WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 |

«Информационные системы Учебное пособие по дисциплине Информационные системы для специальностей ПИЭ и ПИЮ Составители Орел А. А., Ромакина О.М. Саратов 2004 Содержание Содержание Глава 1 Основные понятия Глава 2 ...»

-- [ Страница 1 ] --

Саратовский госуниверситет им. Н. Г. Чернышевского

Кафедра математического моделирования процессов и

систем управления

Информационные системы

Учебное пособие по дисциплине Информационные системы

для специальностей ПИЭ и ПИЮ

Составители Орел А. А., Ромакина О.М.

Саратов 2004

Содержание

Содержание

Глава 1

Основные понятия

Глава 2

Применение информационных систем

Автоматизированные информационные системы (АИС)

Жизненный цикл ИС

Эффективность ИС

Пользователи ИС. Трехуровневое представление данных

История и основные направления развития ИС

Классификация ИС

Структура программного обеспечения ИС

Структура приложений в ИС

Структура хранения информации в ИС

Единое информационное пространство

Классификация программных решений

Этапы разработки автоматизированных информационных систем

Разработка и анализ бизнес-модели

Основные понятия электронного документооборота

Электронный документооборот

Модели информационного пространства предприятия

Эволюция модели документооборота

Глава 3

Теоретические основы информационных систем

Знаковые системы

Классификационные системы

Предметная область

Модель "сущность-связь"

Глава 4

Информационные системы как средство автоматизации бизнес – процессов

Cals-технологии

Cистемы класса MRP - CSRP

Состав систем класса MRPII (Manufacturing Resource Planning)

Механизм работы MRPII-системы

Список литературы

Глава Основные понятия Информация - это содержание сообщения, сигнала, памяти, а также сведения, содержащиеся в сообщении, сигнале или памяти.

Информационные процессы, т.е. процессы передачи, хранения и переработки информации, играют важную роль в жизни общества.

Информация всегда связана с материальным носителем, а ее передача - с затратами энергии. Однако одну и ту же информацию можно хранить в различном материальном виде и передавать с различными энергетическими затратами, причем последствия - в том числе и материальные - переданной информации совершенно не зависят от физических затрат на ее передачу. Поэтому информационные процессы не сводимы к физическим, и информация, наряду с материей и энергией, является одной из фундаментальных сущностей окружающего мира.

Достижения техники в 18 - 19 вв. практически целиком были связаны с успехами физики и химии. Благодаря им были созданы и широко распространились различные преобразователи материи и энергии: двигатели, металлургические и химические производства, электрогенераторы и т. д. Эффективность их работы описывается с помощью физических понятий: мощности, к. п. д., грузоподъемности, количества вырабатываемой энергии и др. В 20 в. с развитием техники появились устройства другого рода: средства связи, устройства автоматики, а с 40-х гг. - вычислительной техники. Выяснилось, что эффективность их работы с помощью физических понятий описать невозможно и что существенные характеристики таких устройств нужно описывать совсем другими способами.

В результате возникли точное понятие информации и математическая теория информации.

Теория информации как самостоятельная научная дисциплина, связанная с восприятием, передачей и переработкой, хранением и использованием информации, была основана американским ученым К. Шенноном в конце 40-х гг. 20-го в. Предложенная Шенноном теория основывалась на фундаментальном понятии количественной меры неопределенности - энтропии - и связанного с нею понятия - количества информации.

Другим фактором в становлении теории информации стало осознание того, что носитель информации - сигнал - имеет случайную природу.

На основе понятий энтропии и количества информации в теории информации введены важные характеристики сигналов и информационных систем.

Приведем основные из них.

1. Скорость создания информации Н - энтропия источника, отнесенная к единице времени.

2. Скорость передачи информации R - количество информации, передаваемое по каналу связи в единицу времени (например, для речи в обычном темпе - около 20 бит/с).

3. Избыточность - свойство сигналов, состоящее в том, что каждый элемент сигнала (например, символ в тексте) несет информации меньше, чем может нести потенциально. При отсутствии помех избыточность вредна, так как снижает эффективность использования системы (снижает скорость передачи по каналу связи, увеличивает требуемый объем памяти при запоминании, увеличивает число операций при обработке и пр.). Вместе с тем избыточность - единственное средство борьбы с помехами, так как именно она позволяет установить, какие символы были испорчены шумами, и восстановить переданный сигнал Избыточность измеряется по формуле: r =, где n - текущая длина (число символов) сигнала, а n0 - длина сигнала при максимальной информационной загрузке, т.е. минимальная из длин сигналов, несущих ту же информацию.

