WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 |

«В.К. Хмелевской, Ю.И. Горбачев, А.В. Калинин, М.Г. Попов, Н.И. Селиверстов, В.А. Шевнин. Под редакцией доктора геол.-мин. наук Н.И. Селиверстова. ГЕОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЙ УЧЕБНОЕ ПОСОБИЕ ДЛЯ ГЕОФИЗИЧЕСКИХ ...»

-- [ Страница 1 ] --

Камчатский государственный педагогический университет

В.К. Хмелевской, Ю.И. Горбачев, А.В. Калинин, М.Г. Попов, Н.И. Селиверстов,

В.А. Шевнин.

Под редакцией доктора геол.-мин. наук Н.И. Селиверстова.

ГЕОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЙ

УЧЕБНОЕ ПОСОБИЕ ДЛЯ ГЕОФИЗИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ ВУЗОВ

Петропавловск-Камчатский, 2004

ВВЕДЕНИЕ

Геофизические методы исследований — это научно-прикладной раздел геофизики, предназначенный для изучения верхних слоев Земли, поисков и разведки полезных ископаемых, инженерно-геологических, гидрогеологических, мерзлотногляциологических и других изысканий и основанный на изучении естественных и искусственных полей Земли. Геофизика, находясь на стыке нескольких наук (геологии, физики, химии, математики, астрономии и географии), изучает происхождение и строение различных физических полей Земли и протекающих в ней и ближнем космосе физических процессов. Ее подразделяют на физику Земли, включающую сейсмологию, земной магнетизм, глубинную геоэлектрику, геодезическую гравиметрию, геотермию;

геофизику гидросферы (физику моря); геофизику атмосферы и космоса и геофизические методы исследования, называемые также региональной, разведочной и скважинной геофизикой. Предметом исследования научно-прикладных разделов геофизики является осадочный чехол, кристаллический фундамент, земная кора и верхняя мантия с общей глубиной до 100 км.

Общее число геофизических методов или модификаций превышает 100 и существуют различные их классификации. По используемым физическим полям Земли их подразделяют на гравиразведку, магниторазведку, электроразведку, сейсморазведку, ядерную геофизику и терморазведку, называемые также гравиметрическими, магнитными, электромагнитными, сейсмическими, ядерно-физическими и термическими геофизическими методами исследований. В первых двух используют естественные, а в остальных — естественные и искусственные физические поля Земли. К естественным (пассивным) физическим полям Земли относят гравитационное (поле тяготения), геомагнитное, электромагнитное (разной природы), сейсмическое (поле упругих колебаний в результате землетрясений), радиоактивное и термическое. К искусственным (активным) относят следующие физические поля: электрическое, электромагнитное, сейсмическое (поле упругих колебаний, вызванных искусственным путем), вторичных ядерных излучений, термическое (поле температур).

Каждое физическое поле определяется своими параметрами. Например, гравитационное поле характеризуют ускорением свободного падения g и вторыми производными потенциала (Wxz, Wyz, Wzz и др.), геомагнитное поле — полным вектором напряженности Т и различными его элементами (вертикальным — Z, горизонтальным — Н и др.), электромагнитное — векторами магнитной Н и электрической Е компонент, упругое — временем и скоростями распространения различных упругих волн, ядернофизические — интенсивностями естественного I и искусственно вызванных (In, I и др.) излучений, термическое — распределением температур и тепловых потоков.

Принципиальная возможность проведения геологической разведки на основе изучения различных физических полей Земли определяется тем, что распределение параметров полей на поверхности или в глубине Земли, в море, океане или в воздушной оболочке зависит не только от общего строения Земли и околоземного пространства, а также происхождения или способа создания полей, т. е. от нормального поля, но также и от неоднородностей геологической среды, создающих аномальные поля. Иными словами, геофизика служит для выявления аномалий физических полей, обусловленных неоднородностями геологического строения, связанных с изменением физических свойств и геометрических параметров слоев, геологических или техногенных объектов.

Геофизическая информация отражает физико-геологические неоднородности среды в плане, по глубине и во времени. При этом возникновение аномалий связано с тем, что объект поисков, называемый возмущающим, либо сам создает поля в силу естественных причин, например, повышенной намагниченности, либо искажает искусственное поле вследствие различий физических свойств, например, отражение упругих или электромагнитных волн от контактов разных толщ.

Если геологические и геохимические методы являются прямыми, методами близкого действия, основанными на непосредственном, точечном или локальном изучении минерального, петрографического или геохимического состава вскрытых выработками пород, то геофизические методы являются косвенными, дальнодействующими, обеспечивающими равномерность, объемный характер получаемой информации и практически неограниченную глубинность. При этом производительность геофизических работ значительно выше, а стоимость в несколько раз меньше по сравнению с разведкой с помощью неглубоких (до 100 м) и в сотни раз меньше при бурении глубоких (свыше км) скважин. Повышая геологическую и экономическую эффективность изучения недр, геофизические методы исследования являются важнейшим направлением современной геологии.

Выявление геофизических аномалий — сложная техническая и математическая проблема, поскольку оно проводится на фоне не всегда однородного и спокойного нормального поля, а среди разнообразных помех геологического, природного, техногенного характера (неоднородности верхней части геологической среды, неровности рельефа, космические, атмосферные, климатические, промышленные и другие помехи).



Измерив те или иные физические параметры по системам обычно параллельных профилей или маршрутов и выявив аномалии, можно судить о свойствах пород и о геологическом строении района исследований.

Получаемые аномалии определяются прежде всего изменением физических свойств горных пород по площади и по глубине. Например, гравитационное поле зависит от изменения плотности пород ; магнитное поле — магнитной восприимчивости и остаточной намагниченности Ir; электрическое и электромагнитное поля — от удельного электрического сопротивления пород, диэлектрической и магнитной проницаемости, электрохимической активности и поляризуемости; упругое поле — от скорости распространения различных типов волн, а последние, в свою очередь, — от плотности и упругих констант (модуль Юнга и коэффициент Пуассона и др.); ядерные — от естественной радиоактивности, гамма- и нейтронных свойств; термическое поле — от теплопроводности теплоемкости и др.

Физические свойства разных горных пород меняются иногда в небольших (например, плотность — от 1 до 6 г/см3), а иногда в очень широких пределах (например, удельное электрическое сопротивление—от 0,001 до 1015 Ом-м). В зависимости от целого ряда физико-геологических факторов одна и та же порода может характеризоваться разными свойствами и, наоборот, разные породы могут не различаться по некоторым свойствам. Изучение физических свойств горных пород и их связи с минеральным и петрофизическим составом, а также водо-нефтегазонасыщенностыю является предметом исследований петрофизики.

Известны различные прикладные (целевые) классификации геофизических методов. Региональные геофизические методы предназначены для внемасштабных глубинных исследований на глубинах до 100 км (глубинная геофизика), мелкосреднемасштабных структурных исследований на глубинах около 10 км (структурная геофизика) и крупномасштабных картировочно-поисковых съемок на глубинах до 2 км (картировочно-поисковая геофизика). К разведочной относят нефтегазовую, рудную, нерудную и угольную геофизику, применяемую для поисков и разведки месторождений соответствующих полезных ископаемых. Иногда региональную и нефтегазовую геофизику объединяют в структурную. Инженерно-гидрогеологическая геофизика объединяет методы, предназначенные для инженерно-геологических, мерзлотногляциологических, гидрогеологических, почвенно-мелиоративных и техногенных исследований. Под техногенной геофизикой понимают методы мониторинга, т. е. системы изучения, слежения и контроля за изменением состояния среды в результате деятельности человека (в том числе контроля загрязнения и экологической охраны подземных вод и геологической среды). Сюда же можно отнести методы изучения условий передачи энергии, коррозии металлических конструкций, поисков погребенных объектов, например, археологических и др. Таким образом, возникнув как прикладные геологоразведочные, геофизические методы исследования находят применение и в других областях человеческой деятельности.

По месту проведения работ геофизические методы исследования подразделяют на следующие технологические комплексы: аэрокосмические (дистанционные), полевые (наземные), акваториальные (океанические, морские, речные), подземные (шахтнорудничные) и геофизические исследования скважин (ГИС) или каротаж. Иногда дистанционные методы изучения поверхности и глубин Земли с помощью самолетов, вертолетов, искусственных спутников, пилотируемых космических кораблей и орбитальных станций не считают геофизическими, поскольку при этих работах преобладают съемки в видимом диапазоне спектра электромагнитных волн (фото- и телевизионная съемки). Однако, кроме таких визуальных наблюдений, все чаще используют дистанционные методы невидимого диапазона электромагнитных волн: инфракрасные, радиолокационные (радарная и радиотепловая), радиоволновые, ядерные, магнитные и другие, которые являются сугубо геофизическими. Особое место занимают геофизические исследования скважин, отличающиеся от прочих геофизических методов специальной аппаратурой и техникой наблюдений и имеющие большое прикладное значение при документации разрезов скважин.

Верхние оболочки Земли являются предметом исследования не только геофизических методов, но и других наук: геологии со всеми разделами, геохимии, географии и др. Геофизические методы исследования, базируясь на этих науках, являются, прежде всего, геологическими. Вместе с тем, давая другим наукам о Земле всевозможную информацию, они изменяют сам характер геологоразведочных работ.

Теория геофизических методов исследований — физико-математическая. Математическое моделирование, т. е. решение геофизических задач с помощью математики, настолько сложно, что здесь используют передовые ее достижения и самый высокий уровень компьютеризации. На геофизических задачах в немалой степени совершенствуется математический аппарат. Математическое решение прямой задачи геофизики, т.

е. определение параметров поля по известным свойствам и размерам геологических тел, хотя иногда очень сложно, но единственно. Вместе с тем, одно и то же распределение параметров физического поля может соответствовать различным соотношениям физических свойств и размеров геологических объектов. Иными словами, математическое решение обратной задачи геофизики, т. е. определение размеров геологических объектов и свойств слагающих их пород по наблюденному полю, не только значительно сложнее, но и, как правило, не единственно.

Решение обратной задачи—это основное содержание интерпретации данных разведочной геофизики. Оно с достаточной точностью может быть выполнено лишь тогда, когда кроме наблюденного поля из дополнительных источников получены сведения о свойствах пород, залегающих на глубине (например, по данным геофизических измерений в скважинах или на образцах). Большей однозначности интерпретации в определенных условиях можно добиться комплексным изучением нескольких полей.

Методика и аппаратура геофизических методов исследования основаны на использовании механики, электроники, автоматики, вычислительной техники, т. е. способы измерений — физико-технические. При этом современный уровень требований к аппаратуре очень высокий.

Эффективность разведочной геофизики при решении той или иной задачи определяется правильным выбором метода (или комплекса методов), рациональной и высококачественной методикой и техникой проведения работ, качеством геофизической интерпретации и геологического истолкования результатов. Сложность геофизической интерпретации объясняется как неоднозначностью решения обратной задачи, так иногда и приближенностью самого решения. Поэтому из нескольких возможных вариантов интерпретации необходимо выбирать наиболее достоверный, что можно сделать при использовании всех сведений о физических свойствах пород района исследований, их литологии, тектоническом строении, гидрогеологических условиях. Иными словами, лишь при хорошем знании геологии района можно получить наиболее достоверное истолкование результатов геофизических методов исследований, что требует совместной работы геофизиков и геологов при интерпретации. Последнее, очевидно, невыполнимо, если геофизики не имеют прочных знаний по геологическим дисциплинам и слабо знакомы с изучаемым районом, а геологи не разбираются в сущности и возможностях тех или иных методов геофизики.

Возрастание роли геофизики в связи с увеличением глубин и сложности разведки месторождений ведет не к замене геологических методов геофизическими, а к рациональному их сочетанию, широкому использованию всеми геологами данных геофизики. Единство и взаимодействие геофизической и геологической информации — руководящий методологический принцип комплексирования наук о Земле. Объясняется это тем, что возможности каждого частного метода геологоразведки (съемки, бурения, проходки выработок, геофизики, геохимии и др.) ограничены.

