WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 | 4 |

«ИНТЕНСИВНАЯ ТЕРАПИЯ Под редакцией профессора В.Д.Малышева МОСКВА МЕДИЦИНА 2002 УДК 616-036.111-08-039.72(035.3) ББК 54.5 И73 Федеральная программа книгоиздания России P е ц е н з е н т ы: заслуженный деятель наук РФ, ...»

-- [ Страница 1 ] --

РУКОВОДСТВО ДЛЯ ВРАЧЕЙ

ИНТЕНСИВНАЯ

ТЕРАПИЯ

Под редакцией профессора В.Д.Малышева

МОСКВА

"МЕДИЦИНА"

2002

УДК 616-036.111-08-039.72(035.3) ББК 54.5 И73

Федеральная программа книгоиздания России

P е ц е н з е н т ы:

заслуженный деятель наук РФ, д-р мед. наук, проф., чл.-кор. PAMH В.А.Гологорский,

заслуженный деятель наук РФ, д-р мед. наук, проф. О.А.Долина

Интенсивная терапия/В.Д.Малышев, И.В. Веденина, И73 XT. Омаров и др.; Под ред. проф. В.Д.

Малышева. — M.: Медицина, 2002. - 584 с.: ил. ISBN 5-225-04617-7 В руководстве освещено лечение острых синдромных нарушений у хирургических и терапевтических больных в ОРИТ.

Подробно рассмотрены этиология, патогенез, клиническая картина и лечение острой дыхательной и сердечнососудистой недостаточности, шока, системной воспалительной реакции и полиорганной недостаточности при часто встречающихся формах заболеваний. Большое внимание уделено инвазивному и неинвазивному мониторингу, методам респираторной и сердечно-сосудистой поддержки, алгоритмам лечения острых состояний и остановки сердца. Дана характеристика применяемых лекарственных препаратов и инфузионных сред, лечебно-диагностических приемов, овладеть которыми обязан каждый врач отделения ИТ.

Для хирургов, анестезиологов, реаниматологов, терапевтов.

Intensive care/V.D.Malyshev, I.V. Vedenina, Kh.T. Oma-rov, et al. Ed. by V.D. Malyshev. — Moscow:

Meditsina Publishers, 2002, 584 p.

This manual presents the treatment of acute syndromes in surgical and therapeutic patients. The etiology, pathogenesis, clinical picture, and management of acute respiratory and cardiovascular failure, shock, systemic inflammatory reaction and polyorgan failure in frequent diseases are described. Special attention is paid to invasive and noninvasive monitoring, methods of respiratory and cardiovascular support, algorithms of treatment of acute conditions and heart arrest. Drugs and infusion media are characterized and therapeutic and diagnostic methods obligatory for each physician working in intensive care wards are presented.

Addressed to surgeons, anesthesiologists, rheumatologists, therapists.

ББК 54. ISBN 5-225-04617- © Коллектив авторов, Все права авторов защищены. Ни одна часть этого издания не может быть занесена в память компьютера либо воспроизведена любым способом без предварительного письменного разрешения издателя.

Коллектив авторов Малышев Всеволод Дмитриевич — доктор медицинских наук, профессор кафедры анестезиологии и реаниматоло-гии РГМУ Андрюхин Игорь Михайлович — кандидат медицинских наук, доцент кафедры анестезиологии и реаниматоло-гии РГМУ Бочаров Виктор Алексеевич — кандидат медицинских наук, доцент кафедры анестезиологии и реаниматоло-гии РГМУ Веденина Ирина Викторовна — кандидат медицинских наук, доцент кафедры анестезиологии и реаниматоло-гии РГМУ Омаров Хайбула Тажутдинович — кандидат медицинских наук, доцент кафедры анестезиологии и реаниматоло-гии РГМУ Плесков Алексей Петрович — доктор медицинских наук, старший научный сотрудник отделения реанимации и интенсивной терапии научно-исследовательского института клинической онкологии Российского онкологического научного центра PAMH им. Н.Н.Блохина Свиридов Сергей Викторович — доктор медицинских наук, заведующий кафедрой анестезиологии и реаниматологии РГМУ Список сокращений АВ-блокада — атриовентрикулярная блокада АДГ — антидиуретический гормон AKШ — аортокоронарное шунтирование БИ — базовый импеданс БКА — баллонная коронарная ангиопластика ВДП — верхние дыхательные пути BE — избыток или дефицит буферных оснований ВИВЛ — вспомогательная искусственная вентиляция легких ВНВЛ — вспомогательная неинвазивная вентиляция легких ВнеКЖ — внеклеточная жидкость ВнуКЖ — внутриклеточная жидкость (Жкл) ВФК — фракционная концентрация кислорода во вдыхаемом воздухе ВЧ ИВЛ — высокочастотная искусственная вентиляция легких ГК — гипертонический криз ГШ — гиповолемический шок ГЭБ — гематоэнцефалический барьер ДВС — диссеминированное внутрисосудистое свертывание ДЗЛА — давление заклинивания в легочной артерии ДЗЛК — давление заклинивания в легочных капиллярах ДК (RQ) — дыхательный коэффициент ДЛА — давление в легочной артерии ДНЛЖ — давление наполнения левого желудочка ДО (Vт) — дыхательный объем ДПЖ — давление в правом желудочке ЖКТ — желудочно-кишечный тракт ЖТ — желудочковая тахикардия ИБС — ишемическая болезнь сердца ИЛСС — индекс легочного сосудистого сопротивления ИМРЛЖ— индекс механической работы левого желудочка ИнЖ — интерстициальная жидкость ИОСС — индекс общего сосудистого сопротивления ИТ — интенсивная терапия ИУРЛЖ — индекс ударной работы левого желудочка ИУРПЖ — индекс ударной работы правого желудочка КДД — конечное диастолическое давление КДО — кривая диссоциации оксигемоглобина КОД — коллоидно-осмотическое давление КОС — кислотно-основное состояние КУО2 — коэффициент утилизации кислорода КФК — креатинфосфокиназа КШ — кардиогенный шок ЛИИ — лейкоцитарный индекс интоксикации ЛСС — легочное сосудистое сопротивление MHK — мононуклеарные клетки MOB — минутный объем вентиляции МОД(VЕ)— минутный объем дыхания MOC — минутный объем сердца МП(VD) — мертвое пространство НДП — нижние дыхательные пути НЖТ — наджелудочковая тахикардия H — нозокомиальная пневмония HВС — неспецифические противовоспалительные средства ОДН — острая дыхательная недостаточность — острая почечная недостаточность ОПСС — общее периферическое сопротивление сосудов ОРИТ — отделение реанимации и интенсивной терапии OCCH — острая сердечно-сосудистая недостаточность ОЦК — объем циркулирующей крови ОЦП — объем циркулирующей плазмы — простагландины ПДКВ, — положительное давление в конце выдоха ПОЛ — перекисное окисление липидов ОН — полиорганная недостаточность — парентеральное питание ППВЛ — перемежающаяся принудительная вентиляция легких ППДДП — постоянное положительное давление в дыхательных путях ПСВ — пиковая скорость выдоха ПСС — проводящая система сердца РДСВ — респираторный дистресс синдром взрослых РЛЖ — работа левого желудочка САД — среднее артериальное давление CB (Qт) — сердечный выброс CBP — системная воспалительная реакция СИ — сердечный индекс СЛР — сердечно-легочная реанимация СЛС — сопротивление легочных сосудов С ОН — системная полиорганная недостаточность CCBO — синдром системного воспалительного ответа CCBP — синдром системной воспалительной реакции СССУ — синдром слабости синусового узла СУ — синусовый узел ТАФ — тромбоцитактивирующий фактор ТБД — трахеобронхиальное дерево ТЭЛА — тромбоэмболия легочной артерии У И — ударный индекс У О — ударный объем ФВД — функция внешнего дыхания ФЖ — фибрилл я ция желудочков ФИО — фактор некроза опухоли (TNF) ФОБ — функциональная остаточная емкость ФЭд — фракция экскреции натрия ХОЗЛ — хроническое обструктивное заболевание легких ЦВД — центральное венозное давление ЦГД — центральная гемодинамика ЦОК — центральный объем кровообращения ЧД — частота дыхания ЧCC — частота сердечных сокращений ЭДС — электродефибрилляция сердца ЭЗП — энергозатрата в покое ЭКС — электрокардиостимуляция ЭМД — электромеханическая диссоциация ЭМО — экстракорпоральная мембранная оксигенация ЭСС — электрическая стимуляция сердца ЭФ И — электрофизиологическое исследование Эхо КГ — эхо кардиограмма ЭЭГ — электроэнцефалограмма DU2 — доставка кислорода DLCb — диффузионная способность легких для кислорода DtCO2 — диффузионная способность легких для углекислого газа ЕтСО2 — давление углекислого газа в выдыхаемом воздухе в конце спокойного выдоха CaOi — содержание кислорода в артериальной крови CL — растяжимость легких CT — растяжимость грудной клетки CCb — углекислый газ СсО2 — содержание кислорода в крови легочных капилляров СЮ2 — содержание кислорода в смешанной венозной крови FiOi — фракционная концентрация кислорода во вдыхаемом (и н гад и руе мо м) воздухе (дыхательной смеси) PA — альвеолярное давление РнСО2 — давление углекислого газа в выдыхаемом воздухе Pл — давление на плато РЛА — давление в легочной артерии Pл — давление в левом предсердии Pn — давление в правом предсердии РПИК — пиковое давление входа Pc — давление в капиллярах PTM — давление трансмуральное PI — давление в точке "j" Pa — давление в артериях PA—uCb — альвеолярно-артериальная разница по кислороду PaOi — парциальное давление кислорода в артериальной крови PaCO? — парциальное давление углекислого газа в артериальной крови Pv — давление в венах 2 — парциальное давление кислорода в смешанной венозной крови PvCO2 — парциальное давление углекислого газа в смешанной венозной крови РЮ2 — парциальное давление кислорода во вдыхаемом воздухе РО2 — парциальное давление кислорода PCCb — парциальное давление углекислого газа SvO2 — насыщение гемоглобина смешанной венозной крови кислородом SaO2 — насыщение гемоглобина артериальной крови кислородом TI — время вдоха TH — время выдоха VA — альвеолярная вентиляция VCb — потребление кислорода Qs — фракция шунта Предисловие Интенсивная терапия (ИТ), несомненно, принадлежит к экстренным и наиболее ответственным лечебным мероприятиям в практической деятельности врача. Необходимость в интенсивном лечении возникает всегда, когда больной находится в тяжелом или критическом состоянии. Врачу отделения реанимации и интенсивной терапии (ОРИТ) общего профиля приходится решать сложные проблемы, требующие знаний, как синдромных нарушений, так и основной патологии, вызвавшей их.

У контингента пациентов ОРИТ встречаются различные нозологические формы заболеваний.

Здесь проводится лечение больных не только хирургического, но и нехирургического профиля, доставляемых машиной скорой помощи или переведенных из других отделений. Среди хирургических больных преобладают пациенты, перенесшие обширные оперативные вмешательства, или с тяжелыми заболеваниями (перитонит, панкреатит, кишечная непроходимость), часто с осложнениями в послеоперационном периоде (сепсис, нозокомиальная пневмония, РДСВ) на фоне возрастной и сопутствующей патологии.

Большинство нехирургических больных составляют лица с острыми нарушениями дыхания, вызванными обострением хронических обструктивных заболеваний легких (ХОЗЛ) или астмы, с острыми сердечно-сосудистыми расстройствами (лево- и правожелудочковая недостаточность, отек легких, шок, аритмии) или нарушениями сознания (метаболические комы, делирий, отек мозга). Указанные состояния с лечебным алгоритмом нашли свое отражение в настоящем руководстве.

В руководстве обобщен опыт лечения наиболее тяжелого контингента пациентов, показано возросшее значение инвазивного и неинвазивного мониторинга, клинических аспектов синдрома системной воспалительной реакции, шока, полиорганной недостаточности, элементов нутритивной поддержки; большое внимание уделено проблемам оптимизации транспорта кислорода, гемодинамики, методам респираторной поддержки, а также диагностики и лечения нарушений гомеостаза: дисбаланса воды и электролитов, изменений кислотно-основного состояния (КОС), показана роль инфузионной терапии; освещены такие важнейшие вопросы, как ведение больных в послеоперационном периоде, состояние газообмена и гемодинамики, профилактика и лечение болевого синдрома.

Полагаем, что материалы книги будут способствовать повышению качества лечебнодиагностической помощи в ОРИТ. Все рекомендации по лечению даны на основании последних (в основном 1980—2001 гг.) мировых публикаций и собственных исследований. По многим проблемам применения тех или иных методов лечения существуют противоречивые мнения. В основу этого руководства положены современные данные, многолетний собственный опыт авторов, опыт зарубежных исследований. При описании многоорганной патологии мы вынуждены были несколько упростить план терапевтических мероприятий, однако это не освобождает врача от необходимости иметь глубокие знания об основных механизмах полиорганной недостаточности и общей реакции организма на повреждение.