4. Пропускная способность канала связи C - максимальная скорость передачи информации: C = max R, где максимум отыскивается среди всех мыслимых приемнопередающих систем, связанных данным каналом (К. Шеннон рассматривал разные способы кодирования при фиксированных мощностях сигналов и шумов). Экспериментально установлено, что пропускная способность зрения и слуха человека около 5 бит/с.



Средства связи, какие бы физические процессы они ни использовали, - это средства передачи информации. Объединение понятий "информация" и "управление" привело Н.

Винера в 40-х гг. к созданию кибернетики, которая, в частности, впервые указала на общность информационных процессов в технике, обществе и живых организмах.

Математическое понятие информации связано с ее измерением. В теории информации принят энтропийный подход, который учитывает ценность информации, содержащейся в сообщении для его получателя, и исходит из следующей модели. Получатель сообщения имеет определенные представления о возможных наступлениях некоторых событий. Эти представления в общем случае недостоверны и выражаются вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределенности (энтропия) характеризуется некоторой математической зависимостью от совокупности этих вероятностей. Количество информации в сообщении определяется тем, насколько уменьшается эта мера после получения сообщения. Например, тривиальное сообщение, т.е. сообщение о том, что получателю и без того известно, не изменяет ожидаемых вероятностей и не несет для него никакой информации. Сообщение несет полную информацию о данном множестве событий, если оно целиком снимает всю неопределенность. В этом случае количество информации в нем равно исходной энтропии.

Количество информации это числовая характеристика сигнала, которая не зависит от его формы и содержания и характеризует степень неопределенности, которая исчезает после выбора (получения) сообщения в виде данного сигнала.

Рассмотрим пример. Пусть имеется колода, содержащая 32 различные карты. Чтобы выбрать одну из них существует 32 возможности, характеризующие исходную неопределенность ситуации. Число 32 в данном примере можно считать количеством информации, заложенном в одном выборе из 32 возможностей. Американский инженер Р.

Хартли в 1928 году предложил в качестве меры неопределенности логарифм от числа возможностей:

Здесь H – количество информации, k - коэффициент пропорциональности, m – число возможных выборов, a – основание логарифма. Чаще всего принимают k = 1 и a = 2. В этом случае единицей количества информации будет выбор из двух возможностей. Такая единица носит наименование бита и представляется одним символом двоичного алфавита.

Величина H в соотношении (1) определяет число вопросов, ответы на которые позволяют выбрать одну из двух альтернатив. В примере с колодой из 32 карт необходимо и достаточно получить ответы “да” или “нет” на пять вопросов, каждый из которых вдвое сокращает область дальнейшего выбора. Такими вопросами могут быть:

Для выбора дамы пик ответами будут “нет”,”нет”,”да”,”нет”,”да” или последовательность из пяти двоичных символов 00101.

В случае, когда выборы не равновероятны вместо формулы (1) используется формула К. Шеннона. В этом случае H зависит не только от m, но и от вероятностей выбора символов и вероятностей связей между ними.

Для количества собственной или индивидуальной информации К.Шеннон в 1948 году предложил соотношение:

где P вероятность выбора i – го символа алфавита.

В качестве меры количества информации удобнее пользоваться не hi, а средним значением количества информации, приходящимся на один символ алфавита:

Значение H достигает максимума при равенстве всех P, т.е. при P =. В этом случае соотношение (3) превращается в формулу Р. Хартли (1): H = log 2 P = log 2 m В технике часто используют более простой и грубый способ измерения информации, который можно назвать объемным. Он основан на подсчете числа символов в сообщении, т.е.

связан с его длиной и не учитывает содержания. Длина сообщения зависит от числа различных символов, употребляемых для записи сообщения, т.е. от мощности алфавита.

Например, одно и то же число "девятнадцать" в десятичном алфавите записывается двумя символами - 19, а в двоичном алфавите - пятью символами - 10111. В вычислительной технике применяются две стандартные единицы измерения: бит и байт. Бит - это один символ двоичного алфавита. Байт - это один символ, который можно представить восьмиразрядным двоичным кодом; мощность алфавита этого представления равна числу различных восьмиразрядных двоичных кодов, т.е. 2**8 = 256, и может включать, например, все символы клавиатуры компьютера.

Эти два способа измерения информации, как правило, не совпадают, причем энтропийное количество информации не может быть больше числа двоичных символов (битов) в сообщении. Если же оно меньше этого числа, то говорят, что сообщение избыточно.

