«Физиология человека Под редакцией чл.-кор. АМН СССР Г. И. КОСИЦКОГО ИЗДАНИЕ ТРЕТЬЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ Допущено Главным управлением учебных заведений Министерства здравоохранения СССР в качестве учебника для ...»
Объясняется это тем, что поверхностная мембрана живой клетки обладает свойствами конденсатора. Обкладками этого «тканевого конденсатора» служат наружная и внутренняя поверхности мембраны, а диэлектриком — слой липидов, обладающий значительным сопротивлением. Ввиду наличия в мембране каналов, через которые могут проходить ионы, сопротивление этого слоя не равно бесконечности, как в идеальном конденсаторе. Поэтому поверхностную мембрану клетки обычно уподобляют конденсатору с параллельно включенным сопротивлением, по которому может происходить утечка зарядов (рис. 13,а).
Временной ход изменений мембранного потенциала при включении и выключении тока (рис. 13, б) зависит от емкости С и сопротивления мембраны R. Чем меньше произведение RC — постоянная времени мембраны, тем быстрее при данной силе тока нарастает потенциал и, наоборот, большей величине RC соответствует меньшая скорость увеличения потенциала.
Изменения мембранного потенциала возникают не только непосредственно в точках приложения к нервному волокну катода и анода постоянного тока, но и на некотором расстоянии от полюсов с той, однако, разницей, что их величина постепенно убывает по мере удаления от катода и анода. Объясняется это так называемыми кабельными свойствами нервного и мышечного волокон.
Однородное нервное волокно в электрическом отношении представляет собой кабель, т. е. сердечник с низким удельным сопротивлением (аксоплазма), покрытый изоляцией (мембраной) и помещенный в хорошо проводящую среду. Эквивалентная схема кабеля приведена на рис. 13, б. При пропускании через некоторую точку волокна длительное время постоянного тока наблюдается стационарное состояние, при котором плотность тока и, следовательно, изменение мембранного потенциала максимальны в месте приложения тока (т. е. непосредственно под катодом и анодом); с удалением от полюсов плотность тока и изменения потенциала на мембране экспоненциально уменьшаются по длине волокна. Поскольку рассматриваемые изменения мембранного потенциала в отличие от локального ответа потенциала действия или следовых потенциалов не связаны с изменениями ионной проницаемости мембраны (т. е. активным ответом волокна), их принято называть пассивными, Рис. 13. Простейшая электрическая схема, воспроизводящая электрические свойства мембраны (а) и изменения мембранного потенциала под катодом и анодом постоянного тока подпороговой силы (б).
а: С — емкость мембраны, R — сопротивление, Е — электродвижущая сила мембраны в покое (потенциал покоя). Приведены средние значения R, С и Е для мотонейрона, б — деполяризация мембраны (l) под катодом и гиперполяризация (2) под анодом при прохождении через нервное волокно слабого подпорогового тока.
или «электротоническими», изменениями мембранного потенциала. В чистом виде последние могут быть зарегистрированы в условиях полной блокады ионных каналов химическими агентами. Различают кат- и анэлектротонические изменения потенциала, развивающиеся в области приложения соответственно катода и анода постоянного тока.
Критический уровень деполяризации Регистрация изменений мембранного потенциала при внутриклеточном раздражении нервного или мышечного волокна показала, что потенциал действия возникает в тот момент, когда деполяризация мембраны достигает критического уровня. Этот критический уровень деполяризации не зависит от характера примененного стимула, расстояния между электродами и т. п., а определяется исключительно свойствами самой мембраны.
На рис. 14 схематически показаны изменения мембранного потенциала нервного волокна под влиянием длительного и_коротких стимулов различной силы. Во всех случаях потенциал действия возникает тогда, когда мембранный потенциал достигает критической величины. Скорость, с которой происходит деполяризация мембраны, при прочих раздражающего тока. При токе слабой силы деполяризация развивается медленно, поэтому для возникновения потенциала действия стимул должен быть большей длительности. В случае усиления раздражающего тока скорость развития деполяризации возрастает и соответственно уменьшается минимальное время, необходимое для возникновения возбуждения. Чем быстрее развивается деполяризация мембраны, тем меньше минимальное время, необходимое для генерации потенциала действия, и наоборот.
Локальный ответ В механизме критической деполяризации мембраны наряду с пассивными существенную роль играют активные подпороговые изменения мембранного потенциала, проявляющиеся в форме так называемого локального ответа.
Первые признаки локального ответа появляются при действии стимулов, составляющих 50—75 % от пороговой величины. По мере дальнейшего усиления раздражающего тока локальный ответ увеличивается, и в момент, когда деполяризация мембраны, обусловленная суммой катэлектротонического потенциала и локального ответа, достигает критического уровня, возникает потенциал действия (рис. 15).
Локальный ответ, так же как и потенциал действия, обусловлен повышением натриевой проницаемости мембраны. Однако при подпороговом стимуле это начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю регенеративную деполяризацию мембраны. Развитие деполяризации тормозится процессами инактивации натриевых и активации калиевых каналов. Поэтому рост локального ответа приостанавливается, а затем происходит реполяризация мембраны. Амплитуда локального ответа увеличивается по мере приближения силы стимула к порогу, и при достижении последнего локальный ответ перерастает в потенциал действия, поскольку скорость увеличения натриевой проницаемости мембраны начинает превышать скорость роста калиевой проницаемости.
Зависимость пороговой силы раздражителя от его длительности Пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности. Особенно четко эта зависимость проявляется при использовании в качестве раздражителя прямоугольных импульсов постоянного тока.
Представленная на рис. 16 кривая называется кривой силы — длительности, или силы — времени. Она была изучена при исследовании различных нервов и мышц Гоорвегом (1892), Вейсом (1901) и Лапиком (1909).
По этой кривой прежде всего можно судить о том, что ток ниже некоторой минимальной силы или напряжения не вызывает возбуждения, как бы длительно он ни действовал.
Минимальная сила постоянного тока, способная вызвать возбуждение (порог раздражения), названа Лапиком реобазой (ордината ОА). Наименьшее время (отрезок ОС), в течение которого должен действовать раздражающий стимул, величиной в одну реобазу называют полезным временем. Слово «полезное» здесь применено с целью подчеркнуть, что дальнейшее увеличение длительности действия тока не имеет значения (бесполезно) для возникновения потенциала действия.
Усиление тока приводит к укорочению минимального времени раздражения, но не беспредельно. Как видно на рис. 16, при очень коротких стимулах кривая силы — времени становится параллельной оси ординат. Это означает, что при таких кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражителя. Поэтому, кроме полезного времени, в качестве времени константы раздражения Лапик ввел понятие «хронаксия». Хронаксия - это время, в течение которого должен действовать ток удвоенной реобазы, чтобы вызвать возбуждение.
В настоящее время показано, что величина хронаксии зависит от RC мембраны и временной константы процесса активации натриевых (или кальциевых) каналов. Точное измерение величин реобазы или хронаксии возможно только в опытах на одиночных возбудимых клетках. При раздражении целой мышцы или нерва (особенно через кожу, как это делается при исследованиях возбудимости, проводимых на человеке) ветвление тока и поляризация окружающих тканей вносят очень большие искажения в измеряемые величины. Все же в некоторых случаях использование хронаксиметрии оказалось полезным в неврологической практике: с ее помощью удается установить наличие органического поражения (перерождения) двигательного нерва.
Дело в том, что электрический ток, приложенный к мышце, проходит и через находящиеся в ней нервные волокна и их окончания. Величины реобазы и хронаксии нервных волокон значительно меньше соответствующих величин мышечных волокон, поэтому при пороговых силах тока возбуждение прежде всего возникает в нервных волокнах и от них передается на мышцу. Из этого следует, что при измерении хронаксии мышцы фактически получают значение хронаксии иннервирующих ее нервных волокон.
Если нерв поврежден или произошла гибель соответствующих мотонейронов в спинном мозге (как это, например, имеет место при полиомиелите), то нервные волокна перерождаются, тогда раздражающий стимул выявляет хронаксию собственно мышечных волокон, которая имеет большую продолжительность.
Явление аккомодации Пороговая сила тока увеличивается при уменьшении крутизны его нарастания, а при некоторой минимальной крутизне ответы на раздражение исчезают. Это явление принято обозначать термином «аккомодация».
На рис. 17, а показаны изменения критического уровня деполяризации и амплитуды потенциала действия при раздражении одиночного нервного волокна лягушки линейно нарастающими токами различной крутизны. Уменьшение последней приводит к повышению критического уровня деполяризации (примерно на 20 % от исходной величины) и снижению амплитуды потенциалов действия. При снижении крутизны до некоторого минимального уровня («минимальный градиент», или «критический наклон») потенциал действия не возникает. Величина этого «минимального градиента», выраженного в единицах реобаза в секунду, принята в качестве меры скорости аккомодации.
В основе аккомодации лежат инактивация натриевой и повышение калиевой проводимостей, развивающиеся во время медленно нарастающей деполяризации мем-браны. Аккомодация различных нервных волокон варьирует в широких пределах, но у двигательных нервных волокон скорость аккомодации, как правило, значительно выше, чем у чувствительных волокон.
Повторные ответы Многие нервные волокна обладают способностью отвечать несколькими потенциалами действия на включение постоянного деполяризующего тока. Эта способность к повторным ответам особенно хорошо выражена у сенсорных волокон, для которых длительная деполяризация мембраны рецептора является естественным раздражителем. Примеры повторных ответов на постоянный ток представлены на рис. 17, б. Как правило, пороговая сила тока, необходимая для возникновения повторных ответов, выше, чем для инициации одиночного потенциала действия. На рисунке видно, что увеличение силы деполяризующего тока до определенной величины обусловливает возрастание частоты импульсов и увеличение их числа (1—4 ). Однако при дальнейшем повышении силы тока частота импульсов уменьшается и в конечном итоге возникает только одиночный потенциал действия (5—8).