Разведочная геофизика является сравнительно молодой наукой, сформировавшейся в 20-е годы XX века. Однако ее физико-математические основы заложены значительно раньше. Так же давно началось использование полей Земли в практических целях. Ранее других методов возникла магниторазведка. Первые сведения о применении компаса для разведки магнитных руд в Швеции относятся к 1640 г. Теория гравитационного поля Земли берет свое начало с 1687 г., когда И. Ньютон сформулировал закон всемирного тяготения. В 1753 г. М.В. Ломоносов высказал мысль о связи силы тяжести на земной поверхности с внутренним строением Земли и разработал идеи газового гравиметра. Его же работы в области атмосферного электричества можно считать первыми, относящимися к электромагнитным исследованиям Земли. Первыми работами по электроразведке являются наблюдения Р. Фокса (Великобритания) в 1830 г. естественной поляризации сульфидных залежей и Е.И. Рогозина, который в 1903 г. дал первое изложение основ этого метода. В 1913 г. К. Шлюмберже (Франция) разработал метод электроразведки постоянным током, а в 1918 г. К. Зунберг и Н. Лунберг (Швеция) предложили электроразведку переменным током.

Со времени установления Кулоном закона взаимодействия магнитных масс ( г.) начинает развиваться теория земного магнетизма. Первыми магниторазведочными работами в России были съемки Курской магнитной аномалии (КМА) профессора МГУ Э.Е. Лейста в 1894 г., а в конце IX века - работы на Урале Д.И. Менделеева и в районе Кривого Рога И.Т. Пассальского. Теоретические работы Э. Вихерта (Германия) и Б.Б.

Голицына в начале XX века в области сейсмологии имели самое непосредственное отношение к созданию сейсморазведки. В 1919 г. были начаты магнитные исследования на КМА. Эти работы можно считать началом развития не только отечественной, но мировой разведочной геофизики. Среди отечественных ученых, заложивших основы геофизических методов исследования, следует назвать Л.М. Альпина, В.И. Баранова, В.И.

Баумана, В.Р. Бурсиана, В.Н. Дахнова, Г.А. Гамбурцева, А.И. Заборовского, А.Н. Краева, П.П. Лазарева, А.А. Логачева, А.А. Михайлова, Л.Я. Нестерова, П.П. Никифорова, А.А. Петровского, М.К. Полшкова, Е.Ф. Саваренского, А.С. Семенова, Л.В. Сорокина, Ю.В. Ризниченко, Л.А. Рябинкина, А.Г. Тархова, В.В. Федынского, О.Ю. Шмидта, Б.М.

Яновского.

В настоящее время по уровню теории и практическому использованию отечественная геофизика занимает передовые позиции в мире. Дальнейший рост минеральносырьевой базы страны, требующий разведки полезных ископаемых на все больших глубинах и в труднодоступных районах, а также расширение объемов горнотехнических, инженерно-гидрогеологических, мерзлотно-гляциологических, почвенномелиоративных, техногенных изысканий приведут к дальнейшему расширению применения геофизических методов исследований, их широкому комплексированию с другими методами, а значит, необходимости их изучения различными специалистами.

Данное учебное пособие подготовлено на основе изданных ранее учебников и учебных пособий по геофизическим методам исследований, приведенных в списке использованной литературы, с необходимыми изменениями и дополнениями и соответствует программе общего курса геофизических методов исследований для студентов геологических специальностей вузов.

Глава 1. СЕЙСМОРАЗВЕДКА Сейсморазведка – геофизический метод изучения геологических объектов с помощью упругих колебаний - сейсмических волн. Этот метод основан на том, что скорость распространения и другие характеристики сейсмических волн зависят от свойств геологической среды, в которой они распространяются: от состава горных пород, их пористости, трещиноватости, флюидонасыщенности, напряженного состояния и температурных условий залегания. Геологическая среда характеризуется неравномерным распределением этих свойств, т.е. неоднородностью, что проявляется в отражении, преломлении, рефракции, дифракции и поглощении сейсмических волн. Изучение отраженных, преломленных, рефрагированных и других типов волн с целью выявления пространственного распределении и количественной оценки упругих и других свойств геологической среды - составляет содержание методов сейсморазведки и определяет их разнообразие.

Методика сейсморазведки основана на изучении кинематики волн или времени пробега различных волн от пункта их возбуждения до сейсмоприемников, улавливающих скорости смещения почвы, и их динамики или интенсивности волн. В специальных достаточно сложных установках (сейсмостанциях) электрические колебания, созданные в сейсмоприемниках очень слабыми колебаниями почвы, усиливаются и автоматически регистрируются на сейсмограммах и магнитограммах. В результате их интерпретации можно определить глубины залегания сейсмогеологических границ, их падение, простирание, скорости волн, а используя геологические данные, установить геологическую природу выявленных границ.

В сейсморазведке различают два основные метода: метод отраженных волн (МОВ) и метод преломленных волн (МПВ). Меньшее применение находят методы, использующие другие волны. Решение сложнейших задач, связанных с высокоточным определением геометрии геологического разреза (ошибки менее 1 %), стало возможным благодаря применению трудоемких систем возбуждения и наблюдения, обеспечивающих одновременный, иногда многократный съем информации с больших площадей и ее цифровую обработку на ЭВМ. Это обеспечивает выделение полезных, чаще однократно отраженных или преломленных волн среди множества волн-помех.

По решаемым задачам различают глубинную, структурную, нефтегазовую, рудную, инженерную сейсморазведку. По месту проведения сейсморазведка подразделяется на наземную (полевую), акваториальную (морскую), скважинную и подземную, а по частотам колебаний используемых упругих волн можно выделить высокочастотную (частоты свыше 100 гц), среднечастотную (частоты в несколько десятков герц) и низкочастотную (частоты менее 10 гц) сейсморазведку. Чем выше частота упругих волн, тем больше их затухание и меньше глубинность разведки.

Сейсморазведка - очень важный и во многих случаях самый точный (хотя и самый дорогой и трудоемкий) метод геофизической разведки, применяющийся для решения различных геологических задач с глубинностью от нескольких метров (изучение физико-механических свойств пород) до нескольких десятков и даже сотен километров (изучение земной коры и верхней мантии). Одно из важнейших назначений сейсморазведки - поиск и разведка нефти и газа.

Сейсморазведка возникла в начале 20-х годов XX столетия. В своем первоначальном развитии она была тесно связана с сейсмологией — наукой о землетрясениях, получившей значительное развитие в начале XX в. Этому в большой мере способствовали работы выдающегося русского ученого академика Б.Б. Голицына, создавшего совершенные методы регистрации сейсмических колебаний и обогатившего сейсмологию многими основополагающими теоретическими работами.

Первые сейсморазведочные работы методом преломленных волн (в простейшем варианте «первых вступлений») были проведены под руководством П.М. Никифорова, ученика Б.Б. Голицына, в 1927 году. В 1923 году В.С. Воюцкому был выдан патент на изобретение метода отраженных волн (МОВ). Однако практическая реализация этого метода столкнулась со значительными техническими и методическими трудностями.

Потребовались многолетние усилия большой группы специалистов, чтобы создать необходимые аппаратурные средства и выработать методические рекомендации для регистрации отраженных волн. Эта работа была успешно выполнена под руководством академика Г.А. Гамбурцева, сыгравшего выдающуюся роль в создании и развитии сейсморазведки. В 1935 года были начаты полевые работы MOB, разработаны и серийно изготовлены первые типы отечественных сейсморазведочных станций, значительно укреплена производственная и исследовательская база разведочной геофизики.

Коренному пересмотру, начиная с 1939 года, подвергся метод преломленных волн. Под руководством академика Г.А. Гамбурцева был создан корреляционный метод преломленных волн (КМПВ), открывший новые возможности для решения многих сложных геологических задач.

В годы Великой Отечественной войны с помощью сейсморазведки были открыты новые месторождения нефти и газа, сыгравшие важную роль в укреплении оборонной мощи страны. Впервые, вблизи Баку были начаты работы по применению сейсморазведки в море; была разработана методика проведения сейсмических работ в пустынях и в районах вечной мерзлоты.

После окончания войны в короткое время было осуществлено техническое перевооружение сейсморазведки. Новые многоканальные сейсмические станции, снабженные полуавтоматическими и автоматическими регуляторами усиления, смесителями и другими устройствами, позволили значительно повысить качество и производительность полевых работ. Были развиты новые приемы интерпретации и созданы новые модификации сейсморазведки. Среди последних, важное значение приобрело глубинное сейсмическое зондирование (ГСЗ), позволившее расширить область применения сейсморазведки на всю толщу земной коры.

В связи с необходимостью совершенствования фундаментальных теоретических основ сейсморазведки, начиная с 1954 года, в нашей стране проводятся глубокие исследования по теории сейсмических волн. Значительное внимание уделяется систематическому исследованию сейсмических свойств реальных геологических сред. В результате проведенных исследований было выявлено существенное влияние на особенности распространения сейсмических волн таких факторов, как тонкая слоистость осадочных толщ, шероховатость сейсмических границ, наличие вертикального градиента скорости.

С 1959 года происходит постепенное перевооружение сейсморазведки аппаратурой с регистрацией на магнитную ленту. Возникла возможность успешного использования для разведки не только продольных, но и поперечных волн. На основе магнитной регистрации получили развитие методы группирования источников на больших базах и метод общей глубинной точки (ОГТ).

С 70-х годов XX столетия начался новый этап технического перевооружения сейсморазведки — внедрение цифровой полевой и обрабатывающей техники. Был начат выпуск отечественных цифровых сейсмических станций, организовано большое число вычислительных центров, занимающихся обработкой данных сейсморазведки. В большинстве нефтяных провинций во всем мире с помощью сейсморазведки открыто и разведано огромное число месторождений. Большую роль сейсморазведка сыграла в поисках и разведке месторождений в Западной Сибири, Средней Азии, на Мангышлаке, в районах Поволжья, Предкавказья, Днепровско-Донецкой впадины, Ухты и др.

1.1 Физические основы сейсморазведки 1.1.1. Основы теории упругости Теория распространения упругих (сейсмических) волн базируется на теории упругости, так как геологические среды в первом приближении можно считать упругими.

Поэтому напомним основные определения и законы теории упругости применительно к однородным изотропным средам.

Установлено, что под действием внешних нагрузок жидкие и газообразные тела изменяют свои объем и форму, деформируются. При деформации частицы тела смещаются относительно друг друга и исходного положения. Величина и направление перемещений определяются величиной и характером внешних сил и свойствами тела.

Положение частиц тела после деформации можно найти, если известен вектор перемещений U (х, у, z), отнесенный к исходному положению частиц.

После приложения внешних нагрузок малый параллелепипед, мысленно выделенный внутри тела до его деформации, изменит свой объем или форму, или и то, и другое. При этом изменится длина его ребер, а прежде прямые углы между соответствующими ребрами станут тупыми или острыми. Количественной мерой деформации являются относительные удлинения ребер малого параллелепипеда и абсолютное изменение углов относительно 90°. Таким образом, деформация полностью описывается шестью компонентами. Три первые компоненты называются продольными (нормальными) деформациями, три последние — сдвиговыми.

При снятии нагрузки частицы тела могут вернуться или не вернуться в исходное положение. В первом случае говорят об обратимых, а во втором о необратимых деформациях. Тела, в которых развиваются только обратимые деформации, называют упругими. Тела, в которых развиваются только необратимые деформации,—пластичными, неупругими. Величина деформаций зависит от величины и характера внешних напряжений—сил, действующих на единицу площади. Горные породы ведут себя как упругие тела только при малых деформациях, когда все шесть компонент деформации не превышают 10-3.

При деформации в упругом теле возникают внутренние напряжения, обусловленные упругим взаимодействием между частицами тела. На каждую площадку малого размера, мысленно выделяемую в теле, действуют напряжения, имеющие в общем случае составляющую, перпендикулярную к площадке,— нормальное напряжение, и две, направленные вдоль площадки, называемые сдвиговыми напряжениями. Три компоненты напряжения задаются с помощью шести компонент тензора напряжения. Эти шесть компонент связаны с шестью компонентами малых деформаций законом Гука.

При одноосном сжатии (растяжении) призмы из твердого тела относительное изменение ее длины вдоль направления действующего напряжения выражается соотношением:

где —величина внешней нагрузки; Е—модуль Юнга; ! — длина призмы; !

