подчиняются все экосистемы, является принцип Ле Шателье — Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.

При изучении экосистем анализируют прежде всего поток энергии и круговорот веществ между соответствующими биотопом и биоценозом. Экосистемный подход учитывает общность организации всех сообществ независимо от местообитания. Это подтверждает сходство структуры и функционирования наземной и водной экосистем.

По определению В. Н. Сукачева, биогеоценоз (от греч. bios — жизнь, ge — Земля, ценоз — общество) — это совокупность однородных природных элементов (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий) на определнном участке поверхности Земли. Контур биогеоценоза устанавливается по границе растительного сообщества (фитоценоза).

Термины «экологическая система» и «биогеоценоз» не являются синонимами. Экосистема — это любая совокупность организмов и среды их обитания, в том числе, например, горшок с цветком, муравейник, аквариум, болото, пилотируемый космический корабль. У перечисленных систем отсутствует ряд признаков из определения Сукачева, и в первую очередь элемент «гео» — Земля. Биоценозы — это только природные образования. Однако биоценоз в полной мере может рассматриваться как экосистема. Таким образом, понятие «экосистема» шире и полностью охватывает понятие «биогеоценоз», или «биогеоценоз» — это частный случай «экосистемы».

Самая крупная природная экосистема на Земле — это биосфера. Граница между крупной экосистемой и биосферой столь же условна, как и между многими понятиями в экологии. Различие преимущественно состоит в такой характеристике биосферы, как глобальность и большая условная замкнутость(при термодинамической открытости). Прочие же экосистемы Земли вещественно практически не замкнуты.

Биомы — наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли(пустынные, травянистые, лесные); водные экосистемы — основные экосистемы, существующие в водной сфере (гидросфере). Иногда в литературе встречается близкая, но менее четкая классификация, прежде всего выделяющая влажные тропические леса, саванны, пустыни, степи, леса умеренного пояса, хвойные(тайгу), тундру.

Каждый биом включает в себя ряд меньших по размеру, связанных между собой экосистем. Одни из них могут быть очень крупными, площадью в миллионы квадратных километров, другие — мелкими, например, небольшой лесок. Важно то, что любую экосистему можно определить как более или менее специфическую группировку растений и животных, взаимодействующих друг с другом и со средой.

Так, легко выделить множество типов водных экосистем (ручьи, реки, озера, пруды, болота и др.) или подразделить океаны на отдельные экосистемы (коралловые рифы, континентальный шельф, абиссаль).

Четкие границы между экосистемами встречаются редко, обычно между ними находится зона со своими особенностями.

На границе двух экосистем, например, на опушке леса, одновременно встречаются представители лесных и луговых видов. Контрастность среды, а потому большее обилие экологических возможностей порождает «сгущение жизни», называемое правилом краевого эффекта или правилом экотона. Хорошо известно, что на опушках леса жизнь богаче, а в его глубине, как и в середине луга, она менее разнообразна. В природе все существует только совместно, а два рядом расположенных образования могут плавно переходить друг в друга.

Любую экосистему прежде всего можно разделить на совокупность организмов и совокупность неживых (абиотических) факторов окружающей природной среды.

В свою очередь экотоп состоит из климата во всех многообразных его проявлениях и геологической среды(почв и грунтов), называемой эдафотопом. Эдафотоп — это то, откуда биоценоз черпает средства для существования и куда выделяет продукты жизнедеятельности.

Структура живой части биогеоценоза определсяется трофоэнергетическими связями и отношениями, в соответствии с которыми выделяют три главных функциональных компонента :

комплекс автотрофных организмов-продуцентов, обеспечивающих органическим веществом и, следовательно, энергией остальные организмы (фитоценоз(зеленые растения), а также фото- и хемосинтезирующие бактерии); комплекс гетеротрофных организмов-консументов, живущих за счт питательных веществ, созданных продуцентами; во-первых, это зооценоз (животные), во-вторых, бесхлорофилльные растения; комплекс организмов-редуцентов, разлагающих органические соединения до минерального состояния (микробиоценоз, а также грибы и прочие организмы, питающиеся мертвым органическим веществом).

В качестве наглядной модели экологической системы и е структуры Ю.Одум предложил использовать космический корабль при длительных путешествиях, например, на планеты Солнечной системы или ещ дальше. Покидая Землю, люди должны иметь четко ограниченную закрытую систему, которая обеспечивала бы все их жизненные потребности, а в качестве энергии использовала энергию солнечного излучения. Такой космический корабль должен быть снабжен системами полной регенерации всех жизненно важных абиотических компонентов (факторов), позволяющих их многократное использование. В нм должны осуществляться сбалансированные процессы продуцирования, потребления и разложения организмами или их искусственными заменителями. По сути, такой автономный корабль будет представлять собой микроэкосистему, включающую человека.

Участок лесного массива, пруд, гниющий пень, особь, заселенная микробами или гельминтами — являются экосистемами. Понятие экосистемы, таким образом, применимо к любой совокупности живых организмов и их местообитания.

Биосфера. Ноосфера. Круговорот веществ. Биогеоценозы.

организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Термин «биосфера» был введн в биологии Жаном-Батистом Ламарком в начале XIX в., а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году[1].

Целостное учение о биосфере создал русский биогеохимик и философ В. И. Вернадский. Он впервые отвл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера — область распространения жизни на космическом теле. При том что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Биосфера располагается на пересечении верхней части литосферы, нижней части атмосферы и занимает всю гидросферу.

Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое УФ-излучение, губительное для живых организмов.

Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.