При постоянной силе тока длина межимпульсных интервалов в повторном ответе постепенно увеличивается. Это явление получило название адаптации. В его основе лежит медленное повышение калиевой проводимости мембраны, связанное с активацией особых медленных калиевых каналов. Эти каналы найдены как в нервных волокнах, так и в нервных клетках, у которых способность к повторным ответам и явление адаптации, как правило, хорошо выражены.
Изменение критического уровня деполяризации Было показано, что условием возникновения потенциала действия является критическая деполяризация мембраны. Если исходный потенциал мембраны перед нанесением раздражающего стимула обозначить о, а критическую величину мембранного потенциала Ek. то указанное условие порогового раздражения можно записать так:
повысить внутренний потенциал мембраны для возникновения импульса.
Эта простая зависимость помогла понять причину известных со времени классических исследований Пфлюгера (1859) изменений возбудимости нервного волокна в области катода и анода постоянного тока. В области катода мембрана деполяризуется, т. е. значение E0 приближается к величине Eк, соответственно уменьшается и, следовательно, возбудимость возрастает. В области анода, напротив, E0 уменьшается (внутренний потенциал мембраны становится более отрицательным); теперь для критической деполяризации мембраны необходимо ее потенциал сместить на большую величину —возбудимость снижается (рис. 18).
При длительной деполяризации мембраны развиваются процессы, повышающие критический уровень деполяризации. Такими процессами являются инактивация натриевых каналов и активация калиевых. Рост Eк при данном значении E0 ведет к увеличению порогового потенциала, т. е. снижению возбудимости (рис. 1 9 ). Одновременно с увеличением порога происходит снижение потенциала действия — крутизна его нарастания и амплитуда падают. Такое снижение возбудимости нервного волокна при длительной и сильной деполяризации мембраны было впервые описано Вериго (1889) и получило название катодической депрессии.
Б — катэлсктротоническое снижение порога Vi наступает в результате приближения потенциала покоя Ео к критическому уровню деполяризации Ек; В — анэлектротоническое повышение порога V2 является следствием удаления исходного уровня потенциала покоя Ео от Ек. Нижняя линия — раздражающий и поляризующий токи: катодный ток — вверх, анодный ток — вниз.
Описанные явления демонстрируют наблюдающиеся в естественных условиях изменения возбудимости нервных клеток и пресинаптическйх нервных терминалей при действии на них медиаторов, вызывающих кратковременную или длительную деполяризацию мембраны. В частности, предполагают, что явление катодической депрессии лежит в основе так называемого пресинаптического торможения, наблюдающегося в ЦНС.
В заключение необходимо рассмотреть изменения возбудимости, наблюдающиеся при длительной гиперполяризации мембраны. Такая гиперполяризация (в нервном волокне она появляется в области приложения анода) приводит к снижению калиевой проницаемости и ослаблению исходной натриевой инактивации. Эти изменения ведут к снижению V возросшего в начальный момент гиперполяризации мембраны, и увеличению амплитуды и крутизны нарастания потенциала действия. Если гиперполяризующий ток прикладывается к мембране, которая предварительно была подвергнута воздействию избытка ионов К+ или действию анестетиков, усиливающих исходную натриевую инактивацию (т. е. увеличивающих долю каналов, у которых инактивационные «ворота» закрыты), то во время длительной гиперполяризации V может снизиться настолько, что при выключении тока, т. е. при возвращении мембранного потенциала к его исходной величине, возникает потенциал действия (рис. 20). Такое явление получило название анодно-размыкательного возбуждения. Предполагают, что в некоторых нервных клетках на подобном механизме основано возникновение потенциала действия после окончания тормозного гиперполяризационного потенциала в естественных условиях. По-видимому, у таких клеток инактивация натриевых каналов и активация калиевых сильно выражены при потенциале покоя в нормальной солевой среде.
Изложенные данные о влиянии деполяризации и гиперполяризации мембраны на ее возбудимость представлены в табл. 2.
Физиологические Деполяризация мембраны Гиперполяризация мембраны Потенциал действия Понижение, прогрессирующее во Повышение, прогрессирующее во Скорость проведения Вначале повышение, затем пони- Вначале понижение вплоть до бложение вплоть до полного блока ка (при сильном токе), затем Натриевая Вначале повышение, приводящее Постепенное ослабление инактивамость к возникновению при подпорого- ции, если она имела место проницаевом токе локального ответа, Калиевая проницаемость Постепенное повышение Понижение, если она была повышена
ИЗМЕНЕНИЯ ВОЗБУДИ МОСТИ ПРИ ВОЗБУЖДЕНИИ
Используя тестирующие стимулы в различные фазы развития потенциала действия, можно проследить временной ход изменений возбудимости, сопровождающих возбуждение. На рис. 21 видно, что во время развития локального ответа возбудимость повышается (мембранный потенциал приближается к критическому уровню деполяризации); во время пика потенциала действия мембрана утрачивает возбудимость, которая постепенно восстанавливается после окончания пика. Период полной невозбудимости получил название «фаза абсолютной рефрактерности». Она обусловлена практически полной инактивацией натриевых каналов и повышением калиевой проводимости. Реполяризация мембраны ведет к реактивации натриевых каналов и Рис.21. Изменения возбудимости нервного во- Рис. 22. Изменения потенциалов действия локна в различные фазы развития потенциала нервного волокна в фазу относительной действия и следовых изменений мембранного рефрактерности.потенциала.
Для наглядности длительность первых двух фаз на сильных стимула, разделенных различными инкаждой кривой несколько увеличена. Пунктирной тервалами.
линией на рисунке а обозначен потенциал покоя, а на рисунке б — исходный уровень возбудимости.
снижению калиевой проводимости. Это период так называемой относительной рефрактерности. В данную фазу возбудимость постепенно возрастает.
В нервных волокнах длительность фазы относительной рефрактерности составляет 5—10 мс. При наличии следовой деполяризации фаза относительной рефрактерности сменяется фазой повышенной возбудимости («супернормальности»). В этот период пороговый потенциал V и соответственно порог раздражения снижены по сравнению с исходными значениями, поскольку мембранный потенциал ближе к критической величине, чем в состоянии покоя. В быстрых двигательных волокнах теплокровных животных фаза следового повышения возбудимости продолжается до 30 мс (рис. 22).
Следовая гиперполяризация, напротив, сопровождается снижением возбудимости. По своему механизму это снижение возбудимости сходно с тем, которое имеет место при анэлектротоне: V увеличен за счет удаления мембранного потенциала Е от критической величины Ек. Сходство это, однако, неполное: при анэлектротоне gK низко, а во время следовой гиперполяризацип gк увеличено, что также повышает порог раздражения.
МЕХАНИЗМЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ
Проведение возбуждения вдоль нервных и мышечных волокон осуществляется при помощи так называемых местных токов, возникающих между возбужденным (деполяризованным) и покоящимися (нормально поляризованными) участками волокна.Распространение местных токов по длине волокна определяется его кабельными свойствами. Направление местного тока, показанного на рис. 23 таково, что он деполяризует соседний с активным (А) покоящийся (В) участок мембраны. Деполяризация эта быстро достигает критического уровня и порождает потенциал действия, который в свою очередь активирует соседний покоящийся участок. Благодаря такому эстафетному механизму возбуждение распространяется вдоль всего волокна. В мышечных и безмякотных нервных волокнах возбуждение осуществляется непрерывно «от точки к точке». Особенности проведения возбуждения по миелинизированным волокнам рассмотрены далее.
Распространение возбуждения в нерве или мышце можно зарегистрировать в эксперименте, если к двум точкам — А и Б (рис. 24, а) приложить отводящие электроды, связанные с регистрирующей аппаратурой, а к другой точке (Р) — раздражающие электроды. При нанесении электрического стимула на экране осциллографа регистрируется двухфазное колебание потенциала.
Схема на рис. 24, б разъясняет механизм возникновения этих двух противоположно направленных отклонений потенциала. В состоянии покоя все участки наружной поверхности возбудимой мембраны заряжены электроположительно по отношению к ее внутренней поверхности. Когда волна возбуждения проходит через участок под электродом, ближайшим к месту раздражения, наружная поверхность мембраны в этом участке становится электроотрицательной по отношению к точке Б. Это вызывает отклонение луча осциллографа вверх. Когда волна возбуждения покидает этот участок, луч возвращается в исходное положение. Затем возбуждение достигает участка под вторым электродом Б; этот участок в свою очередь становится электроотрицательным по отношению к точке А, а луч осциллографа отклоняется вниз. Если участок нерва под дальним электродом Б сделать невозбудимым при воздействии какого-либо агента, например новокаина, либо нарушить проведение возбуждения между участками А и Б, вторая фаза колебаний потенциала исчезает и регистрируемый потенциал действия становится однофазным.
Теория проведения возбуждения при помощи местных токов впервые была выдвинута Германом в 1899 г. В настоящее время она получила подтверждение в большом числе экспериментов. Так, показано, что если участок нервного волокна поместить в среду, лишенную ионов и, следовательно, обладающую очень высоким сопротивлением (такой средой может быть, например, раствор сахарозы), то проведение возбуждения через этот участок полностью прекратится. Однако оно тотчас восстанавливается, если два разобщенных неэлектролитом участка волокна соединить металлическим проводником.
Скорость проведения зависит не только от сопротивления окружающей волокно среды, но и от внутреннего сопротивления волокна (т. е. сопротивления аксоплазмы на единицу длины). С увеличением диаметра волокна это сопротивление падает, поэтому скорость проведения возрастает. При одном и том же диаметре волокна скорость зависит главным образом от величины так называемого фактора надежности, который представляет собой отношение:
Чем фактор надежности больше, тем скорость проведения выше и наоборот.