— изменение длины.

Опыт показывает, что удлинение призмы всегда сопровождается сокращением ее поперечных размеров a и b на a и b. Для изотропных тел ! !, a a, b b и остаются неизменными, независимо от того, каким образом была ориентирована призма в породе. Модуль Юнга E и коэффициент Пуассона полностью определяют упругие свойства таких тел. Для анизотропных сред при неизменной осевой нагрузке относительные удлинения ребер призмы будут зависеть от того, как была ориентирована ось призмы в породе, иными словами, упругие свойства зависят от направления внешних нагрузок. Изотропные тела можно описать с помощью упругих констант Ламэ — модуля сжатия и модуля сдвига µ. Эти модули однозначно связаны с модулем Юнга Е и коэффициентом Пуассона :

При всестороннем сжатии упругих тел, например, путем повышения давления жидкости, в которой расположен образец, объем тел уменьшается. Относительное изменение объема V V при этом линейно связано с давлением:

Коэффициент kc называют модулем всестороннего сжатия. Для изотропных тел связь между kc, и имеет вид:

Если упругие свойства тел не изменяются при переходе от точки к точке тела, то такие тела называют однородными. В противном случае тело называют неоднородным.

В неоднородных изотропных телах, и kc — функции координат.

При деформации упругого тела под действием внешней нагрузки размеры тела изменяются, например стержень сжимается. Если при снятии внешней нагрузки вся потенциальная энергия переходит в кинетическую, то тело называют идеально-упругим.

Если же часть энергии уходит на необратимые процессы, например превращается в тепло, то тело называют вязко-упругим, неидеально-упругим.

Способность тел деформироваться является причиной того, что напряжение от зоны действия внешней нагрузки распространяется на все области тела с конечной скоростью, определяемой упругими модулями и плотностью. Распространяющееся в упругом теле напряжение порождает деформации — перемещения частиц тела, которые можно измерить. Наблюдения за перемещением частиц тела позволяют экспериментально измерять скорости распространения упругих волн и выявлять различия в физических свойствах горных пород или их состоянии.

1.1.2. Упругие волны в изотропных средах Волны и вызывающие их волновые процессы являются особым видом движения, при котором изменение какой-либо величины или состояния среды передается от одной точки среды к другой с конечной скоростью. Отличительной особенностью волновых процессов является то, что событие, происходящее в одной точке среды, через некоторое время происходит в другой почти в неизменном виде.

Замечательным свойством волновых процессов является то, что, будучи порождены источником, они начинают существовать автономно, совершенно от него независимо, и протекают и тогда, когда действие источника прекращается. Благодаря этому до нас доходит свет звезды, потухшей миллионы лет тому назад.

Волны в упругих средах возникают всякий раз, когда на какую-либо, часть тела действует изменяющаяся во времени сила. Деформации и напряжения вблизи источника передаются затем всем частям упругого тела за счет упругих связей между частицами тела. Передача возмущенного состояния — движения частиц среды — происходит в процессе непрерывного преобразования потенциальной энергии, накапливаемой при деформации, в кинетическую энергию движущихся частиц среды. Этот процесс имеет односторонний характер — энергия забирается от источника и передается упругому телу, в котором она начинает независимое от источника существование, распространяясь с конечной скоростью во всем объеме этого тела. Поскольку потенциальная энергия деформированного элемента тела зависит только от величины деформаций и упругих модулей, а кинетическая энергия—от массы элемента и скорости, с которой движется этот элемент, распространение упругих возмущений должно зависеть от упругих модулей и плотности тела.

При конечной скорости распространения энергии в каждый момент времени возмущение захватывает область конечного размера. Поэтому в любой момент времени существует поверхность, разделяющая возмущенную и невозмущенную области. Эту поверхность называют фронтом возмущения или фронтом волны. Следовательно, распространение возмущения можно описать как разрастание поверхности фронта. Если в момент t=t1 поверхность фронта задается поверхностью S1, а через очень малый интервал времени t в момент t2=t1+t — поверхностью S2, то это означает, что возмущение с поверхности S1 распространилось на поверхность S2, т. е. прошло в среде некоторый путь. Если в произвольной точке A1(x1, y1, z1) поверхности S1 построить нормаль к этой поверхности n ( A), то она пересечет поверхность S2 в некоторой точке A2(x2, y2, z2) (рис. 1.1). Отрезок A1A2=n —это путь, пройденный волной за время t.

Направление распространения волны в точке A1(x1, y1, z1) указывается вектором n(A ).

Естественно принять, что скорость распространения возмущения (волны) v( A ) = n t.

В общем случае она может зависеть от положения точки A1(x1, y1, z1). Если среда однородна, то нет оснований считать, что скорость от точки к точке тела изменяется. В неоднородной среде, когда изменяются упругие модули и плотность, скорость также может стать функцией координат, т. е. v=v(x,y,z).

В момент времени t3=t2+t фронт совпадает с поверхностью S3, пройдя путь A2A3, и возмущение из точки A1 дойдет до точки A3. При построении нормалей для последующих моментов времени мы найдем точку An, в которую возмущение пришло в момент t=t1+nt. Линия A1,A2,…….An дает представление о пути, пройденном волной при распространении из точки A1 в точку An.

Рис.1.2 Принцип Гюйгенса: образование фиктивных источников Траекторию движения возмущения из точки A1 в точку An, а в общем случае — от источника Р к заданной точке — называют лучом. Как следует из рассмотренного построения, луч — это линия, всюду нормальная к поверхностям фронтов в точках их пересечения. Таким образом, зная последовательное положение фронтов, можно построить лучи и наоборот.

Построение лучей при известном распределении скорости в среде и заданном положении источника осуществляют на основе принципа Ферма. Для однородных сред и сред с плавно изменяющимися скоростями принцип Ферма утверждает, что возмущение от источника к заданной точке среды распространяется по такому пути, который обеспечивает минимальное время пробега. Для однородных сред минимальное время пробега достигается при минимальной длине пути. Но минимальный путь от источника до точки наблюдения в этом случае— прямая и, следовательно, лучи в однородной среде—это прямые линии, выходящие из источника.

Для сред с плавным изменением упругих свойств определение формы лучей требует сложных математических расчетов. Качественно эту задачу можно решить, опираясь на принцип Гюйгенса.

Принцип Гюйгенса утверждает следующее: распространение волн любой природы происходит так, как будто при каждом положении фронта на его поверхности оказываются точечные источники, генерирующие волны, идущие только вперед. Истинный источник как бы переносится в «размазанном» по фронту виде на фронт возмущения. Это означает, что, если положение фронта в момент t1 известно (рис. 1.2), то в соседний момент времени t2=t1+ t положение фронта можно получить путем построения элементарных фронтов от фиктивных источников, возникающих на исходном фронте. Если скорость изменяется плавно, то можно выбрать такой малый интервал времени t, что на расстоянии от каждого из элементарных источников примерно t·v скорость v можно считать неизменной. Тогда в момент t+t возмущение от каждого элементарного источника образует фронт в виде малой сферы с радиусом R=v(A)·t.

Поверхность, огибающая все элементарные фронты, и является фронтом возмущения в момент t1+t. Теперь фиктивные источники распределены по этой новой поверхности S2 и можно продолжить построения, определив положение фронта в момент t3= t2+t.

Если скорость в среде постоянна, то радиусы элементарных волновых фронтов одинаковы для всех точек, и фронт распространяется как бы параллельным переносом, не искажаясь. Если же среда неоднородна, то в различных точках фронта в момент t радиусы R (A) = v(A)·t элементарных сферических фронтов будут различными, и новая форма будет искажена относительно исходной (рис. 1.2 б). Поскольку лучи всегда должны быть направлены по нормали к фронту в каждой его точке, а фронты не повторяют форму друг друга, лучи становятся криволинейными: возмущение из точки A1 поступает в точку A3 по пути A1A2A3.

Явление распространения возмущения по криволинейным траекториям называют рефракцией волн. Если на линии «прямой» видимости отрезка PA3 расположен экран Э (непроницаемая для волн перегородка), то этот экран не мешает волнам от источника достигнуть точки наблюдения A3. В однородной среде отрезок PA3 — это луч, по которому волна идет от точки Р к точке A3 и источник Р как бы «не виден». В оптике рефракция волн объясняет появление миражей, когда становятся видны объекты, находящиеся за горизонтом. В сейсморазведке рефракция обеспечивает выход лучей к земной поверхности и тогда, когда источник возбуждения расположен на той же поверхности или вблизи нее (рис. 1.3), и тем самым создает условия для изучения распределения скорости в толще пород.

Лучи и фронты дают представление о кинематике волнового процесса—о том, как распространяется возмущение от источника к любой точке в упругом теле. Если в каждой точке на луче известна скорость распространения волны v(A), называемая лучевой, то можно найти время, которое волна затрачивает при распространении от источника к любой точке среды, — решить кинематическую задачу. Кинематические задачи подобного типа называют прямыми задачами: по известному распределению скорости в среде находят время прихода волны в заданную точку среды.

При решении кинематических задач совершенно несущественно, каков характер возмущения, распространяющегося в изучаемой среде, т. е. как движутся частицы. Динамическая теория упругих волн устанавливает, что в однородной изотропной среде возможны волны двух типов. Волны первого типа вызывают такие колебания частиц среды, при которых направление перемещения частиц совпадает с направлением распространения волны. Такие волны называют продольными (Р-волнами). Волны второго типа вызывают колебания, при которых частицы смещаются в направлении, перпендикулярном к направлению распространения волн. Волны этого типа называют поперечными (S-волнами). В поперечных волнах вектор перемещения нормален к направлению распространения, т. е. к лучу, а луч нормален к поверхности фронта, следовательно, вектор смещения лежит в плоскости фронта. В жидких и газообразных телах распространяются только продольные волны, называемые звуковыми, акустическими.

Продольные и поперечные волны распространяются с различными скоростями (vp и vs соответственно). Их значения определяют по формулам:

где - плотность.

Поскольку и µ положительны, скорость продольных волн всегда выше скороvv - т.е. является параметром, зависящем только от и µ, при этом коэффициент Пуассона:

Поперечные волны бывают двух видов: у одних вектор перемещения имеет только компоненты, лежащие в вертикальной плоскости, и такие волны называют волнами вертикальной поляризации (SV-волнами); у других—только одну компоненту, лежащую в горизонтальной плоскости. Эти волны называют волнами с горизонтальной поляризацией (SH-волнами).

Волновой процесс есть явление, развивающееся в пространстве и времени. Наблюдая за некоторой частицей среды, можно увидеть, что в момент прихода к ней волны частица начинает двигаться, смещаться из положения покоя. Движение ее полностью определяется вектором перемещения. Но так как мы рассматриваем только одну частицу, то U следует отнести к x=x1, y=y1, z=z1, характеризующим начальное положение частицы, после чего ее движение можно изобразить графически. Для этого необходимо отложить по горизонтальной оси время, а по вертикальной—путь, пройденный в направлении распространения, или любую проекцию U (x, y, z, t ) на одну из осей прямоугольной системы координат. Этот график определяет развитие колебаний частицы во времени и называется временным импульсом смещения (рис. 1.4 а).

Размах колебаний частицы определяется амплитудой импульса смещения Amax, а продолжительность колебаний—длительностью импульса и. Каждый источник упругих волн характеризуется своей формой импульса U (t).

К моменту окончания импульса смещения в точке (x1, y1, z1) фронт волны уйдет на расстояние R = v( x, y, z ) от этой точки. Следовательно, в один и тот же мои мент времени колебания занимают некоторую область среды, ограниченную двумя поверхностями, расстояние между которыми !и = v( x 1, y 1, z 1 ) и, где v(x1, y1, z1) — скорость волн в точке (x1, y1, z1). Величину !и называют пространственной длительностью импульса смещения. Пространственная и временная длительности импульса смещения однозначно связаны между собой соотношением !и = v и.