Нижняя граница в гидросфере: 10—11 км. Она определяется дном Мирового Океана, включая донные отложения.

Биосферу слагают следующие типы веществ:

1) Живое вещество — вся совокупность тел живых организмов, населяющих Землю, физикохимически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,61012 т (в сухом весе) и составляет менее массы других оболочек Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живое вещество не просто населяет биосферу, а преобразует облик Земли. Живое вещество распределено в пределах биосферы очень неравномерно.

2) Биогенное вещество — вещество, создаваемое и перерабатываемое живым веществом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь всю атмосферу, весь объм мирового океана, огромную массу минеральных веществ.

Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.

3) Косное вещество — в образовании которого жизнь не участвует; твердое, жидкое и газообразное.

4) Биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.

5) Вещество, находящееся в радиоактивном распаде.

6) Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.

7) Вещество космического происхождения.

История развития биосферы Развитие наблюдается лишь в живом веществе и связанным с ним биокосном. В косном веществе нашей планеты эволюционный процесс не проявляется Жизнь на Земле зародилась ещ в архее — примерно 3,5 млрд лет назад. Такой возраст имеют найденные палеонтологами древнейшие органические остатки. Возраст Земли как самостоятельной планеты Солнечной системы оценивается в 4,5 млрд лет. Таким образом, можно считать, что жизнь зародилась ещ в юношескую стадию жизни планеты. В архее появляются первые эукариоты — одноклеточные водоросли и простейшие. Начался процесс почвообразования на суше. В конце архея появился половой процесс и многоклеточность у животных организмов.

С течением времени биосфера становится вс более неустойчивой. Существует несколько трагичных для человечества преждевременных изменений состояния биосферы, некоторые из них связаны с деятельностью человечества.

Некоторые философы, например, Дэвид Пирс выступают за модификацию биосферы с целью избавления от страданий всех живых существ и создание в буквальном смысле рая на земле (см. одно из значений слова аболиционизм).

Большой вклад в развитие учения о биосфере внс В. И. Вернадский.

Человек не может существовать вне биосферы, однако стремится исследовать космическое пространство. Ещ Константин Эдуардович Циолковский связывал освоение космоса с созданием искусственной биосферы В настоящее время идея е создания вновь становится актуальной в связи с планами освоения Луны и Марса. Однако на данный момент попытка создания, полностью автономной искусственной биосферы не увенчалась успехом.

Рассматривается возможность создания (пока в далеком будущем) внеземной биосферы на других планетах при помощи террафомирования.

греч. — «разум» и — «шар») — сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «социосфера», «биотехносфера»). Ноосфера — новая, высшая стадия эволюции биосферы, становление которой связано с развитием человеческого общества, оказывающего глубокое воздействие на природные процессы. Согласно Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного». Ноосфера как наука изучает закономерности возникновения, существования и развития человека, человеческого общества, закономерности взаимоотношения человека с биосферой. Суть ноосферы заключается в том, что человек, человеческое общество есть объективная, закономерная часть мира и необходимо постигать и знать эти закономерности. В окружающем нас мире ноосфера является той частью биосферы, которую занимает человек.

В ноосферном учении Человек предстат укореннным в Природу, а «искусственное» рассматривается как органическая часть и один из факторов (усиливающийся во времени) эволюции «естественного». Обобщая с позиции натуралиста человеческую историю, Вернадский делает вывод о том, что человечество в ходе своего развития превращается в новую мощную геологическую силу, своей мыслью и трудом преобразующую лик планеты. Соответственно, оно в целях своего сохранения должно будет взять на себя ответственность за развитие биосферы, превращающейся в ноосферу, а это потребует от него определнной социальной организации и новой, экологической и одновременно гуманистической этики.

Ноосферу можно охарактеризовать как единство «природы» и «культуры». Сам Вернадский говорил о ней то как о реальности будущего, то как о действительности наших дней, что неудивительно, поскольку он мыслил масштабами геологического времени. «Биосфера не раз переходила в новое эволюционное состояние… — отмечает В. И. Вернадский. — Это переживаем мы и сейчас, за последние 10— 20 тысяч лет, когда человек, выработав в социальной среде научную мысль, создат в биосфере новую геологическую силу, в ней не бывалую. Биосфера перешла или, вернее, переходит в новое эволюционное состояние — в ноосферу — перерабатывается научной мыслью социального человека» («Научная мысль как планетное явление»). Таким образом, понятие «ноосфера» предстат в двух аспектах:

1. ноосфера в стадии становления, развивающаяся стихийно с момента появления человека;

2. ноосфера развитая, сознательно формируемая совместными усилиями людей в интересах всестороннего развития всего человечества и каждого отдельного человека Понятие «Ноосфера» было предложено профессором математики Сорбонны Эдуардом Леруа (1870—1954), который трактовал ее как «мыслящую» оболочку, формирующуюся человеческим сознанием. Э. Леруа подчркивал, что пришл к этой идее совместно со своим другом — крупнейшим геологом и палеонтологом-эволюционистом и католическим философом Пьером Тейяром де Шарденом. При этом Леруа и Шарден основывались на лекциях по геохимии, которые в 1922/1923 годах читал в Сорбонне Владимир Иванович Вернадский (1863—1945).

Наиболее полное воплощение теория Леруа нашла в разработке Тейяра де Шардена, который разделял не только идею абиогенеза (оживления материи), но и идею, что конечным пунктом развития ноосферы будет слияние с Богом. Однако научное обоснование ноосферного учения связано в первую очередь с именем Вернадского.