Предназначая это издание практическому врачу, мы ставили перед собой задачу по возможности предусмотреть быстрое развитие методов интенсивного лечения, новых технологий и отразить это в доступной форме.

Вся практическая и научная работа выполнена в Городской клинической больнице № 4 Москвы (главный врач С.К. Романов, заместитель главного врача — заслуженный врач Российской Федерации, доктор медицинских наук Ю.Н. Саввин), где созданы все условия для практической, научной и педагогической деятельности. ГКБ № 4 фактически является центром по подготовке специалистов по анестезиологии, реаниматологии и другим специальностям (хирургия, внутренние болезни, травматология, гинекология, неврология и др.). За период с 1974 г. по настоящее время на кафедре анестезиологии и реаниматологии прошли клиническую ординатуру 157 человек и клиническую интернатуру 59 человек.

Авторы — сотрудники кафедры анестезиологии и реаниматологии Российского государственного медицинского университета (РГМУ) — приносят глубокую благодарность руководству ГКБ № 4, сотрудникам ОРИТ, всем врачам и медицинским сестрам, которые своим трудом доказали значение методов интенсивной терапии. Весь иллюстративный материал — около 100 рисунков — подготовлен доцентом кафедры Х.Т. Омаровым.

Введение В настоящем издании сделан акцент на синдромном подходе к оценке состояния больного и выработке алгоритма немедленных действий.

Большое внимание уделено не только выявленному синдрому, но и этиологии и патогенезу, изучение которых открывает новые перспективы в профилактике и лечении описываемых состояний.

Синдром — состояние, включающее ряд признаков (симптомов), имеющих общие анатомические, физиологические и биохимические особенности. Выявление синдрома, как правило, не позволяет идентифицировать причину болезни, однако значительно сужает круг возможных этиологических вариантов и определяет правильный подход к диагностике основного заболевания.

При оказании помощи больному в ОРИТ к медицинскому персоналу предъявляются очень высокие требования. Иногда минуты промедления стоят жизни больному!

Критическим называют состояние, вызванное заболеванием или внешним воздействием (травма, операция, отравление) и сопровождающееся дисфункцией важнейших систем жизнеобеспечения, что без адекватного лечения приводит к летальному исходу.

Естественно, что большинство поступающих в ОРИТ больных находятся в тяжелом или критическом состоянии. У них могут быть тяжелые формы острой дыхательной или сердечнососудистой недостаточности, шок, травма, кровотечение и т.д.

Естественно, что без соответствующего лечения такие больные не имеют шансов на выздоровление.

Интенсивная терапия — часть реаниматологии, основной целью которой является предупреждение летального исхода, весьма вероятного у тяжелобольных. Методы интенсивного лечения имеют много общего с непосредственной реанимацией (ИВЛ, инфузионная терапия и др.), но и существенно отличаются от последней, так как они проводятся не в период клинической смерти, а на более ранних этапах. Методы ИТ постоянно совершенствуются и обновляются. К ним относятся способы респираторной, сердечно-сосудистой и нутритивной поддержки, инфузии растворов, лекарственная терапия (в том числе антибактериальная), а также оперативные вмешательства (остановка кровотечения, срочные операции), обезболивание, детоксикация и др.

Методы поддержки и оптимизации жизненных функций организма основаны на глубоком изучении возникающих дисфункций органов, гомеостатических параметров и патофизиологических синдромов и заболеваний, приводящих к критическому состоянию.

Анестезиолог-реаниматолог должен быть психологически и практически подготовлен к восприятию и лечению такого контингента больных.

Есть немало примеров, когда больной, казалось бы, не имеющий никаких шансов на выздоровление, благодаря упорному и квалифицированному труду медицинского персонала оставался жив и, более того, возвращался к своей обычной трудовой деятельности.

От врача ждут тактичности, сострадания и понимания. Больной в ОРИТ — это не «набор различных патологических синдромов», а человек, личность, переживающая глубокую психологическую драму.

Одним из основных признаков тяжести заболевания считают дисфункцию важнейших органов и систем. Физиологическая связь систем дыхания и кровообращения предопределяет состояние транспорта кислорода как одного из ведущих признаков в оценке общего статуса больного.

В первом разделе руководства рассматриваются вопросы, касающиеся физиологических критериев дыхательной и сердечно-сосудистой систем, нарушения функций которых ведут к неадекватному снабжению тканей кислородом.

Раздел I Физиологические аспекты интенсивной терапии Глава 1 Газообменная и негазообменные функции легких Легкие с их огромной суммарной площадью альвеол, равной 50— 100 м2, представляют собой самую большую поверхность организма, соприкасающуюся с внешней средой. Барьер между кровью и воздухом чрезвычайно тонок — менее 0,5 мкм. Мельчайшие кровеносные сосуды оплетают громадное число альвеол. В легких человека около 300 млн альвеол, а диаметр каждой из них около 1/з мм [Уэст Дж., 1988]. Врачу ОРИТ важно представить, что легкие являются своего рода фильтром: воздушным — с механизмами удаления пылевых и других частиц и внутренним — гемодинамическим, поскольку все вещества, введенные в кровь или образующиеся в организме, проходят через капилляры легких (рис. 1.1).

Основная функция легких — обмен кислорода и CO2 между внешней средой и организмом — обеспечивается за счет вентиляции, диффузии газов и легочного кровообращения. Расстройства одного, двух или всех указанных механизмов ведут к нарушениям газообмена (табл. 1.1).

Легочная вентиляция. К показателям легочной вентиляции относят дыхательный объем (VT), частоту дыхания (f) и минутный объем дыхания (VE). Однако решающим показателем легочной вентиляции является альвеолярная вентиляция (Уд), зависящая от изменяющейся величины физиологического МП, ДО и в меньшей степени от частоты дыхания. Необходимо подчеркнуть, что ДО и легочные емкости даже в норме имеют значительные физиологические колебания. В среднем ДО составляет 500 мл, анатомическое МП — 150 мл. МОД равен 6000-7500 мл, частота дыхания — 12—18 в минуту, функциональная остаточная емкость — 2400—3000 мл, легочный кровоток — 5000—6000 мл/мин.

Альвеолярная вентиляция в норме составляет 4200—5250 мл/мин, объем крови в легочных капиллярах — 70 мл [Комро Дж.Г. и др., 1961; УэстДж., 1988].

Врач ОРИТ должен знать, что приведенные показатели, являющиеся неоспоримыми критериями физиологический нормы, у пациентов с острой дыхательной недостаточностью (ОДН) претерпевают значительные изменения. Важно учитывать, что такие факторы, как увеличение остаточной функциональной емкости или МП, или уменьшение ДО приводят к уменьшению альвеолярной вентиляции, от которой зависят уровни PCO2 и PO2 артериальной крови.

Зная частоту дыхания, ДО и показатель МП, можно подсчитать МОД и определить величину альвеолярРис. 1.1. Дыхательная система человека.

ВДП — верхние дыхательные пути; НДП — нижние дыхательные пути. 1 — вход в гортань; 2 — щитовидный хрящ; — перстневидный хрящ; 4 — трахея; 5 — правый и левый главные бронхи; 6 — верхняя доля левого легкого; 7 — нижняя доля левого легкого; 8 — нижняя доля правого легкого; 9 — средняя доля правого легкого; 10 — верхняя доля правого легкого; 11 — верхушка легкого.

ной вентиляции. Поскольку определить величину анатомического и физиологического МП не представляется возможным, адекватность альвеолярной вентиляции рассчитывают по уровню артериального PCO2, который в норме составляет 40 мм рт.ст. Альвеолярная вентиляция может быть рассчитана посредством измерения ДО и средней величины анатомического МП (150 мл):

VA = (Vx - V0) - f.

Когда возникает вопрос, достаточна ли вентиляция, то следует произвести измерения уровней газов артериальной крови, уточнить параметры вентиляции. Измерение лишь МОД не может считаться достаточным. У больных с сердечно-легочной патологией МОД бывает нормальным или увеличенным за счет частоты дыхания. В то же вреТаблица 1.1. Нормальные величины функциональных проб легких [Comroe J. et al., 1961]* Физиологический шунт/МОС альвеолярном газе Парциальное давление CO2 в альвеолярном РАС02 40 мм рт.ст. (5,3 кПа) газе артериальной крови Парциальное давление CO2 в артериальной PaCO2 40 мм рт.ст. (5,3 кПа) крови и 3 с (ОФВ3) кислорода Диффузионная способность легких для СО D1CO *Показатели здорового человека (поверхность тела 1,7 м ) в покое в положении лежа при дыхании воздухом. Легочные объемы и показатели вентиляции приведены к условиям BTPS, диффузионная способность легких — к условиям STPD.

мя альвеолярная вентиляция может быть снижена. Снижение последней нужно предполагать во всех случаях тахипноэ, превышающего 30 дыханий в 1 мин, независимо от величины МОД [Малышев В.Д., 2000].

Гиповентиляция легких — один из важных признаков дыхательной недостаточности. Этот показатель зависит от степени нарушений центральных и периферических механизмов регуляции дыхания, а также от поражений легких.

Гиповентиляция легких при дыхании воздухом ведет к артериальной гипоксемии, задержке CO2 и дыхательному ацидозу. Гиповентиляция легких при дыхании кислородом вызывает задержку CO2, сопровождается дыхательным ацидозом, но не ведет к гипоксемии. Последняя возможна лишь при крайней степени гиповентиляции. Апноэ как крайняя форма вентиляционной недостаточности сопровождается быстро нарастающей артериальной гипоксемией, аноксией и остановкой сердца через 3—5 мин. Рост PCO2 при этом в этиологии острых гемодинамических нарушений основного значения не имеет.

Гипервентиляция легких чаще всего является компенсаторным механизмом, срабатывающим в ответ на какой-либо стимулирующий фактор — аноксию, метаболический ацидоз, стимуляцию симпатико-адреналовой системы. Гипервентиляция при спонтанном дыхании воздухом ведет к незначительному подъему альвеолярного и артериального PO2 и снижению уровня PCO артериальной крови, иногда очень выраженному. Следует признать опасность немотивированной пассивной гипервентиляции при ИВЛ, особенно с высокой концентрацией кислорода во вдыхаемом воздухе [Шик Л.Л., Канаев H.H., 1980; Малышев В.Д., 1989].

Легочное кровообращение. Легочный кровоток в норме составляет 5 л/мин, т.е. такой же, как и системный. Давление в легочных сосудах очень низкое. «Среднее давление» в легочном стволе около 15 мм рт.ст., в то время как в аорте — около 100 мм рт.ст., т.е. примерно в 6—7 раз выше.

Систолическое давление в легочном стволе около 25 мм рт.ст., а диастолическое — 8 мм рт.ст., имеет ярко выраженный пульсирующий характер. Давление в правом и левом предсердии — около 2 мм рт.ст. и 5 мм рт.ст. соответственно. Разность давления системного кровообращения:

100-2 = = 98 мм рт.ст., а легочного — около 15 - 5 = 10 мм рт.ст., т.е. в 10 раз меньше. Функция правого отдела сердца состоит в обеспечении эффективного газообмена в легких.

Давление в легочных капиллярах точно не известно, но оно приблизительно соответствует среднему показателю соотношения этих величин в легочных артериях и венах.

Особенность легочных капилляров состоит в том, что они окружены газовой средой, могут спадаться и расширяться в зависимости от давления внутри и снаружи их. Это давление очень близко к альвеолярному, которое примерно равно атмосферному. Давление снаружи легочных капилляров может снижаться за счет поверхностного натяжения жидкости, покрывающей альвеолы. Однако в обычных условиях это эффективное давление такое же, как в альвеолах. Если же альвеолярное давление выше, чем внутри капилляров, последние спадаются. Разность величин давления между внутренней и наружной средой кровеносных сосудов называют трансмуральным давлением [Уэст Дж., 1988]. Легочные сосуды: капилляры, вены и артерии — имеют свои особенности, поэтому их подразделяют на альвеолярные и внеальвеоляр-ные. На альвеолярные, т.е. преимущественно легочные капилляры, влияет альвеолярное давление: чем оно выше, тем больше спадаются легочные капилляры. Наоборот, при увеличении альвеолярного давления и расширении легких просвет крупных легочных сосудов увеличивается. Такая парадоксальная ситуация объясняется распределением механических сил в легких. Крупные кровеносные сосуды последних, за исключением ворот, окружены быстро расширяющейся эластической тканью типа легочной паренхимы, поэтому при расширении легких (при глубоком вдохе) просвет легочных артерий и вен увеличивается.

Магистральные сосуды у ворот легких не связаны с легочной паренхимой, и на них действует внутриплевральное давление.

Сопротивление легочных, как и системных сосудов, можно рассчитать по формуле. Если легочный кровоток равен 5 л/мин, то сопротивление легочных сосудов (GJIC) должно соответствовать следующей величине:

СЛС — (давление на входе — давление на выходе)/кровоток = (15 — 5): 5 = 2 мм рт.ст./л-мин.