Каждый раз, когда фронт возмущения достигает новой области среды, частицы на фронте начинают движение, повторяющее копирующее движение частиц, через которые фронт проходил раньше. Импульсы смещения в новых точках, охваченных возмущением, отличаются друг от друга только размахом, амплитудой. Поэтому говорят, что импульс смещения в волнах, распространяющихся в идеально-упругой среде, не изменяет свою форму. Эту закономерность можно описать математически:

где А(x, y, z) — функция, определяющая изменение амплитуды колебаний;

f(t-) —функция, определяющая форму импульса смещения;

(x, y, z) — время пробега волны от источника до точки с координатами (x, y, z), причем f(t-)=0 при t- 0 ) — положительные.

2. Экстремальные значения gmax наблюдаются над центрами тяжести этих объектов, а их интенсивность прямо пропорциональна избыточной плотности и обратно пропорциональна для вытянутых тел глубине, а для изометричных тел - квадрату глубины.

3. Форма аномалий Буге ( gБ ) на картах и графиках тесно связана с пространственным положением избыточных масс: под вытянутыми (двумерными) аномалиями залегают вытянутые структуры или геологические тела, под изометричными — округлые в плане объекты.

4. Существует аналитическая или статистическая связь между абсциссами характерных точек на кривых gБ и глубинами залегания гравитирующих тел, что позволяет, аппроксимируя их телами простых геометрических форм, решать обратную задачу гравиразведки. При этом некоторые параметры, например h, рассчитывают достаточно однозначно. Для определения других параметров, например V, s, требуется привлечение дополнительных данных (избыточной плотности).

5. Чем глубже залегает тот или иной гравитирующий объект, тем более широкую и расплывчатую (региональную) аномалию создает он на земной поверхности (эффект дальнодействия).

Геологическая интерпретация данных гравиразведки В практике геологической интерпретации результатов гравиразведки (карт, графиков g, WXZ, WYZ и др.) различают две стадии анализа — качественную и количественную. При качественной интерпретации данных g выделяют гравитационные аномалии, т. е. отклонения g от фона. По форме изолиний g (изоаномал) и графиков g можно судить о местоположении, примерных размерах и форме тех или иных геологических тел. Количественная интерпретация заключается в определении формы, размеров, глубины залегания тел и их избыточной плотности.

Количественная интерпретация, или решение обратной задачи гравиразведки, сопряжена со значительными трудностями и не всегда может быть проведена однозначно.

Качественная интерпретация. Первым этапом интерпретации результатов гравиразведки (а в некоторых сложных условиях и при отсутствии сведений о плотностях разреза — единственным) является качественная интерпретация. При качественной интерпретации дают визуальное описание характера аномалий силы тяжести по картам и профилям. При этом отмечают форму аномалий, их простирание, примерные размеры, амплитуду. Устанавливают связь гравитационных аномалий с геологическим строением, выделяют региональные аномалии, связанные со строением земной коры, региональными структурами и тектоническими зонами, и локальные аномалии, часто представляющие большой разведочный интерес, так как они связаны со строением осадочной толщи и указывают на местоположение отдельных структур, месторождений полезных ископаемых. Отделение региональных аномалий (плавных изменений аномалий g на значительных расстояниях) от локальных называют снятием регионального фона.

Наблюденные аномалии гравитационного поля являются, как правило, сложными интерференционными полями. Они представляют собой сумму гравитационных эффектов от ряда геоструктурных этажей и геологических тел с различными законами распределения плотности, формой и глубиной залегания. В этих условиях не всегда визуально удается установить аномалию в «чистом» виде, не осложненную соседними аномалиями. Поэтому разработаны различные методы преобразований или трансформаций исходного (наблюденного) аномального поля, которые «обостряют» (выявляют в визуально четкой форме) либо региональные, либо локальные аномалии. На рис.2.9 приведен пример графического сглаживания наблюденного поля и выделения плавно изменяющегося регионального поля и локальной аномалии gлок= gнабл - gрег.

В более сложных случаях используют методы трансформации с помощью ЭВМ.

Наиболее распространены аналитические продолжения наблюденного поля в верхнее и нижнее полупространства, позволяющие выделить те или иные составляющие гравитационного поля. Пересчеты Рис.2.9 Наблюденная (1), региональная (2) и ло- плоскости наблюдений, так же как кальные (3) аномалии силы тяжести и вычисление высших производных поля потенциала силы тяжести (Wzz, Wzzz и т. д.) приводит к подчеркиванию локальных аномалий поля. Необходимо отметить, что при любом преобразовании наблюденного поля общее количество информации об источниках поля не возрастает, а скорее теряется, хотя делается она более наглядной. По картам и графикам gнабл или gлок и gрег, пользуясь выводами из решений прямых задач гравиразведки, можно сделать качественные заключения о геологических объектах, создающих эти аномалии. Например, центры аномалий располагаются над центрами возмущающих масс, направление изоаномал и их форма примерно соответствуют простиранию и форме аномальных тел. Ширина аномалий в 2—6 раз больше глубины залегания верхней кромки залежей, а интенсивность аномалий пропорциональна избыточной массе и глубине их залегания. Положительные аномалии соответствуют местоположению более плотных пород по сравнению с вмещающими, отрицательные — менее плотных или поднятию и опусканию какой-либо субгоризонтальной границы, на которой существует скачок плотностей горных пород. Зоны повышенных горизонтальных градиентов соответствуют крутым контактам пород разной плотности.

Количественная интерпретация. Количественная (расчетная) интерпретация данных гравиразведки основана на решении обратных задач и сводится к определению местоположения, оценке глубины залегания центра тяжести, размеров, иногда избыточной плотности аномалообразующих масс. Решение обратной задачи неоднозначно, так как одинаковые аномалии силы тяжести могут быть созданы геологическими объектами разной формы, размеров и плотности. Тем не менее, после проведения качественной интерпретации и изучения общего геолого-геофизического и плотностного строения района отдельные аномалии можно проинтерпретировать количественно.

Существуют приемы количественной интерпретации прямые, в которых элементы залегания гравитирующих масс определяют непосредственно по картам и графикам g (или WXZ, WYZ и др.), и косвенные, основанные на сравнении наблюденных и теоретических кривых. При достаточно обоснованном предположении о форме объекта и уверенном выделении отдельных аномалий g применяют аналитический метод решения обратной задачи, при котором параметры аномалиеобразующих масс определяют по характерным точкам кривой g. Такие соотношения для моделей простой геометрической формы в предположении постоянства избыточной плотности получены выше [см. выражения (2.27)—(2.32)]. Существуют аналогичные подходы и формулы расчета глубин для других тел простой геометрической формы, известные в теории гравиразведки. Погрешность количественного определения глубин даже по нескольким характерным точкам кривой g (x1/2, x1/4,x3/4 и т.д.) невелика и составляет в благоприятных условиях ±(20— 30) %,.

В теории гравиразведки существуют также палеточные приемы интерпретации, с помощью которых всю наблюденную кривую g сравнивают с заранее рассчитанными теоретическими (палеточными) кривыми gтеор для моделей определенного класса и различных параметров. Задача количественной интерпретации в этом случае заключается в отыскании и сравнении такой теоретической кривой gтео, которая наилучшим способом совпадает (или приближается) с наблюденной, и тогда параметры модели переносят на параметры объекта.

При сложном интерференционном характере аномального поля для решения обратной задачи гравиразведки применяют метод подбора. Суть этого метода состоит в последовательном переборе различных моделей плотностного строения разреза (I, II и т. д. приближения к реальной ситуации), расчета с помощью ЭВМ прямого гравитационного эффекта от этих моделей с помощью тех или иных методов решения прямой задачи, сопоставлении полученных значений g от моделей разного приближения (gтеор 1, gтеор 11 и т. д.) с наблюденным полем gнабл. Процесс подбора и сопоставления проводят до тех пор, пока не будет найдена модель, которая создавала бы поле gтеор наиболее полно приближенное к gнабл. Несмотря на определенные трудности и большие затраты времени на ЭВМ, этот метод успешно применяют при расчете параметров плотностных неоднородностей и построении гравиметрических разрезов.

Геологическое истолкование данных гравиразведки. Важным этапом качественной и количественной интерпретации данных гравиразведки является геологическое истолкование, которое сводится к сопоставлению выделенных аномалий и соответствующих плотностных неоднородностей с определенной геологической информацией и данными о плотностных особенностях горных пород и руд изучаемого района. Такое сопоставление обычно проводят на эталонных участках, где есть данные и геологии, и геофизики. Затем полученные закономерности и выводы о геологической природе составляющих аномального гравитационного поля распространяют на весь район.

Области применения гравиразведки Гравиразведка находит широкое применение при глубинных исследованиях Земли, структурно-геологическом изучении земной коры, рекогносцировочно-поисковых работах, поиске и разведке различных полезных ископаемых (нефти, газа, рудных, нерудных), при инженерно-геологических изысканиях.

Условия эффективного применения гравиразведки. Благоприятными условиями для эффективного применения гравиразведки при решении тех или иных прикладных геологических задач являются следующие.

1. Концентрация аномальных плотностных масс в объеме, отличающемся от плоскопараллельной толщи, т. е. наличие вертикальных, псевдовертикальных и даже пологих плотностных неоднородностей или замкнутых тел, напоминающих по форме геометрические тела (столбы, шары, цилиндры, уступы, пласты и т. п.).

2. Различия избыточной плотности аномалообразующих объектов (АО) тем больше, чем глубже они залегают.

3. Достаточная степень обоснованности (теоретической или экспериментальной) возможности решения конкретной геологической задачи в изучаемом районе на основе априорных данных, имеющейся аппаратуры и оптимальной системы наблюдений.

4. Превышение в 3—5 раз амплитуды аномалий над уровнем аппаратурнометодических погрешностей.

5. Наличие дополнительной геолого-геофизической информации о строении разных структурных этажей, которые вносят вклад в суммарное, полученное в результате суперпозиции аномальное гравитационное поле.

Региональные гравиметрические съемки суши и акваторий. Общей региональной съемкой покрывают территорию всей суши и океана в масштабах мельче 1:200 000.

Основными задачами региональной съемки являются: изучение литосферы и земной коры; оценка их мощности и строения; тектоническое районирование; выявление крупных структур; изучение строения фундамента; выявление перспективных площадей для поиска полезных ископаемых.

Интерпретация карт аномалий в редукции Буге gБ качественная, а при наличии опорных геолого-геофизических профилей (как правило, сейсмических) может быть и количественной. В результате гравиметрических и сейсмических исследований обширных территорий континентов и океанов устанавливают прямую зависимость между мощностью земной коры и gБ. Установлено, что в геосинклинальных областях отмечаются интенсивные (до -400 мГал) отрицательные аномалии, платформы характеризуются небольшими аномалиями разного знака, а на акваториях наблюдаются интенсивные положительные (до 400 мГал) аномалии, причем тем большие, чем меньше мощность земной коры. Объясняется это тем, что подошва земной коры (граница Мохоровичича, названная в честь югославского ученого, впервые обнаружившего ее) отделяет породы разной плотности: 2,8—3,0 г/см3 сверху и 3,1—3,3 г/см3 снизу. Поэтому кривая gБ отражает форму границы Мохоровичича, т. е. мощности земной коры.

По гравиметрическим и сейсмическим данным установлено, что при средней мощности континентальной земной коры на платформах примерно 30 км под горами (в геосинклиналях) она достигает 70 км, а в океанах уменьшается до 5 км. В целом поверхность Мохоровичича зеркально повторяет форму поверхности рельефа Земли, в частности, существуют корни гор. Этот факт объясняют гипотезой изостазии, сущность которой сводится к представлению земной коры в виде отдельных блоков, «плавающих» в пластичном подкоровом веществе (верхней мантии). Подчиняясь закону Архимеда — чем больше нагружен блок (например, горами), тем глубже он погружается своей нижней частью, блоки земной коры как бы «плавают», и избыток масс на поверхности компенсируется недостатком внизу.

По региональным гравиметрическим аномалиям типа гравитационной ступени выделяют платформенные и геосинклинальные области, глубинные разломы с вертикальными перемещениями соседних блоков. На платформах с большой мощностью осадков (свыше 2—3 км) кривая gБ характеризует поведение кровли кристаллического фундамента: максимумам соответствуют поднятия в фундаменте, минимумам — прогибы. На участках небольшой глубины фундамента (до 2 км) кривая gБ характеризует и литологический состав фундамента, и его рельеф.