В основе теории ноосферы Леруа лежат представления Плотина (205—270) о эманации Единого (непознаваемой Первосущности, отождествляемой с Благом) в Ум и мировую Душу, с последующей трансформацией последних снова в Единое. Согласно Плотину, сначала Единое выделяет из себя мировой Ум (нус), заключающий в себе мир идей, затем Ум производит из себя мировую Душу, которая дробится на отдельные души и творит чувственный мир. Материя возникает как низшая ступень эманации. Достигнув определенной ступени развития, существа чувственного мира начинают осознавать собственную неполноту и стремиться к приобщению, а затем и слиянию с Единым.

Эволюционная модель Леруа и Тейяра де Шардена повторяет основные положения неоплатонизма. Разумеется, возникновение Вселенной, появление и развитие жизни на Земле описывается в терминах современной науки, но принципиальная схема концепции соответствует принципам неоплатоников.

Человек у Плотина стремится выйти за пределы Души в сферу Разума, чтобы затем, через экстаз, приобщиться к Единому. Согласно Тейяру де Шардену, человек также стремится перейти в сферу разума и раствориться в Боге.

Идеи Плотина были восприняты Леруа в бергсонианском духе. Влияние Анри Бергсона (1859— 1941) на создание теории ноосферы заключалось главным образом в выдвинутом им положении о творческой эволюции («L'volution cratrice», 1907. Русский перевод: «Творческая эволюция», 1914). Подлинная и первоначальная реальность, по Бергсону, — жизнь как метафизически-космический процесс, творческая эволюция; структура е — длительность, постигаемая только посредством интуиции, различные аспекты длительности — материя, сознание, память, дух. Универсум живт, растет в процессе творческого сознания и свободно развивается в соответствии с внутренне присущим ему стремлением к жизни — «жизненным порывом» (l'lan vital).

Влияние Бергсона прослеживается и у Тейяра де Шардена. В частности, в «Феномене человека» он несколько раз обращается к бергсоновским категориям порыва (l'lan) и длительности (dure).

Термин антропосфера в 1902 году ввел в научный оборот Д. Н. Анучин.

Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, т.е. циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами.

Приведм некоторые примеры.

Круговорот воды.

Под действием энергии Солнца вода испаряется с поверхности водомов и воздушными течениями переносятся на большие расстояния. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород и делает составляющие их минералы доступными для растений, микроорганизмов и животных. Она размывает верхний почвенный слой и уходит вместе с растворнными в ней химическими соединениями и взвешенными органическими и неорганическими частицами в моря и океаны. Циркуляция воды между океаном и сушей важнейшее звено в поддержании жизни на Земле.

Растения участвуют в круговороте воды двояким способом: извлекают е из почвы и испаряют в атмосферу; часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород поступает в атмосферу.

Животные потребляют воду для поддержания осмотического и солевого равновесия в организме и выделяют е во внешнюю среду вместе с продуктами обмена веществ.

Круговорот углерода.

Углерод поступает в биосферу в результате фиксации его в процессе фотосинтеза. Количество углерода, ежегодно связываемого растениями, оценивается в 46 млрд. т. Часть его поступает в тело животных и освобождается в результате дыхания в виде СО2, который вновь поступает в атмосферу. Кроме того, запасы углерода в атмосфере пополняются за счт вулканической деятельности и сжигания человеком горючих ископаемых. Хотя основная часть поступающего в атмосферу диоксида углерода поглощается океаном и откладывается в виде карбонатов, содержание СО2 в воздухе медленно, но неуклонно повышается.

Круговорот азота.

Азот один из основных биогенных элементов в громадных количествах содержится в атмосфере, где составляет 80% от общей массы е газообразных компонентов. Однако в молекулярной форме он не может использоваться ни высшими растениями, ни животными.

В форму, пригодную для использования, атмосферный азот переводят электрические разряды (при которых образуются оксиды азота, в соединении с водой дающие азотистую и азотную кислоты), азотфиксирующие бактерии и синезелные водоросли. Одновременно образуется аммиак, который другие хемосинтезирующие бактерии последовательно переводят в нитриты и нитраты. Последние наиболее усвояемы для растений. Биологическая фиксация азота на суше составляет примерно 1 г/м2, а в плодородных областях достигает 20 г/м2.

После отмирания организмов гнилостные бактерии разлагают азотсодержащие соединения до аммиака. Часть его уходит в атмосферу, часть восстанавливается денитрифицирующими бактериями до молекулярного азота, но основная масса окисляется до нитритов и нитратов и вновь используется. Некоторое количество соединений азота оседает в глубоководных отложениях и надолго (миллионы лет) выключается из круговорота. Эти потери компенсируются поступлением азота в атмосферу с вулканическими газами.

Круговорот серы.

Сера входит в состав белков и также представляет собой жизненно важный элемент. В виде соединений с металлами сульфидов она залегает в виде руд на суше и входит в состав глубоководных отложений. В доступную для усвоения растворимую форму эти соединения переводятся хемосинтезирующими бактериями, способными получать энергию путм окисления восстановленных соединений серы.

В результате образуются сульфаты, которые используются растениями. Глубоко залегающие сульфаты вовлекаются в круговорот другой группой микроорганизмов, восстанавливающих сульфаты до сероводорода.

Круговорот фосфора.

Резервуаром фосфора служат залежи его соединений в горных породах. Вследствие вымывания он попадает в речные системы и частью используется растениями, а частью уносится в море, где оседает в глубоководных отложениях. Кроме того, в мире ежегодно добывается от 1 до 2 млн. т. фосфорсодержащих пород. Большая часть этого фосфора также вымывается и исключается из круговорота. Благодаря лову рыбы часть фосфора возвращается на сушу в небольших размерах (около 60 тыс. т. элементарного фосфора в год).