Такой расчет объясняется тем, что в легочном круге в отличие от большого круга кровообращения фактически нет сосудов сопротивления [УэстДж., 1988].

Гипоксическая вазоконстрикция. При снижении PO2 в альвеолярном воздухе происходит сокращение гладких мышц стенок артериол в гипоксической зоне. Точный механизм этой реакции неизвестен: она не зависит от ЦНС. Защитный характер этой реакции может быть объяснен тем, что благодаря вазоконстрикторной реакции уменьшается кровоснабжение плохо вентилируемых участков легких и улучшается газообмен. Сужение легочных сосудов происходит также при низком рН крови, особенно в условиях альвеолярной гипоксии и возбуждения симпатикоадреналовой системы.

Отношение вентиляция/кровоток. Эффективность легочного газообмена в значительной степени зависит от распределения вдыхаемого воздуха по альвеолам в соответствии с их перфузией кровью. Альвеолярная вентиляция у человека в покое примерно 4 л/мин, а легочный кровоток 5 л/мин. В идеальных условиях в единицу времени альвеолы получают 4 объема воздуха и 5 объемов крови, и, таким образом, отношение вентиляция/кровоток становится равным 4/5, или 0,8. Тем не менее, даже в физиологических условиях это отношение в различных сегментах легких не сохраняется. Так, в вертикальном положении тела легочный кровоток почти линейно убывает в направлении снизу вверх, достигая очень низких значений в области верхушек легких. Однако эти эффекты не сопровождаются какими-либо нарушениями газообмена. В практике врача ОРИТ нарушения отношения вентиляция/кровоток обычно обусловлены воздействием патологических факторов, как на величину альвеолярной вентиляции, так и на состояние легочного кровотока.

Эффект МП. Вентилируемые, но не снабжаемые кровью участки легких называются альвеолярным МП. Следует подчеркнуть, что этот показатель в процессе интенсивного лечения легочной патологии может возрастать или убывать. Объем анатомического МП, равный в среднем 150 мл, в целом не соответствует так называемому физиологическому или функциональному МП, величине непостоянной и зависящей от многих причин. Примером абсолютного преобладания вентиляции может быть эмболия легочной артерии, когда легочный кровоток отсутствует. В практике ИТ чаще возникают ситуации относительного преобладания вентиляции над кровотоком, например при пассивной гипервентиляции (во время ИВЛ), или снижения легочного кровотока, или увеличения функционального МП. Не имея возможности точной корректировки отношения вентиляция/кровоток, прибегают к дозированным режимам при вспомогательном дыхании или во время ИВЛ. При этом важную роль играет соотношение РаСО2/РдСО2, которое может возрастать при этом эффекте.

Эффект веноартериального шунта. Патофизиологическая сущность этого состояния обусловлена шунтированием крови в легких, вызывающим артериальную гипоксемию.

Альвеолоартериальная разность PO2, обусловленная шунтом, всегда бывает значительно повышенной. В норме она составляет около 9 мм рт.ст. Задержка CO2 при этом невелика, и при умеренной гипервентиляции уровень PaCO2 становится нормальным. Этот эффект в наиболее выраженной форме представляет собой единственную при легочном или сердечном заболевании форму аноксемии, которая не МОжет быть устранена даже при ингаляции 100 % кислорода.

Шунтирование крови в легких возникает при тяжелых поражениях легочной паренхимы, РДСВ, массивной пневмонии, ателектазах и обтурации дыхательных путей любого генеза.

Причинами изменений отношения вентиляция/кровоток, приводящими к артериальной гипоксемии, являются неравномерная вентиляция в разных участках легких (например, при эмфиземе легких, ХНЗЛ, пневмонии) или неравномерный кровоток (анатомические шунты, легочная гемангиома), местное уменьшение легочного кровото-ка (эмфизема, фиброз), местное нарушение кровотока (пневмоторакс, торакальная операция, сердечная недостаточность).

Таким образом, различные причины могут вызывать изменения отношения вентиляция/кровоток, как в целом легком, так и в его участках. Основной признак нарушения отношения вентиляция/кровоток — артериальная гипоксемия с отсутствием или незначительным повышением PaCO2. Увеличение фракции кислорода во вдыхаемом воздухе может полностью устранить артериальную гипоксемию при умеренных нарушениях этого отношения. При наиболее тяжелых нарушениях, эффекте веноартериального шунта в легких даже ингаляция 100 % кислорода не всегда устраняет гипоксемию. В практике отделений ИТ прибегают к специальным методам оксигенотерапии, например к созданию в легких положительного давления.

Диффузия газов. Диффузионная способность легких — скорость, с которой газ проходит через альвео-лярно-капиллярную мембрану на единицу градиента давления газа. Этот показатель для разных газов различный: для CO2 он примерно в 20 раз больше, чем для кислорода, поэтому уменьшение диффузионной способности легких не вызывает накопления CO2 в крови, PaCO2 в артериальной крови легко уравновешивается с таковым в альвеолах, а основным проявлением нарушения диффузионной способности легких становится артериальная гипоксемия.

Причины нарушения диффузии газов, прежде всего кислорода, через альвеолярнокапиллярную мембрану:

• уменьшение поверхности диффузии. Поверхность функционирующих альвеол, соприкасающаяся с функционирующими капиллярами, может быть значительно нарушена при заболеваниях легких, радиационных и токсических поражениях [Чучалин А.Г., 2000].

Увеличение числа раскрытых капилляров или рост капиллярного кровотока (механизм вовлечения), повышает диффузионную способность [Уэст Дж., 1988];

• расстояние диффузии. Толщина альвеолярно-капиллярной мембраны 0,5 мкм. Средний диаметр легочных капилляров (7 мкм) почти равен диаметру эритроцита. При прохождении по капиллярам легких эритроциты плотно прилегают к альвеолокапиллярной мембране, а путь диффузии в эритроците длиннее пути через мембрану. Удлинение пути диффузии снижает диффузионную способность легких. Это может происходить за счет утолщения альвеолярных или капиллярных мембран (фиброз легких, поражение эндотелия сосудов) и/или вследствие альвеолярного и интерстициального отека легких;

• поражение слоев мембраны, через которые происходит диффузия газов. Снижение проницаемости тканей легочной мембраны в результате изменений их на пути диффузии.

Нарушения процессов диффузии, считавшиеся ранее одной из основных причин гипоксемии («альвеолокапиллярная блокада»), в настоящее время рассматриваются как факторы, оказывающие влияние на уровень артериального PO2. Ограничения диффузии газов возможны при уменьшении диффузионной поверхности и изменениях слоев, через которые проходит диффузия (утолщение стенок альвеол и капилляров, их отек, коллапс альвеол, заполнение их жидкостью и т.д.). Оксигенотерапия с FiO2 0,3—0,35 обычно легко восстанавливает кислородный уровень крови.

Нарушения регуляции дыхания. Ритм и глубина дыхания регулируются дыхательным центром, расположенным в продолговатом мозге; наибольшее значение в этой регуляции имеет газовый состав артериальной крови. Повышение уровня PaCO2 немедленно вызывает увеличение объема вентиляции. Колебания PaO2 также ведут к изменениям дыхания, но с помощью импульсов, идущих к продолговатому мозгу от каротидных и аортальных телец. Xeморецепторы продолговатого мозга, каротидных и аортальных телец чувствительны и к изменениям концентрации H+ церебральной жидкости и крови. Эти механизмы регуляции могут быть нарушены при поражениях ЦНС, введении щелочных растворов, ИВЛ в режиме гипервентиляции, увеличении порога возбудимости дыхательного центра.

Альвеолоартериальная разность PO2. У здорового человека, дышащего воздухом, показатели парциального давления O2 в альвеолярном газе (РлО2) и в артериальной крови (PaO2) различаются примерно на 10 мм рт.ст. (1—1,5 кПа). Однако при острых легочных поражениях альве-олярно-артериальный градиент может значительно превышать указанную величину. Основными факторами, влияющими на Рл-а O2, являются веноартериальное шунтирование легких или сердечные шунты. Нарушения диффузии в меньшей степени воздействуют на этот показатель.

В случаях PaO2 выше нормы (при OK-сигенотерапии) этот градиент также возрастает [Малышев В.Д., 1989].

Механические характеристики легких. Растяжимость легких (податливость, эластичность, Compliance) выражает зависимость между объемом и давлением газа в альвеолах в состоянии покоя, т.е. определяется, какова способность легких к повышению объема при увеличении давления на определенную величину (л-см вод. ст."1).

Растяжимость легких (CP) и растяжимость грудной стенки (CT) различны. У здорового человека при спонтанном дыхании CP составляет 0,2 л-см вод.ст."1, а общая растяжимость легких и грудной клетки в 2 раза меньше — 0,1 л-см вод.ст."1. Это означает, что на 1 см отрицательного давления в альвеолах в легкие будет поступать 100 мл воздуха. CP варьирует в широких пределах. Заболевания, связанные с потерей эластичности легких (эмфизема, фиброз), приводят к уменьшению этого показателя. Наркоз оказывает аналогичное действие.

При ИВЛ рассматриваемый показатель уменьшается в 2 раза.

Сопротивление дыхательных путей (resistance) отражает зависимость между давлением и скоростью движения газов в них и определяется как разность давлений в полости рта и альвеолах на единицу газотока. Средняя величина сопротивления дыхательных путей равна см вод.ст.-с/л. Сопротивление дыхательных путей значительно возрастает при бронхиальной астме. Чем больше скорость газотока, тем значительнее разность давлений в полости рта и альвеолах. При медленном ритме вентиляции сопротивление дыхательных путей относительно невелико [Милик-Эмили Дж., 1997].

Очистка вдыхаемого воздуха. Вдыхаемый воздух освобождается в дыхательных путях и альвеолах от всевозможных примесей физической, химической и биологической природы. В дыхательной системе выработались различные механизмы удаления инородных частиц: крупные — задерживаются в носовых ходах, а мелкие — оседают в проводящих воздухоносных путях и удаляются с восходящим током слизи. Слизь вырабатывается слизистыми железами и бокаловидными клетками в стенках бронхов и оттекает вверх благодаря ритмичным движениям миллионов тонких ресничек, работа которых может быть парализована вдыхаемыми токсинами, длительным применением высокой концентрации кислорода или высушиванием дыхательных путей. Этот механизм обезвреживания и удаления повреждающих агентов из дыхательных путей обеспечивается мукоцилиарной системой. В альвеолах ресничек нет, и осаждающиеся здесь мелкие частицы поглощаются крупными подвижными клетками — макрофагами, относящимися к мононуклеарным фагоцитам. Они вступают в контакт с веществами воздуха и крови и не только фагоцитируют, но и модулируют многие иммунные процессы, участвуют в воспалительных реакциях. В защите легких от инородных веществ принимают участие также лейкоциты крови.

Среди факторов гуморального звена легких большое значение имеют иммуноглобулины — IgA, IgC, IgE, IgM. Они нейтрализуют токсины и вирусы, воздействуют на микроорганизмы и повышают эффективность мукоцилиарного транспорта [УэстДж., 1988; Зильбер А.П., 1989].

Важнейший механизм самоочищения дыхательных путей — кашлевой рефлекс, обеспечивающий механическое удаление лишних примесей, мокроты путем откашливания. Кашлевой рефлекс и мукоцилиарная функция могут быть значительно нарушены при интубации, трахеостомии, длительной ингаляции смеси с высоким содержанием кислорода, отсутствии достаточного увлажнения и согревания вдыхаемой смеси газов. Несостоятельность иммуномоделирующей функции и фагоцитоза ведет к развитию в легких реакций воспаления, дисфункции ресничек мерцательного эпителия, дыхательной недостаточности.

Очистка крови. В отличие от артериальной притекающая в легкие венозная кровь содержит частицы, состоящие из конгломератов клеток, фибрина, микроэмболов жира, эритроцитарных взвесей. Эти вещества в избытке поступают из разрушенных тканей (при травме, операции, шоке) или в результате трансфузии крови и ее препаратов без микрофильтров. В легких происходит механическая задержка частиц, не проходящих через легочные капилляры. В противном случае эти частицы, микротромбы могли бы попасть в сосуды мозга и других жизненно важных органов.

Указанные частицы подвергаются метаболизму при помощи различных ферментных систем. Так называемые агрессивные метаболиты, образующиеся при системной воспалительной реакции, проходя через легочные сосуды, могут вызывать поражение легочных микроструктур и вести к развитию респираторного дистресс-синдрома (РДСВ).

Метаболические функции легких. Легкие выполняют многие важные метаболические функции.