В примере с колодой из 32 карт оба способа измерения информации дают одно и то же число 5. Это значит, что если кодировать карты колоды последовательностями из пяти двоичных символов, то такой код будет неизбыточным. Тривиальные сообщения всегда избыточны, так как имеют нулевую информацию с точки зрения энтропии, но содержат ненулевое число символов.

При любых видах работы с информацией всегда идет речь о ее представлении в виде определенных символических структур. Наиболее распространены одномерные представления информации, при которых сообщения имеют вид последовательностей символов. Так информация представляется в письменных текстах, при передаче по каналам связи, в памяти компьютера. Однако широко используются и многомерные представления информации, причем под многомерностью понимают не только расположение элементов информации на плоскости или в пространстве (в виде рисунков, схем, графов, объемных макетов и т. д.), но и множественность признаков используемых символов. Например, информацию могут нести не только значения букв и цифр, но и их цвет, размер, вид шрифта.

Формирование представления информации называется ее кодированием. Часто термин "кодирование" употребляется в более узком смысле, как переход от исходного представления к представлению, удобному для хранения, передачи или обработки. В этом случае обратный переход к исходному представлению называется декодированием.

При кодировании могут ставиться разные цели и соответственно применяться разные методы. Наиболее распространенные цели кодирования - это экономность, т.е. уменьшение избыточности сообщения; повышение скорости передачи или обработки; надежность, т.е.

защита от случайных искажений; сохранность, т.е. защита от нежелательного доступа к информации; удобство физической реализации (например, двоичное кодирование информации в компьютере); удобство восприятия. Эти цели часто противоречат друг другу.

Экономные сообщения могут оказаться ненадежными, так как они не содержат лишних символов, и искажение любого символа может изменить смысл сообщения.

Например, обычная запись чисел цифрами гораздо экономнее и удобнее для вычислений, чем запись словами. Однако искажение или удаление любой цифры изменяет величину числа. Поэтому в финансовых документах, где надежность крайне важна, цифровые представления чисел в некоторых местах заменяются или дублируются словесными представлениями. (Сумму иногда пишут прописью.) Теория кодирования подробно исследует проблемы разумного сочетания экономности и надежности при передаче информации.

Экономное сообщение может повысить скорость обработки (более короткое сообщение будет быстрее передано или прочтено), но может и уменьшить ее. Например, очень экономно использовать вместо фамилий и имен коды. Но тогда надо либо помнить все соответствия между фамилиями и кодами, либо каждый раз обращаться к справочнику. Защита информации от нежелательного доступа требует специальных способов обеспечения секретности (паролей, ключей и т.д.). Это увеличивает объем хранимой информации и замедляет работу с ней.

На разных этапах сложного информационного процесса достигаются разные цели, и поэтому информация неоднократно перекодируется, т.е. изменяет свое представление.

Задачи кодирования и декодирования сообщений, поступающих к потребителям и посылаемых из источников информации теория кодирования решает с учетом наилучшего согласования посылаемой информации с каналами связи (каналами передачи данных). Под этим понимается стремление максимально использовать пропускную способность канала, а также обеспечить передаваемым сообщениям нужную степень защищенности от помех.

Рассмотрим обобщенную схему передачи данных.

Множество M 1 описывает множество потенциально возможных сообщений, которые может передать источник информации. Из этого множества выбирается некоторое сообщение m1. Но прежде чем его направить в канал, оно кодируется и преобразуется в некоторое сообщение m 2 из множества M 2, характеризующего множество закодированных сообщений.

Поскольку способов кодирования может быть много, то M 2 отличается от M 1 и установление соответствия между элементами этих множеств требует специальной договоренности.

Например, хорошо известная азбука Морзе, применяемая для кодирования букв алфавита для передачи сообщений по каналу связи, кодирует сообщения совершенно не так, как их кодирует матрос, передающий такое же сообщение с борта корабля на берег с помощью пары сигнальных флажков.

Закодированное сообщение поступает в канал связи и под воздействием помех этого канала превращается в искаженное сообщение m3 из множества M 3. На приемном конце канала связи необходимо провести декодирование искаженного сообщения. Сначала надо m превратить в сообщение из множества M 2. Затем, используя информацию о способах кодирования, получить то сообщение m1, которое было послано. Но переход от m3 к сообщению из M 2 при сильных искажениях неоднозначен. Поэтому искаженные сообщения декодировать нелегко.