Из приведнных примеров видно, какую значительную роль в эволюции неживой природы играют живые организмы. Их деятельность существенно влияет на формирование состава атмосферы и земной коры. Большой вклад в понимание взаимосвязей между живой и неживой природой внс выдающийся советский учный В. И. Вернадский. Он выявил геологическую роль живых организмов и показал, что их деятельность представляет собой важнейший фактор преобразования минеральных оболочек планеты.

Таким образом, живые организмы, испытывая на себе влияние факторов неживой природы, своей деятельностью изменяют условия окружающей среды, т.е. среды своего обитания. Это приводит к изменению структуры всего сообщества биоценоза.

Установлено, что азот, фосфор и калий могут оказывать наибольшее положительное влияние на урожаи культурных растений, и потому эти три элемента в наибольших количествах вносят в почву с удобрениями, применяемыми в сельском хозяйстве. Поэтому азот и фосфор оказались главной причиной ускоренной эвтрофизации озр в странах с интенсивным земледелием. Эвтрофизация это процесс обогащения водомов питательными веществами. Она представляет собой естественное явление в озрах, так как реки приносят питательные вещества с окружающих дренажных площадей. Однако этот процесс обычно идт очень медленно, в течение тысяч лет.

Неестественная эвтрофизация, ведущая к стремительному увеличению продуктивности озр, происходит в результате стока с сельскохозяйственных угодий, которые могут быть обогащены питательными веществами удобрений.

Существуют также два других важных источника фосфора сточные воды и моющие средства.

Сточные воды, как в свом первоначальном виде, так и обработанные, обогащены фосфатами. Бытовые детергенты содержат от 15% до 60% биологически разрушаемого фосфата. Кратко можно резюмировать, что эвтрофизация в конце концов приводит к истощению ресурсов кислорода и к гибели большинства живых организмов в озрах, а в крайних ситуациях и в реках.

Организмы в экосистеме связаны общностью энергии и питательных веществ, и необходимо чтко разграничить эти два понятия. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который в конце концов и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит постоянный круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами.

На глубине в десятки километров горные породы и минералы подвергаются воздействию высоких давлений и температур. В результате происходит метаморфизм (изменение) их структуры, минерального, а иногда и химического состава, что приводит к образованию метаморфических пород.

Опускаясь ещ дальше в глубь Земли, метаморфические породы могут расплавиться и образовать магму. Внутренняя энергия Земли (т.е. эндогенные силы) поднимает магму к поверхности. С расплавленными горными породами, т.е. магмой, химические элементы выносятся на поверхность Земли во время извержений вулканов, застывают в толще земной коры в виде интрузий. Процессы горообразования поднимают глубинные горные породы и минералы на поверхность Земли. Здесь горные породы подвергаются воздействию солнца, воды, животных и растений, т.е. разрушаются, переносятся и отлагаются в виде осадков в новом месте. В результате образуются осадочные горные породы. Они накапливаются в подвижных зонах земной коры и при пригибании снова опускаются на большие глубины (свыше 10 км).

Вновь начинаются процессы метаморфизма, переправления, кристаллизации, и химические элементы возвращаются на поверхность Земли. Такой "маршрут" химических элементов называется большим геологическим круговоротом. Геологический круговорот не замкнут, т.к. часть химических элементов выходит из круговорота: уносится в космос, закрепляется прочными связями на земной поверхности, а часть поступает извне, из космоса, с метеоритами.

Геологический круговорот это глобальное путешествие химических элементов внутри планеты.

Более короткие путешествия они совершают на Земле в пределах отдельных е участков. Главный инициатор живое вещество. Организмы интенсивно поглощают химические элементы из почвы, воздуха воды. Но одновременно и возвращают их. Химические элементы вымываются из растений дождевыми водами, выделяются в атмосферу при дыхании и отлагаются в почве после смерти организмов. Возвращнные химические элементы снова и снова вовлекаются живым веществом в "путешествия". Вс вместе и составляет биологический, или малый, круговорот химических элементов. Он тоже не замкнут.

Часть элементов-"путешественников" уносится за его пределы с поверхностными и грунтовыми водами, часть на разное время "выключается" из круговорота и задерживается в деревьях, почве, торфе.

Ещ один маршрут химических элементов проходит сверху вниз от вершин и водоразделов к долинам и руслам рек, впадинам, западинам. На водоразделы химические элементы поступают только с атмосферными осадками, а выносятся вниз и с водою, и под действием силы тяжести. Расход вещества преобладает над поступлением, о чм говорит само название ландшафтов водоразделов элювиальные.

На склонах жизнь химических элементов изменяется. Скорость их передвижения резко увеличивается, и они "проезжают" склоны, как пассажиры, удобно устроившиеся в купе поезда. Ландшафты склонов так и называются транзитными.

"Отдохнуть" от дороги химическим элементам удатся лишь в аккумулятивных (накапливающих) ландшафтах, расположенных в понижениях рельефа. В этих местах они часто и остаются, создавая для растительности хорошие условия питания. В некоторых случаях растительности приходится бороться уже с избытком химических элементов.