Одна из них состоит в образовании фосфолипидов, например дипальмитоилфосфатидилхолина, входящего в состав сурфактанта. Последний выстилает внутреннюю поверхность альвеол, имеется в плевре, перикарде, брюшине, синовиальных оболочках. В легких сурфактант, выстилающий внутреннюю поверхность альвеол, снижает поверхностное натяжение альвеолярного слоя жидкости и предупреждает спадение альвеол. Продукция сурфактанта снижается при резких метаболических нарушениях, возможно, в результате образования агрессивных метаболитов, при поражениях легких. При недостатке сурфактанта развиваются отек и ателектаз легких.

Важную роль в метаболизме играет синтез белков, так как структурная основа легких образована коллагеном и эластином. Известно, что при патологии легких из лейкоцитов или макрофагов выбрасываются протеазы, вызывающие распад белков, в результате чего возникает эмфизема.

Большое значение в метаболизме имеет обмен углеводов, особенно выработка мукополисахаридов, входящих в состав бронхиальной слизи.

В легких происходит обмен многих биологически активных веществ, активируются или синтезируются ангиотензин-I, простагландины (ПГ) и тромбоксан. В микроциркуляторном русле легких осуществляется метаболизм кининов, серотонина, катехоламинов. В легких ангиотензин-I, полипептид превращается в мощный сосудосуживающий агент — ангиотензин-П, примерно в раз более активный, чем его предшественник.

Многие вазоактивные вещества при прохождении через сосуды легких полностью или частично теряют свою активность. Брадикинин под воздействием ангиотензинконвертирующего фермента инактивирует-ся на 80 %. Легкие являются главным органом инактивации серотонина, высвобождающегося при анафилаксии. Здесь находятся многие ферменты, инактивирующие ПГЕ|, ПГЕ2, ПП2а, и частично захватывающие норадреналин. Некоторые вазоактивные вещества проходят через легкие, не претерпевая каких-либо существенных изменений. К ним относятся адреналин, допамин, изопротеренол, и ПГА2, ангиотензин-П и вазопрессин (АДГ) [Чучалин А.Г., Апульцина И.Д., 1983; Скобельский В.Б., 1996].

Легкие — основной источник кофакторов, усиливающих свертывание крови или противостоящих ему.

Усиление свертывания крови происходит при образовании тромбопластина и других веществ.

Уменьшению свертываемости крови способствует гепарин. С помощью ферментных активаторов плазминоген превращается в плазмин (основной механизм фибринолиза). Легкие синтезируют простациклин, тормозящий агрегацию тромбоцитов, и тромбоксан A2, оказывающий противоположное действие. Легкие способны извлекать из кровотока не только фибрин, но и продукты его деградации, избыточно образующиеся при ДВС-синдроме. При определенных условиях легкие могут способствовать повышению уровня продуктов деградации фибрина, которые являются факторами, повреждающими легочные структуры. В легких происходит не только газообмен, но и обмен жидкости. Известно, что за 1 сут из легких выделяется в среднем около 400— 500 мл жидкости. При гипергидратации, повышенной температуре тела эти потери возрастают. Легочные альвеолы играют роль своеобразного коллоидно-осмотического барьера.

Чрезвычайно важно предохранить альвеолы от переполнения жидкостью. К отеку легких предрасполагают увеличение разности гидростатических давлений в капиллярах и интерстициальной жидкости, уменьшение онкотического давления в легочных капиллярах, которое составляет около 2,80 см рт.ст. (см. главу «Отек легких»). Легкие выполняют и теплообменную функцию, являясь как бы кондиционером, увлажняющим и согревающим дыхательную смесь. Тепловое и жидкостное кондиционирование воздуха осуществляется не только в верхних дыхательных путях (ВДП), но и на всем протяжении дыхательного тракта, включая дистальные бронхи. При дыхании температура воздуха в субсегментарных путях повышается почти до нормальной [Зильбер А.П., 1989; Малышев В.Д., 1989].

Глава Сердечно-сосудистая система и гемодинамические параметры Сердечно-сосудистая система.

Сердечно-сосудистая и дыхательная системы тесно взаимосвязаны в обеспечении основной функции — доставки кислорода к тканям. Кровообращение в организме человека представляет собой две функционально разобщенные части: правую, или легочную, и левую, системную. Насосная функция сердца, обеспечивающая адекватную циркуляцию крови, в основном осуществляется левым и правым жеРис. 2.1. Сердце.

1 — аорта; 2 — легочная артерия; 3 — дуга аорты; 4 — верхняя полая вена; 5 — нижняя полая вена; 6 — легочные вены.

— правое предсердие; ПЖ — правый желудочек; Л — левое предсердие; ЛЖ — левый желудочек.

лудочками, которые должны проталкивать одинаковое количество крови, чтобы предупредить застой в артериальной и венозной системах. Предсердия в большей степени (за исключением случаев застойной сердечной недостаточности) играют роль резервуара и в меньшей — осуществляют насосную функцию.

Строение правого и левого желудочков различно (рис. 2.1). Вследствие малого сопротивления легочных сосудов правый желудочек в норме должен нагнетать кровь под давлением, составляющим в среднем Vo-V? давления, создаваемого левыми отделами сердца, для достижения такого же эффекта. Левый желудочек, обладающий мощной мускулатурой, должен создавать более высокое давление для проталкивания крови, преодолевая сопротивление значительно большей сосудистой сети. При достаточной оксигенации он легко приспосабливается к внезапным требованиям увеличения сердечного выброса (CB). Правый желудочек, стенки которого обычно тонкие и чувствительные к предна-грузке, не может адекватно функционировать при внезапном увеличении сопротивления (постнагрузки). У правого и левого желудочков общие межжелудочковая перегородка, циркулярные мышечные волокна и перикардиальное пространство; такая общность морфологического строения играет важную функциональную роль. Взаимозависимость желудочков является главной детерминантой сердечной деятельности при развитии легочной гипертензии. Повышение конечного диастолического объема (КДО) правого желудочка ведет к снижению растяжимости левого желудочка, что влияет на левожелудочковую преднагрузку и УО, усиливает легочную гипертензию и приводит к увеличению постнагрузки правого желудочка.

Взаимодействие желудочков проявляется также за счет общего перикардиального пространства: при увеличении объема крови в системе легочного кровотока и в полостях сердца происходит пропотевание жидкости в полость перикарда [Фекс П., 1993; Marini J.J., Wheeler А.Р., 1997].

Коронарный кровоток. Поступление кислорода и питательных веществ в ткани сердца осуществляется по коронарным артериям: системам левой коронарной (огибающая и левая передняя нисходящая артерии) и правой коронарной артерий, отходящих от аорты. Венозная кровь поступает в коронарный синус, который открывается в правое предсердие.

Поступление крови в систему коронарного кровотока зависит от разницы между средним значением АД и давлением в коронарном синусе. Перфузия коронарных артерий заметно различается в каждой фазе сердечного цикла. Разница давлений, возникающая во время диастолы при расслаблении желудочков сердца, обеспечивает наилучшие условия поступления крови в коронарные сосуды. В нормальных условиях коронарный кровоток соответствует метаболическим потребностям миокарда, а при стрессе, гиперметаболизме он возрастает. К сожалению, медиаторы, обеспечивающие эту взаимосвязь, еще мало изучены.

При тахикардии сокращается время диастолической перфузии при одновременном увеличении потребности сердца в кислороде. Подобное сокращение средней величины коронарного кровотока в норме преодолевается за счет вазодилатации. Однако поражение коронарных артерий и внезапно возникающие эпизоды ишемии миокарда препятствуют проявлению этой компенсации. При брадикардии время диастолической перфузии, напротив, увеличивается, а потребность сердца в кислороде снижается. Тем не менее, выраженная брадикардия может привести к снижению, как среднего АД, так и коронарного кровотока.

Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две большие группы: сосуды сопротивления и емкостные. Первые регулируют общее периферическое сосудистое сопротивление (ОПСС), АД и кровоснабжение отдельных органов и систем организма; вторые вследствие большей емкости участвуют в поддержании венозного возврата к сердцу, а следовательно, и MOC. При этом левые отделы сосудистой системы имеют анатомические и физиологические отличия от правых отделов.

Левые отделы сосудистой системы. Сосуды «компрессионной камеры» — аорта и ее крупные ветви — поддерживают градиент давления за счет растяжимости во время систолы.

Это смягчает пульсирующий выброс и обеспечивает более равномерное поступление крови на периферию. В промежутке между сердечными сокращениями адекватный кровоток от сердца к периферическим сосудам происходит за счет эластической тяги последних, претерпевающих растяжение во время систолы. Тогда как аорта представляет собой в основном эластическое образование, стенки периферических артерий содержат гладкие мышечные волокна.

Прекапиллярные сосуды сопротивления — мелкие артерии и артериолы — поддерживают гидростатическое давление в капиллярах и тканевый кровоток.

Артериолы — это элементы, обеспечивающие основное сопротивление. За счет четко отрегулированного калибра эти «крошечные» сосуды способны менять кровоток и поддерживать АД. Прекапиллярные сфинктеры, регулирующие число функционирующих капилляров, меняют площадь обменной поверхности. В них расположены -рецепторы, которые под влиянием катехол-аминов вызывают спазм этих сфинктеров, нарушение кровотока и гипоксию клеток.

а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение рецепторов и снимающими спазм сфинктеров.

Капилляры считаются наиболее важными сосудами обмена. В них осуществляются процессы диффузии и фильтрации — абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Капилляры отходят от артериол в большом количестве, и скорость кровотока на этом участке относительно мала. В связи с особенностями строения этих сосудов (они короткие и узкие) в них находится очень незначительная часть общего объема крови (в нормальных условиях только 5—7 %). В то же время емкость капиллярной сети может быть значительно увеличена. При патологических состояниях сеть может вмещать до 90 % крови.

Посткапиллярные сосуды сопротивления — мелкие вены и венулы — регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции. Нейрогенные раздражители также оказывают влияние на пре- и посткапиллярные сфинктеры.

Венозные сосуды не играют значительной роли в создании сопротивления, они выполняют функцию емкости и подвержены симпатическим влияниям. Основными емкостными сосудами являются венулы и небольшие вены. Они вмещают до 85 % объема крови. Общее охлаждение, гиперадреналемия и гипервентиляция приводят к венозному спазму, влияющему на распределение объема крови. За счет изменения емкости венозного русла регулируется венозный возврат к сердцу.

В каждый момент времени бывает задействована лишь малая часть системы кровотока. Точное распределение объема циркулирующей крови (ОЦК) между органами и тканями определяется конкретными метаболическими и функциональными потребностями и достигается за счет артериальной вазоконстрикции.

Шунтовые сосуды — артериовенозные анастомозы во внутренних органах функционируют только в условиях патологии (например, при септическом шоке), а в коже выполняют терморегулирующую функцию.

Правые отделы сосудистой системы. Давление в легочных сосудах очень низкое. Центральные сосуды тоньше, а в стенках артериол содержится очень незначительное количество мышечных волокон. Строение артерий и вен мало различается.

Сопротивление легочных сосудов, будучи очень низким, в нормальных условиях, становится еще ниже при повышении внутрисосудистого давления. В нормальных условиях некоторые легочные капилляры закрыты. При повышении давления по ним возобновляется кровоток, что снижает сопротивление легочных сосудов. Такой механизм называется вовлечением.

Итак, легкие играют роль резервуара крови: легочные сосуды уменьшают свое сопротивление при повышении внутрисосудистого давления за счет механизма вовлечения и расширения сосудов [Уэст Дж., 1988].

Работа капиллярной сети здесь, возможно, даже более интенсивная, чем в большом круге кровообТаблица 2.1. Основные показатели кровообращения и их физиологические колебания мое чсс оцк ДЗЛА (ДЗЛК) Давление заклинивания легочной артерии 5—12 мм рт.ст.

цвд Общее периферическое сопротивление опсс Сопротивление легочных сосудов слс ращения. Распределение потока зависит от силы тяжести, внутриплеврального давления, парциального давления кислорода, рН и других факторов [Marini JJ., Wheeler А.Р., 1997].

Параметры центральной гемодинамики. Основными факторами, характеризующими состояние кровообращения и его эффективность, являются MOC, ОПСС и ОЦК. Эти факторы взаимообусловлены и взаимосвязаны. Измерение только АД и частоты пульса не может дать полного представления о состоянии кровообращения. Определение MOC, ОЦК, ЦВД, ДЗЛА и вычисление некоторых косвенных показателей позволяют получить необходимую информацию (табл. 2.1).

Минутный объем сердца (сердец-ный выброс). MOC определяется объемом крови, которая выбрасывается левым желудочком в 1 мин. CB, определяемый с помощью многих методик, составляет 5—7 л/мин.

В здоровом организме основным регуляторным фактором MOC являются периферические сосуды.

Спазм и расширение артериол определяют динамику артериального кровообращения, регионарного и органного кровоснабжения. Венозный тонус, изменяя емкость венозной системы, обеспечивает возврат крови к сердцу [Гайтон А., 1977].

При заболеваниях сердца или его функциональной перегрузке MOC практически полностью зависит от эффективности работы сердца как насоса, т.е. функциональной способности миокарда.

