«ГИДРОЭКОЛОГИЯ Учебное пособие PDF создан в pdfFactory Pro пробной версии Е. В. Логинова, П. С. Лопух ГИДРОЭКОЛОГИЯ Курс лекций МИНСК БГУ 2011 2 PDF создан в pdfFactory Pro пробной версии ...»
Е. В. Логинова, П. С. Лопух
ГИДРОЭКОЛОГИЯ
Учебное пособие
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com
Е. В. Логинова, П. С. Лопух
ГИДРОЭКОЛОГИЯ
Курс лекций МИНСК БГУ 2011 2 PDF создан в pdfFactory Pro пробной версии www.pdffactory.com УДК 502.51(28) ББК 20.18 Р е ц е н з е н т ы:
Доктор географических наук, профессор А.А. Волчек;
Доктор географических наук, главный научный сотрудник Института природопользования НАН Беларуси Т. И. Кухарчик Логинова, Е.В., Лопух П.С.
В 70 Гидроэкология: курс лекций / Логинова, Е.В., Лопух П.С. – Минск: БГУ, 2011.– 300 с. : ил.
ISBN В курсе лекций рассматриваются вопросы экологии водных объектов, особенности их режима, качественные характеристики их вод.
Предназначается для студентов географического факультета БГУ специальности гидрометеорология УДК 502.51(28) ББК 20. ISBN © Логинова Е.В., Лопух П.С., © БГУ, PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Введение В цикле гидрологических наук экология занимает одно из ведущих положений. Во многих университетах страны со сtредины 80-х годов наряду с курсом «Общая экология», «Экология», «Геоэкология»
на природоведческих факультетах читаются общие профессиональные курсы с учетом специфики специальности. Так, для гидрогеологов читается курс «Экологическая гидрогеология», «Экологическая геохимия», и др. Внутри многих наук сформировались научные направления, занимающиеся проблемами экологии и охраны окружающей среды. Процесс формирования прикладных направлений продолжается.
Специальный курс «Гидроэкология» читается для студентов производственного направления «Гидрометеорология» в рамках специальности «География». В курсе рассматриваются как общие вопросы экологии гидросферы, так и региональные особенности водоемов и водотоков Беларуси. В отличие от других направлений «Гидроэкология» имеет свой объект и предмет исследования. Однако, авторам пока не удалось отойти от общих вопросов экологии. Поэтому отдельные вопросы гидроэкологии включают общие вопросы экологии, основные законы и постулаты экологии (Реймерс Н.Д).
В учебном пособии сделана попытка на фоне вопросов общей гидроэкологии рассмотреть вопросы гидроэкологии малых озер, водохранилищ и рек Беларуси. Поэтому данный курс следует рассматривать как и курс региональной гидроэкологии. В связи с этим наряду со сформировавшимися новыми направлениями в белорусской лимнологической школе «Лимнология», «Озероведение», «Гидрология водохранилищ», «Гидрология прудов» целесообразно выделить и самостоятельные гидроэкологические курсы регионального плана:
«Гидроэкология озер», «Гидроэкология водохранилищ», «Гидроэкология прудов», «Гидроэкология рек». В совокупности они представляют собой самостоятельные разделы «Гидроэкологии».
При изучении гидроэкологических вопросов водотоков и водоемов они рассматриваются в тесной связи с водосбором. «Водосбор – водоем (водоток)» представляют единую гидроэкосистему. «Гидроэкосистема» – понятие, отражающее целостность водоема или водотока, характеризующее взаимосвязь с водосбором, единство процессов, протекающих в них. Поэтому гидроэкология как самостоятельная наука наряду со специальными гидрологическими, использует все меPDF создан в pdfFactory Pro пробной версии www.pdffactory.com тоды исследований, используемых в физической географии.
Процесс формирования гидроэкологии как самостоятельного курса продолжается и будет развиваться параллельно гидрологии и гидрологии отдельных водоемов. Поэтому авторы просят высказать свои замечания и пожелания по содержанию курса, которые будут учтены авторами в дальнейшей работе.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com
ЭКОЛОГИЧЕСКИХ И ГЕОГРАФИЧЕСКИХ НАУК
Истоки гидроэкологии уходят в далекое прошлое и связаны с необходимостью добычи пищи на стадии становления и развития человеческого общества, со становлением и формированием экологии и геоэкологии. Термин экология (экос – дом, логос – учение, гр.) в науку ввел немецкий биолог Эрнест Геккель. В 1866 году в работе "Всеобщая морфология организмов" он писал: “...суммы знаний, относящихся к экономике природы: изучению всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и, прежде всего – его дружественных или враждебных отношений с теми животными и растениями, с которыми он прямо или косвенно вступает в контакт".Это определение позволяет отнести экологию к биологическим наукам. В последующем, содержание понятия экологии многократно расширялось. Под ней стали понимать науку, изучающую среду обитания всех живых существ, включая человека. Иногда уместно ограничить содержание экологии лишь природной средой. В этом случае гидроэкологию можно рассматривать как «водную экологию». Воздействуя на водные объекты и изменяя их, человек тем самым меняет условия существования не только растений и животных, но и самого себя, человек сам попадает под воздействие производства и измененной природы. Потому правомерно рассматривать всю окружающую И не только природную, но также социальную и производственную. Поскольку взаимодействие организмов между собой и окружающей их средой всегда системно, то есть всегда реализуется в форме некоторых систем взаимосвязей, поддерживающихся обменом вещества, энергии и информации. Поэтому основным объектом исследования гидроэкологии являются водные экосистемы. Самой крупной в иерархии экосистем в гидроэкологии является гидросфера, в экологии – биосфера.
Учение о биосфере – это обширная область знания о функционировании и развитии биосферы, включающая в себя целый ряд научPDF создан в pdfFactory Pro пробной версии www.pdffactory.com ных направлений естественнонаучного и общественного профиля.
Учение о биосфере в том числе включает в себя общую экологию, которая состоит из четырех основных разделов: биоэкологии, геоэкологии, экологии человека и прикладной экологии (рис.1.1.).
Гидроэкология представляет собой часть географической экологии, но на качественно более высоком уровне. Гидроэкология – результат дифференцирования общей экологии и геоэкологии, процесса характерного для большинства естественных наук. Многие научные исследования в настоящее время проводятся на стыке гидрологии, биологии, экологии, географии. Поэтому можно характеризовать гидроэкологию как результат интеграции этих наук.
Биоэкология состоит из экологий естественных биологических систем: особей, видов (аутоэкология), популяций и сообществ (синэкология) и экологии биоценозов. Эволюционная экология рассматривает экологические аспекты эволюции биологических систем.
Геоографическая экология (геоэкология) изучает биосферные оболочки Земли, в том числе подземную гидросферу, как компоненты окружающей среды, минеральную основу биосферы и происходящие в них изменения под влиянием природных и техногенных процессов.
Геоэкологические исследования носят комплексный характер и вклюPDF создан в pdfFactory Pro пробной версии www.pdffactory.com чают в себя изучение ландшафтов, почв, поверхностных и подземных вод, горных пород, воздуха, растительного покрова. Геоэкология, таким образом, требует интеграции геологии и географии, почвоведения и геохимии, гидрогеологии и гидрологии, горных наук в единую систему знаний о геологической и географической средах как единой геоэкологической среде.
Экология человека – комплекс дисциплин, исследующих взаимодействие человека как биологической особи (биоэкология человека) и личности с окружающей его природной, социальной и культурной средами. Здоровье людей связано с экологической обстановкой и образом жизни (медицинская экология), на человека оказывает влияние среда морали, воззрений, традиций и трудно уловимой духовности Прикладная экология представлена комплексом дисциплин, связанных с различными областями человеческой деятельности и взаимоотношений между человеком и природой. Она исследует механизмы техногенных и антропогенных воздействий на экосистемы, формирует экологические критерии и нормативы в промышленности, транспорте и сельском хозяйстве (экология природно-технических геосистем (ПТГС) и сельскохозяйственная экология). Инженерная экология изучает законы формирования техносферы и способы инженерной защиты природной среды. Экологический менеджмент изучает управление взаимодействием общества и природы на основе использования экономических, административных, социальных, технологических и информационных факторов с целью достижения планируемого качества (состояния) окружающей среды. Экологическое образование формирует экологическое мышление, под которым понимается состояние человеческого познания и нравственности, обеспечивающее анализ и последующий синтез взаимосвязанных природных и техногенных объектов и процессов, как основу прогнозирования их развития и приоритетного выбора оптимальных в экологическом отношении решений и действий.
Таким образом, в последние десятилетия экология фактически вышла за рамки только биологии и переживает развитие в различных направлениях. Современная экология не только изучает законы функционирования природных и техногенных систем, но и ищет пути гармонического взаимоотношения природы и общества. От характера которого зависит не только здоровье людей и их экономическое процвеPDF создан в pdfFactory Pro пробной версии www.pdffactory.com тание, но и сохранение человека как биологического вида. Решение экологических проблем требует огромной работы во всех областях науки и техники. Поэтому идеи и проблемы экологии всемерно проникают в другие научные дисциплины и внедряются в общественное развитие. Этот процесс называется экологизацией. Поэтому гидроэкология, как составная часть географической экологии имеет непосредственный практический аспект. Исходя из этого гидроэкология это 1) общие законы функционирования гидроэкосистем различного порядка (раздел гидрологии);
2) живые системы в их взаимодействии с водной средой (одно из направлений биологических науки);
3) комплексная наука, синтезирующая данные естественных и общественных наук о природе и взаимодействии общества и природы (географическая экология);
4) особые экологические подходы к исследованию проблем взаимодействия организмов, биосистем и преимущественно водной среды (методоллогия и методика исследований);
5) совокупность научных и практических проблем взаимоотношений человека и водных объектов (экологические проблемы).