Поиски, и разведка полезных ископаемых. Важным направлением гравиразведки являются поиски и разведка нефтегазовых структур: соляных куполов, антиклинальных складок, рифовых массивов, куполовидных платформенных структур. Наиболее благоприятны для разведки соляные купола, поскольку соль отличается низкой плотностью (=2,1 г/см3) по сравнению с окружающими породами и резкими крутыми склонами.

Соляные купола, находящиеся в Урало-Эмбенском районе, Днепровско-Донецкой впадине и других районах, выделяются изометрическими интенсивными отрицательными аномалиями, по которым можно судить не только о их местоположении и форме, но и о глубине залегания.

Антиклинальные складки выделяются вытянутыми изолиниями аномалий g положительного и отрицательного знака в зависимости от плотности пород, залегающих в ядре складок. Интерпретация результатов качественная, изредка количественная.

Многие месторождения нефти и газа приурочены к рифовым массивам, но их разведка гравиметрическим методом является задачей нелегкой. Для разведки рифовых известняков среди осадочных терригенных пород используют анализ как региональных, так и локальных аномалий, причем рифовые известняки выделяются, как правило, положительными аномалиями. Куполовидные платформенные поднятия, к которым также нередко приурочены месторождения нефти и газа, отличаются малой амплитудой и большой глубиной залегания. Их трудно изучать методами гравиразведки. Однако применение высокоточных гравиметров позволяет вести разведку и этих структур, выделяющихся слабыми отрицательными аномалиями за счет разуплотнения пород над поднятиями.

В связи с разведкой угольных месторождений гравиметрию применяют как для определения границ угольного бассейна, таи и для непосредственных поисков отдельных месторождений и пластов угля. В качестве примера можно привести разведку Донбасса. Как известно, лишь часть Донбасса является открытым бассейном, а значительные угленосные площади покрыты мощной толщей более молодых отложений. Эта область, как выяснено теперь, расположена между Курско-Воронежским и Украинским щитами и тянется вплоть до Каспийского моря. В некоторых случаях мощные, неглубоко залегающие угольные пласты выделяются минимумами gБ за счет малой (=1, г/см3) плотности углей.

Гравиразведку применяют в комплексе с другими геофизическими методами и для разведки рудных и нерудных ископаемых, причем ее привлекают как для крупномасштабного картирования и выявления тектонических зон и структур, благоприятных для залегания тех или иных ископаемых, так и для непосредственных поисков и разведки месторождений. Существенное отличие рудной гравиметрии от нефтяной состоит в меньшей глубинности, большей детальности и точности разведки.

Классическим примером применения гравиметрии являются поиски и разведка железорудных месторождений (особенно Курская магнитная аномалия и Кривой Рог), где гравиразведку применяют для изучения структуры бассейна, картирования железорудной толщи и поисков богатых руд. На железорудных месторождениях наблюдаются локальные положительные аномалии за счет высокой плотности железосодержащих руд. Работы проводят совместно с магниторазведкой, что позволяет определить размеры, глубины залегания, мощности рудных залежей. В рудной разведке часто применяют вариометрическую съемку. Из-за высокой плотности хромитов гравиразведка практически является единственным методом поисков и разведки хромитовых руд. Несмотря на небольшие размеры рудных тел, при детальной разведке с гравиметрами и вариометрами можно разведать даже отдельные жилы.

На рудных колчеданных и полиметаллических месторождениях основным методом является электроразведка. Однако гравиразведка является хорошим методом для отделения рудных от безрудных электрических аномалий. С залежами колчеданных руд связаны интенсивные положительные аномалии за счет их повышенной плотности.

Применяют как гравиметрическую, так и вариометрическую съемки, с помощью которых оценивают размеры и глубину залегания рудных тел.

Широкое применение находит гравиметрия и при разведке нерудных ископаемых.

Интенсивными положительными локальными аномалиями часто выделяются пегматитовые, кварцевые, корундовые, баритовые жилы, кимберлитовые алмазные трубки, месторождения слюд, марганца, боксита и многих других ископаемых. Минимумами выделяются месторождения минеральных солей.

Гравиразведку используют также при решении ряда инженерно-геологических задач: инженерно-геологическом картировании; изучении карстовых и трещиноватых зон; определении мощности ледовых покровов.

Космические средства изучения гравитационного поля Земли После запуска первых искусственных спутников Земли (ИСЗ) возникла идея использовать их с целью определения параметров фигуры и гравитационного поля Земли.

Методы спутниковой гравиметрии, основанные на существовании зависимости наблюденных возмущений орбит ИСЗ от аномалий силы тяжести, позволили получить модель стандартной Земли и усредненное, сглаженное поле аномалий.

Спутниковая альтиметрия. Метод спутниковой альтиметрии в принципе не отличается от радарной альтиметрии летящего самолета. На спутнике устанавливают радиоальтиметр, посылающий импульсы на Землю, отражение которых принимает спутник. Положение спутника на орбите относительно станции слежения определяют лазерным методом. Импульс посылается от наземной станции с известными координатами и возвращается уголковыми отражателями спутника. Используя новейшие лазеры, удалось достигнуть точности измерений расстояния станция - спутник, характеризующейся средней квадратической погрешностью в несколько сантиметров. В спутниковой альтиметрии решается обратная задача — определение расстояния от спутника до поверхности океана по нормали. Геоид определяется как уровенная поверхность, совпадающая со средней поверхностью океана, невозмущенной приливами, волнами и течениями.

Первые альтиметрические измерения выполнены в 1973 г. с американской космической лаборатории «Скайлэб». Более совершенная модификация радиовысотомера была установлена на геодезическом спутнике «Геос-3» (1975 г.). В 1978 г. улучшенная модель радиовысотомера на геодезическом спутнике «Сисет» обеспечила точность измерения высот в 0,1 м. Этот метод сейчас широко применяется для изучения океанических приливов, высоты волн, топографии поверхности мирового океана, геоида на океанах. Он позволяет определить коэффициенты разложения геопотенциала, для гармоник высоких порядков. С его помощью уточняются параметры нормальной Земли и строятся модели ее гравитационного поля. Совместная обработка данных «Геос-3» и «Сисет» позволила построить карту высот поверхности геоида с сечением 1 м и получить средние значения аномалий геоида по трапециям 1°х 1°; 0,5°х 0,5° и 0,25°х 0,25°.

Спутниковая альтиметрия и возможность построения детального океанического геоида позволили изучать внутреннее строение Земли по аномалиям геоида. В основе такой интерпретации лежит частотный анализ. Если поле высот геоида представить в виде ряда сферических функций, то гармоники 2-4 порядка, вероятно, отображают топографию границы ядро—мантия, 4—10 — аномальные плотности в нижних частях мантии. Гармоники 10—14 порядка соответствуют аномалиям плотностей средней мантии (600—2000 км). Детальные аномалии альтиметрического геоида отображают следующие особенности строения океанического дна: подводные горы, аккумуляцию осадков, рельеф фундамента и некоторые стационарные динамические эффекты вод океана (кольцевые или линейные течения). Аномалии геоида над рельефом дна зависят не только от структуры, но и от характера тектоники, возраста литосферы.

Спутниковая гравиметрия. Измерение ускорения свободного падения из-за неоднородного распределения масс Земли внутри ее физической фигуры основывается на следующих соображениях. Потенциал силы тяжести в главной своей части определяется как поле, зависящее только от радиальной координаты. Сила, действующая на спутник, по абсолютной величине в первом приближении также зависит только от расстояния и направлена вдоль радиуса, соединяющего центр тяжести Земли и центр тяжести спутника. При движении спутника изменяются расстояние относительно центра масс Земли и угловая координата, но так, что сохраняется момент инерции системы относительно центра поля.

Движение спутника вокруг Земли происходит по траектории, близкой к эллиптической, так что существует максимальное и минимальное расстояние от ее центра тяжести. В этих точках поворота траекторий радиальная скорость равна нулю. Возврат траектории не означает ее замыкание. Замыкание траектории возможно только при точном совпадении потенциала Земли с потенциалом для однородного шара. Отклонение от этого условия вызовет отклонение спутника, и траектория не будет замкнутой.

Изменение же гравитационного потенциала по угловым координатам отражается в траектории спутника, которая будет смещаться вдоль этих координат и представлять сложную незамкнутую кривую, осциллирующую около эллипса и изменяющую свое положение в пространстве. Траектория спутника за длительное время описывает сложную поверхность, геометрия которой тесным образом связана с геометрией эквипотенциальной поверхности гравитационного потенциала на высоте движения спутника.

Таким образом, с большой степенью точности гравитационный потенциал можно представить по наблюдению за орбитой искусственных спутников. Коэффициенты разложения потенциала связаны с распределением плотности в Земле и прежде всего с ее массой и фигурой.

Магнитометрическая или магнитная разведка (магниторазведка) — это геофизический метод решения геологических задач, основанный на изучении магнитного поля Земли. Магнитные явления и наличие у Земли магнитного поля были известны человечеству еще в глубокой древности. Так же давно эти явления люди использовали для практической деятельности, например применение компаса для ориентации. Однако лишь со второй половины XIX в. измерения напряженности магнитного поля для поисков сильно магнитных рудных залежей привели к созданию магниторазведки. В России специальные исследования магнитного поля с геологическими целями были проведены на Курской магнитной аномалии в конце XIX века. В 1919 г. была начата магнитная съемка Курской области, положившая начало генеральной магнитной съемке территории нашей страны и развитию всей отечественной разведочной геофизики.

Земля, как космическое тело определенного внутреннего строения, генерирует постоянное магнитное поле, называемое нормальным или первичным. Многие горные породы и руды обладают магнитными свойствами и способны под воздействием этого поля приобретать намагниченность и создавать аномальные или вторичные магнитные поля. Выделение этих аномальных полей из наблюденного или суммарного геомагнитного поля, а также их геологическое истолкование является целью магниторазведки.

От других методов разведочной геофизики магниторазведка отличается наибольшей производительностью, особенно в аэроварианте. Магниторазведка является эффективным методом поисков и разведки железных руд. Однако ее широко применяют и при геологическом картировании, структурных исследованиях и поисках других полезных ископаемых.

3.1 Основы теории геомагнитного поля и магниторазведки Элементы геомагнитного поля и его происхождение В любой точке земной поверхности существует магнитное поле, которое определяется полным вектором напряженности Т, т.е. направлением действия и модулем.

Вдоль вектора Т устанавливается подвешенная у центра тяжести магнитная стрелка.

Проекция этого вектора на горизонтальную поверхность и вертикальное направление, а также углы, составленные этим вектором с координатными осями, носят название элементов магнитного поля (рис. 3.1).

Если ось x прямоугольной системы координат направить на географический север, ось y — на восток, а ось z — вертикально вниз, то проекцию полного вектора Т на ось z называют вертикальной составляющей и обозначают Z. Проекцию полного вектора Т на горизонтальную плоскость называют горизонтальной составляющей Н. Направление Н совпадает с магнитным меридианом и задается осью стрелки компаса или буссоли.

Проекцию Н на ось Х называют северной (или южной) составляющей X, проекцию Н на ось y — восточной (или западной) составляющей Y. Угол между осью x и составляющей Н называют склонением и обозначают D. Принято считать восточное склонение положительным, западное — отрицательным. Угол между вектором Т и горизонтальной плоскостью называют наклонением и обозначают J. При наклоне северного конца стрелки наклонение называют северным (или положительным), при наклоне южного конца стрелки — южным (или отрицательным). Взаимосвязь полученных элементов магнитного поля Земли выражают следующими формулами:

При магнитной разведке измеряют лишь одну-две составляющие поля или их приращение (как правило, это Z и Т). Распределение значений элементов магнитного поля на земной поверхности обычно изображают в виде карт изолиний, т. е. линий, соединяющих точки с равными значениями того или иного параметра. Изолинии склонения называются изогонами, изолинии наклонения — изоклинами, изолинии Н, Z или Т — соответственно изодинамами Н, Z или Т. Эти карты строят на 1 июля каждого года и называют их картами эпохи такого-то года (например, карта эпохи 1986 г.).