Способность к увеличению сердечного выброса в ответ на повышение потребности тканей в кровоснабжении называется сердечным резервом. У взрослых здоровых людей он равен 300— % и значительно снижается при различных заболеваниях сердца.

В регуляции CB основную роль играют закон Франка—Старлинга и нервно-вегетативная регуляция силы и частоты сердечных сокращений. Указанный закон отражает способность сердца увеличивать силу сокращения при увеличении наполнения его камер. Согласно этому закону, сердце перекачивает количество крови, равное венозному притоку без значительного изменения ЦВД. В целостном организме нервнорефлекторные механизмы делают регуляцию кровообращения более тонкой и надежной, непрерывно приспосабливаясь к изменениям внутренней и внешней среды.

Энергия, необходимая для сокращения миокарда, образуется при достаточном поступлении кислорода в клетки. Коронарный кровоток обеспечивает кровоснабжение миокарда в соответствии с потребностями сердечной деятельности. В норме он составляет 5 % CB, в среднем 250— мл/мин. Наполнение коронарных артерий пропорционально среднему давлению в аорте.

Коронарный кровоток возрастает при уменьшении насыщения крови кислородом, при увеличении концентрации углекислоты и адреналина в крови. В условиях стресса CB и коронарный кровоток увеличиваются пропорционально. При значительной физической нагрузке CB может достигать 37—40 л/мин, коронарный кровоток — 2 л/мин. При нарушении коронарного кровообращения сердечный резерв значительно снижается.

В критических состояниях возрастающие метаболические потребности покрываются за счет сердечного выброса, нередко поддерживаемого инотропными агентами или при помощи седативных препаратов, анальгетиков и других средств, уменьшающих потребность тканей в кислороде.

Важно помнить, что ближайший послеоперационный период, травма, шок, сепсис сопровождаются, как правило, повышенной потребностью тканей в кислороде, что достигается путем длительной и чрезвычайно интенсивной нагрузки на сердечно-сосудистую систему («гемодинамический марафон»). При этом величина CB может оказаться недостаточной для удовлетворения потребностей тканей в кислороде, что приводит к анаэробному обмену веществ.

Зная основные факторы, определяющие величину MOC, врач отделения интенсивной терапии может активно воздействовать на них, улучшая гемодинамические показатели [Marini JJ., Wheeler A.P., 1997]. К таким факторам относятся:

• состояние венозного возврата и преднагрузки, обеспечивающей необходимую растяжимость сердечной мышцы;

• состояние постнагрузки, т.е. давления, создаваемого миокардом в систолу;

• сократимость миокарда.

Всегда необходимо учитывать общие физиологические условия регуляции MOC, т.е.

возбудимость, проводимость и сократимость.

Измерение ДЗЛА позволило сделать огромный шаг вперед в оценке функции сердечно-сосудистой системы. Рассматривая варианты пред-и постнагрузки, нельзя не учитывать величину ДЗЛА, которая в норме составляет 5—12 мм рт.ст. Освоение метода катетеризации (Свана—Ганца) открыло новые возможности гемодинамического мониторинга. Стало возможным определение внутрипредсердного давления, CB, степени насыщения и парциального давления кислорода в смешанной венозной крови.

Несмотря на всю важность измерения ДЗЛА и CB, нельзя считать, что эти показатели являются абсолютными критериями адекватности тканевой перфузии. Однако применение этого метода позволяет реаниматологам контролировать величину преднагрузки и создавать условия для наиболее экономичного режима работы сердца.

Нормальные величины давления в полостях сердца и легочной артерии, мм рт.ст.

В правом Пиковое 2—6 Среднее 3— предсердии Диастолическое 0— В правом Пиковое 30—35 Среднее 10— желудочке 12 Диастолическое 0— Конечно-диастолическое 0- В легочной Пиковое 25—30 Среднее 17— артерии 23 Диастолическое 10— В левом Пиковое 7—17 Среднее 3— предсердии Диастолическое 0— В левом Пиковое 100—140 Среднее желудочке 33—48 Диастолическое 0— Конечно-диастолическое 2- Сердечный индекс — отношение показателей CB и площади поверхности тела. Его определяют путем деления показателя CB на величину поверхности тела:

СИ [л/(мин-м2)] = СВ/площадь поверхности тела, м2.

Ударный объем — количество крови, выбрасываемое сердцем за одну систолу.

Работа левого желудочка — механическая работа, выполняемая сердцем в 1 мин.

Давление заклинивания легочной артерии, или давление заклинивания легочных капилляров, — давление в дистальной ветви легочной артерии при раздутом баллончике катетера Свана—Ганца.

Центральное венозное давление — давление в устье полой вены или в правом предсердии.

Общее периферическое сопротивление сосудов характеризует общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови: ОПСС [дин-с/(см5-м2)] = = [(САД - ЦВД)/СИ]-80. С помощью коэффициента 80 показатели давления и объема переводят в дин-с/см5. Фактически эта величина является индексом ОПСС.

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол большого круга кровообращения. ОПСС — важный регулятор градиента давления между артериальной и венозной системой. Возрастание этого показателя приводит к подъему среднего АД, а снижение его — к уменьшению САД. Этот важный регуляторный механизм может быть нарушен как в сторону преобладания вазоконстрикции, так и в сторону преимущественной вазодилатации. Увеличение ОПСС происходит всегда при снижении ОЦК, острой крово- и плазмопотере, травматическом шоке, повышении уровня катехоламинов в крови. Эта физиологическая реакция может сопровождаться выраженной централизацией кровообращения, вплоть до полного прекращения кровотока в коже, мышцах, ренальной и чревной областях. При длительной вазоконстрикции создаются условия для анаэробного обмена в ишемизиро-ванных тканях. При значительном увеличении ОПСС возрастает постнагрузка, что создает неблагоприятные условия для работы сердца. При повышении ОПСС в 3 раза по сравнению с нормальным MOC может уменьшиться наполовину при тех же значениях давления в правом предсердии.

Многие состояния (анафилактический шок, сепсис, цирроз печени) приводят к снижению ОПСС, что сопровождается прогрессирующим падением АД. Изменение тонуса артериальных сосудов в различных отделах системного кровотока может быть различным: в одних областях возможна выраженная вазоконстрикция, в других — вазодилатация. Тем не менее, ОПСС имеет большое значение для дифференциальной диагностики вида гемодинамических нарушений.

Сопротивление легочных сосудов характеризует сопротивление сосудов малого круга кровообращения.

Основная функция системы кровообращения — доставка необходимого количества кислорода и питательных веществ в ткани. Кровь переносит энергетические вещества, витамины, ионы, гормоны и биологически активные вещества от места их образования к различным органам и тканям.

Баланс жидкости в организме, поддержание постоянной температуры тела, освобождение клеток от шлаков и доставка их к органам экскреции осуществляются благодаря постоянной циркуляции крови по сосудам.

Каждый сердечный цикл длится 0,8 с. Систола желудочков происходит в течение 0,3 с, диастола — в течение 0,5 с. Регуляция сердечного ритма в здоровом сердце осуществляется в синусовом узле, который расположен у места впадения полых вен в правое предсердие. Импульс возбуждения распространяется по предсердиям, затем к атриовентрикулярному (предсердножелудочковому) узлу, спускается по правой и левой ветвям пучка Гиса и волокнам Пуркинье, находящимся на эндокардиальной поверхности обоих желудочков.

Присасывающая сила сердца. Во время систолы желудочков атриовентрикулярная перегородка смещается по направлению к желудочкам, и, следовательно, объем предсердий увеличивается.

Образующееся в предсердиях разрежение способствует присасыванию крови из центральных вен в сердце. При расслаблении желудочков напряжение их стенки обеспечивает всасывание крови из предсердий в желудочки.

Дыхательные экскурсии относятся к экстракардиальным факторам регуляции MOC. Во время вдоха внутриплевральное давление становится отрицательным, что передается на предсердия и полые вены, и приток крови по этим венам в правое предсердие возрастает. При выдохе давление в брюшной полости повышается, вследствие чего кровь как бы выдавливается из брюшных вен в грудные.

Отрицательное давление в плевральной полости обусловливает увеличение постнагрузки, а положительное (во время ИВЛ) оказывает противоположное действие. Этим можно объяснить снижение систолического АД во время фазы вдоха.

Венозный возврат. Сердце обычно рассматривается как насос, повышающий АД и создающий направленный поток крови (сердце является «двигателем циркуляции»). Однако его можно представить и как насос, постоянно понижающий давление в правом предсердии и таким образом способствующий венозному возврату. Фактически CB является результатом взаимодействия сердца и периферических сосудов. Снижение CB можно объяснить ухудшением насосной функции сердца или развитием циркуляторных нарушений. Периферическая циркуляция играет очень большую роль в поддержании наполнения сердца и, следовательно, обеспечивает адекватный CB. Если рассматривать системный кровоток, то объем крови за единицу времени, выбрасываемый сердцем (CB), должен равняться объему крови, который возвращается к сердцу, т.е. венозному возврату. В связи с тем, что CB всегда соответствует венозному возврату, любой фактор, уменьшающий венозный возврат, соответственно снижает CB. Для выявления первичной причины снижения CB следует оценить величину давления в правом предсердии. Повышение давления свидетельствует о миокардиальной недостаточности, а снижение — об изменении тонуса периферических сосудов. В последнем случае предпочтение следует отдавать инфузионной терапии. Венозный возврат имеет точную величину потока и не является простым эквивалентом преднагрузки; он непосредственно определяется уровнем давления в правом предсердии, волемическим статусом, системным венозным тонусом [Белучиф С. и др., 1997].

Преднагрузка. Применительно к миокарду преднагрузка определяется как сила, растягивающая сердечную мышцу перед ее сокращением. В соответствии с законом Франка— Старлинга сила сердечного сокращения зависит от длины мышечных волокон в конце диастолы. При повышении давления наполнения увеличивается объем выброса, что является важным механизмом адаптации в ответ на изменения венозного возврата. Для интактного желудочка преднагрузкой, по сути, становится конечный диастолический объем, который определяется растяжимостью стенок и давлением в полости желудочка — трансмуралъным давлением. Последнее представляет собой разницу между внутриполостным и юкстакардиальным (внекардиаль-ным) давлением. Поскольку КДО трудно определить у постели больного, обычно пользуются такими показателями, как конечное диастолическое давление левого или правого желудочка (КДДЛЖ, КДДПЖ). Если растяжимость левого желудочка нормальная, то ДЗЛА будет равно КДДЛЖ. У больных, находящихся в отделениях интенсивной терапии, растяжимость левого желудочка, как правило, снижена. Это особенно характерно для ИБС, действия блокаторов кальциевых каналов, влияния положительного давления во время ИВЛ. Таким образом, ДЗЛА определяет давление в левом предсердии, но не всегда является показателем преднагрузки на левый желудочек [Марино П., 1998].

По сравнению с левым в правом желудочке в норме связь между трансмуральным давлением и внутрижелудочковым объемом крови относительно более выражена. При малой растяжимости желудочка, как и при повышении внутригрудного давления, требуется большее давление внутри камеры сердца для достижения определенного конечно-диастолического объема и степени растяжения мышечных волокон, предшествующих сокращению. Снижение эластичности стенок желудочка может быть следствием поражения миокарда, ограничения со стороны перикарда или сдавления сердца извне. В условиях сердечной недостаточности для достижения средних значений CB требуется большее давление наполнения. В положении больного лежа на спине резерв преднагрузки снижается. В этом случае дальнейшее увеличение CB в основном достигается за счет увеличения ЧСС и/или фракции У О. Наибольшее значение механизм Франка—Старлинга приобретает при гиповолемии и в вертикальном положении больного [Marini J.J., Wheeler A.Р., 1997].

Постнагрузка. Постнагрузку определяют как силу, препятствующую или оказывающую сопротивление сокращению желудочков. Она эквивалентна напряжению, возникающему в стенке желудочка во время систолы. Это трансмуральное напряжение стенки желудочка зависит от систолического АД, радиуса камеры (желудочка), импеданса аорты и его составляющих, растяжимости и сопротивления артерий. Постнагрузка включает преднагрузку и давление в плевральной полости (щели). Нагрузочные характеристики применительно к сердцу описывают в единицах давления и объема крови [Марино П., 1998].