В нервных волокнах фактор надежности обычно 5—6. Это означает, что для покоящихся участков мембраны распространяющийся потенциал действия является сильным раздражителем, обладающим большим избытком мощности. Поэтому, для того чтобы заблокировать проведение нервного импульса, необходимо либо сильно повысить величину порога деполяризации нервного волокна, либо очень значительно снизить амплитуду его потенциала действия. Местные обезболивающие препараты (новокаин, кокаин, дикаин), применяемые в медицинской практике, вызывают оба этих изменения одновременно.
ОБМЕН ВЕЩЕСТВ ПРИ ВОЗБУЖДЕНИИ
При возникновении и проведении возбуждения в нервных клетках и мышечных волокнах происходит усиление обмена веществ. Это проявляется как рядом биохимических изменений, происходящих в мембране и цитоплазме клеток, так и усилением их теплопродукции.Биохимическими и гистохимическими методами исследования установлено, что при возбуждении наблюдается усиление распада в клетках богатых энергией фосфорных соединений — аденозинтрифосфата (АТФ) и креатинфосфата (КФ); процессов распада и синтеза углеводов, белков и липидов;
окислительных процессов, приводящих в сочетании с гликолизом к ресинтезу АТФ и КФ; происходят синтез и разрушение медиаторов, например ацетилхолина и норадреналина; усиление синтеза РНК и белков.
МАКСИМАЛЬНЫЙ РИТМ ИМПУЛЬСАЦИИ
В естественных условиях существования организма по нервным волокнам проходят не одиночные потенциалы действия, а серии импульсов, следующих друг за другом с различными интервалами. В двигательных нервных волокнах при произвольных движениях частота импульсации обычно не превышает 50 в секунду, т. е. межимпульсный интервал составляет около. 200 мс. При таком большом интервале все восстановительные процессы, развивающиеся после окончания потенциала действия (реактивация натриевых каналов, восстановление исходной натриевой проводимости, «откачка» из цитоплазмы ионов Na+ и возвращение внутрь волокна ионов К+ и т. д.), успевают полностью закончиться.Однако в чувствительных нервных волокнах (например, в слуховом или зрительном нерве) при сильном раздражении в начальный момент частота разряда может достигать 1000 и более импульсов в секунду при длительности абсолютной рефрактерной фазы 0,5—0,7 мс.
Подобные высокочастотные разряды импульсов появляются при возбуждении и в некоторых нервных клетках, например в клетках Реншоу спинного мозга.
Н. Е. Введенский первый обратил внимание на разную способность возбудимых образований воспроизводить высокие ритмы раздражений. Максимальное число потенциалов действия («максимальный ритм»), которое способно возбудимое образование генерировать в 1 с в соответствии и с ритмом раздражения, Н. Е. Введенский предложил в качестве показателя «лабильности» ткани. В настоящее время ясно, что максимальный Рис. 25. Стадии нарушения проведения через «парабиотический участок» нерва (по Н. Е. Введенскому).
а — соотношение между силой ритмической стимуляции нормального нерва и высотой тетануса скелетной мышцы. Цифры означают расстояние между катушками индукционного аппарата: чем ближе это расстояние— сильнее раздражение, тем больше частота нервных импульсов и соответственно выше тетанус;
б и в — то же после смазывания участка нерва 0,5 % раствором кокаина: б — «уравнительная фаза парабиоза»: раздражения разной силы (частоты) вызывают примерно одинаковый эффект; в — «парадоксальная фаза»: сильные (частые) стимулы дают меньший эффект, чем слабые (редкие).
(предельный) ритм импульсации нервных и мышечных волокон определяется скоростями процессов изменений ионной проводимости, лежащих в основе абсолютной и относительной рефрактерности.
Существуют воздействия, замедляющие реактивацию натриевых каналов и потому увеличивающие длительность фазы относительной рефрактерности. К ним относятся, например, местные анестетики. Поэтому участок нервного волокна, подвергнутый воздействию малых концентраций новокаина (или какого-либо другого местного анестетика), утрачивает способность проводить высокочастотные разряды импульсов, тогда как низкочастотные разряды еще продолжают проходить.
При высокочастотной стимуляции происходит либо трансформация ритма (блокируется каждый второй потенциал действия), либо (при очень частой стимуляции) проходит только первый потенциал действия, а остальные оказываются заблокированными. Объясняется это тем, что при частой стимуляции потенциалы действия, приходящие в альтерированный участок, углубляют инактивацию натриевых каналов, вызванную анестетиком'.
Сходным образом влияют на процесс реактивации повышение концентрации ионов К+ в окружающей нервные волокна жидкости и некоторые другие химические агенты.
Н. Е. Введенский (1901) впервые обнаружил нарушение способности нерва проводить высокочастотные разряды импульсов при воздействии на нерв разных химических агентов (рис. 25). Он правильно усмотрел определенное сходство между состоянием, в котором находится нервное волокно при его альтерации химическими агентами, и состоянием рефрактерности, сопровождающей нормальный потенциал действия: и в том и вдругом случае, как это теперь установлено, происходит инактивация натриевых каналов.
Представление о «парабиозе» (так называл Н. Е. Введенский состояние альтерированного участка ткани) как о состоянии «местного неколеблющегося возбуждения» и общей реакции возбудимых образований на повреждающее воздействие и в настоящее время представляет только исторический интерес. Обнаружены агенты, снижающие возбудимость (в результате блокады натриевых каналов), но не влияющие на длительность рефрактерных фаз. К числу таких агентов относится, например, специфический блокатор натриевых каналов — тетродотоксин. Имеются также существенные различия в действии агентов, блокирующих проведение, на калиевые каналы и другие транспортные системы мембраны. Таким образом, за внешне сходными изменениями возбудимости и проведения нервных импульсов могут скрываться существенно различные изменения свойств нервного и мышечного волокна.
МЫШЕЧНОЕ СОКРАЩЕНИЕ
У позвоночных животных и человека существует три вида мышц: поперечно-полосатые мышцы скелета, мышцы предсердий и желудочков сердца и гладкие мышцы внутренних органов, сосудов и кожи. Все они различаются строением и физиологическими свойствами.Свойства мышцы сердца рассмотрены в разделе «Кровообращение», поэтому здесь мы ограничимся только изложением функций и свойств скелетных и гладких мышц.
СКЕЛЕТНЫЕ МЫШЦЫ
ФУНКЦИИ И СВОЙСТВА ПОПЕРЕЧНОПОЛОСАТЫХ МЫШЦ
Поперечнополосатые мышцы являются активной частью опорно-двигательного аппарата, включающего, кроме них, кости, связки и сухожилия. В результате сократительной деятельности поперечнополосатых мышц, происходящей под влиянием импульсов, приходящих из ЦНС, возможны: 1) передвижение организма в пространстве; 2) перемещение частей тела относительно друг друга; 3) поддержание позы. Кроме того, один из результатов мышечного сокращения — выработка тепла.У человека, как и у всех позвоночных, волокна скелетных мышц обладают тремя важнейшими свойствами: 1) возбудимостью, т. е. способностью отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала; 2) «проводимостью» — способностью к проведению потенциала действия вдоль всего волокна; 3) сократимостью, т. е. способностью сокращаться или изменять напряжение при возбуждении.
В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте,применяют электрическую стимуляцию.
Непосредственное раздражение самой мышцы называется прямым раздражением;
раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы,— непрямым-раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц. Чтобы получить в эксперименте эффект чисто прямого раздражения, необходимо либо выключить в мышце двигательные нервные окончания ядом кураре, либо приложить стимул через введенный внутрь мышечного волокна микроэлектрод.
Электрическую активность целой мышцы при возбуждении можно зарегистрировать при помощи приложенных к мышце или вколотых в нее электродов и дальнейшего усиления отводимых потенциалов.
Эта методика получила название электромиографии, а регистрируемая с ее помощью кривая — электромиограммы (рис. 26). Последняя представляет собой результат интерференции множества потенциалов действия, асинхронно возникающих в различных мышечных волокнах. Метод электромиографии можно использовать при обследовании человека. Он широко применяется в физиологии спорта и медицине для оценки состояния двигательного аппарата и диагностики ряда заболеваний. Электроды различных типов позволяют отводить внеклеточно потенциалы целой мышцы, отдельных двигательных единиц и даже отдельных волокон. Электромиография позволяет выявлять разнообразные нарушения иннервации мышц и их управления ЦНС.
Для внутриклеточной регистрации мембранных потенциалов отдельных мышечных волокон в эксперименте применяют внутриклеточные микроэлектроды.
тока. После усиления последние могут быть зарегистрированы в виде миограммы (механограммы).
ТИПЫ СОКРАЩЕНИЯ МЫШЦЫ
Потенциал действия, распространяющийся по мышечному волокну, активирует его сократительный аппарат, инициируя акт сокращения. В зависимости от условий, в которых происходит мышечное сокращение, различают два его типа — изотоническое и изометрическое (рис. 27).Изотоническим называют такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается постоянным.
Изометрическим называют такое сокращение, при котором мышца укоротиться не может, т. е. когда оба ее конца неподвижно закреплены. В этом случае длина мышечных волокон остается неизменной, а напряжение их по мере развития сократительного процесса возрастает.
Естественные сокращения в организме не бывают чисто изотоническими, так как, даже поднимая постоянный груз, мышца изменяет свое напряжение вследствие реальной нагрузки. Например, при изменении суставного угла руки или ноги меняется плечо рычага, на который действует мышца.