напряженности магнитного поля – гамма (). Перечисленные единицы измерения напряженности магнитного поля соотносятся следующим образом:

Рис.3.1 Элементы земного маг- воде, для которых = 0, поэтому B= 0T.

Направление координатных осей: быть выражено либо в единицах магнитной индукx— север;

может быть уподоблено полю намагниченного шара или полю магнитного диполя Tдип, расположенного в области центра Земли, ось которого по отношению к оси вращения Земли составляет 11°. Места выхода продолжений оси этого диполя на поверхность Земли называют геомагнитными полюсами Земли. Область выхода южного конца оси диполя носит название северного магнитного полюса, а область выхода северного окончания оси диполя — южного. Северный магнитный полюс находится на 72° с.ш. и 96° з. д. в 1400 км от северного географического полюса Земли.

Многочисленными наблюдениями значений магнитного поля Земли показано, что в среднем полный вектор напряженности Т изменяется от 0,66 105 нТл на полюсах до 0,33 105 нТл в районе экватора. При этом вертикальная составляющая Z уменьшается от 0,66 105 нТл до нуля, а горизонтальная составляющая Н увеличивается от нуля до 0,33 105 нТл. Детальное изучение магнитных свойств горных пород различного возраста на разных континентах установило миграцию (изменение местоположения) магнитных полюсов и их инверсию, т. е. смену знаков (направления), происходящую с периодом от 0,5 до нескольких десятков миллионов лет.

Происхождение магнитного поля Земли объясняют различными причинами, связанными с внутренним строением Земли. Наиболее достоверной и приемлемой гипотезой, объясняющей магнетизм Земли, является гипотеза вихревых токов в ядре. Эта гипотеза основана на том установленном геофизиками факте, что на глубине 2900 км под мантией Земли находится внешнее жидкое ядро с высокой электрической проводимостью, которая объясняется большим числом свободных электронов в веществе ядра вследствие высоких температур и давления. Благодаря так называемому гиромагнитному эффекту и вращению Земли во время ее образования могло возникнуть очень слабое магнитное поле. Наличие свободных электронов в ядре и вращение Земли в таком слабом магнитном поле привели к индуцированию в ядре вихревых токов. Эти токи, в свою очередь, создают (регенерируют) магнитное поле, как это происходит в динамомашинах. Увеличение же магнитного поля Земли должно привести к новому увеличению вихревых токов в ядре, а последнее — к увеличению магнитного поля и т.д.

Процесс подобной регенерации длится до тех пор, пока рассеивание энергии вследствие вязкости ядра и его электрического сопротивления не скомпенсируется добавочной энергией вихревых токов и другими причинами.

Нормальное и аномальное магнитное поле Вклад дипольной составляющей Tдип, в наблюденное магнитное поле Земли составляет примерно 70%, что объясняет такие его глобальные особенности, как увеличение напряженности магнитного поля в 2 раза при переходе от экватора к полюсу. В наблюденном поле выделяют также составляющие, связанные с особенностями внутреннего строения Земли, называемые материковыми аномалиями Tм. Эти плавно изменяющиеся компоненты образуют на Земле шесть крупных, соизмеримых с площадью материков положительных и отрицательных аномалий с амплитудой (0,1—0,2) 105 нТл.

В настоящее время еще не выработана единая точка зрения относительно происхождения Tм. Видимо, источники их располагаются на глубине около 3000 км, на уровне внешней границы ядра Земли. В практике магниторазведки принято называть нормальным геомагнитным полем (или главным магнитным полем Земли) в рассматриваемой точке сумму полей диполя Tдип и материковых аномалий Tм: Тнорм= Tдип+ Tм.

Нормальное магнитное поле Земли специально рассчитывают и существуют таблицы или карты Тнорм, Zнорм для определенного периода времени и для каждой точки Земли.

Отклонения наблюденных значений магнитного поля Земли Т от нормального поля Тнорм являются аномалиями магнитного поля Та, Zа, Hа:

В зависимости от протяженности участка или площади, на которых они выделяются, аномалии магнитного поля подразделяют на локальные и региональные (относительно друг друга для данного района исследования). В северном полушарии направление намагничивающего поля Земли близко к вертикальному, поэтому более яркими и локализованными являются положительные аномалии. Интенсивность и характер магнитных аномалий зависят от интенсивности намагниченности горных пород I, которая определяется их магнитными свойствами и свойствами вмещающих пород и напряженностью магнитного поля Земли, а также зависит от формы, размеров и глубины залегания аномалообразующих масс. К магнитным свойствам кроме магнитной восприимчивости, определяющей индуктивную намагниченность Ii = Т, относится остаточная намагниченность In, т. е. I Ii + In.

Наблюдения магнитного поля Земли в течение длительного времени показывают, что напряженность магнитного поля и его элементы изменяются во времени. Эти изменения получили название вариаций: Твар, Zвар и др. По частотному составу, интенсивности и происхождению принято различать четыре вида магнитных вариаций: вековые, годовые, суточные и магнитные возмущения (бури). Вековые вариации магнитного поля происходят в течение длительных периодов времени в десятки и сотни лет и приводят к значительным изменениям среднегодовых значений элементов земного магнетизма. Под изменением того или иного элемента магнитного поля (вековой ход) понимают разности значений этих элементов в разные эпохи, деленные на число лет между эпохами. Вековой ход рассчитывают по наблюдениям напряженности поля на магнитных обсерваториях и опорных пунктах. Поскольку подобных многовековых наблюдений мало, то закономерность вековых вариаций установить трудно, хотя намечается их изменение с периодом в несколько сотен лет. Степень изменения элементов земного магнитного поля различна для разных районов Земли, имеется несколько зон (фокусов), в которых они максимальны. Возникновение вековых вариаций, видимо, объясняется процессами, протекающими внутри Земли (в ядре и на границе ядра с мантией). В меньшей степени они связаны с особенностями строения земной коры.

На постоянное поле Земли накладывается переменное магнитное поле (вариации годовые, суточные, магнитные бури), вызванное внешними процессами, происходящими в ионосфере. Годовые вариации — это изменения среднемесячных значений напряженности магнитного поля. Они характеризуются небольшой амплитудой. Суточные вариации связаны с солнечно-суточными и лунно-суточными изменениями напряженности магнитного поля из-за изменения солнечной активности. Вариации достигают максимума в полдень по местному времени и при противостоянии Луны. Амплитуда суточных вариаций зависит от магнитной широты района наблюдения и изменяется от первых десятков до 200 нТл при переходе от экватора к полюсам. Годовые и суточные вариации являются плавными, периодическими. Их называют невозмущенными вариациями.

Кроме невозмущенных (периодических) вариаций существуют возмущенные вариации, к которым относятся непериодические импульсные вариации и магнитные бури. Магнитные бури бывают разной интенсивности (до 1000 нТл и более) и охватывают, как правило, большие площади. Они возникают спорадически и проходят по всей земной поверхности либо одновременно, либо с запаздыванием до нескольких часов.

Продолжительность магнитных бурь колеблется от нескольких часов до нескольких суток, а интенсивность изменяется от нескольких до тысяч нанотесл. Намечается четкая связь между интенсивностью магнитных бурь и солнечной активностью. В годы максимумов солнечной активности, период которых около 11 лет, наблюдается наибольшее число бурь. При проведении магниторазведки необходимо учитывать и исключать вариации магнитного поля, если их амплитуды сравнимы со значениями аномалий магнитного поля от изучаемых геологических структур или превышают их.

Таким образом, в общем виде полный вектор напряженности магнитного поля Земли можно представить в виде С учетом выражения (3.2) аномальное магнитное поле рассчитывают по формуле Аналогично расчетам аномалии полного вектора напряженности магнитного поля определяют аномалии других элементов (Zа, Hа).

Магнитные свойства горных пород Основным магнитным параметром горных пород является магнитная восприимчивость -. Как отмечалось выше, является коэффициентом пропорциональности между интенсивностью индуктивного намагничения I, и напряженностью намагничивающего поля: Ii= T. Магнитную восприимчивость измеряют в 10-5 ед. СИ. Магнитная восприимчивость горных пород изменяется в широких пределах — от 0 до 10 ед. СИ.

По магнитным свойствам все вещества делятся на три группы: диамагнитные, парамагнитные и ферромагнитные. У диамагнитных пород магнитная восприимчивость очень мала (10-5 ед. СИ) и отрицательна, их намагничение направлено против намагничивающего поля. К диамагнетикам относятся многие минералы и горные породы, например, кварц, каменная соль, мрамор, нефть, графит, золото, серебро, свинец, медь и др. У парамагнитных пород магнитная восприимчивость положительна и также невелика. К парамагнетикам относится большинство осадочных, метаморфических и изверженных пород. Особенно большой и положительной (до нескольких единиц СИ) характеризуются ферромагнитные минералы, к которым относятся магнетит, титаномагнетит, ильменит и пирротин.

Таблица 3. Магнитная восприимчивость основных минералов, горных пород и руд Минерал, горная порода Ильменит Магнетит Основные изверженные (среднее) 60—120 000 Магнитная восприимчивость большинства горных пород определяется, прежде всего, присутствием и процентным составом ферромагнитных минералов (табл. 3).

Среди изверженных пород наибольшей магнитной восприимчивостью обладают ультраосновные и основные породы, слабо- или умеренномагнитны кислые породы. У метаморфических пород магнитная восприимчивость обычно ниже, чем у изверженных.

Осадочные породы, за исключением некоторых песчаников и глин, практически немагнитны.

Горные породы, слагающие геологические структуры, залегают среди вмещающих пород, и поэтому практически так же как и в гравиразведке, нас интересуют не абсолютные значения магнитной восприимчивости изучаемых структур стр, а только ее изменения или так называемая эффективная магнитная восприимчивость = стр – 0, где 0 — магнитная восприимчивость вмещающих пород. Значение в зависимости от геологической ситуации может изменяться в широких пределах и быть как отрицательным, так и положительным. Благодаря отличию от нуля и возникают магнитные аномалии.

Важным магнитным параметром горных пород, содержащих ферромагнитные минералы, является остаточная намагниченность In, т. е. специфическое свойство пород, несущее в себе информацию об изменении магнитной восприимчивости при изменении величины намагничивающего поля и температуры. С увеличением температуры магнитная восприимчивость у ферромагнетиков возрастает, достигая максимума при критической температуре или точке Кюри, которая у разных минералов изменяется от 400 до 700 °С. Когда температура превышает точку Кюри, магнитная восприимчивость уменьшается практически до нуля. Следствием этого является принципиальное ограничение глубинности магниторазведки, так как с глубиной температура возрастает и на глубине 20—50 км в зависимости от строения, величины теплового потока и теплопроводных свойств горных пород достигает точки Кюри. Благодаря так называемой коэрцитивной силе ферромагнитные минералы, остывая, сохраняют остаточную намагниченность In. Она характеризуется отношением Q= In / Ii, которое изменяется от 0 до 100 и может быть как положительным, так и отрицательным. Значение Q велико для ферромагнитных минералов, меньше для магматических пород, еще меньше для метаморфических и близко к нулю для осадочных пород.

Основной вклад в создание аномалий магнитного поля вносят ферромагнитные минералы и содержащие их горные породы. Так как в целом магнитная восприимчивость горных пород изменяется в больших пределах (в миллионы раз), то интенсивность аномалий магнитного поля варьирует от долей до сотен тысяч нанотесл. Для регистрации подобного поля необходима специальная аппаратура, имеющая и высокую чувствительность, и большой динамический диапазон измерений.

Принципы измерений геомагнитного поля Измерения магнитного поля Земли и его вариаций проводят как на стационарных пунктах — магнитных обсерваториях, которых насчитывается на Земле около 150, так и во время магниторазведочных работ. При абсолютных определениях полного вектора напряженности магнитного поля определяют, как правило, три элемента магнитного поля (например, Z, D, Н). Для этого применяют сложные трехкомпонентные магнитные приборы - магнитные теодолиты и вариационные станции, которые ведут запись автоматически.