Умеренное увеличение постнагрузки сопровождается повышением сократительной способности миокарда, преднагрузки или ЧСС. У здорового человека при этом CB обычно изменяется мало, однако при истощении резервов преднагрузки, увеличении постнагрузки он может значительно уменьшиться. Правый желудочек по сравнению с левым в норме оказывается более чувствительным к изменению постнагрузки. Дилатированные камеры сердца, как правых, так и левых отделов при декомпенсации чрезвычайно чувствительны к изменению постнагрузки. Кардиомегалия, отек легких и митральная регургитация — клинические симптомы, указывающие на необходимость медикаментозного снижения постнагрузки. В такой ситуации большое значение имеет динамическое определение ОПСС и СЛС. ОПСС помогает поддерживать АД на должном уровне, а увеличение СЛС может способствовать прогрессированию сердечной недостаточности. Возросшее сосудистое сопротивление в этом случае само по себе оказывает отрицательное воздействие на CB. Размер камер сердца также влияет на постнагрузку. В дилатированном сердце для создания необходимого внутриполостного давления требуется большее растяжение волокон во время систолы. Это особенно касается периферических волокон. Диуретики или селективные венодилататоры (нитроглицерин) способны снизить как пост -, так и преднагрузку.

Помимо влияния сосудистой сети, важным показателем реологии, оказывающим влияние на постнагрузку, является вязкость крови. Вязкость крови возрастает при увеличении гематокрита.

Эта зависимость имеет нелинейный характер. При увеличении гематокрита эритроциты медленнее продвигаются по капиллярам, и эффективный транспорт кислорода, значение которого зависит от ОЦК и сосудистой емкости, может достигать максимальных значений. Однако при возрастании постнагрузки CB может снизиться, в результате чего уменьшится и транспорт кислорода.

Ткани обладают различной толерантностью к изменениям гематокрита и поступления кислорода [Marini J.J., Wheeler A.P., 1997].

Объем циркулирующей крови. Показатель ОЦК является динамической величиной и постоянно меняется в широких пределах. В состоянии покоя не вся кровь участвует в циркуляции, и лишь некоторый ее объем, совершающий полный кругооборот за относительно короткий промежуток времени, необходим для поддержания кровообращения.

В практике интенсивной терапии ОЦК — важнейший критерий состояния кровообращения.

При дефиците ОЦК лечение начинают с немедленного восполнения сосудистого объема, а не с медикаментозной терапии возникающей при этом недостаточности кровообращения. От плазматического объема и объема крови зависит венозный приток к сердцу, снижение которого сопровождается уменьшением наполнения сердечных камер и, следовательно, У О. В табл. 2. приведены средние физиологические нормы ОЦК в зависимости от пола, возраста и конституции [Тар-роуА.Б., Эриксон Дж.К., 1977].

Таблица 2.2. Средние значения ОЦК в норме Двухлетний ребенок Атлетически сложенный мужчина В норме 65—75 % крови содержится в венах, 15—20 % — в артериях и 5—7 % — в капиллярах.

Распределение объемов крови в организме представлено в табл. 2.3.

Периферическая циркуляция. Тонус сосудов и их наполнение играют огромную роль в регулировании CB: сердце выталкивает в кровоток тот Таблица 2.3. Распределение объемов крови в организме Орган или система Процент от общего кровообращения кровообращения Артериальная 15- система Венозная система 65- Капиллярная система 5-7, объем крови, который получает по венам. CB — основной показатель функции сердца — необходимо интерпретировать, учитывая состояние сосудистого русла. Если показатели пред- и постнагрузки можно оценить при помощи катетера Свана-Ганца, то измерить сосудистые параметры непросто. В постоянных условиях венозный возврат пропорционален давлению, его обеспечивающему, и венозному сопротивлению.

В большинстве случаев самое низкое давление крови создается в правом предсердии. Градиент давления — его изменение от артериальной к венозной системе — обусловливает приток крови к сердцу. Составляющей венозного возврата является среднее системное давление, которое представляет собой объем-зависимое среднее давление во всем системном сосудистом русле.

Венозный приток зависит от величины капиллярного кровотока и градиента давлений в капиллярах и правом предсердии. Давление в капиллярах и капиллярный кровоток определяются величиной CB и пропульсивным действием артерий. Градиент давления между каждым участком сосудистой системы и правым предсердием различный. Он равен примерно 100 мм рт.ст. в артериальном русле, 25 мм рт.ст. в капиллярах и 15 мм рт.ст. в начале венул. Нулевой точкой для измерения давления в венах считают его уровень в правом предсердии. Эта точка была названа «физиологическим нулем гидростатического давления» [Гайтон А., 1977].

Нарушение градиента давления на любом участке сосудистой системы сопровождается изменениями периферического кровообращения. Не следует также забывать о возможности стаза крови в капиллярном русле. В этих случаях емкость капиллярной сети значительно возрастает и, естественно, нарушается отток крови в венозную систему.

Венозная система играет большую роль в регуляции притока крови к сердцу. Венозные сосуды способны расширяться при увеличении объема крови и сужаться при его уменьшении. Состояние венозного тонуса регулируется вегетативной нервной системой. При умеренно сниженном объеме крови приток ее к сердцу обеспечивается за счет повышения венозного тонуса. При выраженной гиповолемии венозный приток становится недостаточным, что ведет к снижению CB.

Переливание инфузионных растворов и крови увеличивает венозный возврат и повышает MOC.

Если давление в правом предсердии внезапно повысится до уровня среднего системного давления, ток крови остановится. Среднее системное давление зависит от ОЦК и сосудистой емкости, которая является производным сосудистого тонуса. Среднее системное давление возрастает при гиперволемии, полицитемии, правосторонней застойной сердечной недостаточности и снижается в результате вазодилатации, при сепсисе, анафилаксии, кровотечении, увеличении диуреза. Если давление в правом предсердии снижается при неизменном среднем системном давлении, то это приводит к увеличению венозного притока к сердцу. Если же давление в правом предсердии оказывается ниже давления окружающих тканей, то тонкостенная полая вена сжимается. В этих условиях венозный возврат обеспечивается только за счет давления на участке, расположенном выше места сжатия, а не за счет давления в правом предсердии [Фекс П., 1993].

Несмотря на то, что повышение венозного сопротивления также может привести к снижению венозного возврата, само венозное сопротивление редко возрастает без изменений среднего системного давления. Однако позиционное сдавление нижней полой вены при повышенном внутрибрюшном давлении (например, при пневмоперитонеуме, на поздних сроках беременности) может вызвать постуральные изменения.

При сердечной недостаточности и повышении давления в правом предсердии создаются условия для снижения венозного возврата и MOC. Компенсаторные механизмы направлены на преодоление снижения притока крови к сердцу. При слабости правого желудочка и застое крови в полых венах ЦВД значительно повышается.

Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. Для различных органов и тканей регуляторами кровотока являются различные вещества: для мышц, сердца, печени — кислород и энергетические субстраты; для клеток головного мозга — концентрация углекислоты и кислорода; для почек — уровень ионов и азотистых шлаков. Температура тела — фактор регуляции кровотока в коже. Несомненен, однако, факт корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови.

У больных, находящихся в критическом состоянии, взаимозависимость между уровнем метаболизма и кровообращением существенно нарушается. Несмотря на мобилизацию всех резервов, уровень органной и тканевой циркуляции крови, доставка и потребление кислорода часто становятся недостаточными, что ведет к анаэробному метаболизму и тканевой гипоксии. Во многом это зависит от ограниченных резервов сердечно-сосудистой системы и тотального поражения сосудов и сердца медиаторами системного воспалительного ответа.

Зная о главных механизмах сердечной деятельности, преднагрузке и постнагрузке, врач ОРИТ, проводя необходимый мониторинг сердечно-сосудистой системы, может активно воздействовать на гемодинамические параметры и способствовать их оптимизации.

Глава 3 Физиологические критерии транспорта кислорода Транспорт кислорода, т.е. доставка кислорода и потребление его тканями, — важнейший показатель систем жизнеобеспечения. Особенно актуальна эта проблема у больных, находящихся в критическом состоянии, когда механизмы транспорта кислорода значительно нарушены. Эти нарушения являются определяющими факторами летальности в ОРИТ.

У некоторых больных, особенно у септических, наблюдается повышенная потребность тканей в кислороде, что не всегда обеспечивается физиологическими возможностями кислородтранспортной системы. Нарушение соотношения доставки и потребления кислорода (DO2/VO2) сопровождается тканевой гипоксией и ведет к полиорганной недостаточности.

В норме в 100 мл артериальной крови содержится приблизительно 20 мл кислорода. Если MOC в норме в покое 5 л/мин, а потребление кислорода 250 мл/мин, то это значит, что ткани извлекают 50 мл кислорода из 1 л циркулирующей крови. При тяжелой физической нагрузке потребление кислорода тканями достигает 2500 мл/мин, a MOC возрастает до 20 л/мин, но и в этом случае остается неиспользованным кислородный резерв крови. Ткани забирают примерно 125 мл кислорода из 1 л циркулирующей крови. Содержание кислорода в артериальной крови 200 мл/л достаточно для обеспечения потребностей тканей в кислороде.

У больных в отделениях ОРИТ компенсаторные механизмы транспорта кислорода нарушены.

Это относится как к сниженным резервам дыхания (гиповентиляция, снижение PaO2, SaO2), так и к циркуляторному компоненту транспорта кислорода — сниженному MOC в результате основного или сопутствующего заболевания, особенностям потребления кислорода тканями.

Факторы, нарушающие транспорт кислорода:

• низкое содержание кислорода в артериальной крови;

• низкий CB;

• анемия;

• расстройства сосудистой регуляции регионального и общего кровотока (вазоспазм, вазодилатация, системное поражение эндотелия с интерстициальным отеком);

• ДВС-синдром;

• периферические артериовенозные шунты;

• сдвиг кривой диссоциации оксигемоглобина (HbO2);

• патология внутриклеточных процессов (поражение митохондрий).

Гипоксическая гипоксия характеризуется снижением всех показателей кислородного уровня артериальной крови: парциального давления, насыщения и содержания кислорода. Ее основными причинами являются снижение и полное прекращение поступления кислорода (гиповентиляция, обструкция дыхательных путей, дыхание аноксической смесью, апноэ). При этом кислородный резерв истощается очень быстро: через 1—2 мин нарушается сознание, а через 4—6 мин наступает гипоксическая остановка сердца. К этому же виду гипоксии приводит изменение химических свойств гемоглобина (карбоксигемоглобин, метгемоглобин).

Тотальная гипоксемия обычно обусловлена удушьем или другими формами дыхательной недостаточности.

Циркуляторная гипоксия. Первичная циркуляторная гипоксия возникает вследствие снижения CB или сосудистой недостаточности, что ведет к уменьшению доставки кислорода к тканям.

При этом кислородные параметры артериальной крови не изменены, однако PvO2 значительно снижено. Следует учитывать возможность региональной гипоксии при отсутствии или резком снижении циркуляции крови в отдельных частях тела.

Термином «ишемия» обозначается любое сокращение кровотока, достаточное для появления ее клинических симптомов. У больных, пребывающих в критическом состоянии, клинические симптомы ишемии могут указывать на нарушение функции различных органов, прежде всего головного мозга [Cottrell J.E., 1993].

Региональная ишемия, вызванная ишемией отдельных частей тела (например, конечностей, почечной и чревной области), чаще всего возникает при гиповолемическом шоке.

Тотальная ишемия, связанная с полным прекращением транспорта кислорода, чаще всего обусловлена остановкой кровообращения.

Анемическая гипоксия, обычно наблюдаемая при массивной кровопотере, нередко сочетается с циркуляторной недостаточностью. Концентрация гемоглобина — не абсолютно точный показатель этого вида гипоксии. Полагают, что при концентрации гемоглобина ниже 100 г/л возможны нарушения кислородтранспортной системы крови. Однако при изучении механизмов транспорта кислорода были отмечены его разные уровни у различных пациентов.

Удовлетворительный уровень транспорта кислорода отмечался и у больных с уровнем гемоглобина в крови ниже 100 г/л. Все зависит от индивидуальных компенсаторных возможностей организма. Более точные данные можно получить при определении основных показателей транспорта кислорода. Для практического решения можно руководствоваться правилом, что уровень гематокрита, равный 0,25, является предельно допустимым. Уровни гемоглобина ниже г/л, гематокрита ниже 0,20 представляют угрозу для жизни больного даже в случае, если MOC не снижен.

Главной отличительной чертой анемической гипоксии является снижение содержания кислорода в артериальной крови при нормальном PaO2 и SaO2.

Сочетание всех трех форм гипоксии — гипоксической, циркуляторной и анемической возможно в тех случаях, когда нарушение дыхания происходит на фоне сердечно-сосудистой недостаточности и анемии.

Гистотоксическая гипоксия характеризуется неспособностью тканей утилизировать кислород (например, при отравлении цианидами). У больных ОРИТ этот вид гипоксии изучен недостаточно.

Его связывают с нарушениями внутриклеточных процессов и поражением митохондрий.

Все формы гипоксии (за исключением гистотоксической) одинаково вызывают венозную гипоксию, являющуюся достоверным показателем снижения PO2 в тканях. Парциальное давление кислорода в смешанной венозной крови — важный показатель гипоксии. Уровень PvO2, ниже мм рт.ст., определен как критический [Рябов Г.А., 1988].