Развиваясь на стыке географии и биологии гидроэкология имеет два аспекта. С биологической точки зрения гидроэкология – это наука о взаимоотношениях организмов, обитающих в водной среде, между собой и с окружающей их неорганической средой, о связях в надорганизменных системах, о структуре и функционировании этих систем. С географической точки зрения, гидроэкология – наука, изучающая исключительно свойства водных объектов, занимается изучением особенностей водных объектов в современных условиях, их качественных характеристик, прогнозированием изменения количества и качества водных ресурсов водоемов и водтотоков.
Другими словами, гидроэкология – это научная дисциплина, которая занимается изучением влияния природных и антропогенных факторов на процессы, происходящие в водоемах и водотоках.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Объектом изучения гидроэкологии являются водные экосистемы (гидроэкосистемы) в их связи с окружающей средой. Это водотоки и водоемы, как сложные природные и природно-технические системы, находящиеся под влиянием хозяйственной деятельности общества.
Предметом изучения гидроэкологии является вода как активная среда, воздействующая на берега, русло и природные и хозяйственные объекты, ее экологическое состояние, закономерности развития гидроэкосистем под влиянием внутренних (биотических) и внешних (в основном абиотических и антропогенных) факторов, а также способы защиты гидроэкосистем от загрязнения и истощения, пути принятия решений для улучшения качества водной среды. В связи с этим в состав дисциплины «Гидроэкология» включены основные данные о физико-химических и биологических свойствах воды, гидробионтов, русловых процессах, роли гидробионтов в процессах самоочищения воды, комплексном использовании водных ресурсов в хозяйстве, негативных воздействиях природного и антропогенного характера на гидроэкосистемы, внедрение экологически безопасных технологий.
Общими задачами гидроэкологии являются:
• Выявление природных и антропогенных факторов, воздействующих на гидроэкосистемы;
• Оценка экологического состояния водных объектов по различным показателям;
• Оценка действующей системы мониторинга за состоянием водной среды.
• Оценка экологической напряженности и стадий развития гидроэкосистем;
• Решение задач по предотвращению и ликвидации ситуаций природного и техногенного характера;
• Оценка экономических и социальных последствий антропогенного влияния на гидроэкосистемы.
Гидроэкология возникла на стыке экологии и других научных дисциплин (медицины, педагогики, юриспрунденции, химии, технологии, агрономии и так далее). Поэтому в широком смысле слова гидроэкология выходит за рамки чисто географической и биологической PDF создан в pdfFactory Pro пробной версии www.pdffactory.com К экологии иногда неверно относят такие дисциплины как природопользование и охрана природы. Однако в последнее время стало ясно, что нельзя организовывать природопользование и охрану природу, не применяя экологических методов и не используя экологические знания. Только знания о взаимосвязи природных объектов, об устойчивости природных систем может определить возможные механизмы взаимодействия с ними. Этим и объясняется справедливый всеобщий интерес к экологии как науке о взаимосвязях живых организмов и окружающей их среды.
В связи с тем, что гидроэкология – наука гидрологического цикла, она тесно связана с гидрологией, использует данные, полученными при гидрологических исследованиях. Такие, например, как температура воды, ледовые явления, характеристика наносов, морфометрические показатели водоемов и другие. Гидроэкология часто пользуется знаниями, используемые в гидротехнике. Данные используются для оценки качества воды, последствий гидротехнического строительства.
Гидроэкология как наука тесно связана с гидрохимией, так как у нее есть общий предмет изучения – экологическое (гидрохимическое) состояние воды водоемов и водотоков.
Тесна связь также с гидробиологией и биоэкологией – дисциплинами биологического цикла, изучающими условия развития гидробионтов и их реакции на поллютанты.
Общие проблемы также есть с науками ветеринарномедицинскими, например, с ихтиопатологией и водной токсикологией.
С науками экономического цикла – поскольку среди задач гидроэкологии существует задача поиска наименее затратных и экологичных решений по улучшению качества водной среды. Такая связь, например, существует с экономикой природопользования, так как в гидроэкологии часто приходится решать задачи, связанные с подсчетом материального ущерба от загрязнения и истощения водных и биологических ресурсов.
Гидроэкология тесно связана с частными экологиями: экологией растений (геоботаникой), лесоведением, почвоведением, экологией животных, гидробиологией, экологией человека, биоценологией, PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Область знаний, отражающая взаимоотношение живых тел и различного рода их объединений с неживым и живым окружением имеет более чем 2000-летнюю историю. Но, только в середине XIX века эта область знаний, благодаря трудам К.Ф.Рулье и Э.Геккеля, приобрела статус самостоятельной науки. В своих работах, опубликованных в 1866 и 1868 гг. Эрнст Геккель так определяет новую науку: "Под экологией мы понимаем сумму знаний, относящихся к экономике природы: изучение всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и прежде всего – его дружественных или враждебных отношений с теми животными и растениями, с которыми он прямо или косвенно вступает в контакт.
Современная гидроэкология вбирает в себя проблемы окружающей среды, использует науки о Земле, физику, химию, компьютерные науки и т.д. развивалась вместе с экологией. В истории её развития можно выделить три этапа:
1 этап. С древних времён – до 60-х годов 19-го века. Первые сообщения экологического характера связаны с такими центрами древней культуры, как Китай, Египет, Индия, Греция. Уже в работах древнегреческих философов Гераклита (530 – 470 гг. до н.э.), Гиппократа (460 – 356 гг. до н.э.), Аристотеля (384 – 322 гг. до н.э.), Теофраста Эрезийского (372 – 287 гг. до н.э.), Плиния Старшего (23 – 79 гг.) и других содержатся сведения экологического характера. Например, в трактате Гиппократа «О воздухе, воде и местности» содержатся сведения о влиянии условий окружающей среды на здоровье человека.
Аристотель описал 500 известных ему видов животных, особенности их поведения и приспособления к условиям окружающей среды. Ученик Аристотеля Теофраст Эрезийский – “отец ботаники”, как его часто называют, описывал особености роста растений в разных условиях среды, зависимость их форм и особенностей их роста от грунта и климата.
В эпоху Возрождения продолжалось накопление данных о растительном и животном мире. Первые систематики Д. Цезалпин (1519 – 1603), Д.Рей (1627 – 1705), Ж.Турнефор (1556 – 1708) в своих трудах приводят сведения экологического характера, в частности, зависимость распространения растений от условий их произрастания.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Т. Мальтус ещё в 1798 г. описал уравнение экспоненциального роста популяции, на основе которого строил демографические концепции.
этап в становлении экологии как новой области знания. Ознаменовался выходом работ русских учёных Н.А.Северцова, В.В.Докучаева, В.И.Вернадского. Неоценимый вклад в развитие науки внёс в своё время Ч. Дарвин, которые ввёл понятие «борьба за существование».
Это обстоятельство следует рассматривать как взаимодействие живых организмов с биотическими и абиотическими условиями среды.
С введением практически однозначных понятий «экосистема»
А.Тенсли и «биогеоценоз» В.Н.Сукачёвым стали интенсивно развиваться экологические исследования надорганизменного уровня. Это направление широко использовало количественные методы определения функций экосистем и математическое моделирование биологических процессов.
3 этап. 60–е годы 20-го века – до наших дней. С середины столетия экология оказывается в центре общечеловеческих проблем, наблюдается превращение экологии в комплексную междисциплинарную науку. Продолжаются исследования свойств биосферы, начатые Стало ясно, что популяция – не просто «население», т. е. сумма особей на какой-то территории, а самостоятельная биологическая (экологическая) система надорганизменного уровня, обладающая определенными функциями и механизмами авторегуляции, которые поддерживают ее самостоятельность и функциональную устойчивость. Это направление наряду с интенсивным исследованием многовидовых систем занимает важное место в современной классической экологии. Выдающимися представителями классической экологии этого периода являются Ю. Одум, Н.Ф. Реймерс, Н.П. И.А. Наумов, С.С. Шварц. Постепенно раскрывается роль многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Методы могут быть подразделены на следующие три группы:
общие, особенные и частные методы.
Общие методы касаются всей геоэкологии. Это различные формы диалектического метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени. В естествознании диалектический метод выступает как сравнительный (например, в биологии, географии, химии) метод, с помощью которого раскрывается всеобщая связь явлений, или как исторический. Иногда оба этих метода сочетаются в единый сравнительно-исторический метод, который глубже и содержательней каждого из них в отдельности и широко используется в гидроэкологии.
Особенные методы касаются не предмета в целом, а лишь одной из его сторон (явления, сущности явления, количественной стороны) или же определенного приема исследований. К особенным методам относятся, в частности, анализ и синтез, индукция и дедукция.
Анализ (греч. analysis– разложение) и синтез (греч. synthesis– соединение) в самом общем значении– это процессы мысленного или фактического разложения целого на составные части и восстановления целого из частей соответственно. Цель анализа – познание частей как элементов сложного целого.
