Юго-Западное окружное управление образования
Департамента образования города Москвы
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ГОРОДА МОСКВЫ
СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 1971
РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА
«ФИЗИКА»ДЛЯ 9 КЛАССА Пояснительная записка.
Рабочая программа по физике для 9 класса составлена на основе Федерального компонента государственного стандарта основного общего образования, Примерной программы основного общего образования.
Общая характеристика учебного предмета.
Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики.
Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире. Физика изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.
Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.
Цели изучения физики.
Изучение физики в 9 классе направлено на достижение следующих целей:
освоение знаний о механических, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
воспитание убеждённости в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.
Общеучебные умения, навыки и способы деятельности.
Приоритетами для школьного курса физики в 9 классе являются:
Познавательная деятельность:
использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
овладение адекватными способами решения теоретических и экспериментальных задач;
приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
ОСНОВНОЕ СОДЕРЖАНИЕ
Механические явления (38 ч) Механическое движение. Относительность движения. Система отсчета. Траектория.Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.
Неравномерное движение. Мгновенная скорость. Ускорение. Равноускоренное движение.
Свободное падение тел. Графики зависимости пути и скорости от времени.
Равномерное движение по окружности. Период и частота обращения.
Явление инерции. Первый закон Ньютона. Масса тела. Взаимодействие тел. Сила.
Правило сложения сил.
Второй закон Ньютона. Третий закон Ньютона.
Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость.
Геоцентрическая и гелиоцентрическая системы мира.
Импульс. Закон сохранения импульса. Реактивное движение.
Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.
Механические волны. Длина волны. Звук.
Опыт Эрстеда. Магнитное поле тока. Действие магнитного поля на проводник с током.
Сила Ампера.
Электромагнитная индукция. Опыты Фарадея. Правило Ленца. Самоиндукция.
Электрогенератор.
Переменный ток. Трансформатор. Передача электрической энергии на расстояние.
Колебательный контур. Электромагнитные колебания. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. Конденсатор. Энергия электрического поля конденсатора. Принципы радиосвязи и телевидения.
Свет – электромагнитная волна. Дисперсия света. Влияние электромагнитных излучений на живые организмы.
Опыты Резерфорда. Планетарная модель атома. Линейчатые оптические спектры.
Поглощение и испускание света атомами.
Состав атомного ядра. Зарядовое и массовое числа.
Ядерные силы. Энергия связи атомных ядер. Радиоактивность. Альфа-, бета- и гаммаизлучения. Период полураспада. Методы регистрации ядерных излучений.
Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика.
Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.
В основе отбора содержания учебного материала лежат следующие принципы:
Научность (ознакомление школьников с объективными научными фактами, понятиями, законами, теориями, с перспективами развития физики, раскрытие современных достижений Генерализация (фундаментальность) знаний (объединение учебного материала на основе научных фактов, фундаментальных понятий и величин, теоретических моделей, законов и уравнений, теорий) Целостность (формирование целостной картины мира с его единством и многообразием свойств) Преемственность и непрерывность образования (учитывание предшествующей подготовки учащихся) Систематичность и доступность (изложение учебного материала в соответствии с логикой науки и уровнем развития школьников) Гуманитаризация образования (представление физики как элемента общечеловеческой культуры Экологичность содержания (обсуждение социальных и экономических аспектов охраны окружающей среды, рассмотрения влияния на живой организм факторов природной среды)
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНЫХ
УЧРЕЖДЕНИЙ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ФИЗИКЕ
знать/понимать:смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;
смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоёмкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;
смысл физических законов: Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля–Ленца, прямолинейного распространения света, отражения света;
уметь описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;
использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жёсткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
выражать результаты измерений и расчётов в единицах Международной системы;
приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;
решать задачи на применение изученных физических законов;
осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научнопопулярных изданий, компьютерных баз данных, ресурсов Интернет), её обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;
контроля исправности электропроводки, водопровода, сантехники и газовых приборов в рационального применения простых механизмов;
оценки безопасности радиационного фона.
учебно-методическим комплектом (учебник включён в Федеральный перечень):
Физика. 9 класс: Учебник. для общеобразовательных. учреждений/ А.В.Пёрышкин.-М.:
Дрофа, 2013.
Учебник включает весь необходимый материал по физике для изучения в общеобразовательных учреждениях, отличается простотой и доступностью изложения материала. Предусматривается выполнение упражнений, которые помогают не только закрепить пройденный теоретический материал, но и научиться применять законы физики на практике.
Сборник задач по физике. 7-9 класс/ А.В. Пёрышкин. – М.: Экзамен, 2013.
Задачник переработан в соответствии с «Обязательным минимумом», полностью обновлен иллюстративный материал. Предлагаемые задачи интересны по содержанию и дают возможность дифференцированно провести любой урок: для каждого учащегося можно подобрать задачу по способностям, интересам и успеваемости. В сборник также вошли вопросы, с помощью которых учащиеся глубже осознают физические явления, увидят межпредметные связи.