Значение кривой диссоциации OK-сигемоглобина. Кислород в крови присутствует в двух формах — физически растворенный и химически связанный с гемоглобином. Зависимость между PO2 и SO2 графически выражают в виде кривой диссоциации оксигемоглобина (КДО), имеющей Sобразную форму. Такая форма КДО соответствует оптимальным условиям насыщения крови кислородом в легких и освобождения кислорода из крови в тканях. При PO2 100 мм рт.ст. в 100 мл воды растворено всего 0,3 мл кислорода. В альвеолах PO2 составляет около 100 мм рт.ст. В 1 л крови физически растворено 2,9 мл кислорода. Основная часть кислорода переносится в связанном с гемоглобином состоянии: 1 г гемоглобина, полностью насыщенного кислородом, связывает 1,34 мл последнего. Если концентрация гемоглобина в крови 150 г/л, то содержание химически связанного кислорода составляет 150 г/л-1,34 мл/г = =201 мл/л. Эта величина называется кислородной емкостью крови (KEK). Поскольку содержание кислорода в смешанной венозной крови (CvO2) 150 мл/л, то 1 л крови, проходящей через легкие, должен присоединить примерно 50 мл кислорода для превращения ее в артериальную. Соответственно 1 л крови, проходящей через ткани организма, оставляет в них 50 мл кислорода. Только около 3 мл кислорода на 1 л крови переносится в растворенном состоянии (рис. 3.1).

Смещение КДО является важнейшим физиологическим механизмом, обеспечивающим транспорт кислорода в организме. Циркуляция крови из легких к тканям и из тканей к легким связана с изменениями, которые воздействуют на сродство кислорода к гемоглобину. На уровне тканей изза снижения рН это сродство уменьшается (эффект Бора), а вследствие этого улучшается отдача кислорода. В крови легочных капилляров сродство гемоглобина к кислороду увеличивается из-за снижения PCO2 и возрастания рН по сравнению с аналогичными показателями венозной крови, что приводит к повышению насыщения артериальной крови кислородом.

В нормальных условиях 50 % SO2 достигается при PO2 около 27 мм рт.ст. Эта величина обозначается Р5о и характеризует в целом КДО. Возрастание P5O (например, до 30— 32 мм рт.ст.) соответствует смещению КДО вправо и свидетельствует о снижении взаимодействия гемоглобина и кислорода. При снижении P5O (до 25—20 мм рт.ст.) отмечается смещение КДО влево, что указывает на усиление сродства между гемоглобином и кислородом. Благодаря S-образной форме КДО при довольно значительном снижении фракционной концентрации кислорода во вдыхаемом воздухе (ВФК) до 0,15 вместо 0,21 перенос кислорода существенно не нарушается. При снижении PaO2 до 60 мм рт.ст. SaO2 снижается примерно до 90 % и цианоз при этом не возникает. Однако дальнейшее падение PaO2 сопровождается более быстрым падением SaO2 и содержания кислорода в артериальной крови. При падении PaO2 до 40 мм рт.ст. SaO2 снижается до 70 %, что соответствует содержанию PO2 и SO2 в смешанной венозной крови.

Вышеприведенные механизмы насыщения крови кислородом не Рис. 3.1. Кривая диссоциации оксигемоглобина.

Верхняя пунктирная линия (А) соответствует общему содержанию кислорода в артериальной крови при рН 7,4, рСО2 = 40 мм рт.ст. и температуре 37 0C. Непрерывная кривая (Б) соответствует количеству кислорода, связанного с гемоглобином.

являются единственными. Внутриклеточный органический фосфат 2,3-дифосфоглицерат (2,3ДФГ) входит в гемоглобиновую молекулу, изменяя ее сродство к кислороду. Повышение уровня 2,3-ДФГ в эритроцитах уменьшает сродство гемоглобина к кислороду, а понижение концентрации 2,3-ДФГ приводит к увеличению сродства к кислороду. Некоторые синдромы сопровождаются выраженными изменениями уровня 2,3-ДФГ. Например, при хронической гипоксии содержание 2,3-ДФГ в эритроцитах возрастает, и соответственно уменьшается сродство гемоглобина к кислороду, что дает преимущество в снабжении тканей кислородом. Массивные трансфузии консервированной крови могут ухудшить освобождение кислорода в тканях.

Таким образом, к факторам, обусловливающим возрастание сродства гемоглобина к кислороду и смещению КДО влево, относятся увеличение рН (нередко вызываемое применением бикарбоната), уменьшение PCO2, концентрации 2,3-ДФГ и неорганического фосфата, снижение температуры тела. И наоборот, уменьшение рН, увеличение PCO2, концентраций 2,3-ДФГ и неорганического фосфата, повышение температуры тела приводят к уменьшению сродства гемоглобина к кислороду и смещению КДО вправо.

Следует помнить, что в условиях алкалоза доставка кислорода к тканям снижается. В связи с этим в последние годы отмечается пересмотр показаний для введения бикарбоната. Его применяют лишь при выраженном метаболическом ацидозе. Режим гипервентиляции при прочих равных условиях, очевидно, не способствует улучшению транспорта кислорода. Поддержание нормального уровня неорганического фосфата, обычно снижающегося в послеоперационном периоде и при парентеральном питании, — одно из важных условий кислородтранспортной функции крови.

Показатели кислородтранспортной функции крови. Кислород, связанный с гемоглобином в артериальной крови, определяется с учетом его реального уровня, насыщения артериальной крови кислородом (SaO2) и константы Гюфнера 1,34, указывающей на то, что 1 г гемоглобина при полном насыщении (SaO2=IOO %) связывает 1,39 мл кислорода:

1,34-Hb-SaO2.

Содержание кислорода в плазме крови в свободном (растворенном) состоянии:

0,003-PaO2.

Содержание кислорода в артериальной крови CaO2 — это объем кислорода, связанного с гемоглобином и находящегося в растворенном состоянии:

CaO2 = 1,34-Hb (г/л)-8аО2 H- 0,003-PaO2.

Нетрудно заметить, что влияние величины PaO2 на содержание кислорода в артериальной крови несущественно. Гораздо более информативным в оценке транспорта кислорода является показатель SaO2.

Доставка кислорода к тканям (DO2) определяется двумя показателями — величиной CB (л/мин) и содержанием кислорода в артериальной крови CaO2:

DO2 = CB-CaO2.

Если пользоваться величиной СИ, а не MOC, то расчет транспорта кислорода следует производить по следующей формуле:

DO2 - СИ-(1,39-НЬ-8а02)-10, где коэффициент 10 — фактор преобразования объемных процессов (мл/с).

В норме DO2 равен 520—720 мл/(мин-м2). Данная величина фактически является индексом DO2, поскольку рассчитана на 1 м2 поверхности тела.

Потребление кислорода тканями. Потребление кислорода тканями (VO2) является заключительным этапом его транспорта. Определение VO2 производится путем умножения величин CB на артериовенозную разницу по кислороду. При этом следует пользоваться абсолютными величинами не MOC, а СИ как более точного показателя. Показатель артериовенозной разницы определяется путем вычитания содержания кислорода в смешанной венозной крови (т.е. в легочной артерии) из содержания кислорода в артериальной крови:

VO2 = CM-(CaO2 - CvO2).

При нормальных значениях по СИ величина VO2 колеблется от 110 до 160 мл/(мин-м2).

Утилизация кислорода. Коэффициент утилизации кислорода (KYO2) является показателем поглощаемого кислорода из капиллярного русла. KYO2 определяют как отношение потребления кислорода к показателю его доставки:

KYO2 = Y (VDO2-IOO.

KYO2 может колебаться в широких пределах, в покое он равен 22— 32%.

Для суммарной оценки транспорта кислорода следует пользоваться и другими показателями.

Большое диагностическое значение придают величинам PvO2 и SvO2. В норме PvO2 в смешанной венозной крови составляет 33—53 мм рт.ст. Уровень PvO2 ниже 30 мм рт.ст. свидетельствует о критическом состоянии транспорта кислорода [Рябов Г.А., 1988]. Насыщение кислородом гемоглобина смешанной венозной крови у здорового человека равно 68—77 %. Заметим, что показатели SaO2 и SvO2 в оценке транспорта кислорода более значимы, чем PaO2 и PvO2. Само по себе PaO2 даже ниже 60 мм рт.ст., не свидетельствует о развитии анаэробного гликолиза. Все зависит от величины CB, концентрации гемоглобина и капиллярного кровотока. Важным показателем в оценке транспорта кислорода является уровень лактата сыворотки крови (норма О— 2 ммоль/л), особенно в сочетании с показателями рН, PCO2 и BE (избыток или дефицит оснований).

Зависимость потребления кислорода от его доставки. Эта проблема обсуждается много лет, но особое внимание специалистов по интенсивной терапии к этой проблеме проявляется в течение последних 20 лет. В некоторых работах было показано, что потребление кислорода при сепсисе и РДСВ повышалось прямо пропорционально степени его доставки [Danek S. et al., 1980].

Это состояние S.M. Cain (1984) назвал «патологической зависимостью потребления от доставки кислорода» в отличие от тех случаев, когда потребление кислорода остается постоянным, несмотря на изменения его доставки («физиологическая зависимость потребления от доставки кислорода»).

В клинических наблюдениях 1980-х годов было подтверждено существование такой патологической зависимости [Haupt M.T. et al., 1985]. Отмечалось, что увеличение потребления кислорода от его доставки являлось неблагоприятным признаком. Больные с патологической зависимостью DO2/VO2 все умерли, в то время как пациенты с физиологическими нормами DO2/VO2 выжили [Biliary D. et al., 1987].

Очевидно, что патологическая зависимость потребления кислорода и тканевая гипоксия играют чрезвычайно важную роль в патогенезе полиорганной недостаточности и летальности при сепсисе и РДСВ.

Впоследствии было показано, что результаты лечения больных с высокой степенью хирургического риска при повышенных значениях DO2 и VO2 были значительно лучше, чем у пациентов с нормальными значениями CB и транспорта кислорода. Эти данные свидетельствовали о том, что повышенный уровень доставки кислорода должен предотвратить развитие тканевой гипоксии и полиорганной недостаточности [Shoemaker W.C., et al., 1988]. Однако доказательства этой гипотезы в отношении больных, находящихся в критическом состоянии, неубедительны. В более поздних исследованиях было показано, что результаты лечения больных с применяемой инотропной поддержкой при невозможности увеличения CB путем инфузий были хуже, чем в группе больных, которым проводилась традиционная терапия [Hayes M.A. et al., 1994].

Как утверждают некоторые авторы, «патологической зависимости потребления кислорода от его доставки» на самом деле нет. Полагают, что применяемые в клинике методы расчетов и термодилюцион-ный метод определения CB не могут считаться достаточными маркерами оценки соотношения доставки и потребления кислорода [Archiv J.Р., 1981].

Можно предположить, что в условиях гиповолемического и других видов шока не все ткани и органы одинаково снабжаются кислородом. При этом формальные данные о транспорте кислорода могут быть нормальными или мало отличаться от нормы. В экспериментах на животных были получены очевидные доказательства нарушения микроциркуляции и ухудшения экстракции кислорода при сепсисе. Было показано, что отдельные органы по сравнению с другими, в которых сохранен кровоток, могут в большей степени «страдать» от гипоксии. В отличие от достаточно резистентных скелетных мышц кишечник наиболее чувствителен к действию эндотоксина. На основании представленных данных в качестве маркеров транспорта кислорода стали использовать величину тканевого и показатель уровня молочной кислоты в тканях. Было установлено, что у больных, находящихся в критическом состоянии, рН слизистой оболочки желудка был сниженным и тесно коррелировал с эффективностью лечения больных [Rademacer P. et al., 1993;

Наппеmann L. et al., 1993].

В настоящее время имеются данные, подтверждающие то, что не во всех случаях стремление к очень высоким уровням доставки кислорода (например, путем длительной и даже чрезмерной стимуляции сердечно-сосудистой системы) является оправданным. Проведение такой стимуляция нередко превышает физиологические резервы сердечнососудистой системы. У многих больных достижение необходимого уровня доставки кислорода можно обеспечить в первую очередь путем инфузий [Shoemaker W.C. et al., 1990]. Иногда в ответ на адекватно проведенную инфузионную терапию при сепсисе развивается гипердинамический ответ, что можно оценить как попытку организма компенсировать предшествующую недостаточную экстракцию кислорода тканями для удовлетворения высоких метаболических потребностей.

Известно, что без адекватной инфузионной коррекции животные с экспериментальным сепсисом быстро умирают от гиподинамического шока. Не отрицая значения инотропной поддержки, которая, по данным авторов, улучшала результаты лечения септических больных, отметим следующее. Больные, у которых удавалось установить CB более 5 л/мин-м2 как с помощью одной инфузионной терапии, так и за счет дополнительной инотропной поддержки добутамином, отличались более высокой выживаемостью по сравнению с больными, у которых, несмотря на все усилия достичь таких значений CB не удавалось [Martin C. et al., 1993]. По мнению К. Reinhart (1997), это не является доказательством повышения показателей доставки кислорода и потребления его тканями. У некоторых больных в связи с наличием заболеваний, несмотря на все усилия врачей, повышенные значения CB не были достигнуты и были хуже результаты. Автор полагает, что основной проблемой снабжения тканей кислородом у больного с сепсисом в критическом состоянии является нарушение трофической функции кровотока, особенно в кишечнике.