Синтез, напротив, есть процесс объединения в единое целое частей, свойств, отношений выделенных посредством анализа. Синтез дополняет анализ и находится с ним в неразрывном единстве.
Дедукция (от лат. deductio– выведение) – один из основных способов рассуждения (умозаключения) и методов исследования. Под дедукцией в широком смысле понимается любой вывод вообще, в более специфическом и наиболее употребительном смысле – доказательство или выведение утверждения (следствия) из одного или нескольких других утверждений (посылок) на основе законов логики, носящее Индукция (от лат. inductio– наведение) еще один тип умозаключения и метод исследования. Как форма умозаключения индукция обеспечивает возможность перехода от единичных фактов к общим положениям. В качестве метода исследования индукция понимается как путь опытного изучения явлений, в ходе которого от отдельных PDF создан в pdfFactory Pro пробной версии www.pdffactory.com фактов совершается переход к общим положениям. Отдельные факты как бы наводят на общее положение. В реальном познании индукция всегда выступает в единстве с дедукцией.
Особенными методами являются также практические методы:
наблюдение, эксперимент, сравнение, измерение. Исключительно важны математические приемы и методы, роль которых неуклонно возрастает по мере все более широкого применения счетновычислительных машин.
К частным методам относятся специальные методы, действующие либо только в пределах отдельной отрасли естествознания, либо за пределами той отрасли, где они возникли. Так методы физики, используемые в других отраслях естествознания привели к созданию геофизики и физической химии. Распространение химических методов привело к созданию геохимии, биохимии и т.д.
В ходе прогресса методы могут переходить из более низкой категории в более высокую: частные превращаются в особенные, особенные в общие.
Методическую основу гидроэкологии как современной науки составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Экологическая практика охватывает собой множество приемов и методов исследований, адекватных многообразию направлений экологии и потому здесь перечислены лишь Режимные систематические (мониторинговые) наблюдения за состоянием водных объектов и процессов и влияющими на них антропогенными (техногенными) факторами;
аналитические исследования природных и искусственных исследования морфологических параметров природных статистические методы оценки процессов и явлений, происходящих на водных объектах и их водосборах;
дистанционные методы исследований и методы специальной картографии водотоков и водосборов;
методы математического моделирования гидроэкологических процессов;
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com паспортизация природных и искусственных водных объектов;
Как правило, в гидроэкологических исследованиях эти и другие применяемые методы исследований используются совместно или Будучи одной из наук гидрологического цикла, гидроэкология использует общие для него теоретические и эмпирические методы: анализ и синтез, дедукцию и индукцию, наблюдение, сравнение (включая измерение) и эксперимент (включая моделирование). Эмпирические методы подразделяются на "полевые" и "лабораторные", соответственно тому, проводятся ли они в условиях, приближенных к естественным или в условиях, контролируемых исследователем. И те и другие могут предполагать использование инструментария: измерительного и аналитического оборудования, устройств для фиксации, снятия и обработки данных.
Эмпирические данные могут быть использованы лишь после их теоретической обработки, то есть после включения в логическую конструкцию: гипотезу, теорию, концепцию.
В последнее время особую важность приобрели планомерные, поддающиеся эффективному анализу экологические исследования, складывающиеся в мониторинг – систему долгосрочных наблюдений, оценки, контроля и прогноза состояния и изменения объектов. Мониторинг принято делить на фоновый, глобальный, региональный и импактный (в особо опасных зонах и местах). По способам ведения различают космический, авиационный и наземный мониторинг. В систематизации и анализе накапливаемых данных особое значение имеет создание баз данных и использование ГИС-технологий.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com В процессе исторического развития живые организмы освоили четыре среды обитания. Первая – вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая – наземно-воздушная – на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши – литосферы, они создали третью среду обитания – почву, а сами стали четвертой средой обитания.
Вода покрывает 71 % площади земного шара и составляет 1/800 часть объема суши. Основная масса воды сосредоточена в морях и океанах – 94–98 %, в полярных льдах содержится около 1,2 % воды и совсем малая доля – менее 0,5 %, в пресных водах рек, озер и болот.
Соотношения эти постоянны, хотя в природе, не переставая, идет круговорот воды.
10 000 растений, что составляет соответственно всего 7 и 8 % от общего числа видов Земли. В Мировом океане, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль – вся толща воды, и бенталь – дно.
Особенно чётко зональность проявляется в озёрах умеренных широт (рис. 2.1). В водной массе как среде обитания организмов по вертикали может быть выделено 3 слоя: эпилимнион, металимнион и гиполимнион. Воды поверхностного слоя – эпилимниона летом прогреваются и перемешиваются под воздействием ветра и конвекционных токов. Осенью поверхностные воды, охлаждаясь и становясь более плотными, начинают погружаться, и температурная разность слоев выравнивается. При дальнейшем охлаждении воды эпилимниона становятся холоднее вод гиполимниона. Весной происходит обратный процесс, заканчивающийся периодом летнего застоя. Дно озёр (бенталь) подразделяется на 2 зоны: более глубоководную – профундаль, примерно соответствующую части ложа, заполненной водами гиполимниона, и прибрежную зону – литораль, обычно простирающуюся вглубь до границы произрастания макрофитов. По поперечному профилю реки различают прибрежную зону – рипаль и открытую – медиаль. В открытой зоне скорости течения выше, население количественно беднее, чем в прибрежной.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.
Нектон (nektos – плавающий) – активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.
Планктон (planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого PDF создан в pdfFactory Pro пробной версии www.pdffactory.com верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска, кубышки, кувшинки и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.
В озерах зообентос менее обилен и разнообразен, чем в море.
Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.
Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).
Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности PDF создан в pdfFactory Pro пробной версии www.pdffactory.com среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.
Тепловой режим. Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.
Диапазон значений температуры воды в Мировом океане составляет 38° (от –2 до +36°С), в пресных водоемах – 26° (от –0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1–3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах.
Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность. Для Беларуси можно привести случаи разрастания в водоемах таких несвойственных для нашей природной зоны гидробионтов как водяная сосенка и водный гиацинт в некоторых водоемах Полесья.
В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.
В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотерPDF создан в pdfFactory Pro пробной версии www.pdffactory.com мия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными. Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.
В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы. В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е.
наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными. Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.
В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это PDF создан в pdfFactory Pro пробной версии www.pdffactory.com сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном.
Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.
В небольших озерах на глубину 2 м проникает всего лишь десятые доли процента света. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак.
Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.
К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.
Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Общепринятое и наиболее обоснованное определение понятия «гидросфера» – прерывистая водная оболочка Земли. По некоторым прежним представлениям, рамки гидросферы ограничивались Мировым океаном. Но воды рек и озер, так же как и подземные воды, являются составными частями гидросферы. А эти воды в отличие от океана дискретны. Отсюда и появляется необходимость определения гидросферы как прерывистой оболочки. Гидросфера отличается высокой динамичностью, движущей силой которой служит круговорот воды.
Воды гидросферы не связаны химически и физически в земной коре, т. е. могут двигаться под влиянием гравитационной, сорбционных, капиллярных сил, а также под влиянием тепла. В понятие движения входит и переход воды из одного агрегатного состояния в другое.
Переход воды через парообразную фазу служит механизмом естественного опреснения воды. Происхождение гидросферы связывается с дегазацией воды из мантии Земли, в которой содержится около Из определения гидросферы и ее краткой характеристики видно, что эта сфера Земли находится в тесной взаимосвязи с другими сферами – литосферой, атмосферой и биосферой.
Данные по объему гидросферы представлены в табл. 2.1.
* В том числе около 5 тыс. км3 воды в водохранилищах.
** В том числе около 2 тыс. км3 оросительных вод.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Весь объем гидросферы, по современным подсчетам, несколько Приблизительное представление о пресноводной части гидросферы дают данные табл. 2.2. Общий объем пресных вод на Земле достигает приблизительно 28,25 млн. км3, что составляет около 2 % общего объема гидросферы. Но если учесть, что основная часть пресных вод, законсервированных в полярных ледниках в виде льда, недоступна для использования, то объем остальной части пресных вод составляет всего лишь немногим более 4,2 млн. км3, или 0,3 % объема К водным ресурсам относятся все виды воды, исключая воду, физически и химически связанную с горными породами и биосферой. Они делятся на две различные группы, состоящие из стационарных запасов воды и возобновимых запасов, участвующих в процессе круговорота воды и оцениваемых балансовым методом. Для практических нужд необходимы в Распределение и потребление воды по территории Земли и отдельным регионам неравномерно (табл. 2.3).
Водные ресурсы не всегда соответствуют требованиям хозяйства.
Это относится к качеству воды, устойчивости водных ресурсов во времени и распределению по территории. Наиболее высокие требования к качеству водных ресурсов предъявляются при использовании их в PDF создан в pdfFactory Pro пробной версии www.pdffactory.com рыборазведении и для питьевого водоснабжения.
Для использования речного стока в связи с его неравномерным территориальным и временным распределением необходимо регулирование стока, что достигается путем создания водохранилищ и переброской стока.
