Рабочая программа по физике для 9 класса.
Пояснительная записка.
Рабочая программа составлена на основании следующих документов:
- Федерального компонента государственного образовательного стандарта общего образования (Приказ Министерства образования и науки
РФ от 05.03.2004 года № 1089)
- Закона Российской Федерации «Об образовании» (статья 7) от 10.07.1992 № 3266-1*
- Регионального базисного учебного плана общеобразовательных учреждений Нижегородской области на переходный период до 2021 года ( приказ министерства образования НО от 31.07.2013 года № 1830) - Учебного плана МБОУ СОШ № 22 с углублённым изучением французского языка на 2013-2014 учебный год - Авторской программы Е.М. Гутник, А.В. Перышкин (Программы для общеобразовательных учреждений. Физика. Астрономия.7-11 кл./ сост. В.А. Коровин, В.А. Орлов.- М.: Дрофа, 2008. – 334с.);
Общая характеристика учебного предмета Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.
Программа по физике определяет цели изучения физики в основной школе, содержание тем курса, дает распределение учебных часов по разделам курса, перечень рекомендуемых демонстрационных экспериментов учителя, опытов и лабораторных работ, выполняемых учащимися, а также планируемые результаты обучения физике.
Цели изучения физики в основной школе следующие:
развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой • деятельности;
понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
• формирование у учащихся представлений о физической картине мира.
• Достижение этих целей обеспечивается решением следующих задач:
знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
• приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, • характеризующих эти явления;
формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и • экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, • гипотеза, теоретический вывод, результат экспериментальной проверки;
понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, • производственных и культурных потребностей человека.
Личностными результатами обучения физике в основной школе являются:
сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
• убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий • для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
самостоятельность в приобретении новых знаний и практических умений;
• готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
• мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
• формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.
• Метапредметными результатами обучения физике в основной школе являются:
овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, • планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными • объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической • формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и • новых информационных технологий для решения познавательных задач;
развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, • понимать его точку зрения, признавать право другого человека на иное мнение;
освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
• формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои • взгляды и убеждения, вести дискуссию.
Общими предметными результатами обучения физике в основной школе являются:
знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять • эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных • знаний;
умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, • решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в • высокой ценности науки в развитии материальной и духовной культуры людей;
развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, • строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.
Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:
понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;
понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца;
понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).
Цели изучения физики Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:
освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
использование полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.
Общеучебные умения, навыки и способы деятельности Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:
Познавательная деятельность:
использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
овладение адекватными способами решения теоретических и экспериментальных задач;
приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий;
организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения физики ученик должен:знать/понимать смысл понятий: волна, атом, атомное ядро, ионизирующие излучения смысл физических величин: ускорение, импульс смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии уметь описывать и объяснять физические явления: равноускоренное прямолинейное движение, механические колебания и волны, электромагнитную индукцию использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, силы тока, напряжения, электрического сопротивления представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины выражать результаты измерений и расчетов в единицах Международной системы приводить примеры практического использования физических знаний о механических, электромагнитных и квантовых явлениях решать задачи на применение изученных физических законов осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем) использовать приобретенные знания и умения в практической деятельности и повседневной жизни для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники; контроля за исправностью электропроводки в квартире; оценки безопасности радиационного фона Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 68 часов для обязательного изучения физики в 9 классе (2 учебных часа в неделю).
Количество учебных недель 34 Количество уроков - Количество плановых контрольных работ Количество плановых лабораторных работ Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
Основное содержание 1. Законы взаимодействия и движения тел (26ч) Материальная точка. Система отсчета.
Перемещение. Скорость прямолинейного равномерного движения.
Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение.
Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.
Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира.
Инерциальная система отсчета. Первый, второй и третий законы Ньютона.
Свободное падение. Невесомость. Закон всемирного тяготения.
Импульс. Закон сохранения импульса. Реактивное движение.
Фронтальные лабораторные работы 1. Исследование равноускоренного движения без начальной скорости.
2. Измерение ускорения свободного падения.
2.Механические колебания и волны. Звук (10 ч) Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс.
Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой).
Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Звуковой резонанс. Фронтальные лабораторные работы 3. Исследование зависимости периода колебаний пружинного маятника от массы груза и жесткости пружины.
4. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити 3. Электромагнитное поле (17ч) Однородное магнитное поле.
Направление тока и направление линий его магнитного поля. Правило буравчика.
Обнаружение магнитного поля. Правило левой руки.
Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.
Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.
Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы.
Конденсатор. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.
Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.
Фронтальные лабораторные работы 5. Изучение явления электромагнитной индукции.
6. Наблюдение сплошного и линейчатых спектров испускания.
4. Строение атома и атомного ядра (11 ч) Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома.
Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике.
Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Энергия связи частиц в ядре. Деление ядер урана.
Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций.
Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.
Термоядерная реакция. Источники энергии Солнца и звезд.