Уже много лет назад в распределение химических элементов вмешался человек. С начала ХХ столетия деятельность человека стала главным способом их путешествия. При добыче полезных ископаемых огромное количество веществ изымается из земной коры. Их промышленная переработка сопровождается выбросами химических элементов с отходами производства в атмосферу, воды, почвы. Это загрязняет среду обитания живых организмов. На земле появляются новые участки с высокой концентрацией химических элементов рукотворные геохимические аномалии. Они распространены вокруг рудников цветных металлов (меди, свинца). Эти участки иногда напоминают лунные пейзажи, потому что практически лишены жизни из-за высоких содержании вредных элементов в почвах и водах. Остановить научно-технический прогресс невозможно, но человек должен помнить, что существует порог в загрязнении природной среды, переходить который нельзя, за которым неизбежны болезни людей и даже вымирание цивилизации.

Создав биогеохимические "свалки", природа, возможно, хотела предостеречь человека от непродуманной, безнравственной деятельности, показать ему на наглядном примере, к чему приводит нарушение распределения химических элементов в земной коре и на е поверхности.

Биогеоценоз ((от греч. — «жизнь» + — «земля» + — «общий») — система, включающая сообщество живых организмов и тесно связанную с ним совокупность абиотических факторов среды в пределах определенной территории, связанные между собой круговоротом веществ и потоком энергии. Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва).

Примеры: озеро, сосновый лес, горная долина. Учение о биогеоценозе разработано Владимиром Сукачвым в 1940 году. В зарубежной литературе — малоупотребимо.

Близким по значению понятием является экосистема — система, состоящая из взаимосвязанных между собой сообществ организмов разных видов и среды их обитания. Экосистема — более широкое понятие, относящееся к любой подобной системе. Биогеоценоз, в свою очередь — класс экосистем, экосистема, занимающая определенный участок суши и включающая основные компоненты среды — почву, подпочву, растительный покров, приземный слой атмосферы. Не являются биогеоценозами водные экосистемы, большинство искусственных экосистем. Таким образом, каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Для характеристики биогеоценоза используются два близких понятия: биотоп и экотоп(факторы неживой природы:климат, почва). Биотоп — это совокупность абиотических факторов в пределах территории, которую занимает биогеоценоз. Экотоп — это биотоп, на который оказывают воздействие организмы из других биогеоценозов. По содержанию экологический термин «биогеоценоз» идентичен физико-географическому термину фация.

естественная, исторически сложившаяся система система, способная к саморегуляции и поддержанию своего состава на определенном постоянном характерен круговорот веществ открытая система для поступления и выхода энергии, основной источник которой — Солнце Видовой состав — количество видов, обитающих в биогеоценозе.

Видовое разнообразие - количество видов, обитающих в биогеоценозе на единицу площади или объема.

В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.

Биомасса — количество организмов биогеоценоза, выраженное в единицах массы. Чаще всего биомассу подразделяют на:

6. Способность к саморегуляции Переход одного биогеоценоза в другой в пространстве или во времени сопровождается сменой состояний и свойств всех его компонентов и, следовательно, сменой характера биогеоценотического метаболизма. Границы биогеоценоза могут быть прослежены на многих из его компонентов, но чаще они совпадают с границами растительных сообществ (фитоценозов). Толща биогеоценоза не бывает однородной ни по составу и состоянию его компонентов, ни по условиям и результатам их биогеоценотической деятельности. Она дифференцируется на надземную, подземную, подводную части, которые в свою очередь делятся на элементарные вертикальные структуры — био-геогоризонты, очень специфичные по составу, структуре и состоянию живых и косных компонентов. Для обозначения горизонтальной неоднородности, или мозаичности биогеоценоза введено понятие биогеоценотических парцелл. Как и биогеоценоз в целом, это понятие комплексное, так как в состав парцеллы на правах участников обмена веществ и энергии входят растительность, животные, микроорганизмы, почва, атмосфера.

Одним из свойств биогеоценозов является способность к саморегуляции, то есть к поддержанию своего состава на определенном стабильном уровне. Это достигается благодаря устойчивому круговороту веществ и энергии. Устойчивость же самого круговорота обеспечивается несколькими механизмами:

достаточность жизненного пространства, то есть такой объем или площадь, которые обеспечивают один организм всеми необходимыми ему ресурсами.

богатство видового состава. Чем он богаче, тем устойчивее цепи питания и, следовательно, круговорот веществ.

многообразие взаимодействия видов, которые также поддерживают прочность трофических отношений.

средообразующие свойства видов, то есть участие видов в синтезе или окислении веществ.

направление антропогенного воздействия.

Таким образом, механизмы обеспечивают существование неменяющихся биогеоценозов, которые называются стабильными. Стабильный биогеоценоз, существующий длительное время, называется климаксическим. Стабильных биогеоценозов в природе мало, чаще встречаются устойчивые — меняющиеся биогеоценозы, но способные, благодаря саморегуляции, приходить в первоначальное, исходное положение.

Формы существующих взаимоотношений между организмами в биогеоценозах Совместная жизнь организмов в биогеоценозах протекает в виде 6 основных типов взаимоотношений:

1. взаимополезные 2. полезнонейтральные 3. полезновредные 4. взаимовредные 5. Нейтральновредные 6. Нейтральные (нейтрализм) 1. Многообразие живого мира.

2. Различные взгляды на происхождение жизни на Земле.

3. Химическая организация клетки.

4. Строение и функции клетки.

5. Обмен веществ и превращение энергии в клетки.

6. Деление клетки.

7. Формы размножения организмов 8. Эмбриональное развитие организмов.

9. Постэмбриональное развитие.

10. Онтогенез.

11. Основные понятия генетики.

12. Основные закономерности наследственности.

13. Основные закономерности изменчивости.

14. Селекция растений, животных, микроорганизмов.

15. Теории эволюции.