Одна из важных задач, решаемых в теории кодирования, - это разработка специальных корректирующих кодов, которые позволяют находить и исправлять ошибки, возникающие при передаче сообщений. Один из простейших кодов такого типа мог бы быть таким. Вместо четырех букв, входящих в слово "рука", источник сообщения мог бы передавать их в удвоенном виде. Тогда сообщение, поступившее в канал связи, выглядело бы как "ррууккаа". Если искажению подверглась одна буква передаваемого слова, то на приемном конце канала появилось бы сообщение "рщууккаа". Восстановление правильного сообщения значительно облегчается благодаря принятому виду кодирования. Ясно, что ошибки в трех последних позициях нет. Ошибка имеется только в первой позиции, так как буквы в ней различаются. Для исправления обнаруженной ошибки достаточно проверить две гипотезы: m 2 есть либо "щука", либо "рука". Первая гипотеза отклоняется, так как в M 2 нет слова "щука".

Данный пример показывает, что поиск и исправление ошибок требуют избыточности в передаваемом сообщении. Желательно, чтобы эта избыточность была минимальной. В противном случае передача сообщений будет идти с низкой скоростью.

Проблема кодирования с минимальной избыточностью - одна из задач, исследуемых и решаемых в теории кодирования. Созданы многие десятки корректирующих и обнаруживающих ошибки кодов для каналов связи с различными характеристиками шумов и искажений, вносимых при передаче сообщений.

В теории кодирования фундаментальное значение имеют две теоремы, доказанные К.

Шенноном. Первая теорема Шеннона говорит о том, что при канале, не вносящем своих помех, можно закодировать сообщения таким образом, чтобы среднее число элементов кода, приходящихся на один элемент кодируемого алфавита, было бы минимальным, (этот минимум определяется некоторым параметром H - энтропией источника информации, характеризующего статистические свойства источника). Такое кодирование называется эффективным статистическим кодированием.

Вторая теорема Шеннона относится к каналам с искажениями. Согласно этой теореме, для таких каналов всегда существует способ кодирования, при котором сообщения будут передаваться с любой высокой достоверностью, если только скорость передачи не превышает пропускной способности канала связи.

Специальным разделом в теории кодирования является теория арифметических кодов, используемых для повышения надежности работы вычислительных устройств.

Арифметические коды позволяют обнаруживать и исправлять ошибки, возникающие в арифметических устройствах компьютеров. Однако, за такой сервис приходится расплачиваться лишним временем и оборудованием. Поэтому арифметические коды используются только в специальных компьютерах, предназначенных для решения ответственных задач, когда ошибки в работе машины могут привести к весьма нежелательным последствиям.

Начало этому направлению положили исследования в области документалистики и анализа научно-технической информации, которые проводились до появления компьютеров.

Своего развития информационные системы достигли тогда, когда в их состав вошли компьютеры. Информационные системы решают несколько основных задач.

А. Анализ и прогнозирование потоков разнообразной информации, перемещающихся в обществе. Изучаются потоки документов с целью их минимизации, стандартизации и приспособления для эффективной обработки на вычислительных машинах, а также особенности потоков информации, протекающей через журналы, газеты, радиоканалы, телевизионные каналы и другие каналы распространения информации. Оценивается влияние распространяемой информации на научно-технический прогресс и состояние общества.

Б. Исследование способов представления и хранения информации, создание специальных языков для формального описания информации различной природы, разработка специальных приемов сжатия и кодирования информации, аннотирования объемных документов и реферирования их. В рамках этого направления развиваются работы по созданию банков данных большого объема, хранящих информацию из различных областей знаний в форме, доступной для вычислительных машин.

В. Построение различных процедур и технических средств для их реализации, с помощью которых можно автоматизировать процесс извлечения информации из документов, не предназначенных для вычислительных машин, а ориентированных на восприятие их человеком: Эти исследования тесно связаны с проблемой извлечения смысла (содержания) тех или иных документов при вводе их в банки данных и другие информационные хранилища, ориентированные на компьютеры.

Г. Создание информационно-поисковых систем, способных воспринимать запросы к информационным хранилищам, сформулированные на естественном языке, а также специальных языках запросов для систем такого типа.

Д. Создание сетей хранения, обработки и передачи информации, в состав которых входят информационные банки данных, терминалы, обрабатывающие центры и средства связи.

Работы в области информационных систем опираются, с одной стороны, на исследования в прикладной лингвистике, которая создает языки для записи информации и поиска ответов в информационных массивах по поступающим запросам, а с другой стороны, на теорию информации, поставляющую модели и методы, которые используются при организации циркуляции информации в каналах передачи данных.