Первые стандарты качества питьевой воды были утверждены в СССР и в США в 1937 г. Советский стандарт включал 30 обязательных показателей. Всемирная организация здравоохранения рекомендует учитывать более 100 показателей качества питьевой воды. Полномасштабный контроль качества воды требует значительных вложений, направленных на организацию соответствующих служб, создание приборов, разработку Распределение воды и ее потребление по континентам (общее/безвозвратное) [по Глухову В.В., 1999)] Особенностью природных водоемов является их способность к самоочищению за счет осаждения примесей, деятельности водных растений, разложения веществ в воде, кругооборота воды.
На территории бывшего СССР около 2870 тыс. рек и других естественных водотоков длиной больше 0,5 км формируют сток, среднемноголетний объем которого составляет более 4 тыс. км3 в год.
По величине формируемого стока территория СНГ естественным образом делилась на регионы, принадлежащие к водосборным бассейнам трех океанов или их частям. Наибольший речной сток формируется PDF создан в pdfFactory Pro пробной версии www.pdffactory.com на западном, северном и восточном склонах территории бывшего СССР, а также в бассейнах Балтийского моря и Тихого океана. Особенно низкий сток характерен для бессточной области Казахстана и Распределение речного стока по территории Беларуси и сопредельных государств очень неравномерно, о чем свидетельствует табл. 2.4. В ней приведены данные о местном речном стоке, формируемом на территории какой-либо республики или СССР в целом, и общем стоке рек, представляющем сумму местного и поступающего извне речного стока.
Значительная доля общего речного стока приходится на приток речных вод извне (транзитный сток). Это объективно создает трудности в управлении располагаемыми водными ресурсами рек, которые иногда довольно трудно использовать. Например, около 73 % общих ресурсов речного стока на Украине – это сток р. Дунай.
Наибольший речной сток формируется в Грузии, величина слоя стока достигает 765 мм. Хорошо обеспечены собственным речным стоком Армения, Киргизия, Прибалтийские республики, Россия и Таджикистан. Небольшими ресурсами поверхностных вод располагают Молдавия и Узбекистан, а наименьшими – Туркмения, где удельная величина речного стока составляет лишь 2,3 мм.
Республика Беларусь относительно небогата водными ресурсами. Это обусловлено рядом объективных и других факторов, которые показывают реальную ситуацию с проблемами обеспечения и использования поверхностных и подземных вод республики.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Чтобы правильно оценить реальные запасы водных ресурсов необхродимо учитывать следующие аспекты, которые возникают при их использовании и которые в разной степени ограничивают их использование в хозяйстве:
• Неравномерность размещения ресурсов по территории • Загрязнение верхних горизонтов подземных и грунтовых вод, которые используются для обеспечения сельского и городского населения питьевой водой;
• Загрязнение воды радионуклилами после аварии на ЧАЭС, По степени водообеспеченности страны Европейской части СНГ разделены на 3 зоны: высокой, средней и низкой обеспеченности.
Зона высокой обеспеченности занимает около половины территории, в которой наблюдаются излищки воды, что приводит к образованию болот и заболоченных земель.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Зона средней обеспеченности отличается достаточным количеством водных ресурсов для нужд хозяйства (Центральная Зона низкой, или недостаточной водообеспеченности включает юг Украины, Крым, Донбасс, Заволжье и т. д., где водные ресурсы составляют несколько процентов от всех запасов, а для обеспечения водой необходима переброска воды из других речных бассейнов.
Территория республики Беларусь относится ко второй зоне. По данным ГВК преобладают самые малые и малые реки (табл. 2.6.) Однако, значительная часть воды находится в водоемах замедленного водообмена, круговорот ресурсов которых происходит за длительный период (табл. 2.7.).
Объемы воды и площаль водной поверхности водотоков и водоемов PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Существует шесть гипотез появления воды на земном шаре.
Первая гипотеза исходит из «горячего» происхождения Земли.
Считается, что некогда Земля была расплавленным огненным шаром, который, излучая тепло в пространство, постепенно остывал. Появилась первородная кора, возникли химические соединения элементов и среди них соединение водорода с кислородом, или, проще говоря, вода.
Пространство вокруг Земли все более заполнялось газами, которые непрерывно извергались из трещин остывающей коры. По мере охлаждения пары образовывали облачный покров, плотно окутавший нашу планету. Когда температура в газовой оболочке упала настолько, что влага, содержащаяся в облаках, превратилась в воду, пролились первые дожди. Тысячелетие за тысячелетием низвергались дожди. Они-то и стали тем источником воды, которая постепенно заполнила океанические впадины и образовала Мировой океан.
Вторая гипотеза исходит из «холодного» происхождения Земли с ее последующим разогревом. Разогрев стал причиной вулканической деятельности. Извергаемая вулканами лава выносила на поверхность планеты пары воды. Часть паров, конденсируясь, заполняла океанические впадины, а часть образовала атмосферу. Как теперь подтверждено, главной ареной вулканической деятельности на первых стадиях эволюции Земли действительно являлось дно современных океанов.
Согласно этой гипотезе вода содержалась уже в той первичной материи, из которой сложилась наша Земля. Подтверждением такой возможности является наличие воды в падающих на Землю метеоритах.
Третья гипотеза также исходит из «холодного» происхождения Земли с последующим ее разогревом. В мантии Земли на глубинах 50– 70 км из ионов водорода и кислорода начал возникать водяной пар. Однако высокая температура мантии не позволяла ему вступать в химические соединения с веществом мантии.
Под действием давления пар выжимался в верхние слои мантии, а затем и в кору Земли. В коре более низкие температуры стимулировали химические реакции между минералами и водой, в результате разрыхления пород, образовались трещины и пустоты, которые немедленно заполнялись свободной водой. Под действием давления воды PDF создан в pdfFactory Pro пробной версии www.pdffactory.com трещины раздавались, превращались в разломы, и вода через них устремлялась на поверхность. Так возникли первичные океаны.
В пользу приведенной гипотезы свидетельствует резкое возрастание скорости сейсмических волн на глубине 15–20 км, т. е. как раз там, где должна пролегать граница предполагаемого раздела между гранитом и поверхностью рассола, граница резкого изменения физико-химических свойств вещества.
Приведенную гипотезу подтверждает и так называемый дрейф материков. Гранитные громады материков перемещаются. Они «плывут», хотя скорость их движения составляет всего несколько сантиметров в столетие.
Четвертая гипотеза принадлежит английскому астрофизику Хойлу и опубликована сравнительно недавно, в 1972 г. Она представляет собой следствие из гипотезы происхождения Солнечной системы. Конденсация протопланетного облака, окружавшего протоСолнце, протекала неравнозначно на разных расстояниях от Солнца.
Чем дальше от него, тем температура облака была ниже. Ближе к Солнцу могли конденсироваться, скажем, металлы как вещества более тугоплавкие. А там, где проходят орбиты Урана, Нептуна и Плутона, по расчетам Хойла, температура составляла примерно 350 К, что уже достаточно для конденсации паров воды. Именно этим обстоятельством можно объяснить «водную» природу Урана, Нептуна и Плутона, образовавшихся в процессе слияния частиц льда и снега. «Водную»
природу указанных планет подтверждают новейшие астрономические Расчеты, выполненные Хойлом, подтверждают возможность образования земных океанов из ледяных дождей, для чего потребовалось всего несколько миллионов лет.
Пятая гипотеза, как и четвертая, предполагает космическое происхождение воды, но из других источников. Дело в том, что на Землю из глубин космоса непрерывно низвергается ливень электрически заряженных частиц. И среди этих частиц изрядную долю составляют протоны – ядра атомов водорода. Пронизывая верхние слои атмосферы, протоны захватывают электроны и превращаются в атомы водорода, которые тут же вступают в реакцию соединения с кислородом атмосферы. Образуются молекулы воды. Расчет показал, что космический источник такого рода способен дать почти 1,5 т воды в год, и эта вода в виде осадков достигает земной поверхности.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Шестая гипотеза. Как установлено учеными, примерно 250 млн.
лет назад на Земле был единый континент. Затем, неизвестно по каким причинам, он треснул, и части его начали расползаться, «уплывать» друг от друга.
Доказательствами существования некогда единого материка является не только подобие береговых линий, но также сходство флоры и фауны, сходство геологических структур побережий.
Исследования последних лет подтвердили: материки «плывут», расстояние между ними непрерывно увеличивается. Передвижение материков блестяще объясняет гипотеза расширяющейся Земли. Гипотеза утверждает: первоначально Земля имела радиус вдвое меньший, чем сейчас. Материки, слитые тогда воедино, опоясывали планету.
Океанов не существовало. И вот на границе протерозоя и мезозоя (250–300 млн. лет назад) Земля начала расширяться. Единый материк дал трещины, которые, наполнившись водой, превратились в океаны.
Однако по мере уплотнения пылевого облака происходило его гравитационное сжатие, и давление внутри прото-Земли возрастало.
Соответственно росла и степень поглощения водорода металлами группы железа. Сжатие порождало антипод давления – разогрев. А так как наибольшему сжатию подвергались центральные области образовавшейся планеты, то там стремительнее росла и температура.
И вот на какой-то стадии разогрева, когда температура в ядре Земли достигла определенного критического значения (переход количественного роста в новое качественное состояние!), начался обратный процесс – выделение водорода из металлов.