При геологической разведке измеряют абсолютные Т и относительные по отношению к какой-нибудь исходной (опорной) точке T, Z элементы. Если исследуемая площадь невелика (несколько десятков квадратных километров), то нормальное поле можно считать постоянным и равным полю на исходной точке, оно принимается за условный нуль. При больших площадях исследования следует учитывать изменение нормального магнитного поля Земли.

Приборы для магнитной разведки (магнитометры) характеризуются разнообразием принципов устройства. В настоящее время в основном используют четыре типа магнитометров — оптико-механические, феррозондовые, протонные и квантовые.

Оптико-механические магнитометры Принцип действия оптико-механических магнитометров основан на взаимодействии магнитных полей Земли и постоянного магнита, служащего чувствительным элементом (датчиком) таких приборов. В зависимости от ориентации оси вращения постоянного магнита, его магнитного момента и напряженности магнитного поля Земли постоянный магнит занимает определенное положение относительно горизонтальной или вертикальной плоскости. Изменение напряженности магнитного поля Земли приводит к соответствующему изменению угла наклона постоянного магнита (при прочих равных условиях). Для повышения точности определения угла наклона системы применяют специальные оптические устройства.

В магнитометрах, измеряющих приращение вертикальной составляющей магнитного поля Земли Z, т. е. ее изменение по сравнению со значением в начальной точке, ось вращения постоянного магнита устанавливают горизонтально и ориентируют по направлению вектора Н. При таком положении чувствительной системы на вращение постоянного магнита будет действовать только вертикальная составляющая магнитного поля Земли, так как горизонтальная составляющая совпадает с осью вращения. Для повышения чувствительности прибора к малым изменениям вертикальной составляющей Z постоянный магнит должен располагаться примерно горизонтально. Это достигается уравновешиванием действия вертикальной составляющей Z силой тяжести постоянного магнита, если центры его вращения и тяжести не совпадают. При перемещении прибора из одной точки в другую приращение вертикальной составляющей магнитного поля Z будет связано с изменением угла наклона системы (если 1,5°) соотношением где k — коэффициент пропорциональности; с—цена деления шкалы прибора; п, n0 — отсчеты по прибору в двух точках измерения, снимаемые с помощью специальных оптических устройств.

Для снижения погрешности при ориентации по магнитному меридиану используют компенсационный способ измерений. Для этого в приборе имеется компенсационный магнит, жестко связанный с отсчетной шкалой. Плавная компенсация осуществляется вращением этого магнита до тех пор, пока постоянный магнит не установится горизонтально. Момент компенсации фиксируется с помощью особой оптической системы путем совмещения отраженного от зеркала на магните и неподвижного горизонтального индексов. Для расширения пределов измерения Z существует второй, так называемый диапазонный магнит ступенчатой компенсации. Изложенный принцип измерения приращения вертикальной составляющей магнитного поля Земли реализован в современном наземном магнитометре М-27М. В зависимости от методики магниторазведочных работ погрешность измерений таким прибором составляет 2—5нТл.

Феррозондовые магнитометры Основой конструкции феррозонда (чувствительного элемента) феррозондового магнитометра служит электрическая катушка, намотанная на удлиненный стержень из ферромагнетика, обладающего малой коэрцитивной силой и большой магнитной проницаемостью в слабых магнитных полях (например, из сплава железа и никеля — пермаллоя). В отсутствие внешнего магнитного поля при пропускании через генераторную (первичную) катушку переменного электрического тока частотой f и амплитудой, достаточной для создания поля возбуждения, превышающего уровень насыщения сердечника, в измерительной (вторичной) катушке возникает ЭДС удвоенной частоты 2f. При наличии внешнего постоянного магнитного поля, составляющая которого вдоль оси стержня отлична от нуля, в наведенной ЭДС будет преобладать частота, совпадающая с частотой поля возбуждения f.

Феррозонд магнитометра состоит из двух одинаковых пермаллоевых стержней, расположенных параллельно друг другу и ориентированных вдоль измеряемой составляющей магнитного поля Земли. Обмотки катушек возбуждения соединены последовательно таким образом, чтобы переменное поле в двух сердечниках было направлено противоположно. Для измерения внешнего магнитного поля (его составляющей, направленной вдоль оси стержней) обычно используют компенсационный мегод, заключающийся в компенсации постоянного магнитного поля Земли полем постоянного регулируемого тока. По величине тока компенсации судят о напряженности магнитного поля Земли вдоль оси феррозонда. К таким приборам относится аэромагнитометр АМФ-21. За счет погрешности в ориентировке феррозонда погрешность съемки таким магнитометром достигает десятков нанотесл. При скважинньгх работах применяют скважинный вариант ферромагнитометра (например, ТСМК-30), позволяющего измерять составляющие магнитного поля AZ, АХ, АУ с погрешностью до ± 100 нТл.

Принцип действия протонных или ядерных магнитометров основан на явлении свободной прецессии протонов в земном магнитном поле. После определенного электромагнитного воздействия на протонсодержащий датчик протоны прецессируют вокруг направления земного магнитного поля с угловой скоростью, пропорциональной полной напряженности магнитного поля Земли Т: = aT, где a — коэффициент пропорциональности, который равен гиромагнитному отношению ядра (отношению магнитного момента ядра к механическому).

Протонный магнитометр состоит из магниточувствительного блока или датчика (протонсодержащий сосуд с водой, спиртом, бензолом и т. п., вокруг которого намотаны возбуждающая и измерительная катушки); соединительных проводов; электронного блока (предусилитель, схема коммутации, умножитель частоты, частотомер и световой индикатор); регистрирующего устройства и блока питания. Рабочий цикл, т. е. время определения значений магнитного поля в каждой точке, складывается из времени поляризации датчика (для воды оно составляет 3— 8 с), времени переключения датчика и времени определения частоты сигнала, наведенного в катушке датчика (0,1—0,4 с). В зависимости от протонсодержащего вещества и точности определения частоты прецессии рабочий цикл составляет 1—10с.

При небольшой скорости движения носителя магнитометра (наземный или морской варианты) данные о магнитном поле Земли Т получают практически непрерывно.

При большой скорости, например при скорости самолета 350 км/ч, расстояние между замерами составляет 300 м. С помощью протонного магнитометра можно проводить магнитную съемку с использованием металлических носителей — кораблей или самолетов, обладающих собственным магнитным полем. При этом датчик магнитометра буксируют на кабеле, длина которого должна в несколько раз превышать продольные размеры носителя.

С помощью протонного магнитометра дискретно (1 раз в 1—10 с) измеряют абсолютное значение магнитной индукции геомагнитного поля с погрешностью ± 1—2 нТл при низкой чувствительности (±45°) к ориентации датчика по магнитному меридиану, независимости от температуры и времени (отсутствует смещение нуля). Протонные магнитометры используют при наземных (например, отечественный магнитометр ММП-203) и морских (ММП-3) съемках, реже при воздушных съемках (МСС-214) и скважинных наблюдениях.

В квантовых магнитометрах, предназначенных для измерения абсолютных значений модуля индукции магнитного поля, используют так называемый эффект Зеемана. В электронной структуре атомов, обладающих магнитным моментом, при попадании в магнитное поле происходит расщепление энергетических уровней на подуровни, с разницей энергии и, соответственно, частотой излучения пропорциональной модулю полного вектора магнитной индукции в точке наблюдения. Чувствительным элементом магнитометра является сосуд, в котором имеются пары цезия, рубидия или гелия. В результате вспышки монохроматического света (метод оптической накачки) электроны паров переводятся с одного энергетического подуровня на другой. Возвращение их на прежний уровень после окончания накачки сопровождается излучением энергии с частотой, пропорциональной величине магнитного поля.

С помощью квантового магнитометра измерения Т проводят с погрешностью ±(0,1—1) нТл при слабой чувствительности к ориентации датчика, высоком быстродействии и стабильности показаний (незначительное смещение нуля). Основными отечественными квантовыми магнитометрами являются приборы следующих марок: наземные (пешеходные) М-33 и ММП-303, морской КМ-8, аэромагнитометр КАМ-28.

В магнитометрах для съемки в движении (морских, воздушных или автомобильных) регистрацию магнитной индукции ведут автоматически, практически непрерывно.

Профили привязывают различными способами (радионавигационными, с помощью аэрофотосъемок и т. п.). Результаты наблюдений представляют иногда в аналоговой форме в виде магнитограмм, но чаще - в цифровой форме, обеспечивающей последующую обработку информации на бортовых ЭВМ или в экспедиционных вычислительных центрах.

3.3 Методика магниторазведки Под методикой магниторазведки, как и гравиразведки (см. гл. 2), понимается выбор метода и аппаратуры, вида съемок и систем наблюдения, погрешности и формы представления материалов, направленных на получение кондиционного материала о распределении аномалий магнитного поля, с помощью которого можно решить поставленные геологические задачи.

Основными методами магниторазведки являются полевые (наземные, пешеходные или автомобильные), воздушные (аэромагниторазведка), морские (гидромагнитные) съемки, а также подземные и скважинные наблюдения. По решаемым геологическим задачам различают следующие виды магнитных съемок: а) региональные (аэромагнитные и гидромагнитные), выполняемые в масштабах 1 : 200 000 и мельче и предназначенные для изучения глубинного геологического строения крупных территорий суши и акваторий; б) картировочные (аэромагнитные и полевые), проводимые в масштабах 1:100000 - 1:50000 и применяемые для решения задач геологического картирования с оценкой перспективности изучаемых площадей на железорудные и другие полезные ископаемые; в) картировочно-поисковые (как правило, полевые), предназначенные для крупномасштабного геологического картирования (масштабы 1:50000 а также непосредственных поисков железорудных и других полезных ископаемых; г) поисково-разведочные и детальные (полевые, подземные и скважинные), при которых работы проводят в масштабах 1: 10000 и крупнее и решают задачи выявления рудных тел, оценки их размеров, формы, положения, намагниченности.

Полевую, как правило, пешеходную магнитную съемку проводят с помощью портативных магнитометров типа М-27М, ММП-203, ММП-303 и др. Она отличается достаточно высокой производительностью: в зависимости от детальности и категории местности отряд из двух человек отрабатывает от нескольких десятков до двух сотен точек наблюдений за смену.

Выбор системы наблюдений. Различают два вида магнитных съемок: маршрутные (профильные) и площадные. Первые применяют как при рекогносцировочных исследованиях для выявления общих закономерностей аномального магнитного поля пересекаемых геологических структур и уточнения их границ, так и по интерпретационным профилям при высокоточных съемках. Проводимые чаще площадные съемки, выполняемые по системе параллельных профилей, позволяют судить о форме и простирании аномалий магнитного поля на исследуемой площади. Принцип выбора профилей и шага съемки такой же, как в гравиразведке. Однако в связи с более сложной структурой аномального магнитного поля связь аномалий с параметрами искомых геологических объектов более сложная, поэтому сеть наблюдений должна быть более густой. Это, кстати, легче реализовать, так как магнитная съемка проводится быстрее, чем гравиметрическая. Расстояние между профилями берут примерно в 5 раз меньше длины, а шаг — в 5 раз меньше поперечных размеров разведываемых объектов. В целях стандартизации методики рекомендуется выбирать расстояния между пикетами 5, 10, 20, 25, 50, 100 м. Сеть наблюдений в зависимости от масштаба разбивают как инструментально, так и визуально по аэрофотоснимкам с измерением расстояний шагами (с обязательным закреплением начала и конца каждого профиля с помощью инструментальной привязки).

Проектная точность зависит не только от масштаба съемки (расстояние между профилями должно составлять примерно 1 см в масштабе выдаваемой карты), но и в основном от величины ожидаемых магнитных аномалий, которые должны быть в 2— раза больше средней квадратической погрешности съемки. При работах с оптикомеханическими магнитометрами, как и в гравиразведке, разбивают опорную сеть, на которую опираются рядовые пункты наблюдения. При работах с протонными и квантовыми магнитометрами, у которых сползание нуля практически отсутствует, разбивать опорную сеть необязательно.