сокращения: выделяют изометрическое сокращение, при котором длина мышцы не изменяется; концентрическое, при котором Возбудимость и возбуждение мышечных волокон Механизмы генерации потенциалов в скелетных мышцах рассмотрены в предыдущей главе. В принципе они не отличаются от таковых в нервных волокнах, однако возбудимость мышечного волокна ниже возбудимости иннервирующего его нервного волокна. Объясняется это следующим. Критический потенциал (Ес), при котором возникает распространяющийся потенциал действия в мышечных и нервных волокнах, примерно одинаков — около — 50 мВ. В отличие от этого потенциал покоя (Eо) мышечных волокон приблизительно на 20 мВ более отрицателен (—90 мВ), чем у нервных волокон. Поэтому для генерации потенциала действия мембранный потенциал мышечного волокна необходимо сместить на большую величину (V 40 мВ), чем мембранный потенциал нервного волокна (V 20 мВ). Соответственно пороговый ток для мышечного волокна выше, чем для нервного.
Амплитуда потенциала действия, измеряемого при помощи внутриклеточного микроэлектрода, составляет 120—130 мВ; длительность его в волокнах мышц конечностей и туловища 2—3 мс, в мышцах глазного яблока — около 1 мс. Скорость распространения потенциала действия по мышечному волокну скелетной мышцы теплокровного животного 3—5 м/с при температуре тела. Потенциал действия распространяется двусторонне от места раздражения и «не затухает» по длине волокна.
Одиночное сокращение Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают две основные фазы такого сокращения: фазу укорочения и фазу расслабления. Перед фазой выраженного сокращения отмечается очень короткий скрытый (латентный) период. Точные измерения позволили установить, что сокращение мышечного волокна начинается уже во время восходящей фазы потенциала действия, причем начало его приурочено к моменту, когда распространяющийся потенциал действия поднимается до некоторой пороговой для механического ответа величины (примерно 40 мВ).
Возникнув при раздражении двигательного нерва в области нервно-мышечного соединения или в участке, к которому приложены электроды для прямого раздражения мышцы, волна сокращения распространяется вдоль всего мышечного волокна. Длительность сокращения в каждой точке волокна в десятки раз превышает продолжительность потенциала действия. Поэтому наступает момент, когда потенциал действия, пройдя вдоль всего волокна, заканчивается (мембрана реполяризовалась), волна сокращения охватывает все волокно и оно еще продолжает быть укороченным. Это соответствует моменту максимального укорочения (или напряжения) мышечного волокна.
Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т. е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении находится в большей зависимости от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает;
сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение»). Дальнейшее усиление раздражающего тока на амплитуду сокращения мышцы не влияет.
Распространение волны сокращения по мышце можно проследить на простом опыте. На,мышцу с параллельными волокнами, например портняжную мышцу лягушки, помещают два рычажка и наносят раздражение на один конец мышцы. При прохождении волны сокращения рычажки приподнимаются по очереди: сначала ближайший к месту раздражения, затем дальний. Скорость проведения волны сокращения совпадает со скоростью распространения потенциала действия.
Кривые одиночного сокращения изолированного мышечного волокна сходны по форме с кривыми одиночных сокращений целой мышцы (рис. 28). Отличием является меньшая длительность сокращения одиночного волокна но сравнению с целой мышцей.
за другом сильных одиночных раздражения, то возникающее сокращение будет иметь большую амплитуду, чем раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 29). Оно наблюдается как при прямом, так и при непрямом раздражении мышцы. Для возникновения суммации необходимо, чтобы интервал между раздражением имел определенную длительность: он должен быть длиннее рефрактерного периода, возможны два варианта. Если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западенисм (рис. 29, Ж — Г ). Еели же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис. 29, А — В).
Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.
Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.
Тетанус мышцы. Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением, или тетанусом. Амплитуда его может быть в несколько раз больше величины максимального одиночного сокращения.
При относительно малой частоте раздражений наблюдается зубчатый тетанус, при большой частоте — гладкий тетанус (рис. 30, 31). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 32) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.
После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется цоелстетанической, или остаточной, контрактурой.
Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.
Двигательные единицы Чтобы познакомиться с тем, как функционирует мышца в условиях естественной деятельности организма, необходимо остановиться на строении и особенностях иннервации скелетной мышцы двигательным нервом.
глазного яблока двигательные единицы содержат в среднем менее 10 мышечных волокон, в отдельных мышцах пальцев руки — 10—25. В отличие от этого в большинстве мышц туловища и конечностей на одно двигательное волокно приходится в среднем сотни мышечных волокон, а в камбаловидной мышце — 2000.
Когда по двигательному волокну к мышце приходит потенциал действия, мышечные волокна, входящие в одну двигательную единицу, возбуждаются почти одновременно.
Возникающий при этом суммарный потенциал действия мышечных волокон двигательной единицы может быть зарегистрирован вколотым в мышцу электродом с малой отводящей поверхностью. Поскольку мотонейрон при естественном сокращении мышцы разряжается ритмически, электрическая активность двигательной единицы имеет в записи вид частокола (рис. 33). У здорового человека в расслабленной мышце (т. е. в состоянии полного покоя) электрическая активность в мышце почти отсутствует. При небольшом напряжении мышцы, например, связанном с поддержанием позы, двигательные единицы разряжаются с частотой 5—10 импульсов в секунду (имп/с), при увеличении силы сокращения частота повышается до 20—30, лишь при максимальном напряжении мышцы она может достигать 50 имп/с или несколько более. Исследование частоты разрядов двигательных единиц позволило установить, что в естественных условиях сокращения мышц мотонейроны разряжаются со сравнительно низкой частотой. Более высокие частоты зарегистрированы только при исследовании двигательных единиц мышц глазного яблока (150 имп/с и более).
Функциональная дифференциация двигательных единиц В скелетных мышцах теплокровных животных и человека различают быстрые и медленные двигательные единицы, состоящие соответственно из быстрых и медленных мышечных волокон. Длительность сокращения медленных двигательных единиц может быть 100 мс и более, быстрых —10—30 мс. Существуют мышцы, состоящие преимущественно из быстрых двигательных единиц (например, мышцы глазного яблока), и мышцы, в которых преобладают медленные двигательные единицы (например, камбаловидная мышца). Такие мышцы часто называют соответственно быстрыми и медленными.
Большинство мышц смешанные, состоят как из быстрых, так и из медленных двигательных единиц, а также переходных форм между ними.
Со скоростью сокращения мышечных волокон двигательной единицы связано много других ее свойств и прежде всего, очевидно, то, что от скорости сокращения зависит суммация, т. е. та частота возбуждения, при которой наступает гладкий тетанус. В двигательных единицах медленной камбаловидной мышцы гладкий тетанус наступает уже при частоте разряда около 10—15 в секунду, в быстрых двигательных единицах мышц конечностей — только при частоте около 50 в секунду. В самых быстрых глазных мышцах гладкий тетанус можно наблюдать при еще больших частотах.
Сопоставление частоты разрядов двигательных единиц с частотой, при которой может образоваться гладкий тетанус, позволяет сделать вывод, что в естественных условиях гладкий тетанус может наблюдаться только при очень высокой частоте. Обычным режимом естественного сокращения является зубчатый тетанус или даже ряд последовательных одиночных сокращений двигательной единицы. Тем не менее это не отражается на сокращении целой мышцы; оно, как правило, бывает слитным, напоминающим гладкий тетанус. Причина этого — асинхронность разрядов мотонейронов, а следовательно, и мышечной части двигательных единиц. При отведении игольчатым электродом потенциалов действия одновременно нескольких активных двигательных единиц видна асинхронность их импульсации. В случае электрической активности целой мышцы сложение (интерференция) потенциалов действия многих двигательных единиц дает сложную картину колебаний потенциала, в которой уже не удается различать потенциал каждой из них, а общая частота колебаний существенно превышает частоту разрядов каждой из активных двигательных единиц.
Скорость сокращения двигательных единиц коррелирует и с другими их свойствами.
Медленные двигательные единицы, как правило, содержат меньше мышечных волокон и, следовательно, при сокращении развивают меньшую силу. Количество мышечных волокон и развиваемая ими суммарная сила в двигательных единицах одной мышцы могут различаться более чем на порядок. Не менее важно другое различие медленных и быстрых двигательных единиц — устойчивость к утомлению. Медленные двигательные единицы могут работать без утомления гораздо дольше, чем быстрые, что объясняется особенностями их обмена.
Со свойствами мышечных волокон двигательной единицы коррелируют и свойства иннервирующего ее мотонейрона: при естественном напряжении мышцы мотонейроны медленных двигательных единиц обычно оказываются более низкопороговыми, т. е. вовлекаются в возбуждение раньше. Разница в возбудимости мотонейронов позволяет нервной системе дозировать силу сокращения, вовлекая в возбуждения меньшее или большее количество двигательных единиц мышцы. При длительных, но обычно слабых тонических напряжениях, связанных, например, с поддержанием позы, активируются только низкопороговые медленные, устойчивые к утомлению двигательные единицы. Если необходимо осуществить сильное фазное напряжение, в возбуждение вовлекаются высокопороговые, быстрые сильные двигательные единицы.
Рассмотренные двигательные единицы теплокровных животных и человека относятся к классу так называемых фазных двигательных единиц. У амфибий и рептилий, а также в некоторых (немногих) мышцах теплокровных (наружные мышцы глаза) содержатся особые тонические двигательные единицы — мышечные волокна, которые существенно отличаются от волокон фазных единиц. Возбуждение тонических волокон не подчиняется закону «все или ничего» и имеет характер локального ответа, поэтому ограничивается областью нервно-мышечного окончания или тем участком, к которому непосредственно приложено электрическое или химическое раздражение. Охват возбуждением всего волокна возможен потому, что на каждом мышечном волокне имеется не одно, а множество нервных окончаний. Одновременное поступление к этим окончаниям нервного импульса вызывает сокращение всего волокна. Это сокращение существенно медленнее, чем сокращение фазных мышечных волокон.
Регистрация электрической активности двигательных единиц у человека показала, что в естественных условиях мышцы редко бывают полностью расслабленными. Обычно в них наблюдается небольшая, так называемая позная, активность, или позный тонус; при этом низкопороговые медленные двигательные единицы разряжаются с небольшой частотой.