Таким образом, дегазация водорода сопровождалась расширением Земли. Между тем водород, пронизывая огромную толщу планеты, захватывал по пути атомы кислорода, и на поверхность ее вырывались уже пары воды. Конденсируясь, вода заполняла разломы в коре. Постепенно образовались океаны.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Вода и ее круговорот. Воды земного шара находятся в постоянном взаимодействии и в процессе круговорота связаны воедино. Под влиянием солнечной радиации с поверхности океанов, морей, рек, озер, ледников, снежного покрова и льда, почвы и растительности происходит испарение воды. Испарение с поверхности океанов и морей – основной источник поступления влаги в атмосферу. Большая часть этой влаги выпадает в виде атмосферных осадков непосредственно на поверхность океанов и морей, совершая так называемый малый круговорот. Меньшая ее доля участвует в большом круговороте, вступая в сложные взаимодействия с земной поверхностью. Большой круговорот включает в себя ряд местных влагооборотов и представляет собой многообразный процесс перемещения, расходования и возобновления влаги на земной поверхности, в недрах земли и в атмосфере. Атмосферные осадки, орошая поверхность материков, частично просачиваются в почву, частично стекают по склонам и образуют ручьи, реки, озера, болота. Поглощенная почвой вода частью испаряется непосредственно или транспирируется растениями, частью просачивается вглубь и формирует подземные воды. Последние участвуют в питании рек, озер или достигают моря подземными путями.
Влага, поступившая в атмосферу в результате испарения с поверхности суши и ее водоемов, дополняет то количество ее, которое поступает с океана. Воздушными течениями она переносится вглубь материка и, выпадая в виде дождя и снега, орошает территории, более или менее удаленные от океана. Выпавшие осадки вновь испаряются, просачиваются, стекают по земной поверхности. Сток воды рек, впадающих в океан, завершает большой круговорот воды на земном шаре. Упрощенная схема представлена на рис. 2.3. В действительности явление круговорота Круговорот воды состоит из нескольких звеньев, главные из которых атмосферное, океаническое, материковое. В атмосферном звене происходит перенос влаги в процессе атмосферной циркуляции и образование атмосферных осадков. Единовременный запас влаги в атмосфере невелик, всего 14 тыс. км3,. но при постоянном возобновлении этой влаги в процессе испарения с поверхности Земли объем осадков, выпадающих на эту поверхность, равен 525 тыс. км3. Таким образом, в среднем каждые 10 суток влага атмосферы возобновляется.
Для океанического звена круговорота характерно непрерывное PDF создан в pdfFactory Pro пробной версии www.pdffactory.com восстановление запасов влаги в атмосфере путем испарения. С поверхности океанов в атмосферу поступает 86,0 % общего количества испарившейся влаги на земном шаре.
Рис. 2.3. Схема круговорота воды (по М.И. Львовичу). 1 – осадки, 2 – водопроницаемые породы, 3 – слабопроницаемые породы, 4 – непроницаемые породы, 5– источник, 6 – направление движения воды и водяных паров Материковое звено по активности участия его вод в круговороте отличается большим разнообразием. В этом звене М. И. Львович в свою очередь выделяет почвенное, литогенное, речное, озерное, ледниковое и биологическое звенья.
Почва осуществляет обмен влагой как с атмосферой, реками и озерами, так и с недрами земли – литогенным звеном. Обмен этот происходит путем просачивания, стекания по поверхности, испарения и транспирации сравнительно быстро, в пределах одного года.
Степень подвижности воды в литогенном звене неодинакова.
Наиболее активно участвуют в общем круговороте воды подземные воды, залегающие вблизи земной поверхности до уровня дренирования их речной сетью и питающие реки. Продолжительность их обмена – от месяца до нескольких лет. С удалением от земной поверхности, на больших глубинах, подземные воды становятся менее подвижны.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Реки возвращают в океан воды, которые поступили в процессе круговорота на сушу. Обмен воды, содержащейся в руслах рек, происходит весьма быстро: в среднем, по данным разных авторов, за 12– 25 суток. Но если к объему русловых вод прибавить объем проточных озер, то активность водообмена значительно уменьшится и его продолжительность возрастет до трех лет.
В ледниках как бы законсервированы большие массы воды в виде льда. Движение льда медленное, поэтому продолжительность обмена воды (льда) в ледниках колеблется, по разным данным, от Анализ активности водообмена раскрывает весьма интересную и важную черту ресурсов пресных вод – их относительно быстрое возобновление.
Таким образом, круговорот воды в природе, совершающийся под влиянием солнечного тепла и силы тяжести, объединяет несколько геофизических процессов, происходящих в его звеньях,– это испарение, перенос влаги в атмосфере, ее конденсация и выпадение осадков, просачивание их в почву и горные породы, сток поверхностных и Особую роль в круговороте воды занимают биологические процессы – транспирация и фотосинтез. В среднем расход воды на транспирацию приблизительно равен 30 000 км3 в год (по Львовичу). Эта величина превышает 40 % суммарного испарения со всей суши и составляет 7 % испарения с поверхности земного шара, включая океан.
Воды, стекающие по земной поверхности, не все попадают в океаны и моря. Ниспадающие к океанам покатости, сток с которых направлен в океан, называются сточными или периферийными областями стока. Замкнутые пространства, не имеющие связи с океанами, сток с которых не достигает океана, называются областями внутреннего стока или бессточными (по отношению к океану). Воды этих областей расходуются на испарение либо по пути стока, либо с поверхности конечных замкнутых водоемов, куда они стекают. Области внутреннего стока обмениваются влагой с периферийными областями только путем переноса ее воздушными течениями в атмосфере или в незначительной мере подземными путями.
Общая площадь периферийных областей земного шара составляет 117 млн. км2 и почти в 4 раза превосходит площадь областей внутреннего стока, равную 32 млн. км2. Большая периферийная область в нашей стране – ниспадающая к Арктическим морям, с которой собирают PDF создан в pdfFactory Pro пробной версии www.pdffactory.com свои воды реки Сибири: Обь, Енисей, Лена, Яна, Индигирка, Колыма и др. Огромные периферийные области направлены к Атлантическому океану, с них стекают большие реки мира: Амазонка, Миссисипи, Нигер, Конго, и многие реки Европы: Нева, Западная Двина, Висла, Одра, Эльба, Рейн, Луара и др.
Большая область внутреннего стока – Арало-Каспийская, К ней принадлежат бассейны рек Волги, Урала, Куры, Сырдарьи, Амударьи и др.
К бессточным же областям относятся пустыни Сахара, Аравийская и Центрально-Австралийская.
Естественные циклы основных биогенных веществ. Для обеспечения жизнедеятельности растений и животных требуются различные химические элементы, но только некоторые из них имеют преобладающее значение. Основа жизни – белки, углеводы и жиры складываются из шести основных элементов: водорода, углерода, азота, кислорода, фосфора и серы. Кроме фосфора они все образуют растворимые и летучие соединения и таким образом участвуют в повторном В процессе фотосинтеза зеленые растения и водоросли на свету выделяют кислород, причем не из углекислого газа, как это считалось кислорода, поэтому первые организмы были анаэробными. Накопление кислорода началось в докембрии. Сейчас запасы свободного кислорода оцениваются приблизительно в 1,6*1015 т.
Кислород является самым распространенным элементом на Земле. В гидросфере его содержится 85,82 % по массе, в литосфере %, в атмосфере 23,15 %. Кислород стоит на первом месте по числу образуемых им минералов (1364). Среди них преобладают силикаты, кварц, окислы железа, карбонаты и сульфаты. В живых организмах содержится в среднем около 70 % кислорода. Он входит в состав большинства органических соединений (белков, жиров, углеводов и т.д.) и в состав органических соединений скелета.
Свободный кислород играет большую роль в биохимических и физиологических процессах, особенно в аэробном дыхании.
В области свободного кислорода формируются резко окислительные условия, в отличие от сред, в которых кислород отсутствует (в магме, глубоких горизонтах подземных вод, илах морей и озер, в болотах), где образуется восстановительная обстановка.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Огромное значение для атмосферы имеет также двуокись углерода. Его содержание в атмосфере до промышленной революции, в 1800 г составляло 0,029 %, а в настоящее время ее содержание превысило 0,033 %. В океане этого газа растворено в 50 раз больше.
Углерод в больших количествах содержится в земной коре, прежде всего в карбонатных породах – 9,6*1015 т и горючих ископаемых (угли, нефть, сланцы, битумы, газы, торф). Разведанные запасы горючих ископаемых по углероду оцениваются в 1013 т.
Синтезированные растениями углеводы (глюкоза, сахароза, крахмал и другие) являются главным источником энергии для большинства гетеротрофных организмов.
Воздух по объему почти на 80 % состоит из молекулярного азота N2 и представляет собой крупнейший резервуар этого элемента. Естественный цикл азота является более сложным, чем углерода. Большинство биологических форм не могут усваивать газообразный азот.
Поэтому сначала происходит фиксация азота – превращение N2 в неорганические и органические соединения, которые происходят как физико-химическим, так и биологическим путем. Основными фиксаторами азота являются бактерии, грибки и водоросли (прежде всего В процессе цикла продуцент – консумент – редуцент нитраты становятся составной частью белков, нуклеиновых кислот и других компонентов. Погибшие организмы являются объектом деятельности редуцентов – бактерий и грибов, при этом они азот превращают в аммиак. И далее в нитрит и обратно газообразный азот (рис 2.4).