16. Микроэволюция.

17. Макроэволюция.

18. Развитие органического мира.

19. Человек. Эволюция человека.

20. Человек. Расы.

21. Понятие о биосфере.

22. Основы экологии.

23. Биосфера и человек 24. Бионика.

25. Генная инженерия.

26. Вымершие виды животных: общая характеристика, причины вымирания.

27. Вымершие виды растений.

28. Виды, занеснные в красную книгу.

29. Цепи питания. Консументы, продуценты, редуценты.

30. Общая биология Предмет и задачи общей биологии.

31. Органические вещества клетки 32. Неорганические вещества клетки 33. Две формы клеточной организации живой материи. Прокариотическая клетка. Эукариотическая клетка, биологическая роль.

34. Органоиды клетки: эндоплазматическая сеть, рибосомы, митохондрии, клеточный центр – пластиды, вакуоли. Реснички, жгутики – строение и функции.

35. Понятие о кариотипе. Пластический и энергетический обмен.

36. Митотический цикл. Митоз. Цитокинез. Амитоз. Клеточная теория строения организмов 37. Половое и бесполое размножение. Виды бесполого размножения: вегетативное, почкование, спорообразования, фрагментация.

38. Мейоз. Фазы мейотического деления. Кроссинговер. Особенности образования и строения мужских и женских половых клеток (гамет). Оплодотворение у растений.

39. Периоды постэмбрионального развития у человека. Регенерация.

40. Вредное влияние алкоголя и курения на развития организма человека.

41. Понятие о гене. Доминантные и рецессивные гены. Множественный аллелизм. Гомозиготные и гетерозиготные организмы по наследственному признаку.

42. Генотип. Фенотип. Генофонд. Хромосомная теория наследственности. Гибридологический метод изучения наследственности.

43. Законы Менделя 44. Закон Т. Моргана. Сцепленное наследование. Нарушения наследования в результате кроссинговера.

45. Наследование признаков, сцепленных с полом. Взаимодействия генов.

46. Генотипическая изменчивость – мутационная и комбинативная Мутации, причины возникновения, классификация, степень частоты возникновения. Влияние внешней среды и производственных условий на частоту мутаций у человека.

47. Задачи современной селекции.

48. Труды В.И. Вернадского. Ноосфера.

49. Экология наука о взаимоотношениях организмов, видов и сообществ с окружающей средой. Абиотические факторы. Сезонные изменения в живой природе. Климат и его влияние на организм. Анабиоз. Биотические факторы. Экологические системы: биоценоз.

50. Биогеоценозы, агроценоз. Изменение в биогеоценозах. Регуляция численности популяций. Взаимодействие в экосистемах: внутривидовые, межвидовые. Симбиоз и его формы.

1. Тупикин Е.И. Общая биология с основами экологии и природоохранной деятельностью М.: Издательский центр «Академия», 2004 г.

2. Общая биология под редакцией Полянского Ю. И.. Учебник для 10 – 11 классов общеобразовательных учреждений. М.: «Просвещение». 3. Спицын И. П.Сборник задач и тестов по генетике, цитологии и молекулярной биологии. Тамбов. Издательство ТГУ Учебный стандарт школ России: Биология.

Беляев Д.К. Общая биология. Учебник для 10 – 11 классов. М. Просвещение Грин Н., Стаут У., Тейлор Д. Биология 3 т. М. Мир, Дмитриева Т. А. Биология М. Дрофа 2003 (учебник) Колесников С.И. Общая биология. Серия среднее профессиональное образование.

Ростов–на–Дону. Феникс. 6. Малышкина В.В. Пособие для подготовки к экзамену Биология Санкт-Петербург «Тригон» 7. Мамонтов С.Г. Биология М. Просвещение 2008 (учебник) 8. Общая биология: Учеб. для 10 - 11 кл. с углубл. изучением биологии в шк./ Л.В.Высоцкая, С.М.Глаголев, Г.М.Дымшиц и др.; Под ред. В.К.Шумного и др. -М.:

Просвещение, 2001. -462 с.

9. Общая биология: Учеб.для 10 - 11 кл. общеобразоват. учреждений / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др.; Под ред. Д. К.Беляева, Г.М.Дымшица. - М.: Просвещение, АО «Московские учебники», 2005.-304 с.

10.Общая биология с основами экологии и природоохранной деятельности: Учеб. пособие для нач. проф. образования: Учеб. пособие для сред. проф. образования/Е. И. Тупикин. -М.: Издательский центр «Академия», 2004.-384 с.

11.Шевченко В.А., Топорнина Н.А., Стволинская Н.С. /Генетика человека: Учеб. для студ. высш. учеб. заведений. - М.: Гуманит. изд. центр ВЛАДОС, 2004. - 240 с.

1. 1С. Образовательная коллекция. Биология. Живой организм. Дрофа. 2. 1С. Репетитор. Биология. Живой организм. Дрофа. 3. Рефераты по биологии. 10 – 11 классы. Литературное агентство «Научная книга».

4. Шутова С.В., Фролов С.В., Однолько В.Г. Биология человека и животных. Электронное учебное пособие. Кафедра "Биомедицинская техника" ТГТУ. Тема: Размножение и развитие организмов. Урок 21 – 27 Тема: Наследственность и изменчивость. Урок 28 – 36 Список вопросов к зачту (зачтных работ) по биологии

Pages:     | 1 |   ...   | 7 | 8 ||


Похожие работы:

«ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ С.И. Некрасов Н.А. Некрасова ФИЛОСОФИЯ НАУКИ И ТЕХНИКИ ТЕМАТИЧЕСКИЙ СЛОВАРЬ-СПРАВОЧНИК ОРЁЛ - 2010 УДК 16 ББК 87.4 Н89 Некрасов С.И., Некрасова Н.А. Философия науки и техники: тематический словарь справочник. Учебное пособие. – Орёл: ОГУ, 2010. – 289 с. Настоящее учебное пособие предназначено для студентов магистратуры, аспирантов и соискателей всех специальностей. Словарь-справочник представляет собой первое подобное издание в России и включает более 500...»