Тонус и особенно его нарушения при ряде заболеваний нервной системы связаны с изменением состояния рефлекторных механизмов, в частности рефлексов с проприорецепторов мышц, повышение возбудимости которых ведет к повышению тонуса.
МЕХАНИЗ МЫ МЫШЕЧНОГО
СОКРАЩЕНИЯ
обладающие разными оптическими свойствами. Одни участки анизотропны, т. е. обладают двойным лучепреломлением. В обыкновенном свете они выглядят темными, а в опорной структуры параллельно расположенные однозначные диски отдельных фибрилл внутри одного волокна во время сокращения не смещаются по отношению друг к другу.Современные представления о структуре миофибриллярного аппарата основываются на исследованиях структуры мышечного волокна при помощи электронной микроскопии, рентгеноструктурного анализа, фазово-контрастной и интерференционной микроскопии в сочетании с гистохимическими методами.
Установлено, что каждая миофибрилла мышечного волокна диаметром около 1 мкм состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белков миозина и актина. Миозиновые протофибриллы, или, как их принято обозначать, нити, вдвое толще актиновых. Их диаметр примерно 10 нм. В состоянии покоя мышечного волокна нити расположены в миофибрилле таким образом, что тонкие длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями (рис. 34, б)'. Благодаря этому диски / состоят только из актиновых нитей, а диски А — из нитей миозина, а, возможно, еще и другого белка.
Светлая полоска Н представляет собой узкую зону, свободную от актиновых нитей.
Мембрана Z, проходя через середину диска /, скрепляет между собой эти нити.
Важным компонентом ультрамикроскопической структуры миофибрилл являются также многочисленные поперечные мостики, соединяющие между собой миозиновые и актиновые нити. При сокращении мышечного волокна указанные нити не укорачиваются, а начинают «скользить» друг по другу: актиновые нити вдвигаются в промежутки между миозиновыми, в результате чего диски / укорачиваются, а диски А сохраняют свой размер.
Почти исчезает светлая полоска Н, так как актиновые нити при сокращении сближаются друг с другом своими концами (рис. 34, в). Причиной «скольжения» является химическое взаимодействие между актином и миозином в присутствии ионов Са2+ и АТФ.
Наблюдается своего рода химическое «зубчатое колесо», как бы протягивающее одну группу нитей по другой. Роль «зубчиков» в этом процессе приписывают поперечным мостикам, обеспечивающим взаимодействие активных центров белков миозиновых и актиновых нитей.
Роль потенциала действия в возникновении мышечного сокращения. В естественных условиях деятельности скелетной мышцы инициатором ее сокращения является потенциал действия, распространяющийся при возбуждении вдоль поверхностной мембраны мышечного волокна.
Если кончик микроэлектрода при помощи микронанипулнтора приложить к поверхности мышечного волокна лягушки в области диска /, то при нанесении очень слабого электрического стимула, вызывающего деполяризацию, диски / по обе стороны от мембраны Z начнут укорачиваться. При этом, однако, сокращение распространяется не в стороны, а в глубь волокна, вдоль диска /. Приложение слабого стимула к другим участкам миофибриллы подобного эффекта не вызывает. Из этого следует, что деполяризация поверхностной мембраны мышечного волокна в области дисков / является пусковым механизмом сократительного процесса.
Важным промежуточным звеном между деполяризацией мембраны и началом мышечного сокращения является проникновение в область миофибрилл свободных ионов Са2+.
В состоянии покоя основная часть ионов Са2+ в скелетном мышечном волокне хранится в так называемом саркоплазматическом ретикулуме. Он представляет собой замкнутую систему внутриклеточных трубочек и цистерн, окружающих каждую миофибриллу.
В мембране саркоплазматического рётикулума локализованы две важнейшие транспортные системы, обеспечивающие накопление в ретикулуме ионов Са2'+ («секвестрация» — захват их из миоплазмы) и освобождение Са2+ из ретикулума при возбуждении.
Функцию кальциевого насоса выполняет так назы ваемая Са- зависимая А ТФ- аза (Са — АТФ-аза). Энергия, выделяющаяся при расщеплении АТФ, используется для секвестрации ионов Са2+ в ретикулум. Благодаря этому в покоящемся волокне концентрация свободных ионов Са2+ в цитоплазме поддерживается на очень низком уровне. Поступая внутрь ретикулума (главным образом в его продольные трубочки), ионы Са2+ частично связываются белковыми молекулами, устилающими внутреннюю поверхность его трубочек и цистерн.
Концентрация свободных Са2+ в полости ретикулума близка к концентрации их в наружной среде, т. е. во внеклеточной жидкости.
В механизме освобождения ионов Са2+ из ретикулума при возбуждении особую роль играет система поперечных трубочек (Т-систе-ма), представляющих собой впячивания поверхностной мембраны. Диаметр каждой трубочки около 0,05 мкм. На рис. 35 приведена схема продольного среза через быстрое мышечное волокно лягушки. Видно, что по обе стороны от поперечной трубочки.расположены боковые (терминальные) цистерны ретикулума.
Вместе с трубочкой они образуют так называемые триады. Мембрана поперечных трубочек по своим свойствам сходна с поверхностной мембраной;
она содержит электровозбудимые натриевые каналы и способна к генерации и проведению потенциала действия. Во время возбуждения потенциал действия с поверхностной мембраны распространяется вдоль мембраны поперечных трубочек в глубь волокна и при помощи особого, пока еще полностью не изученного, механизма вызывает освобождение ионов Са2+ из боковых цистерн. Боковые цистерны расположены таким образом, что освободившиеся ионы Са2+ попадают непосредственно в ту область, где происходит образование актомиозина.
Как отмечалось, начало мышечного сокращения приурочено к первой трети восходящего колена потенциала действия, а именно к моменту, когда внутренний потенциал волокна возрастает с исходных —90 мВ до примерно —50 мВ. Этот потенциал является пороговым для возникновения механического ответа. Предполагают, что именно при достижении указанного уровня деполяризации концентрация свободных ионов Са2+ в миофибрилле достигает критической величины, необходимой для начала взаимодействия актиновых и миозиновых нитей.
Процесс освобождения Са2+ прекращается после окончания пика потенциала действия. Тем не менее сокращение продолжает нарастать до тех пор, пока активация кальциевого насоса ретикулума не вызовет снижения концентрации ионов Са2+ в миоплазме.
Тогда сокращение сменяется расслаблением.
Таким образом, последовательность событий, ведущих к сокращению, а затем расслаблению мышечного волокна, представляется в следующем виде: раздражение возникновение потенциала действия проведение его вдоль клеточной мембраны и в глубь волокна по трубочкамосвобождение Са2+ из боковых цистерн саркоплазматического ретикулума и диффузия его к миофибриллам взаимодействие («скольжение») актиновых и миозиновых нитей, приводящее к укорочению миофибриллы активация кальциевого насоса- снижение концентрации свободных ионов Са2+ в саркоплазме расслабление миофибрилл.
Роль АТФ в механизмах мышечного сокращения В процессе взаимодействия миозиновых и актиновых нитей в присутствии Са2+ важную роль играет богатое энергией соединение — АТФ. Впервые В. А. Энгельгард и М. Н. Любимова в 1939 г. нашли, что мышечный белок — миозин — обладает свойствами фермента аденозинтрифосфатазы (АТФ-аза). Эти авторы также обнаружили, что под влиянием АТФ изменяются и механические свойства миозина — резко увеличивается растяжимость его нитей. В последующие годы был открыт белок актин и показано, что он активирует АТФ-азную активность миозина.
В настоящее время взаимодействие АТФ с сократительными белками и ионами Са2+ представляют следующим образом. В покоящейся мышце, т. е. в условиях, когда концентрация ионов Са2+ в миоплазме очень низкая, взаимодействию миозиновых и актиновых нитей препятствуют молекулы белка тропонина, расположенные на актиновых нитях.
Тропонин обладает очень высоким сродством к ионам Са2+. Как только концентрация Са2+ в миофибриллах повышается, тропонин связывает Са2+ и изменяет свое расположение на актиновой нити таким' образом, что делает возможным ее взаимодействие с миозиновой нитью. Формирующиеся при этом поперечные мостики перемещают актиновую нить лишь на 1 % ее длины. Чтобы обеспечить дальнейшее продвижение нити и соответственно сокращение волокна, необходимо, чтобы эти мостики разъединились и прикрепились к новым участкам актиновой нити. Такое разъединение мостиков осуществляется при расщеплении молекул АТФ АТФ-азой миозина. Таким образом, взаимодействие миозина и актина, возможное при связывании Са2+ тропонином, активирует АТФ-азу миозина, последняя расщепляет АТФ, а это приводит к разъединению миозина и актина.
В присутствии Са2+ и АТФ в миоплазме этот процесс многократно повторяется: мостики повторно образуются и расходятся, в результате чего актиновые нити «скользят» и мышечное волокно укорачивается.
Подсчитано, что при изотоническом сокращении скелетной мышцы лягушки поперечные мостики должны совершить за 0,1 с 50 таких движений, чтобы длина каждого саркомера волокна укоротилась на 50 %. При каждом движении мостиков происходит расщепление молекул АТФ.
Таким образом, присутствие АТФ в мышце является обязательным условием для обратимости связывания актина и миозина. Трупное окоченение возникает при условии, если концентрация АТФ в мышце падает ниже некоторой критической величины. Тогда комплекс актин — миозин становится стабильным.