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Фосфор, необходимый животным и растениям для построения белков протоплазмы, поступает в круговорот за счет эрозии фосфатных пород и гуано, минерализации продуктов жизнедеятельности и органических остатков. Фосфаты потребляются растениями. Не образующий летучих соединений фосфор имеет тенденцию накапливаться в море. Вынос фосфора из моря на сушу осуществляется в основном с рыбой и с пометом морских птиц (рис 2.5).
Сера относится к весьма распространенным химическим элементам, которые встречаются в свободном состоянии – самородная сера и в виде соединений – сульфидов, полисульфидов и сульфатов.
Известно более 150 минералов серы, среди которых доминируют сульфаты. В природе широко распространены процессы окисления сульфидов до сульфатов, которые обратно восстанавливаются до H2S и сульфидов. Эти реакции происходят при активном участии микроорганизмов, прежде всего десульфирующих бактерий и серобактерий.
В виде органических и неорганических соединений сера постоянно присутствует во всех живых организмах и является важным биогенным элементом, она входит в состав широко распространенных соPDF создан в pdfFactory Pro пробной версии www.pdffactory.com единений: аминокислот, коферментов, витаминов.
Организмы в основном состоят из вышеперечисленных элементов, однако они не смогут жить, если не будут содержать в достаточных количествах некоторые катионы: калий, кальций, магний и натрий, которые относятся к группе макроэлементов, потому что их содержание выражается в сотых долях сухого вещества. Некоторые вещества нужны организмам в очень маленьких количествах, к ним, например, относятся железо, бор, цинк, медь, марганец, молибден и анион хлора. Микроэлементы выражаются в миллионных долях сухого вещества. В пищевую цепь они поступают в основном через круговорот воды. Они обладают высокой биологической активностью и участвуют во всех процессах жизнедеятельности: белковом, жировом, углеводном, витаминном, минеральном обмене, газо- и теплообмене, тканевой проницаемости, клеточном делении, образовании костного скелета, кроветворении, росте, размножении, иммунобиологических Циклы некоторых токсичных элементов. Второстепенные для живых организмов химические элементы, также как и жизненно важные, мигрируют между организмами и средой. В естественных экологических системах они содержатся в таких концентрациях и формах, что не оказывают отрицательного влияния на организмы. В настоящее время стала весьма острой проблема токсичных веществ.
Ртуть, также как и другие тяжелые металлы, почти не влиял на организмы до наступления индустриальной эры, потому что ее концентрации в природе были невелики, а она сама химически малоподвижна. Разработка месторождений и промышленное использование ртути (в электротехническом оборудовании, термометрах, красках и фунгицидах) увеличили ее поток в экосистемы. Чистый элемент не токсичен. Превращение в токсичные органические соединения ртути, такие как метилртуть и этилртуть, происходит благодаря бактериям, присутствующим в детритах и осадках. Эти соединения легко растворимы, подвижны и очень ядовиты. Химической основой агрессивного действия ртути является ее сродство с серой, в частности с сероводородной группой в белках. Эти молекулы связываются с хромосомами и клетками головного мозга. Рыбы и моллюски могут накапливать их до концентраций опасных для человека, употребляющего их в пищу, вызывая болезнь Минамата.
Кадмий представляет собой один из самых опасных токсикантов PDF создан в pdfFactory Pro пробной версии www.pdffactory.com среды, он значительнее токсичнее свинца. В последние 30–40 лет он находит все большее техническое применение. Его попадание в пищевые цепи связано с его промышленными выбросами в воздух и воду.
Кадмий имеет свойство накапливаться в организмах животных и растений. Отравление кадмием получило название кадмиоз или Болезнь Итай-итай (в переводе с японского «больно»).
Стронций-90 и цезий-137 – продукты деления атома, имеющие большой период полураспада. Эти ранее малоизученные элементы теперь являются объектами пристального внимания в связи с их большой опасностью для человека и животных. Они попадают в окружающую среду при производстве и использовании различных источников ядерной энергии. Эти вещества активно циркулируют по пищевым цепям и накапливаются в тканях животных и растений. Это связано с тем, что стронций по свойствам похож на кальций, а цезий – на калий. Стронций может оказывать также канцерогенное действие.
Дихлордифенилтрихлорэтан или просто ДДТ– пестицид (пестис – зараза, циде – убиваю, лат.), использовавшийся, а местами используемый до сих пор в сельском хозяйстве для борьбы с насекомыми. В свое время его открытие было отмечено Нобелевской премией.
Он малорастворим и никогда не поступает в верхние слои атмосферы и при этом встречается повсюду. Его обнаруживают в тканях пингвинов Антарктиды. Он в основном мигрирует по пищевым цепям, при этом в конце пищевого цикла его концентрация может увеличиться в 1000 раз. Сейчас его использование запрещено.
Диоксины – это группа веществ, в которую входят сотни видов хлор–, бром- и хлорброморганических циклических эфиров. Диоксины образуются во многих технологических процессах различных производств, включая сжигание отходов, биологическую очистку сточной воды и сгорание топлива в двигателях. Эти вещества превосходят по своей токсичности соединения тяжелых металлов.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com
ЭКОЛОГИЧЕСКИЕ ЗАКОНЫ
Под системой вообще понимается совокупность элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, то есть структурно-функциональное единство.С одной стороны система в науке рассматривается как единое целое, с другой – как совокупность элементов. Причем целое имеет новые, особые свойства, которые отсутствуют у его составляющих элементов (например, молекула обладает иными свойствами, чем составляющие ее атомы). Это закон эмерджентности (неожиданное появление, англ.) известный с древности, как “целое больше суммы его частей”. Очевидно, что никакая система не может сформироваться из абсолютно идентичных элементов. Даже в кристаллической решетке алмаза положение атомов углерода делает их функционально различными. Это закон необходимого разнообразия. Нижний предел – не менее двух элементов, а верхний – бесконечность.
Все многообразие мира можно представить в виде четырех последовательно возникших иерархий: физико-химической, биологической, социальной и технической (рис. 3.1). При их взаимодействии или объединении появляются новые системы, являющиеся экономическими или экологическими. Системы, элементы которых взаимосвязаны переносами (потоками) вещества, энергии и информации называются динамическими.
Основными характеристиками любой системы будут: а) границы, б) свойства элементов и системы в целом, в) структура, г) характер связей и взаимодействия между элементами системы, а также между системой и ее внешней средой.
Экологическая система представляет собой любую совокупность живых оpганизмов и сpеды их обитания, взаимосвязанных обменом веществ, энеpгии, и инфоpмации, котоpую можно огpаничить в пpостpанстве и во вpемени по значимым для конкpетного исследования пpинципам.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Рис. 3.1. Уровни организации материального мира (по В.Ф. Попову):
Ф-Х – физико-химическая, Б – биологическая, С – социальная, Т – техническая Изучение пpиpодных экосистем в общем случае производится в стpуктуpном и функциональном аспектах.
Информационная сеть экосистемы состоит из потоков сигналов физико-химической природы. Управление в экосистемах основывается на обратной связи, по которой часть сигналов с выхода системы В экосистемах формируются сложнейшие цепи и сети причинно-следственных связей, основанные на механизме обратной связи, которые часто образуют замкнутые кольца, именуемые контуром обратной связи. Простейшим примером такого контура служит модель Любая экологическая система является системой открытой, поскольку она всегда взаимодействует с внешней средой: солнечной радиацией, влагообоpотом на поверхности и в грунтах, ветровым переносом и выносом материала. Следовательно, любые пространственные ограничения экосистемы всегда условны.
Понятие экологической системы иерархично. Это означает, что всякая экологическая система определенного уровня включает в себя ряд экосистем предыдущего уровня, меньших по площади и сама она, в свою очередь, является составной частью более крупной экосистемы. Например, правомерно рассматривать в качестве экосистемы озерную впадину, ограниченную склонами котловины. Продолжая этот ряд вверх, можно подойти к экологической системе Земли – биоPDF создан в pdfFactory Pro пробной версии www.pdffactory.com сфере, а двигаясь вниз – к биогеоценозу, как элементарной биохорологической (хора – пространство, гр.) единице биосферы. Учитывая решающее значение на развитие живого вещества Земли зональных факторов, правомерно представить себе такой территориальный ряд соподчиненных экосистем: элементарные – локальные – зональные – Надежная система может быть сложена из ненадежных элементов или подсистем, не способных к самостоятельному существованию. По отношению к экосистемам это правило может быть уточнено следующим образом: устойчивая экологическая система может состоять из менее устойчивых компонентов или подсистем; или – устойчивость экологической системы, как единого целого всегда выше устойчивости каждого отдельного ее компонента или подсистемы.
Классическим примером тому могут служить лишайники, коралловые рифы, сообщества “социально организованных” насекомых.
В открытых системах, к которым относятся и экологические, могут идти процессы как с возрастанием, так и уменьшением энтропии. При этом в экосистеме вещество распределяется таким образом, что в одних местах энтропия возрастает, а в других резко снижается.
В целом же, система не теряет своей организованности или высокой Любая экосистема состоит из биотических (живые организмы) и абиотических (косная или неживая природа) компонентов.
Биоту (сообщество организмов), входящую в состав биогеоценоза или элементарной экосистемы, принято называть биоценозом (биос – жизнь, койнос – сообщество, гр.), а пространство им занятое – биотопом (топос – место, гр.). Совокупности пpиpодных фактоpов, в свою очередь, определяют и лимитируют развитие экосистем. Таким образом, абиотические компоненты в совокупности с биотическими и природными факторами, составляют экологические условия жизнеобитания.