«Уважаемые выпускники! В перечисленных ниже изданиях содержатся методические рекомендации, которые помогут должным образом подготовить, оформить и успешно защитить выпускную квалификационную работу. Рыжков, И. Б. Основы научных исследований и изобретательства [Электронный ресурс] : [учебное пособие для студентов вузов, обучающихся по направлению подготовки (специальностям) 280400 — Природообустройство, 280300 — Водные ресурсы и водопользование] / И. Б. Рыжков.— СанктПетербург [и др.] : Лань,...»

«государственное бюджетное образовательное учреждение среднего профессионального образования (ССУЗ) Магнитогорский технологический колледж Утверждаю Зам. директора по НМР _ Черныш Г.А. План работы цикловой комиссии Производство на 2013-2014 учебный год Магнитогорск 2013 № Срок Предполагаемый Наименование Мероприятия по реализации за- Ответственные Отметка об деятельности дач исполнители исполнении п/п проведения результат 1 2 3 4 5 6 Научно- 1.1. Коррекция рабочих учебных Сентябрь- Кондаурова...»

«ФЕДЕРАЦИЯ ПРОФСОЮЗОВ КРАСНОЯРСКОГО КРАЯ Организационный отдел МЕТОДИЧЕСКОЕ ПОСОБИЕ Красноярск 2007 2 Настоящее методическое пособие подготовлено и издается в соответствии с Перспективным планом работы Совета ФПКК на 2007 год. Методическое пособие В помощь молодому профсоюзному лидеру подготовлено специалистами организационного отдела ФПКК и предназначено для молодых профсоюзных активистов первичных профсоюзных организаций, территориальных организаций профсоюзов. Пособие призвано помочь молодому...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ Система менеджмента качества ПОЛОЖЕНИЕ о требованиях к оформлению рефератов, отчетов по практике, контрольных, курсовых, дипломных работ и магистерских диссертаций П 7.5-014-2011 Контрольный экземпляр: Учетный экземпляр № Екатеринбург 2011 Система менеджмента качества Редакция 0 ПОЛОЖЕНИЕ о требованиях к...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ И.В.Качанов, А.Д.Молокович, С.А.Шавилков ЭКОНОМИКА ВОДНОГО ТРАНСПОРТА Минск 2006 УДК 656.7 (075.8) ББК 65.37 и 7 К 142 Р е ц е н з е н т ы: Качанов, И.В. Экономика водного транспорта: учебное пособие/И.В.Качанов, А.Д.Молокович, С.А.Шавилков. – Мн.:БНТУ, 2006. – 184 с. ISBN 985-479 Рассматривается современный экономический механизм, обеспечивающий жизнедеятельность предприятий водного транспорта в...»

«ОГЛАВЛЕНИЕ 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ – ЭТНОЛОГИЯ, ЕЁ МЕСТО В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ_3 2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ – ЭТНОЛОГИЯ_4 3. ОБЪЁМ ДИСЦИПЛИНЫ В ВИДЕ УЧЕБНОЙ РАБОТЫ4 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ_ 4 4.1 Лекционный курс4 4.2 Практические занятия7 4.3 Самостоятельная внеаудиторная работа студентов_12 5. МАТРИЦА РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ И ФОРМИРУЕМЫХ В НИХ ОБЩЕКУЛЬТУРНЫХ И ПРОФЕССИОНАЛЬНЫХ КОМПЕТЕНЦИЙ_13 5.1 Разделы...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НИЗКОТЕМПЕРАТУРНЫХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ Кафедра экономики промыш- ленности и организации производства БИЗНЕС-ПЛАНИРОВАНИЕ В ОТРАСЛИ Рабочая программа и методические указания к самостоятельной работе, практическим занятиям и выполнению домашних заданий для магистрантов направления 080500 программы Производственный менеджмент...»

«Мы повышаем профессиональный уровень специалистов в России ВИРТУАЛЬНАЯ ВЫСТАВКА ИЗДАТЕЛЬСТВА ЮРАЙТ Друзья! Предлагаем Вашему вниманию виртуальную выставку книг Издательства ЮРАЙТ. Мы подобрали для Вас 16 замечательных учебников по техническим дисциплинам. Все наши учебники для бакалавров и магистров соответствуют стандартам нового поколения, а также имеют гриф и компетенции. Любой наш учебник более подробно Вы можете полистать на сайте нашего интернет-магазина www.urait-book.ru (первые 20...»

«Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Ректор БГТУ_ И.М. Жарский _ _ 2010г. Регистрационный № УД - _/баз. ОСНОВЫ МЕХАНИЗАЦИИ Учебная программа для специальности 1-36 07 01 Машины и аппараты химических производств и предприятий строительных материалов 2010 СОСТАВИТЕЛЬ: Олег Алексеевич Петров, старший преподаватель кафедры машин и аппаратов химических и силикатных производств Белорусского государственного технологического университета, кандидат...»