Информационная система - это хранилище информации, снабженное процедурами ввода, поиска, размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем..

Работа информационных систем заключается в обслуживании двух встречных потоков новой информации: ввода новой информации и выдачи текущей информации по запросам.

Поскольку главная задача информационной системы - обслуживание клиентов, система должна быть устроена так, чтобы ответ на любой запрос выдавался быстро и был достаточно полным. Эти требования обеспечиваются наличием стандартных процедур поиска информации и тем, что данные системы расположены в определенном порядке.

Рассмотрим, например, отдел кадров небольшого предприятия, в котором хранятся стандартные сведения о сотрудниках: год рождения, семейное положение, домашний адрес, должность, оклад. Время от времени в отдел кадров поступает информация об их изменении.

Порядок размещения данных образует трехуровневую иерархическую структуру (дерево):

первый уровень дерева - это предприятие, второй уровень - фамилии его сотрудников, третий уровень - документы о каждом из них.

Для каждого сотрудника заводят стандартную карточку, в которую внесены нужные данные в одинаковом для всех порядке и указания на то, где хранятся соответствующие документы (приказы, справки и т.д.). Чтобы этот порядок соблюдался, при получении каждого нового документа следует проделать определенные процедуры: найти нужную карточку, занести в нее данные, найти папку и положить в нее документ.

Время от времени на каждом из уровней может произойти переполнение. Поэтому производится регулярная чистка. В информационных системах эту процедуру называют удалением мусора.

Сама идея информационных систем и некоторые принципы их организации возникли задолго до появления компьютеров. Однако компьютеризация на несколько порядков повысила эффективность информационных систем и расширила сферы их применения.

Во-первых, резко возросли скорости всех видов обработки информации: поиска и размещения (внутри компьютера), выдачи (на экран или печать), передачи и ввода (по средствам электронной и космической связи в информационные системы любой точки земного шара). Для некоторых видов информационных систем именно скорости передачи и ввода играют решающую роль. Таковы, например, автоматизированные системы продажи авиационных и железнодорожных билетов или многотерминальные системы электронной торговли ценными бумагами, где только высокая скорость ввода информации может исключить продажу мест (или акций), которые минуту назад были проданы с другого терминала.

Во-вторых, во много раз увеличились возможности хранения больших объемов информации: как за счет того, что машинные носители информации (диски и ленты) в сотни и тысячи раз компактнее бумажных носителей (бумаг и книг), так и за счет того, что только при высоких скоростях ЭВМ можно проводить поиск в таких объемах за приемлемое время.

В-третьих, благодаря использованию электронной связи и сетей ЭВМ потеряло значение расстояние между информационной системой, источниками информации и ее клиентами. Достаточно иметь терминал, персональную ЭВМ или другое устройство, позволяющее запрашивать и получать нужную информацию и соединенное с системой каналами связи.

Не следует думать, что высокая эффективность современных информационных систем автоматически достигается только применением современных технических средств. Для того чтобы максимально использовать их огромные возможности, нужно хорошо проработать структурные, алгоритмические и языковые вопросы, т.е. разработать структуры данных, алгоритмы обработки информации и языки общения с системой.

На примере отдела кадров продемонстрирована иерархическая структура данных.

Однако в иерархической структуре не на все вопросы можно получить одинаково быстрые ответы. В рассмотренном примере по фамилии сотрудника легко найти нужные сведения о нем (его признаки). Гораздо труднее по конкретному значению признака найти сотрудников, которые им обладают, - придется перебрать все карточки. Это происходит потому, что в иерархии (дереве) данных фамилии расположены выше (на втором уровне), чем признаки. В отделе кадров гораздо чаще бывают вопросы первого типа (по фамилии найти признак);

поэтому неудобства, связанные с вопросами второго типа, не так велики.

Если чаще бывают вопросы "по признаку (скажем, по году рождения) найти фамилии всех, кто им обладает", то иерархию надо строить по-другому: сгруппировать сотрудников по годам, т.е. в дереве данных расположить признак "год рождения" выше фамилии. Если же фамилии ищут по разным признакам и вопросы разных видов задаются одинаково часто, то иерархическая структура вообще оказывается неудобной. Вопросы построения различных структур данных и эффективных алгоритмов обработки информации в них рассматриваются в теории баз данных – теоретической основе построения информационных систем.

Языковые проблемы связаны с обеспечением удобного обращения с системой.