Зависимость потребления кислорода от его доставки на уровне целостного организма может наблюдаться у больных с исходной патологией сердечно-сосудистой системы и/или в результате недостаточно адекватной инфузионной терапии. В этих случаях, естественно, инотропная поддержка будет улучшать показатели доставки и потребления кислорода. Если же все механизмы исчерпаны и инфузионная терапия проведена в достаточном объеме, дополнительная стимуляция сердечно-сосудистой системы может оказать отрицательное воздействие. Местная тканевая гипоксия может сохраняться, несмотря на достижение оптимальных цифровых значений CB, доставки и потребления кислорода. Индивидуальные потребности больного в оптимальной доставке и потреблении кислорода могут находиться в очень широких пределах, часто не соответствующих выше приведенным «нормальным»

величинам.

На основании сказанного можно сделать следующие выводы:

1) существуют большие методологические трудности в определении адекватной доставки и потребления кислорода тканями организма у больных ОРИТ. Общеизвестные показатели транспорта кислорода: CaO2, CB и расчетные величины доставки и потребления кислорода на уровне целостного организма у больных в критическом состоянии (септический синдром, респираторный дистресс-синдром взрослых, шок) не имеют большой клинической ценности, но тем не менее должны приниматься в расчет;

2) формализованные показатели транспорта кислорода, соответствующие нормальным физиологическим критериям здорового человека в покое, сами по себе могут не соответствовать состояниям повышенной или пониженной потребности тканей в кислороде.

Потребность в кислороде больного, находящегося в критическом состоянии, может быть изменена вследствие колебаний температуры тела, нарушений метаболизма и действия различных препаратов;



Pages:     || 2 | 3 | 4 |


Похожие работы:

«Пояснительная записка Данная рабочая программа составлена на основе Федерального компонента государственного стандарта общего образования (среднее (полное) образование), примерной программы по биологии к учебнику для 10–11 кл. общеобразоват. учреждений / Д.К. Беляев, П.М. Бородин, Н.Н. Воронцов и др.; под ред. Д.К. Беляева, Г.М. Дымшица. – М.: Просвещение, 2011, требований к уровню подготовки выпускников по биологии. Тематическое и поурочное планирование разработано на основе программы курса по...»

«ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ВОЛОГОДСКОЙ ОБЛАСТИ УТВЕРЖДАЮ Директор БОУ СПО ВО Вологодский политехнический техникум _ /М.В.Кирбитов/ _20_г. Программа учебной дисциплины Экономика отрасли г. Вологда 2013 Программа учебной дисциплины Экономика отрасли разработана на основе Федерального государственного образовательного стандарта (далее ФГОС) по специальностям среднего профессионального образования 190701 Организация перевозок и управление на автомобильном транспорте Организация-разработчик: бюджетное...»

«2 140400.02М2.ДВ.3-12-02 1. Цели освоения дисциплины Целью освоения дисциплины Планирование и организация исследований является: 1) обеспечить теоретическую и практическую подготовку магистрантов в усвоении общих категорий, понятий, принципов и современных концепций методологии научных исследований; 2) обеспечить формирование у магистрантов навыков ведения самостоятельной научной работы, исследования и экспериментирования. 2. Место дисциплины в структуре ООП магистратуры Настоящая рабочая...»

«Государственное автономное образовательное учреждение высшего профессионального образования Тюменской области ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ МИРОВОЙ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА 2.5. Реализация образовательных программ СМК – РОП - РУП - 2.5.21 МЕЖДУНАРОДНАЯ ЭКОНОМИКА СОГЛАСОВАНО УТВЕРЖДЕНО Проректор по учебной работе Решением Учёного совета _ Т.А. Кольцова (протокол № 9 от 23.03.2011 г.) _ 2011 г. Д. Ю. РУДЕНКО МЕЖДУНАРОДНАЯ ЭКОНОМИКА Рабочая учебная программа Направление подготовки 080100...»

«День дублера - разделенное административно-игровое самоуправление образовательного учреждения Общие положения В описании данной модели, названной День дублера — разделенное административноигровое самоуправление сочетаются два вида самоуправления, практически не связанные по структуре и функционалу. Поэтом при описании модели, как правило, используются ссылки на ту или иную модель, где данные элементы представлены наиболее ярко. В случае использования в основном административного самоуправления...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Уральский государственный университет путей сообщения ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Направление подготовки 190600 Эксплуатация транспортно-технологических машин и комплексов Профиль подготовки Автомобили и автомобильное хозяйство Квалификация (степень) Бакалавр Форма обучения очная (очная, очно-заочная и др.)...»

«РАБОЧАЯ ПРОГРАММА учебного курса испанский язык в 1 классе Пояснительная записка Рабочая программа для 1 класса составлена на основе : Программы общеобразовательных учреждений по испанскому языку для школ с углублённым изучением иностранных языков II-IV классы.М.: Просвещение на основе линии УМК Испанский язык авторов Воиновой А.А, Бухаровой Ю.А., Морено К.В, рекомендованной Министерством образования и науки Российской Федерации к использованию в образовательном процессе в 2013-2014 учебном...»

«1. Общие положения Программа вступительного экзамена предназначена для поступающих в аспирантуру по специальности 06.02.08 Кормопроизводство, кормление сельскохозяйственных животных и технология кормов. Программа включает в себя вопросы к экзамену для аспирантов данной специальности по профилю вуза и учебно-методическое и информационное обеспечение дисциплины. В основу программы положены следующие дисциплины: кормопроизводство, кормление сельскохозяйственных животных, скотоводство,...»

«Программа вступительных испытаний в магистратуру по направлению подготовки 080400 Управление персоналом магистерская программа Управление персоналом организации для лиц, имеющих диплом бакалавра/специалиста Примерные вопросы 1. Теоретико-философские и концептуальные основы управления персоналом. 2. Закономерности и принципы управления персоналом. 3. Методы управления персоналом. 4. Основы формирования системы управления персоналом. 5. Организационная структура системы управления персоналом. 6....»

«По состоянию на: 05/07/2013 Программа продаж Россия 2014 модельный год 0 Базовые модели1 Polo седан Sochi Edition Цена розничная Экологический Мощность кВт Трансмиссия (руб.) с НДС Объем (л) стандарт Дверей (л.с.) Код Бензиновые двигатели 6123G4 / RAG WUQ 1.6 5-ступ., механич. Euro 4 4 1.6 77 (105) 6123G3 / RAG WUQ 1.6 6-ступ., автомат. Euro 4 4 1.6 77 (105) Стандартная комплектация: Экстерьер Легкосплавные колеса Estrada 6J x 15, шины 195/55 R Корпуса наружных зеркал окрашены в черный цвет...»

«ОРГАНИЗАЦИЯ EP ОБЪЕДИНЕННЫХ НАЦИЙ Distr. GENERAL Программа Организации UNEP/CHW/TWG/19/13 Объединенных Наций по 12 February 2002 окружающей среде RUSSIAN Original: ENGLISH ТЕХНИЧЕСКАЯ РАБОЧАЯ ГРУППА БАЗЕЛЬСКОЙ КОНВЕНЦИИ О КОНТРОЛЕ ЗА ТРАНСГРАНИЧНОЙ ПЕРЕВОЗКОЙ ОПАСНЫХ ОТХОДОВ И ИХ УДАЛЕНИЕМ Девятнадцатая сессия Женева, 14 и 15 января 2002 года ДОКЛАД О РАБОТЕ ДЕВЯТНАДЦАТОЙ СЕССИИ ТЕХНИЧЕСКОЙ РАБОЧЕЙ ГРУППЫ I. ОТКРЫТИЕ СОВЕЩАНИЯ 1. Совещание было открыто Исполнительным секретарем Базельской...»

«2 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Настоящая программа ставит своей целью подготовить соискателей к поступлению в аспирантуру по направлению подготовки 44 06 31 Образование и педагогические науки, профиль – Дошкольное образование. Содержание программы отражает основной объем знаний, необходимой будущему исследователю при выполнении научной работы, содержит характеристику знаний, навыков, умений, которые будущий аспирант должен продемонстрировать во время сдачи вступительного экзамена по названной...»

«Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Липецкий государственный технический университет Металлургический институт УТВЕРЖДАЮ Директор Чупров В.Б. _ 2011 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Проблемы энергосбережения в металлургии Направление подготовки: 150400.68 Металлургия Профиль подготовки: Теплофизические основы конструирования, эксплуатации и автоматизации промышленных печей Квалификация (степень) выпускника: магистр Форма...»

«Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области Международный университет природы, общества и человека Дубна (университет Дубна) Институт системного анализа и управления Кафедра системного анализа и управления УТВЕРЖДАЮ проректор по учебной работе С.В. Моржухина __20 г. Программа дисциплины Управление знаниями в сложных системах (наименование дисциплины) Направление подготовки 220100 Системный анализ и управление Магистерская...»

«Инновационное образование – 20 ключей® в контексте актуальных потребностей рынка Орлов К.А. к.т.н. Всероссийская организация качества, МГТУ МИРЭА © ООО Деловое совершенство, 2012 КЛУБ БЕНЧМАРКИНГА ДЕЛОВОЕ СОВЕРШЕНСТВО ГЛОБАЛЬНАЯ СЕТЬ БЕНЧМАРКИНГА (Global Benchmarking Network) ВСЕРОССИЙСКАЯ ОРГАНИЗАЦИЯ КАЧЕСТВА (ВОК) ООО ДЕЛОВОЕ СОВЕРШЕНСТВО © ООО Деловое совершенство, 2012 Содержание 1 Краткий обзор ПРПП. 20 Ключей ® Образовательные программы ПРПП. 20 Ключей ® ПРПП. 20 Ключей ® в вузах © ООО...»

«Рыбалка в двух океанах и приключения в Коста-Рике класса люкс, 13 дней / 3 дней рыбалки на карибском и 3 дня на тихоокеанском побережьях. Вариант международного авиаперелета Авиакомпанией Иберия, с транзитной остановкой в Мадриде. IB3143 30APR DMEMAD 0655 1015 IB6313 30APR MADSJO 1140 1440 IB6314 12MAY SJOMAD 1640 1110 +1 IB3142 13MAY MADDME 1015 2310 Подробная программа День 1 Сан Хосе, Коста-Рика 0655 Вылет из Москвы в Сан Хосе, с пересадкой в Мадриде. IB3143 30APR DMEMAD 0655 1015 IB6313...»

«ОТЧЕТ о результатах самообследования государственного бюджетного образовательного учреждения начального профессионального образования профессиональный лицей № 134 г.Стерлитамак Республики Башкортостан. СОДЕРЖАНИЕ Введение 1.Общие сведения, организационно – правовое обеспечение образовательной деятельности II. Система управления образовательным учреждением III. Структура подготовки специалистов VI. Содержание подготовки выпускников 4.1. Соответствие основных профессиональных образовательных...»

«УДК 378.147 НОВЫЕ ПОДХОДЫ К РАЗРАБОТКЕ СИСТЕМЫ ИННОВАЦИОННО-ОРИЕНТИРОВАННОЙ ПОДГОТОВКИ НАУЧНЫХ И НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ С.И. Дворецкий, Е.И. Муратова, В.П. Таров, И.В. Фёдоров ГОУ ВПО Тамбовский государственный технический университет, г. Тамбов; ГОУ ВПО Московский автомобильно-дорожный институт (государственный технический университет), г. Москва Ключевые слова и фразы: гибкая интегрированная система; инновационноориентированное профессиональное образование; научно-образовательный...»

«УНИВЕРСИТЕТ КИНО И ТЕЛЕВИДЕНИЯ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Ф ЕД ЕРАЛ Ь Н О Е ГО С УД А Р С Т В ЕН Н О Е Б Ю Д Ж ЕТН О Е О Б РА З О В АТЕЛ Ь Н О Е УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И ТЕЛЕВИДЕНИЯ Основная образовательная программа высшего образования Н аправление подготовки 18.04.01 Х имическая технология (240100.68 Х имическая технология) П роф иль подготовки Ф отограф ические процессы и материалы Квалиф икация (степень) магистр Ф...»

«1. Пояснительная записка 1.1 Краткая характеристика дисциплины Дисциплина Музеи мира является дисциплиной специализации, обучающихся по специальности КУЛЬТУРАЛОГИЯ. Рабочая программа составлена в соответствии с ГОС ВПО. Программа включает тематический почасовой план, вопросы для самоподготовки, список рекомендованной литературы, периодических изданий, печатных и интернет - справочников и каталогов, словарь музееведческих терминов, критерии освоения курса и требований к зачету. Цели дисциплины:...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.