Итак, энергия АТФ используется во время деятельности скелетной мышцы для трех основных процессов: 1) работы натр ий-калиевого насоса, обеспечивающего поддержание постоянства градиента концентрации ионов Na+ и К+ по обе стороны мембраны; 2) процесса «скольжения» актиновых и миозиновых нитей, ведущего к укорочению миофибрилл; 3) работы кальциевого насоса, необходимого для расслабления волокна. В соответствии с этим ферменты, расщепляющие АТФ, локализованы в трех различных структурах мышечного волокна: клеточной мембране, миозиновых нитях и мембранах саркоплазматического ретикулума.
Ресинтез АТФ, непрерывно расщепляющейся в процессе деятельности мышцы, осуществляется двумя основными путями. Первый состоит в ферментативном переносе фосфатной группы от богатого энергией фосфорного соединения креатинфосфата на аденозиндифосфорную кислоту. Креатинфосфат содержится в мышце в значительно больших количествах, чем АТФ, и обеспечивает ее ресинтез в течение тысячных долей секунды. Однако при интенсивной работе мышцы запасы креатинфосфата быстро истощаются, поэтому важен второй путь—более медленный ресинтез АТФ. Он связан с гликолитическими и окислительными процессами, протекающими в мышце как в условиях покоя, так и особенно интенсивно во время деятельности. Окисление молочной и пировиноградной кислот, образующихся в мышце во время ее сокращения, сопровождается фосфорилированием аденозиндифосфорной кислоты и креатина, т. е. ресинтезом креатинфосфата и АТФ.
Нарушение ресинтеза АТФ ядами, подавляющими гликолитические и окислительные процессы, ведет к полному исчезновению АТФ и креатинфосфата, вследствие чего кальциевый насос перестает работать. Концентрация Са2+ в области миофибрилл значительно возрастает и мышца приходит в состояние длительного необратимого укорочения.
Теплообразование при сократительном процессе и энергия сокращения Образование тепла в мышечной ткани при работе было открыто Гельмгольцем и В. Я. Данилевским во второй половине XIX в. В дальнейшем Хиллу с сотр. удалось создать высокочувствительные приборы, которые позволили зарегистрировать и измерить теплопродукцию мышц и нервов в покое и при возбуждении.
По своему происхождению и времени развития теплообразование было подразделено Хиллом на две основные фазы. Первая фаза приблизительно в 1000 раз короче второй и называется фазой начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая фазу расслабления.
В свою очередь начальное теплообразование может быть разделено на несколько частей: а) тепло активации; б) тепло укорочения; в) тепло расслабления.
Тепло активации освобождается непосредственно после нанесения раздражения, но до сколько-нибудь различимого сокращения мышечных волокон. Поэтому указанная порция тепла рассматривается как тепловой эффект тех химических процессов, которые переводят мышцу из невозбужденного состояния в активное. При тетаническом сокращении тепло активации выделяется в течение всего времени раздражения мышцы при каждом потенциале действия.
Тепло укорочения обусловлено самим сократительным процессом. Если путем сильного растяжения мышцы воспрепятствовать ее сокращению, эта порция тепла не выделяется.
Тепло расслабления связано с освобождением энергии в результате расслабления мышцы. Если мышца подняла груз во время сокращения, то по окончании его количество выделяемого тепла увеличивается.
Вторая фаза теплопродукции длится несколько минут после расслабления и носит название запаздывающего, или восстановительного, теплообразования.
Она связана с химическими процессами, обеспечивающими ресинтез АТФ. В опытах на мышцах, сокращающихся в отсутствие кислорода, Хилл показал, что в отличие от начального теплообразования, для которого кислород не нужен, 90 % восстановительного тепла образуется в результате окислительных процессов и лишь 10 % этого тепла обусловлены анаэробными процессами обмена веществ. Тепло восстановления по своей величине примерно равно количеству тепла, выделяемого мышцей во время сокращения.
Это соответствие становится понятным, если учесть, что химические процессы, обусловливающие восстановительное теплообразование, направлены на ресинтез АТФ, являющийся основным непосредственным источником энергии мышечного сокращения. Главную роль в ресинтезе АТФ и восстановительном теплообразовании играют процессы гликолиза и окислительного фосфорилирования. Отравление мышцы монойодуксусной кислотой, прекращающей гликолитическое образование молочной и пировиноградной кислот, почти полностью выключает запаздывающее теплообразование и ресинтез АТФ даже в присутствии кислорода.
РАБОТА И СИЛА МЫШЦ
Величина сокращения (степень укорочения) мышцы при данной силе раздражения (т. е. при данном числе активированных волокон) зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект; при сильном растяжении сокращение мышцы ослабляется. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения снижается.Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика. Установлено, что собака мышцами челюсти может поднять груз, превышающий массу ее тела в 8,3 раза.
Одиночное мышечное волокно способно развить напряжение 100—200 мг. Учитывая, что общее количество мышечных волокон в теле человека приблизительно 15—30 млн., они могли бы развить напряжение в 20—30 т, если бы все одновременно тянули в одну сторону.
Сила мышцы при прочих равных условиях зависит от ее поперечного сечения. Чем больше физиологическое поперечное сечение мышцы, т. е. сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. Физиологическое поперечное сечение совпадает с геометрическим только в мышцах с продольно расположенными волокнами; у мышц с косым расположением волокон сумма поперечных сечений может значительно превышать геометрическое поперечное сечение самой мышцы (рис. 36). По этой причине сила мышцы с косо расположенными волокнами значительно больше, чем сила мышцы той же толщины, но при продольном расположении волокон.
Чтобы иметь возможность сравнивать силу разных мышц, максимальный груз, который в состоянии поднять мышца, делят на площадь ее физиологического поперечного сечения.
Таким образом вычисляют абсолютную мышечную силу. Абсолютная сила, выраженная в килограммах на I см2, икроножной мышцы человека равна 5,9, сгибателя плеча — 8,1, жевательной мышцы — 10, двуглавой мышцы плеча — 11,4, трехглавой мышцы плеча — 16,8, гладких мышц— 1.
Примером мышц с продольным расположением волокон может служить m.sartorius, с косым — m.m.intercostales. Большинство мышц млекопитающих и человека перистого строения. Перистая мышца имеет большое физиологическое сечение, а потому обладает большой силой.
Зависимость изометрического напряжения от исходной длины мышцы Если покоящуюся мышцу постепенно растягивать за сухожильные концы, то в силу эластических свойств напряжение мышцы будет возрастать так, как это показано на рис.
37 (кривая А).
Нанесение электрических раздражений на мышцу вызывает прирост напряжения (кривая Б), величина которого с увеличением исходной длины мышечных волокон вначале возрастает, а затем уменьшается.
Если сопоставить кривую Б с кривой А, то можно получить представление о зависимости этого активного прироста изометрического напряжения от длины мышечных саркомеров. При некоторой средней длине саркомеров сила, развиваемая мышечным волокном, максимальна. При перерастяжении волокон эта сила уменьшается. Причина такой зависимости напряжения от исходной длины саркомеров становится ясной при рассмотрении взаимного расположения миозиновых и актиновых нитей при разной длине саркомеров (рис. 37,В).
Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы. Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая зависимость. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно уменьшается. При очень большом грузе, который мышца неспособна поднять, работа становится равной нулю. На рис. 38 показаны соотношения между величиной нагрузки, степенью укорочения мышцы и величиной работы. Наибольшую работу работа более утомительна, чем динамическая. Работа может совершаться и в условиях удлинения мышцы (опускание груза), Утомление мышцы Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.
Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.
Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения и удлиняется период расслабления мышцы. Однако все эти изменения возникают не тотчас после начала работы, а спустя некоторое время, в течение которого наблюдается увеличение амплитуды одиночных сокращений мышцы. Этот период называется периодом врабатывания. При дальнейшем длительном раздражении развивается утомление мышечных волокон.
Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывает угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.
Другая причина развития утомления изолированной мышцы — постепенное истощение в ней энергетических запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.
Следует подчеркнуть, что утомление изолированной скелетной мышцы при ее прямом раздражении является лабораторным феноменом. В естественных условиях утомление двигательного аппарата при длительной работе развивается более сложно и зависит от большого числа факторов. Обусловлено это, во-первых, тем, что в организме мышца непрерывно снабжается кровью и, следовательно, получает с ней определенное количество питательных веществ (глюкоза, аминокислоты) и освобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон. Вовторых, в целом организме утомление зависит не только от процессов в мышце, но и от процессов, развивающихся в нервной системе, участвующих в управлении двигательной деятельностью. Так, например, утомление сопровождается дискоординацией движений, возбуждением многих мышц, которые не участвуют в совершении работы.
И. М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И. М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.
Убедительным доказательством роли нервных центров в развитии утомления могут служить опыты с внушением. Так, находясь в состоянии гипноза, испытуемый может длительное время поднимать тяжелую гирю, если ему внушить, что в его руке находится легкая корзина. Наоборот, при внушении испытуемому, что ему дана тяжелая гиря, утомление быстро развивается при подъеме легкой корзины. При этом изменения пульса, дыхания и газообмена находятся в соответствии не с реальной работой, осуществляемой человеком, а с той, которая ему внушена.
При выявлении причин утомления двигательного аппарата в применении к целостному организму в настоящее время нередко различают два вида двигательной деятельности: локальную, когда активно сравнительно небольшое количество мышц, и общую, когда большинство мышц тела участвует в работе. В первом случае среди причин утомления на первое место выступают периферические факторы, т. е. процессы в самой мышце;
во втором ведущее значение приобретают центральные факторы и недостаточность.
вегетативного обеспечения движений (дыхания, кровообращения). Исследованию механизмов утомления большое внимание уделяется в физиологии труда и спорта.
Эргография. Для изучения мышечного утомления у человека в лабораторных условиях пользуются эргографами — приборами для записи механограммы при движениях, ритмически выполняемых группой мышц. Такая запись позволяет определить количество выполняемой работы.
Примером такого простейшего прибора может служить эргограф Моссо, записывающий движение нагруженного пальца. Сгибая и разгибая палец при фиксированном положении руки, испытуемый поднимает и опускает подвешенный к пальцу груз в определенном, заданном ритме (например, в ритме ударов метронома).