Контрольные и проверочные работы по физике. 7-11 кл.: Метод. пособие / О.Ф.Кабардин, С.И.Кабардина, В.А.Орлов. - М.: Дрофа, 2013.
О.Ф.Кабардин, В.А.Орлов. «Физика. Тесты». 7-9 классы. – М.: Дрофа, 2013.
Особенности курса, отличающие его от Федерального компонента государственного стандарта основного общего образования и Примерной программы основного общего образования.
данный курс, как в теоретической, так и фактологической части является практикоориентированным: понятия, законы, теории и процессы рассматриваются в плане их практического значения, использования в повседневной жизни, роли в природе широкое применение интегративного подхода. Это способствует формированию единой естественнонаучной картины мира.
пересмотрены подходы к проведению демонстрационного и лабораторного эксперимента, включены элементы исследовательского характера, проблемный подход к постановке и результатам высокий теоретический уровень, который позволяет сделать процесс обучения максимально развивающим.
Для реализации поставленных целей и отличительных особенностей данного курса 1. Теория поэтапного формирования умственных действий. Для полноценного формирования знаний необходима определённая последовательность этапов, которая должна соблюдаться при формировании любого нового знания.
2. Теория опережающего обучения. Чем больше число вовлечений элемента знаний в учебную деятельность, тем выше процент учащихся, освоивших этот элемент. Таким образом, знакомство учащихся с новыми понятиями, законами, учебными действиями проходят в несколько этапов: первичный (дается первоначальное представление, контроль не осуществляется), основной (раскрывается основной смысл понятия, закона, учебного действия, контроль осуществляется), вторичный (продолжается раскрытие содержания закона, понятия, учебного действия при осуществлении внутри и межпредметных связей).
3. Идея системного подхода. Рассматриваемые объекты представляют собой различные системы. Например, атом-система состоящая из элементарных частиц; молекула-система атомов; вещество-система атомов, молекул. Таким образом, рассмотрение объектов с позиции системного подхода позволяет выйти на дедуктивный метод познания, который заключается в прогнозировании свойств физических систем.
4. Принцип интегративного подхода в образовании. Основным механизмом и средством интеграции выступают межпредметные связи. Установление межпредметных связей должно способствовать развитию системных теоретических знаний по предмету, расширению научного кругозора учащихся, приобретению опыта построения и применения этих связей при решении проблемных задач Механика. Законы сохранения.
Механические колебания и Электромагнитное поле.
Квантовые явления.
Физика и физические методы Физика. 9 класс: Учебник. для общеобразовательных. учреждений/ А.В.Пёрышкин.-М.:
Физика. 9 класс: Тематическое и поурочное планирование к учебнику А.В.Пёрышкина «Физика. 7 класс» / Е.М.Гутник, Е.В.Рыбакова. – М.: Дрофа, 2013.
Сборник задач по физике. 7-9 класс/ А.В. Пёрышкин. – М.: Экзамен, 2013.
Сборник задач по физике для 7-9 классов общеобразовательных учреждений / В.И.Лукашик, Е.В.Иванова. – М.: Просвещение, 2011.
А.Е. Марон, С.В Позойский, Е.А. Марон. Сборник вопросов и задач по физике 7-9. – М.:
Просвещение, 2011.
Контрольные и проверочные работы по физике. 7-11 кл.: Метод. пособие / О.Ф.Кабардин, С.И.Кабардина, В.А.Орлов. - М.: Дрофа, 2011.
О.Ф.Кабардин, В.А.Орлов. «Физика. Тесты». 7-9 классы. – М.: Дрофа, 2011.
Марон А.Е., Марон Е.А. Контрольные тексты по физике. 7-9 кл. – М.: Просвещение, 2011.
О. Ф. Кабардин. Физика. Справочные материалы. – М.: Просвещение, Физика. 9 класс: Учебник для общеобразовательных учреждений/ А.В.Пёрышкин.-М.:
Сборник задач по физике. 7-9 класс/ А.В. Пёрышкин. – М.: Экзамен, 2013.
О. Ф. Кабардин. Физика. Справочные материалы. – М.: Просвещение, Энциклопедия для детей. Физика, ч.1,ч.2, М, Мир энциклопедий Аванта +, 2007 г.
1. Интерактивный курс « Физика, 7-11 классы». CD диск. ООО « Физикон», 2. Виртуальная школа Кирилла и Мефодия. Уроки физики 9 класс. CD диск.ООО «Кирилл и sdamgia.ruzavuch. info pedsovet.ru rusedu.ru it-n.ru window.edu.ru school-collection.edu.ru festival.1 september.edu.ru fipi.ru www1.ege.ru college.ru