Основой фоpмиpования и функциониpования биогеоценозов, а следовательно и экосистем, являются продуценты – растения и микроорганизмы, способные производить (пpодуциpовать) из неорганического вещества органическое, используя энергию света или химические реакции.
Они выделяют чистую первичную продукцию, обусловленную приростом биомассы, и валовую первичную продукцию, в которую PDF создан в pdfFactory Pro пробной версии www.pdffactory.com входит общее количество продуцируемой в ходе фотосинтеза органики, включая энергию израсходованную на жизнедеятельность (например, на дыхание и выделение ароматических веществ). При этом первичной продуктивностью называют биомассу, а также энергию и летучие биогенные вещества, производимые продуцентами на единице Продуценты, использующие для пpодуциpования органического вещества солнечную энергию называются автотрофами (автос – сам, троф – питаться, гр.), а использующие химическую энергию – хемотpофами. К последним относятся оpганизмы, синтезирующие органическое вещество из неорганического за счет энергии окисления аммиака, сеpоводоpода, железа и других веществ, находящихся в почве или подстилающих горных породах. Сеpоводоpод, газы нефтяного ряда могут поступать из недр земли по тектоническим разломам, а близ поверхности Земли осваиваться хемотpофными бактериями.
Определяющим фактором видового состава экосистем являются фитоценозы – растительные сообщества, адекватные условиям их существования. Они характеризуются:
максимальной эффективностью использования солнечной энергии для производства и накопления органического вещества;
адаптации к меняющимся условиям среды (например – тропические высотной яpусностью, обеспечивающей возможность наиболее полного использования солнечного света (ярусы древесной, кустарниковой, кустарничковой, напочвенной растительности);
широтной зональностью, высотной поясностью, различием на склонах различной экспозиции;
В отличие от продуцентов, образующих первичную продукцию экосистем, оpганизмы, использующие эту продукцию, получили название гетеpотpофы (гетерос – разный, гр.). Они используют для фоpмиpования своих оpганов готовое органическое вещество других организмов и продукты их жизнедеятельности.
Гетеротрофностью обладают консументы (консумо – потреблять, лат.) – потребители живого органического вещества, к которым относятся фитофаги и зоофаги. Консументы определяют вторичную PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Фитофаги – травоядные (фитос – растение, фагос – пожиратель) или растительноядные. Фитофаги – вторичные аккумуляторы солнечной энергии, первоначально накопленной астениями. В животных тканях, особенно – жирах ее много больше, чем в растительных. Исключая семена злаков, бобовых и масличных культур.
Зоофаги – хищники, поедающие фитофагов и более мелких хищников. Хищники – важнейшие регулятоpы биологического равновесия: они не только регулируют количество животных-фитофагов, но выступают как санитары, поедая в первую очередь животных больных и ослабевших. Их полезность несомненна. Примеры: хищные птицы питающиеся мышами-полевками и другими полевыми грызунами и регулирующие их численность, дятлы, поедающие насекомых – фитофагов, стрижи и ласточки – кровососущих насекомых.
Крупные хищники малочисленны – надобно много свободной территории, где бы им не мешал человек. Их сохранение обеспечивается организацией особо охpаняемых территорий – заповедников, заказников, национальных и приpодных парков.
Симбиотpофы (симбиоз – сожительство, гр.) – микроорганизмы и грибы, живущие на корнях растений и вокруг них и получающие часть продуктов фотосинтеза в виде выделяемых корнями органических веществ. Они всасывают из почвы и передают растению воду и минеральные соли, переводят азот воздуха в формы, доступные для освоения растениями. Если взять все органическое вещество, которое продуцирует растение, 2/3 его сосредоточено в биомассе тканей самого растения, а 1/3 выделяется корнями в почву.
Симбиотpофы получают от корня растений органическое вещество, используя грибницу – гифы, тончайшие нити, опутывающие и внедряющиеся в корни растения и передают корням поглощенные из почвы воду и минеральные соединения. Бактерии минерализуют гумус, делают доступным органику почвы для растений, связывают недоступный растениям атмосферный азот в аммиак, который усваивается растениями. Азотфиксирующие бактерии развиваются вокруг Паразиты – консументы, начиная от вирусов и бактерий (микpопаpазитов) и кончая крупными pастениями-паpазитами или насекомыми. Паразиты – оpганизмы, обитающие внутри или на повеpхности животных или растений, которые питаются за счет оргаPDF создан в pdfFactory Pro пробной версии www.pdffactory.com низма хозяина, но не съедают его до гибели, а пользуются длительное время. Паразит использует жизненные ресурсы хозяина и способен сократить его жизнь. К ним также относятся:
микpопаpазиты – вирусы и бактерии, вызывающие эпизоотии, эпидемии, некоторые болезни растений;
или животного, включая другого насекомого. Используются для биологических методов борьбы;
Сапрофаги – животные, поедающие трупы и экскременты (вороны, галки, гиены, оpлы-стеpвятники, жуки-навозники, мухи и т.п.).
Погибшие оpганизмы образуют детрит: запас органического вещества, который как бы выключен на какое то время из кругооборота органики. Детрит перерабатывают сапрофаги и редуценты (редуцере – возвращать назад, лат.). Собственно редуценты – микроорганизмы, разлагающие органическое вещество – детрит и экскременты животных до минеральных солей, которые возвращаются через почвенные растворы обратно корням растений. Переработка детрита, например упавших древесных стволов, процесс достаточно длительный.
Множество организмов – детритофагов живет в почве, королем почвы может быть назван дождевой червь, поедающий отмершие ткани растений. Пропуская их через свой кишечник он превращает их в экскременты с высоким содержанием органических веществ. Это один из активных производителей почвенного гумуса. Масса дождевых червей в почвах высокопродуктивных экосистем может быть выше Связи при которых одни оpганизмы поедают другие оpганизмы или их останки или выделения (экскременты) называются трофическими (трофе – питание, пища, гр.). При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи. Примером цепей может служить одна из трофических цепей водоемов:
дафнии (зоопланктон) – плотва – щука – чайки.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com Используя современные научные достижения в экологии и друх смежных наухможно ометить несколько наиболее важных законов и ринципов, которые применимы к гидоэкосистемам.
Закон биогенной миграции атомов (или закон Вернадского): миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов. Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности – эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов.
Закон внутреннего динамического равновесия: вещество, энергия, информация и динамические качества отдельных естественных систем и их иерархии очень тесно связанные между собою, так что любое изменение одного из показателей неминуемое приводит к функционально-структурным изменениям других, но при этом сохраняются общие качества системы – энергетические, информационные и динамические. Следствия действия этого закона обнаруживаются в том, что после любых изменений элементов естественной среды (вещественного состава, энергии, информации, скорости естественных процессов и т.п.) обязательно развиваются цепные реакции, которые стараются нейтрализовать эти изменения.
Изменения в больших экосистемах могут иметь необратимый характер, а любые локальные преобразования природы вызовут в биосфере планеты (то есть в глобальном масштабе) и в ее наибольших подразделах реакции ответа, которые предопределяют относительную неизменность эколого-экономического потенциала. Искусственное возрастание эколого-экономического потенциала ограниченное термодинамической стойкостью естественных систем.
Закон исторической необратимости: развитие биосферы и чеPDF создан в pdfFactory Pro пробной версии www.pdffactory.com ловечества как целого не может происходить от более поздний фаз к начальным, общий процесс развития однонаправленный. Повторяются лишь отдельные элементы социальных отношений (рабство) или типы Закон константности (сформулированный В. Вернадским): количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемое приводит к такому же по объему изменения вещества в другом регионе, только с обратным знаком. Следствием этого закона является правило обязательного заполнения экологических ниш.
Закон генетического разнообразия: все живое генетическое разное и имеет тенденцию к увеличению биологической разнородности.
Закон имеет важное значение в природопользовании, особенно если не сразу можно предусмотреть результат нововведений во время выращивания новых микрокультур через возникающие мутации или распространение действия новых биопрепаратов не на те виды организмов, на которые они рассчитывались.
Закон корреляции (сформулированный Ж. Кювье): в организме как целостной системе все его части отвечают одна другой как за строением, так и за функциями. Изменение одной части неминуемо Закон максимизации энергии (сформулированный Г. и Ю. Одумами и дополненный М. Рэймерсом): в конкуренции с другими системами сохраняется та из них, которая наибольшее оказывает содействие поступлению энергии и информации и использует максимальную их количество наиэффективнее. Для этого такая система, большей частью, образовывает накопители (хранилища) высококачественной энергии, часть которой тратит на обеспечение поступления новой энергии, обеспечивает нормальный кругооборот веществ и создает механизмы регулирования, поддержки, стойкости системы, ее способности приспосабливаться к изменениям, налаживает обмен с другими Закон максимума биогенной энергии (закон Вернадского– Бауэра): любая биологическая и «бионесовершенная» система с биотой, которая находится в состоянии «стойкого неравновесия» (динаPDF создан в pdfFactory Pro пробной версии www.pdffactory.com мично подвижного равновесия с окружающей средой), увеличивает, развиваясь, свое влияние на среду. В процессе эволюции видов выживают те, которые увеличивают биогенную геохимическую энергию.