Существуют эргографы, воспроизводящие те или иные рабочие движения человека. Так, широко используются велоэргографы (велоэргометры). Человек ногами вращает педали прибора при различном, заданном заранее сопротивлении этому движению. Специальные датчики позволяют регистрировать параметры движения и количество выполненной работы. Одновременно можно регистрировать показатели дыхания, кровообращения, ЭКГ. Велоэргографы широко используются в медицине для определения функциональных возможностей организма человека.
Форма эргограммы и величина работы, произведенной человеком до наступления утомления, варьируют у разных лиц и даже у одного и того же лица при различных условиях. В этом отношении показательны эргограммы, записанные Моссо на самом себе до и после приема зачета у студентов.
Эти эргограммы свидетельствуют о резком уменьшении работоспособности после напряженной умственной работы (рис. 39).
Рабочая гипертрофия мышц и атрофия от бездеятельности Систематическая интенсивная работа мышцы способствует увеличению массы мышечной ткани. Это явление названо рабочей гипертрофией мышцы. В основе гипертрофии лежит увеличение массы цитоплазмы мышечных волокон и числа содержащихся в них миофибрилл, что приводит к увеличению диаметра каждого волокна. При этом в мышце происходит активация синтеза нуклеиновых кислот и белков и повышается содержание веществ, доставляющих энергию, используемую при мышечном сокращении,— аденозинтрифосфата и креатинфосфата, а также гликогена. В результате сила и скорость сокращения гипертрофированной мышцы возрастают.
Увеличению числа миофибрилл при гипертрофии способствует преимущественно статическая работа, требующая большого напряжения (силовая нагрузка). Даже кратковременных упражнений, проводимых ежедневно в условиях изометрического режима, достаточно для того, чтобы увеличилось количество миофибрилл. Динамическая мышечная работа, производимая без особых усилий, не вызывает гипертрофии мышцы.
У тренированных людей, у которых многие мышцы гипертрофированы, мускулатура может составлять до 50 % массы тела (вместо 35—40 % в норме).
Противоположным рабочей гипертрофии состоянием является атрофия мышц от бездеятельности. Она развивается во всех случаях, когда мышца почему-либо длительно не совершает нормальной работы. Это наблюдается, например, при обездвижении конечности в гипсовой повязке, долгом пребывании больного в постели, перерезке сухожилия, вследствие чего мышца перестает совершать работу, и т. п.
При атрофии диаметр мышечных волокон и содержание в них сократительных белков, гликогена, АТФ и других важных для сократительной деятельности веществ уменьшаются. После возобновления нормальной работы мышцы атрофия постепенно исчезает.
Особый вид мышечной атрофии наблюдается при денервапии мышцы, т. е. после утраты ее связи с нервной системой, например при перерезке се двигательного нерва.
Этот вид атрофии рассмотрен далее.
ГЛАДКИЕ МЫШЦЫ
Функции гладких мышц в разных органах Гладкие мышцы в организме высших животных и человека находятся во внутренних органах, сосудах и коже. Они способны осуществлять относительно медленные движения и длительные тонические сокращения.Относительно медленные, часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишок, протоков пищеварительных желез, мочевого пузыря, желчного пузыря и др., обеспечивают перемещение содержимого этих органов. Примером являются маятникообразные и перистальтические движения кишечника.
Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тоническое сокращение препятствует выходу содержимого. Этим обеспечивается накопление желчи в желчном пузыре и мочи в мочевом пузыре, оформление каловых масс в толстой кишке и т. д.
В состоянии постоянного тонического сокращения находятся также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину их просвета и тем самым уровень кровяного давления и кровоснабжения органов.
Тонус и двигательная функция гладких мышц регулируются импульсами, поступающими по вегетативным нервам, и гуморальными влияниями.
Физиологические особенности гладких мышц Пластичность гладкой мышцы. Важным свойством гладкой мышцы является ее большая пластичность, т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. Скелетная мышца тотчас укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникнет ее активного сокращения.
Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.
Функциональный синцитий. Существуют различные типы гладких мышц. В стенках большинства полых органов находятся гладкие мышечные волокна длиной 50—400 мкм и диаметром 2—10 мкм. Эти волокна очень тесно примыкают друг к другу и потому при рассмотрении их в микроскопе создается впечатление, что они переходят друг в друга и морфологически составляют единое целое. На этом основании утверждали, что гладкие мышцы, как и сердечная мышца, имеют синцитиальное строение. Однако электронно-микроскопические исследования показали, что не существует мембранной и цитоплазматической непрерывности между отдельными волокнами гладких мышц: они отделены друг от друга межклеточными щелями, ширина которых может достигать 60— 150 нм. Несмотря на наличие этих щелей, гладкие мышцы функционируют так, как если бы они имели истинное синцитиальное строение. Это выражается в том, что потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного волокна на другое. Ввиду этого понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим. Синцитий — функциональное образование, в котором возбуждение может свободно переходить с одной клетки в другую. Двигательные нервные окончания расположены только на небольшом числе волокон гладких мышц. Однако вследствие беспрепятственного распространения возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.
В некоторых гладких мышцах, например в ресничной мышце глаза или радиальной мышце радужной оболочки, каждое волокно имеет самостоятельную иннервацию, подобно волокнам скелетной мышцы.
Электрическая активность гладких мышц. Потенциал покоя гладкомышечных волокон, обладающих автоматией, обнаруживает постоянные небольшие колебания. Величина его при внутриклеточном отведении равна 30—70 мВ (в среднем 50 мВ). Потенциал покоя гладких мышечных волокон, не обладающих автоматией, стабилен и равен 60— 70 мВ. В обоих случаях его величина меньше значения потенциала покоя скелетных мышц. Это, по-видимому, связано с тем, что мембрана гладких мышечных волокон в покое характеризуется относительно высокой проницаемостью для ионов Na +.
Потенциалы действия в гладких мышцах также несколько ниже, чем в скелетных.
Превышение потенциала действия над величиной потенциала покоя наблюдается не всегда и составляет не больше 10—20 мВ. В гладких мышцах внутренних органов зарегистрированы потенциалы действия двух основных типов: пикоподобные потенциалы действия и потенциалы действия с выраженным плато. Длительность пикоподобных потенциалов действия варьирует от 5 до 80 мс. Пик, как правило, сопровождается следовой гиперполяризацией. Иногда наблюдается следовая деполяризация.
Потенциалы действия с выраженным плато зарегистрированы в гладких мышцах уретры, матки и некоторых сосудов. Продолжительность плато 30—500 мс (рис. 40).
Ионный механизм возникновения потенциалов действия в гладких мышцах несколько отличается от такового в скелетных мышцах. Установлено, что деполяризация мембраны, лежащая в основе потенциала действия в ряде гладких мышц, связана с активацией электровозбудимых кальциевых каналов. Следует подчеркнуть, что эти каналы проницаемы не только для ионов Са 2+ и некоторых двухвалентных катионов (Ва 2+, Sr 2 + ), но и для ионов Na +. От «быстрых» натриевых каналов, обеспечивающих генерацию потенциалов действия в нервных и скелетно-мышечных волокнах, «медленные» кальциевые каналы отличаются не только своей ионной избирательностью, но также кинетикой процессов активации и инактивации и чувствительностью к блокаторам.
Кальциевые каналы активируются и инактивируются значительно медленнее, чем натриевые; они не чувствительны к тетродотоксину, но эффективно блокируются изоптином (верапамилом), ионами Са 2+, Мп 2+ и La 3+. Изоптин применяют в медицинской практике для устранения или предупреждения спазма сосудов.
Проведение возбуждения по гладкой мышце. В нервных и скелетных мышечных волокнах возбуждение распространяется посредством локальных электрических токов, возникающих между деполяризованным и соседними покоящимися участками клеточной мембраны. Этот же механизм свойствен и волокнам гладких мышц. Однако в гладких мышцах потенциал действия, возникший в одном волокне (клетке), может распространяться на соседние волокна. Обусловлено это тем, что в мембранах клеток гладких мышц в области контактов с соседними клетками, так называемых нексусов, имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко проходят в соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца отличается от скелетной и сходна с сердечной, которая также представляет собой функциональный синцитий. Между сердечным и гладкомышечным синцитием имеются некоторые важные различия. В сердце достаточно возбудить только одну клетку, чтобы это возбуждение распространилось на всю мышцу. В гладких же мышцах потенциал действия, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое оказывается тем большим, чем сильнее приложенный стимул.
Другая существенная особенность гладких мышц заключается в том, что распространяющийся потенциал действия возникает в них только в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. В круговой мышце кишечника такая минимальная «критическая» зона имеет диаметр около 100 мкм, что соответствует 200—300 параллельно лежащим клеткам.
Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 10 см/с, т. е. значительно меньше, чем в скелетной мышце. При прочих равных условиях скорость проведения импульса по пучку гладкомышечных волокон тем выше, чем больше длина отдельных волокон и, следовательно, чем меньшее число межклеточных переключений должен пройти потенциал действия. Поэтому в таком пучке скорость проведения в направлении длинной оси клеток примерно в 10 раз выше, чем в поперечном направлении.
Связь между возбуждением и сокращением. Так же как и в скелетной мускулатуре, в гладкой мышце потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется при помощи ионов кальция. Однако в большинстве гладкомышечных клеток саркоплазматический ретикулум плохо выражен и потому ведущую роль в механизме возникновения сокращения отводят тем ионам Са 2+, которые проникают внутрь мышечного волокна во время генерации потенциала действия. Механизм выведения Са 2 + из адиоплазмы при расслаблении гладких мышц изучен пока недостаточно. Часть Са 2+ секвестируется саркоплазматическим ретикулумом. Предполагают также, что внутренняя сторона мембраны гладкомышечной клетки устлана белковыми молекулами, обладающими большим сродством к ионам Са 2 +. Однако ведущую роль в выведении Са 2+ из миоплазмы у большинства гладкомышечных клеток, по-видимому, играет поверхностная мембрана. В этой мембране существуют две транспортные системы, обеспечивающие этот процесс: 1} система подвижных переносчиков, обменивающих внутриклеточный Са 2 + на наружный Na +, и 2) кальциевый насос (Са—АТФ-аза), использующий энергию АТФ для переноса Са 2+ в межклеточную среду.