Учет влияния вариаций. В отличие от гравиразведки при магнитной разведке необходимо вводить поправки за вариации магнитного поля, амплитуды и частоты которых нередко сравнимы с амплитудами и формой аномалий за счет геологических неоднородностей. Для этого с помощью так называемых магнитных вариационных станций (МВС) или обычных магнитометров того же типа, с которыми ведется съемка, на базе экспедиции ведут измерения напряженности магнитного поля. Зная время, амплитуду вариаций и время замеров при полевых съемках, можно с помощью формулы (3.4) ввести поправки и рассчитать аномалии во всех пунктах наблюдения. Если район исследования занимает большую площадь, то используют данные двух-трех МВС или результаты записи вариаций в ближайших (до 500 км) обсерваториях. Если имеется опорная сеть, то ее можно использовать и для учета вариаций.

Погрешность магнитной съемки и способы представления результатов. Контроль качества проведенных магнитных работ осуществляют путем постановки независимых контрольных наблюдений, выполняемых в объеме до 5 %, от общего числа точек, желательно другим прибором и оператором и обязательно в другое время, например в конце полевого сезона. Среднюю квадратическую погрешность работ определяют по стандартной формуле где — разница основного и контрольного отсчетов на i-й контрольной точке; п — общее число контрольных точек.

В результате полевой магнитной съемки строят графики, карты графиков и карты абсолютных или относительных аномальных значений геомагнитного поля. Горизонтальные масштабы такие же, как и масштаб съемки. Вертикальный масштаб графиков берут таким, чтобы значение не превышало 1 мм, а сечение изолиний на картах составляло (2—3). Обычно изолинии проводят через ±5, ± 10, ±20, ±50 нТл.

В степных и полупустынных районах, доступных для автотранспорта, используют наземную автомобильную магнитную съемку. Магнитное поле Земли с точностью 3— нТл измеряют в движении путем буксировки чувствительного элемента магнитометра за автомобилем на расстоянии 5—6 м.

Аэромагнитные и гидромагнитные съемки Магниторазведка от других геофизических методов отличается наибольшим применением съемок в движении.



Pages:     || 2 |


Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ ЮРИДИЧЕСКАЯ АКАДЕМИЯ имени О.Е.КУТАФИНА КАФЕДРА КОНСТИТУЦИОННОГО (ГОСУДАРСТВЕННОГО) ПРАВА ЗАРУБЕЖНЫХ СТРАН Учебно-методический комплекс по курсу КОНСТИТУЦИОННОЕ (ГОСУДАРСТВЕННОЕ) ПРАВО ЗАРУБЕЖНЫХ СТРАН для всех форм обучения на 2011/12, 2012/13, 2013/14 учебные годы МОСКВА 20 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ...»

«Сведения об учебно-методической, методической и иной документации, разработанной образовательной организацией для обеспечения образовательного процесса по направлению подготовки 230201 – Информационные системы и технологии Специализация: Информационные системы и технологии на предприятии Квалификация; Инженер Наименование № Наименование учебно-методических, методических и иных материалов дисциплины по учебному п/п (автор, место издания, год издания, тираж) плану 1) Учебно-методический комплекс...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ КАЛИНИНГРАДСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КАЛИНИНГРАДСКОЙ ОБЛАСТИ ГУСЕВСКИЙ АГРОПРОМЫШЛЕННЫЙ КОЛЛЕДЖ АННОТАЦИИ К ПРОГРАММАМ УЧЕБНЫХ ДИСЦИПЛИН, ПРОФЕССИОНАЛЬНЫХ МОДУЛЕЙ ПО ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПО СПЕЦИАЛЬНОСТИ 111801 ВЕТЕРИНАРИЯ Гусев ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПОДГОТОВКА БД.01 РУССКИЙ ЯЗЫК 1....»

«СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ З.А. ХРУСТАЛЁВА МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ ПРАКТИКуМ Рекомендовано ФГУ Федеральный институт развития образования в качестве учебного пособия для использования в учебном процессе образовательных учреждений, реализующих программы среднего профессионального образования УДК 006(075.8) ББК 30.10я73 Х95 Рецензенты: В. А. Гурьев, заместитель начальника отдела НПО им. С. А. Лавочкина; И. А. Карандина, председатель ПЦК спец. 210306, преподаватель...»

«Образовательная система Школа 2100 - первый и единственный в России и странах СНГ современный опыт создания целостной образовательной модели, последовательно предлагающей системное и непрерывное обучение детей от младшего дошкольного возраста до окончания старшей школы. Научные руководители - А.А.Леонтьев, Д.И.Фельдштейн, С.К.Бондырева, Ш.А.Амонашвили. Школа 2100 для начальной школы - это система учебников (учебнометодический комплект) для 1-4 классов общеобразовательных учреждений, которая...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Бийский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования Алтайский государственный технический университет им. И.И. Ползунова Ю.Ю. Свирина ЭКОНОМИКА ОРГАНИЗАЦИИ Методические рекомендации по выполнению курсовой работы для студентов направления подготовки 100700.62 Торговое дело профиль Коммерция Бийск Издательство Алтайского государственного технического университета...»

«СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ З.А. ХРУСТАЛЁВА ЭЛЕКТРОТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ. ПРАКТИКУМ Рекомендовано ФГУ Федеральный институт развития образования в качестве учебного пособия для использования в учебном процессе образовательных учреждений, реализующих программы среднего профессионального образования УДК 621.3(075.32) ББК 31.294.9я723 Х95 Рецензенты: А.В. Кочергина, преподаватель спецдисциплин Московского технического колледжа, В.А. Гурьев, начальник отдела НПО им. С.А. Лавочкина...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ивановская государственная текстильная академия (ИГТА) Кафедра технологии швейных изделий МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ОСНОВНЫХ РАЗДЕЛОВ КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ РАБОТ Иваново 2012 Методические указания определяют содержание и требования к оформлению отдельных разделов курсовых проектов (работ) и...»

«Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет ТРЕБОВАНИЯ К МАТЕРИАЛЬНО-ТЕХНИЧЕСКОМУ ОСНАЩЕНИЮ УЧЕБНОГО ПРОЦЕССА БАКАЛАВРОВ ПО ПРОФИЛЮ КОМПОЗИТНЫЕ НАНОМАТЕРИАЛЫ НАПРАВЛЕНИЯ НАНОТЕХНОЛОГИИ 2.1.12. Требования к материально-техническому оснащению учебного процесса бакалавров по направлению подготовки Нанотехнология с профилем подготовки Композитные наноматериалы: - должны включать примерный перечень...»

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ ЛИПЕЦКИЙ ФИЛИАЛ Методические рекомендации по выполнению и защите дипломного проекта для студентов специальности 080504.65 Государственное и муниципальное управление Составители М.А. Аксенова, А.С. Шурупова, И.С. Щетинина Липецк 2014 ББК: 67.401я73 М 54 Методические рекомендации по выполнению и...»

«основы ТАКТИЧЕСКОЙ ПОДГОТОВКИ НАЧИНАЮЩИХ ВОЛЕЙБОЛИСТОВ Учебное пособие OCR: http://nskvolley.narod.ru/ Spellchecked: Cy-27 ([email protected]) 2004 год данная книга может использоваться третьими лицами только с соблюдением соответствующих положений действующего законодательства Чуркин А.А. Основы тактической подготовки начинающих волейболистов. Учебное пособие.СПбТЭИ,1997. До пущено Государственным комитетом Российской Федерации по физической культуре и туризму в качестве учебного пособия для...»

«Министерство образования Республики Беларусь Учреждение образования Полоцкий государственный университет В. Ф. Коренский ТЕОРИЯ МЕХАНИЗМОВ, МАШИН И МАНИПУЛЯТОРОВ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для студентов специальностей 1-36 01 01, 1-36 01 03 В двух частях Часть 1 ОРГАНИЗАЦИОННЫЕ ОСНОВЫ КУРСОВОГО ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ МАШИН Новополоцк ПГУ 2008 УДК 621-01(075.8) ББК 34.41я73 К66 Рекомендовано к изданию советом машиностроительного факультета в качестве учебно-методического комплекса...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ЛОГИСТИКИ И МЕНЕДЖМЕНТА МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению дипломной работы для студентов специальности 1-26 02 05 - Логистика Новополоцк 2013 1 УДК ББК Одобрены и рекомендованы к изданию методической комиссией финансовоэкономического факультета (протокол № от _ _ 20г.) Кафедра логистики и менеджмента Составители: Банзекуливахо Мухизи Жан, кандидат технических наук, доцент кафедры...»

«Учебное пособие для 10 класса учреждений, обеспечивающих получение общего среднего образования, с русским языком обучения с 12летним сроком обучения Под редакцией доктора исторических наук, профессора Г. А. Космача Допущено Министерством образования Республики Беларусь 2е издание Минск Издательский центр БГУ 2006 УДК 94(100)1945/2005(075.3=161.1) ББК 63.3(0)6я72 В84 А в т о р ы: Г. А. Космач — Введение, § 2, 18—26, разделы по истории культуры к § 4—8; Г. Г. Лазько — § 1, 3—10; В. В. Тугай — §...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ГОРНО-АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра безопасности жизнедеятельности, анатомии и физиологии Кафедра зоологии, экологии и генетики БИОЛОГИЯ С ОСНОВАМИ ЭКОЛОГИИ Учебно-методический комплекс Для студентов, обучающихся по специальности 020101 Химия Горно-Алтайск РИО Горно-Алтайского госуниверситета 2009 Печатается по решению методического совета Горно-Алтайского...»

«СОДЕРЖАНИЕ: - 1. Пояснительная записка. -3 1.1. Актуальность программы, педагогическая целесообразность отбора содержания, 1.2. Новизна, отличительные особенности данной программы от уже существующих образовательных программ. -3 1.3. Цель и задачи программы. -4 1.4.Организационно-педагогические основы образовательного процесса. -5 1.5. Ожидаемые результаты и способы их проверки. -7 2.УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН. -11 3.СОДЕРЖАНИЕ ПРОГРАММЫ. -13 4.МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ....»

«Ю.Ю. Громов, Н.А. Земской, А.В. Лагутин, О.Г. Иванова, В.М. Тютюнник • ИЗДАТЕЛЬСТВО ТГТУ • Министерство образования Российской Федерации ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Ю.Ю. Громов, Н.А. Земской, А.В. Лагутин, О.Г. Иванова, В.М. Тютюнник СИСТЕМНЫЙ АНАЛИЗ В ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЯХ Допущено УМО вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 071900 – Информационные системы...»

«2014 Июль Библиографический указатель новых поступлений по отраслям знаний Бюллетень Новые поступления ежемесячно информирует о новых документах, поступивших в АОНБ им. Н. А. Добролюбова. Бюллетень составлен на основе записей электронного каталога. Материал расположен в систематическом порядке по отраслям знаний, внутри разделов – в алфавите авторов и заглавий. Записи включают краткое библиографическое описание. В конце описания указывается инвентарный номер документа с СИГЛОЙ структурных...»

«НЕКОТОРЫЕ АСПЕКТЫ ПРАВООХРАНИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ В СОВРЕМЕННЫХ УСЛОВИЯХ Информационный бюллетень Выпуск 10 ИЗДАТЕЛЬСТВО ТГТУ Министерство внутренних дел Российской Федерации Государственное образовательное учреждение высшего профессионального образования Московский университет Тамбовский филиал КАФЕДРА ГОСУДАРСТВЕННО-ПРАВОВЫХ И ГРАЖДАНСКО-ПРАВОВЫХ ДИСЦИПЛИН НЕКОТОРЫЕ АСПЕКТЫ ПРАВООХРАНИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ В СОВРЕМЕННЫХ УСЛОВИЯХ Информационный бюллетень Выпуск Тамбов Издательство ТГТУ УДК...»

«3 ОГЛАВЛЕНИЕ стр. 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ – ОБЩЕСТВЕННОЕ ЗДОРОВЬЕ И ЗДРАВООХРАНЕНИЯ, ЭКОНОМИКА ЗДРАВООХРАНЕНИЯ, ЕЁ МЕСТО В СТУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ..3 2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ – ОБЩЕСТВЕННОЕ ЗДОРОВЬЕ И ЗДРАВООХРАНЕНИЯ, ЭКОНОМИКА ЗДРАВООХРАНЕНИЯ..4 3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Лекционный курс..5 4.2 Практические занятия 4.3.Самостоятельная внеаудиторная работа студентов.. 5.МАТРИЦА...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.