Фронтальные лабораторные работы 7. Изучение деления ядра атома урана по фотографии треков.
8. Изучение треков заряженных частиц по готовым фотографиям.
9. Измерение естественного радиационного фона дозиметром.
Демонстрации:
1.Равномерное прямолинейное движение.
2.Свободное падение тел.
3. Равноускоренное прямолинейное движение.
4. Равномерное движение по окружности.
5. Сравнение масс тел с помощью равноплечих весов.
6. Измерение силы по деформации пружины.
7. Третий закон Ньютона.
8. Наблюдение колебаний тел.
9. Наблюдение механических волн.
10. Опыт Эрстеда.
11. Магнитное поле тока.
12. Действие магнитного поля на проводник с током.
13.Электромагнитная индукция.
14. Свойства электромагнитных волн.
15. Принцип действия микрофона и громкоговорителя.
16. Принципы радиосвязи.
17. Наблюдение треков альфа-частиц в камере Вильсона.
18. Устройство и принцип действия счетчика ионизирующих частиц.
19. Дозиметр.
Учебно-методический комплект и дополнительная литература Физика 9: учеб. для общеобразоват. учреждений / А.В. Пёрышкин и Е.М. Гутник. – М.: Дрофа, Рабочая тетрадь по физике: 9 класс: к учебнику А.В. Пёрышкина «Физика. 9 класс» / Р.Д. Минькова, В.В. Иванова. – М.: Экзамен, Физика: ежемесячный научно-методический журнал издательства «Первое сентября»
Интернет-ресурсы: электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов (http://schoolcollection.edu.ru/), каталога Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/): информационные, электронные упражнения, мультимедиа ресурсы, электронные тесты Изменения в авторской программе:
1. Программа: Пёрышкин А.В Гутник Е.М – 2008г 2. Учебник: Пёрышкин А.В Гутник Е.М «Физика-9» 2010г 3. Задачник: Рымкевич А.П «Задачник. Физика 10-11»
4. Пособие для учителя: Кирик ЛА «Самостоятельные и контрольные работы по физике для 9 класса» М.
«Илекса» 5. СD: «Физика. Основная школа 7-9 класс. Ч-1»
6. DVD: «Школьный демонстрационный эксперимент»
68 часов 2 часа в неделю; лабораторных работ-9 контрольных работ- В столбце «Формы контроля. Виды деятельности» (индивидуальное, фронтальное, групповое оценивание):
Т – тест СП – самопроверка ВП – взаимопроверка СР – самостоятельная работа РК – работа по карточкам КР – контрольная работа ПДЗ – проверка домашнего задания УО – устный опрос Тема №1. Законы движения и взаимодействия тел - 27 часов л/р-2 к/р- прямолинейном демонстрации, читать уравнения равномерном движении. решение задач прямолинейного 4/ движение. Ускорение. решение задач картину движения, демонстроция Скорость прямолинейного Беседа, Уметь записывать Штатив,желоб, §-6 упр.
5/ движения. График решение задач строить и читать график демонстроция равноускоренном решение задач перемещения при прямолинейном равноускоренном движении без начальной Лабораторная работа № 1 Лабораторная Уметь определять время Желобы, Повт §- 7/ равноускоренного инструкции рассчитывать ускорение шарики, 9/ Первый закон Ньютона. решение задач границы применимости 14/ 16/ свободного падения» инструкции для расчета уравнения 19/ криволинейное движение. опрос направление и величину диск, штатив упр17(1,2) окружности с постоянной решение задач при равномерном 20/ Искусственные спутники Решение задач Уметь рассчитать 1 DVD, таблицы §20 упр 21/ 22/ 23/ 24/ «Закон сохранения Решение задач сохранения импульса 26/ 27/ Тема № 2 «Механические колебания и волны. Звук» - 10 часов л/р-1 к/р- 1/ Свободные колебания. демонстрации колебательного движения, нитяной 2/ Лабораторная работа № 3,4 Исследовательск Уметь определять Грузы по 1Н, § 26, 3/ колебаний в среде. Волны. Решение задач продольных и поперечных Волновая 6/ Источники звука. Звуковые ПДЗ, УО,ВП Знать/понимать смысл Камертоны, § 34, 35, 7/ 8/ 9/ 10/ Тема № 3 «Электромагнитное поле» - 17 часов л/р – 1 к/р - Лабораторная работа № 5 Лабораторная Уметь определять от чего Катушка- § 7/ электрического тока. демонстрации получения переменного 12/ 14/ 16/ 17/ Тема № 4 «Строение атома и атомного ядра -13 часов. Использование энергии атомных ядер» л/р – 2 к/р - 1/ 2/ 3/ 4/ 6/ Зарядовое число. решение задач понимать природу 7/ 8/ 9/ 10/ 11/ 12/ Контрольная работа № 5 Контроль знаний Уметь применять знания 13/ Резерв – 1 час Итого: 27+10+17+13+1=68ч