Характеристики сократительной активности гладкой мышцы При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем скелетной мышцы. Так, в кишечной мускулатуре кролика он составляет 0,25—1 с.
Продолжительность самого сокращения тоже велика (рис. 4 1 ) : в желудке кролика она достигает 5 с, а в желудке лягушки — 1 мин и более. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре с той же скоростью, что и волна возбуждения (2—10 см/с), но эта медлительность сократительной деятельности гладких мышц сочетается с большой их силой.
Так, мышцы желудка птиц способны поднимать 1 кг на 1 см 2 своего поперечного сечения.
Вследствие замедленного сокращения гладкая мышца даже при редких ритмических раздражениях (для желудка лягушки достаточно 10—12 раздражений в минуту) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса поперечнополосатой мышцы.
Автоматия гладких мышц. Характерной особенностью гладких мышц, отличающей их от скелетных, является способность к спонтанной автоматической деятельности.
Спонтанные сокращения можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря, мочеточников и ряда других органов.
Способность к автрматии гладких мышц регулируется нервными элементами, которые находятся в стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый раствор Рингера—Локка, который насыщают кислородом, способны совершать автоматические сокращения. При последующей гистологической проверке было обнаружено отсутствие в этих мышечных полосках нервных клеток.
Спонтанные сокращения гладких мышц обусловлены медленно развивающейся деполяризацией мембраны после каждого потенциала действия. Когда деполяризация мембраны достигает критической величины, возникают следующий потенциал действия и сокращение и т. д. (см. рис. 40).
На все внешние воздействия гладкая мышца реагирует изменениями частоты спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы.
Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе — редких спонтанных потенциалах действия — приложенное раздражение усиливает тонус; при высоком тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в рефрактерную фазу от предыдущего.
Раздражители гладких мышц Один из важных физиологически адекватных раздражителей гладких мышц — их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение серии распространяющихся потенциалов действия. В результате мышца сокращается. Это свойство гладких мышц реагировать на растяжение активным сокращением имеет большое значение для осуществления нормальной физиологической деятельности многих гладкомышечных органов, в частности кишечника, мочеточника и других полых органов.
Характерной особенностью гладких мышц является их высокая чувствительность к некоторым химическим раздражителям, в частности к. ацетилхолину, адреналину и норадреналину, гистамину, серотоиину, брадикинину, иростагландинам. Эффекты, вызываемые одним и тем же химическим агентом в разных гладких мышцах или при различном их состоянии, могут быть неодинаковы. Так, наряду с тем, что ацетилхолин возбуждает гладкомышечные волокна большинства органов, он оказывает тормозящее действие на гладкие мышцы сосудов. Адреналин вызывает расслабление небеременной матки кролика и сокращение ее во время беременности. Эти различия связаны с тем, что указанные агенты по-разному изменяют ионную проницаемость и соответственно мембранный потенциал различных гладкомышечных клеток.
В тех случаях, когда раздражающий агент вызывает деполяризацию мембраны, возникает возбуждение; наоборот, гиперполяризация мембраны под влиянием химического агента приводит к торможению активности и, следовательно, расслаблению гладкой мышцы.
Механизм действия указанных биологически активных соединений на гладкую мышцу заключается, по-видимому, в следующем. Поверхностная мембрана гладких мышц не только в синаптической, но и во внесинаптических областях содержит специфические хеморецепторы, обладающие высоким сродством к биологически активным соединениям. Многие из этих рецепторов структурно связаны с ионными («хемовозбудимыми») каналами, открывающимися или закрывающимися при взаимодействии рецептора и соответствующим химическим соединением. Характер ответа на вещество зависит от ионной селективности активируемого канала: открывание кальциевых или натриевых каналов ведет к деполяризации мембраны, а открывание калиевых каналов вызывает гиперполяризацию. Некоторые хеморецепторы связаны с мембранными ферментами -аденилциклазой или гуанилатциклазой. Активация этих ферментов усиливает синтез в клетках циклических нуклеотидов — цАМФ или цГМФ. Указанные соединения выполняют в клетке многие физиологически важные функции, в том числе активацию и регуляцию состояния электровозбудимых кальциевых каналов в поверхностной Гладкие мышцы иннервируются парасимпатическими и симпатическими нервами, которые, как правило, оказывают противоположное влияние на мышечные волокна.
ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА
И НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА
ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА
СТРУКТУРА НЕРВНЫХ ВОЛОКОН
Проведение нервных импульсов является специализированной функцией нервных волокон, т. е. отростков нервных клеток.Нервные волокна разделяют на мякотные, или миелйнизированные, и безмякотные, немиелинизированные. Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.
Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем соотношение между числом тех и других в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80—95 %. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.
На рис. 42 схематически показано строение миелинизированного нервного волокна.
Как видно, оно состоит из осевого цилиндра и покрывающей его миелиновой оболочки.
Поверхность осевого цилиндра образована плазматической мембраной, а его содержимое представляет собой аксоплазму, пронизанную тончайшими (диаметром 10—40 нм) нейрофибриллами (и микротубулами), между которыми находится большое количество митохондрий и микросом. Диаметр нервных волокон колеблется от 0,5 до 25 мкм.
Как показали электронно-микроскопические исследования, миёлиновая оболочка создается в результате того, что миелоцит (шванновская клетка) многократно обертывает осевой цилиндр (рис. 43, I ), слои ее сливаются, образуя плотный жировой футляр — миелиновую оболочку. Миёлиновая.оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов (перехваты Ранвье).
Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах, имеющих диаметр 10— 20 мкм, длина промежутка между перехватами составляет 1—2 мм. В наиболее тонких волокнах (диаметром 1—2 мкм) эти участки имеют длину около 0,2 мм.
Безмякотные нервные волокна не. имеют миелиновой оболочки,, они изолированы друг от друга только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякотное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон (рис. 43, I I ).
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ СТРУКТУРНЫХ ЭЛЕМЕНТОВ
МИЕЛИНИЗИРОВАННОГО НЕРВНОГО ВОЛОКНА
Можно считать доказанным, что в процессах возникновения и проведения нервного импульса основную роль играет поверхностная мембрана осевого цилиндра. Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофическую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякотных нервных волокнах возможно не на всем протяжении осевого цилиндра, а только в ограниченных участках — перехватах узла (перелвата Ранвье). Это имеет важное значение для распространения нервного импульса вдоль волокна.Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.
Нейрофибриллы, микротубулы и транспортные филаменты обеспечивают транспорт различных веществ и некоторых клеточных органелл по нервным волокнам от тела нейрона к нервным окончаниям и в обратном направлении. Так, по аксону из тела клетки на периферию транспортируются: белки, формирующие ионные каналы и насосы;
возбуждающие и тормозные медиаторы; митохондрии. Подсчитано, что через поперечный разрез среднего по диаметру аксона в течение суток перемещается примерно 1000 митохондрий.
Обнаружено, что нейрофибриллы образованы сократительным белком актином, а микротубулы — белком тубулином. Предполагают, что микротубулы, взаимодействуя с нейрофибриллами, выполняют в нервном волокне ту же роль, которую в мышечном волокне играет миозин. Транспортные филаменты, образованные актином, «скользят»
вдоль микротубул со скростью 410 мкм/сут. Они связывают различные вещества (напри мер, белковые молекулы) или клеточные органеллы (митохондрии) и переносят их вдоль волокна (рис. 44).
Так же как и мышечный сократительньй аппарат, транспортная система нервного волокна использует для своей работы энергию АТФ и нуждается в присутствии ионов Са2+ в цитоплазме.
ПЕРЕРОЖДЕНИЕ НЕРВНЫХ ВОЛОКОН ПОСЛЕ ПЕРЕРЕЗКИ НЕРВА
Нервные волокна не могут существовать вне связи с телом нервной клетки: перерезка нерва ведет к гибели тех волокон, которые оказались отделенными от тела клеток. У теплокровных животных уже через 2—3 сут после перерезки нерва периферический его отросток утрачивает способность к проведению нервных импульсов. Вслед за этим начинается дегенерация нервных волокон, причем миелиновая оболочка претерпевает жировое перерождение, Это выражается в том, что мякотная оболочка теряет миелин, который скапливается в виде капель; распавшиеся волокна и их миелин рассасываются и на месте нервных волокон остаются тяжи, образованные леммоцитом (шванновской клеткой). Все эти изменения впервые были описаны английским врачом Валлером и названы по его имени валлеровским перерождением.Регенерация нерва происходит очень медленно. Леммоциты, оставшиеся на месте дегенерировавших нервных волокон, начинают разрастаться вблизи места перерезки по направлению к центральному отрезку нерва. Одновременно перерезанные концы аксонов центрального отрезка образуют так называемые колбы роста — утолщения, которые растут в направлении периферического отрезка. Часть этих веточек попадает в старое ложе перерезанного нерва и продолжает расти в этом ложе со скоростью 0,5—4,5 мм в сутки до тех пор, пока не дойдет до соответствующей периферической ткани или органа, где волокна образуют нервные окончания. С этого времени восстанавливается нормальная иннервация органа или ткани.
В различных органах восстановление функции после перерезки нерва наступает в разные сроки. В мышцах первые признаки восстановления функций могут появиться через 5—6 нед;
окончательное восстановление происходит много позднее, иногда через год.