Вместе с другими фундаментальными положениями закон максимума биогенной энергии служит основой разработки стратегии природопользования.
Закон минимума (сформулированный Ю. Либихом): стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близкие к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.
Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.
Закон ограниченности естественных ресурсов: все естественные ресурсы в условиях Земли исчерпаемы. Планета есть естественно ограниченным телом, и на ней не могут существовать бесконечные Закон однонаправленности потока энергии: энергия, которую получает экосистема и которая усваивается продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго, третьего и других порядков, а потом редуцентам, что сопровождается потерей определенного количества энергии на каждом трофическом уровне в результате процессов, которые сопровождают дыхание. Поскольку в обратный поток (от редуцентов к продуцентам) попадает очень мало начальной энергии (не большее 0, %), термин «кругооборот энергии» есть довольно условным Закон оптимальности: никакая система не может суживаться или расширяться к бесконечности. Никакой целостный организм не может превысить определенные критические размеры, которые обеспечивают поддержку его энергетики. Эти размеры зависят от условий питания и факторов существования.
Закон пирамиды энергий (сформулированный Р. Линдеманом): с одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.
Закон равнозначности условий жизни: все естественные условия среды, необходимые для жизни, играют равнозначные роли. Из него вытекает другой закон – совокупного действия экологических фактоPDF создан в pdfFactory Pro пробной версии www.pdffactory.com ров. Этот закон часто игнорируется, хотя имеет большое значение.
Закон развития окружающей среды: любая естественная система развивается лишь за счет использования материальноэнергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно – это вывод из законов термодинамики.
Очень важными являются следствия закона. 1. Абсолютно безотходное производство невозможное. 2. Любая более высокоорганизованная биотическая система в своем развитии есть потенциальной угрозой для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни – оно будет уничтожено уже существующими организмами 3. Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.
Закон толерантности (закон Шелфорда): лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору.
Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.
Закон физико-химического единства живого вещества (сформулированный В. Вернадским): все живое вещество Земли имеет единую физико-химическую природу. Из этого явствует, что вредное для одной части живого вещества вредит и другой его части, только, конечно, разной мерой. Разность состоит лишь в стойкости видов к действию того ли другого агента. Кроме того, через наличие в любой популяции более или менее стойких к физико-химическому влиянию видов скорость отбора за выносливостью популяций к вредному агенту прямо пропорциональная скорости размножения организмов и дежурство поколений. Через это продолжительное употребление пестицидов экологически недопустимое, так как вредители, которые размножаются более быстро, более быстро приспосабливаются и выживают, а объемы химических загрязнений приходится увеличивать.
Закон экологической корреляции: в экосистеме все виды живого вещества и абиотические экологические компоненты функционально отвечают один другому. Выпадание одной части системы (вида) неминуемо приводит к выключению связанных с ею других частей экосистемы и функциональных изменений.
PDF создан в pdfFactory Pro пробной версии www.pdffactory.com
НА ГИДРОСФЕРУ
В процессе использования и потребления воды, необходимой для удовлетворения физиологических, хозяйственных и производственных потребностей людей, можно выделить три последовательных этапа: 1 – забор воды из природных источников и доставка ее к месту использования; 2 – использование воды в различных хозяйственнобытовых и производственных процессах; 3 – отведение и сброс в водоприемники использованной или сопутствующей процессу воды.Снижение загрязнения водных объектов достигается в основном по следующим направлениям.
Первое – это изменение технологических процессов, их совершенствование с целью снижения количества и видового состава загрязняющих отходов. Внедрение малоотходных и безотходных производств.
Второе – переход на ресурсосберегающее водообеспечение с максимально возможным использованием последовательной и оборотной системы водоснабжения, локальной доочистки вод.
Третье – это совершенствование методов очистки использованных вод. Причем, в отношении методов активной очистки сточных вод с созданием специальных очистных сооружений и систем, следует отметить, что локальная очистка вод, однородных по характеру загрязнения, намного эффективнее, проще и дешевле, чем очистка смеси сточных вод на централизованных очистных сооружениях.
И, наконец, в случаях неполноты или невозможности очистки сточных вод объекты-водоприемники, их гидрологический режим и гидробиологические особенности, режим сброса или способ захоронения сточных вод должны быть выбраны так, чтобы обеспечить соблюдение водоохранных и экологических норм.
Коммунально-бытовое хозяйство. Доля коммунально-бытового водоснабжения в общем водопотреблении невелика. Однако, водоснабжение населения – важнейшая задача любого города или села.
Отсутствие чистой питьевой воды – одна из главных причин болезней.
Поэтому 80-е годы XX века объявлены Международным десятилетиPDF создан в pdfFactory Pro пробной версии www.pdffactory.com ем питьевого водоснабжения и санитарии. Принцип приоритета коммунально-бытового водоснабжения заключается в том, что в любых условиях население должно быть обеспечено водой в первую очередь.
Коммунально-бытовое водоснабжение связано с непосредственным потреблением воды населением, с использованием воды для хозяйственно-бытовых целей, для удовлетворения нужд коммунальнобытового хозяйства, городского транспорта, строительных организаций.
Коммунально-бытовое хозяйство как водопотребитель имеет ряд особенностей. Прежде всего предъявляются высокие требования к качеству воды как по физическим свойствам, так и по химическим показателям. Важнейшим требованием является отсутствие в воде патогенных микробов, по содержанию которых воду делят на несколько типов (безупречно здоровая, здоровая, подозрительная, сомнительная, нездоровая, совершенно непригодная).
Особенностями коммунально-бытового водоснабжения являются также равномерность потребления воды в течение года и неравномерность в течение суток. При повышении температуры воздуха потребление воды несколько возрастает, но сезонные колебания не превышают 15 – 20 %. В то же время суточные колебания значительны, так как более 70 % воды потребляется днем.
Нормы хозяйственно-питьевого водоснабжения зависят от благоустройства жилого фонда населенного пункта и климатических условий, а часто и исторических.
Гидроэнергетика. В современных условиях гидроэнергетика – один из важнейших компонентов водохозяйственных комплексов.
Полезный объем водохранилищ действующих гидроэлектростанций составляет 95 % общего полезного объема всех водохранилищ.
Гидроэлектростанции обладают такими достоинствами, как неистощимость энергетических ресурсов, высокая степень их использования (до 90 %), низкие себестоимость вырабатываемой энергии и затраты труда на единицу мощности (в 10 раз меньше, чем на тепловых (ТЭЦ) и атомных (АЭС) электростанциях).
Требования гидроэнергетики к водным ресурсам сводятся к обеспечению стабильного в течение года расхода воды. Для эффективной работы гидротурбин напор при сработке комплексных водохранилищ не должен падать больше, чем на 30 – 40 %.
Различают общий энергетический потенциал речного стока по PDF создан в pdfFactory Pro пробной версии www.pdffactory.com отношению к уровню морей, технический – возможное использование гидроэнергетического потенциала на современном уровне развития техники и экономический – экономически целесообразный для реализации на гидроэлектростанциях при существующих ценах на топливо.
Наибольшим экономическим потенциалом в СССР располагали РСФСР (852 млрд. к В т -ч ), затем Таджикская ССР (85), Киргизская ССР (48), Грузинская ССР (32), Казахская ССР (27), наименьшим – Белорусская ССР (0,9), Молдавская ССР (0,7) и Эстонская ССР (0, Из зарубежных стран наибольшим экономическим потенциалом гидроэнергии располагают США (705 млрд. кВт-ч), Заир (660), Бразилия (657), Канада (535), Колумбия (300), Бирма (225), Индия (221), Аргентина (152), Индонезия (150), Чили (146), Япония (132), Эквадор (126 млрд. кВт-ч). Наиболее полно он использован во Франции, Швеции и Швейцарии (более 90 %), а также в Италии, Австрии, Испании и По характеру использования электрической энергии все потребители могут быть разделены на три основные группы:
– постоянные потребители, спрос на энергию которых в течение года не изменяется (большинство промышленных предприятий, нагрузка которых уменьшается лишь в выходные и праздничные дни);
– потребители с сезонно-изменяющейся нагрузкой (освещение, пригородный железнодорожный транспорт, водоснабжение) ;
– сезонные потребители (сельскохозяйственное производство, торфоразработки, машинное орошение и пр.).
В водохозяйственном комплексе наиболее часто используют плотинные ГЭС, которые строят как на равнинных, так и на горных реках.
На равнинных реках плотины обычно невысокие, создающие напор до Промышленность. В системе водного хозяйства страны промышленность выступает как один из крупнейших потребителей воды, предъявляющий различные требования к ее количеству и качеству. В настоящее время вода как фактор размещения промышленного производства приобретает большое значение, так как она является одним из элементов производственного процесса, несущим разнообразные функции, а также в ряде случаев и сырьем.
Для промышленного водопотребления характерны большие объемы водопотребления и водоотведения; незначительный процент PDF создан в pdfFactory Pro пробной версии www.pdffactory.com безвозвратного водопотребления; большая зависимость расхода воды, забираемого из источника, от технологии производства и системы водоснабжения; разнообразие функций использования воды; равномерность потребления воды в течение года; большой удельный вес в загрязнении источников воды.
Объем воды, необходимой для нормальной деятельности предприятий, определяется: 1 – характером использования воды; 2 – объемом и видом выпускаемой продукции; 3 – принятой технологией производства; 4 – системой промышленного водоснабжения.