«СОДЕРЖАНИЕ Раздел 1. Общие сведения об учреждении 3 Раздел 2. Образовательная политика и управление колледжем 4 Раздел 3. Условия осуществления образовательного процесса 6 3.1. Организационные условия 6 3.2. Материальные ресурсы 7 3.3. Информационные ресурсы 9 3.5. Кадровое обеспечение 15 3.5.1. Повышение квалификации педагогических работников 17 3.6. Учебно-методическое обеспечение 24 Раздел 4. Содержание и качество подготовки выпускников в 30 соответствии с требованиями Федеральных...»

«Раздел 2. Обеспечение образовательного процесса учебной и учебно-методической литературой по заявленным к лицензированию образовательным программам Уровень, ступень образования, Число вид образовательной обучающихся, программы воспитанников, (основная/дополнительная), Автор, название, место издания, издательство, год издания Количество одновременно N направление подготовки, п/п учебной и учебно-методической литературы экземпляров изучающих специальность, профессия, предмет, наименование...»

«БИБЛИОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ КНИГ, ПОСТУПИВШИХ В БИБЛИОТЕКУ в 2013г. Акушерство 1. 618Г А 44 Акушерство: Национальное руководство / ред. Э. К. Айламазян [и др.]. - Москва : ГЭОТАР-Медиа, 2013. - 1200 с.o=эл. опт. диск (CD-ROM). - (Национальные руководства) Экземпляры: всего:1 - оф(1) Аннотация: Национальное руководство Акушерство создано ведущими российскими специалистами акушерами-гинекологами на основании современных научных знаний и рекомендаций Российского общества акушеров-гинекологов. При...»

«СОДЕРЖАНИЕ Предисловие к советскому изданию. 5 Предисловие.... 9 1. Характеристика и структура современного волейбола. 11 2. Основные компоненты волейбола. 15 2.1. Техника игры и индивидуальная тактика.. 18 2.1.1. Подачи.. 22 2.1.2. Прием подачи. 33 2.1.3. Верхняя передача. 37 2.1.4. Нападающие удары. 50 2.1.5. Блокирование. 59 2.1.6. Защита игровой площадки. 68 2.2. Командная тактика. 77 2.2.1. Сущность и значение. — 2.2.2. Системы игры. 80 2.2.3. Методы нападения и защиты....»

«Стандарты основного общего образования по истории Тематическое планирование 9 класс. Новейшая история. ХХ – начало ХХI в. (24 часа) учебник Сороко- Цюпа- 6-е изд.М.: Просвещение 2004г. Новейшая история России ( ХХ – начало ХХI в.) (46 часов) учебник Данилов А.А. 7-е изд.-М.: Просвещение 2010 год. Авторы программы: Данилов А.А.,Косулина Методическое пособие, автор Кишенкова О.В.- М.Дрофа, 2001 год. Рабочая тетрадь по истории России,авторы А.А.Данилов, Л.Г.Косулина. Издательство Просвещение...»

«РАБОЧАЯ ПРОГРАММА по курсу технологии в 3 классе (УМК Начальная школа XXI века) ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа курса Технология разработана на основе требований федерального государственного образовательного стандарта начального общего образования (2009год) и авторской программы Е.А. Лутцевой (Сборник программ к комплекту учебников Начальная школа XXI века. –3-е издание, доработанное и дополненное. – М.: Вентана-Граф, 2010г. – 176 с. Программа рассчитана на 68 часов и обеспечена...»

«ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа разработана на основе Программы учебного предмета Православная культура для средних общеобразовательных школ, гимназий и лицеев / В. Д. Скоробогатов, Т. В. Рыжова, О. Н. Кобец. - Ульяновск: ИНФОФОНД, 2006. Рабочая программа в 10 классе рассчитана на 1 час в неделю, 35 часов в год. В соответствии с учебным планом МОУ Подсередненская СОШ на изучение предмета Православная культура в классе выделено 1 час в неделю, 35 часов в год (региональный компонент). В...»

«УЧЕБНИК Под редакцией С. В. Симоновича БАЗОВЫЙ КУРС 2-е издание Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов высших технических учебных заведений 300.piter.com Издательская программа 300 лучших учебников для высшей школы в честь 300-летия Санкт-Петербурга осуществляется при поддержке Министерства образования РФ С^ППТЕР' Москва - Санкт-Петербург - Нижний Новгород - Воронеж Новосибирск - Ростов-на-Дону - Екатеринбург - Самара Киев -...»

«МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИМЕНЕНИЕ ГАЗОАНАЛИЗАТОРОВ СЕРИИ HELICOSENSE ДЛЯ НЕИНВАЗИВНОЙ ДЫХАТЕЛЬНОЙ ДИАГНОСТИКИ ХЕЛИКОБАКТЕРИОЗА методические рекомендации для врачей, руководителей лечебно-профилактических учреждений Регистрационное Удостоверение № ФС 022а2006/4380-06 Сертификат Об утверждении типа средств измерений RU.C.39.001.A №28473 СИ № 35293-07 Санкт-Петербург 2009 ББК 54.1 УДК 615.471:616.33-018.25- У Рецензенты: В. Ю. Голофеевский – доктор...»

«ЗНАКОМЬТЕСЬ – НОВЫЕ ПРОЕКТЫ Учебники биологии и географии для 5–9 классов В соответствии с требованиями ФГОС основного общего образования издательство ДРОФА переработало линии учебно методических комплексов по биологии и географии. Были созданы учебники для 5 класса, рабочие программы с тематическим планированием, электронные приложения к учебникам и разнообразные пособия. Современный методический аппарат и актуальное содержание позволяют достигнуть личностных, метапредметных и предметных...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.