Обращение пользователя к системе за информацией называется запросом. В простейшем случае фиксируется небольшое число возможных запросов, на которые заранее готовы ответы. Так устроены, например, железнодорожные справочные, где на пульте расположены кнопки с названиями станций. Здесь число возможных запросов равно числу кнопок. При нажатии кнопки выдается вся имеющаяся информация о поездах по данной станции.

Несколько более сложный случай - запрос, в котором зафиксирован набор признаков.

Значения некоторых признаков указываются пользователем (по ним надо искать), значения остальных признаков должна указать система. Здесь естественная форма запроса - бланк (на бумаге или на экране дисплея), графы которого - стандартные, но число вариантов заполнения может быть велико.

Гораздо сложнее ситуация, когда пользователю нужен стандартный набор различных данных, удовлетворяющих определенным условиям, например, логическая комбинация признаков ("выдать фамилии всех сотрудников, родившихся в интервале с 1940 по 1950 гг., которые либо неженаты, либо живут в Московской области"), или транзитный железнодорожный маршрут с наименьшим временем ожидания поездок, или сложная цепочка обменов при обмене жилплощади. Система, способная отвечать на такие запросы, должна располагать специальным языком запросов, на котором пользователь описывает то, что ему нужно. Такой язык может содержать различные операции над признаками:

логические, арифметические, операции сравнения и т. д. Транслятор превращает такой запрос в алгоритм поиска нужной информации.

Наряду с языком запросов (т.е. входным языком), пользователю часто требуется задать определенную форму для выходной информации. Это нужно, в частности, при машинной выдаче финансовых и отчетных документов. Для этого создаются языки выходных документов, с помощью которых пользователь указывает форму и расположение выходной информации на бумаге или экране.

Еще одна важная проблема, которую приходится решать при создании информационных систем, - это защита информации. Имеется несколько сторон этой проблемы. Во-первых, защита от помех (особенно при передаче по линиям связи) и сбоев аппаратуры. Для ее организации используются методы теории кодирования. Во-вторых, защита от неправильных действий некомпетентного пользователя: никакое неправильное нажатие кнопок терминала или нарушение инструкций при общении с системой не должны портить информацию в системе. И, наконец, защита от несанкционированного доступа, т.е.

от пользователей, желающих получить информацию, к которой у них нет права доступа, либо исказить имеющуюся в системе информацию. Для такой защиты используются программные пароли, средства шифрования и т. д.

Программное обеспечение первых информационных систем создавалось каждый раз "с нуля": для новой системы заново строились структура данных и программы обработки информации в ней, разрабатывался язык запросов, транслятор с него и т. д. В настоящее время существуют разнообразные средства программирования информационных систем системы управления базами данных (СУБД), в состав которых входят средства организации структуры данных, языки запросов и выходных документов, программы ввода информации, удаления мусора и др. СУБД существенно ускоряют процесс разработки информационных систем.

Массовое распространение ЭВМ, электронных средств связи и совершенствование СУБД ведут к постоянному расширению областей использования информационных систем.

Справочные службы, библиотечные каталоги, различные картотеки - это традиционные сферы их применения. Автоматизированные информационные системы применяются также на производстве: в них вводится информация о ходе выполнения производственных заказов, о наличии инструмента, деталей, сырья на складах предприятия. В деловой сфере, где постоянно обновляются сведения о товарах и фирмах, биржевая и банковская информация, курсы валют и ценных бумаг, и в сфере обслуживания (системы продажи билетов, бронирования мест в гостиницах) они также необходимы.

Имея персональный компьютер и несложную СУБД, человек, не знающий программирования, может создать собственную информационную систему. Современные средства связи позволяют подключить компьютер к соответствующим каналам связи и стать абонентом различных информационных систем.

В информационном обществе роль информационных систем как в трудовой деятельности, так и в быту возрастет еще более. Людей, разрабатывающих, обслуживающих и использующих такие системы, станет гораздо больше, чем людей, изготовляющих и применяющих материальные орудия труда.

Автоматизированные информационные системы (АИС) В этот класс систем прикладной информатики входят информационные системы, общая структура которых показана на рисунке.

Основу такой системы составляет банк данных, в котором хранится большая по объему информация о какой-либо области человеческих знаний. Территориально этот банк может быть распределенным. Важно, что для пользователя этот банк представляется как единое хранилище информации, куда он может обратиться с запросом В неавтоматизированных информационных системах запрос обрабатывается человеком. В АИС запросы обрабатывают с помощью специальных программ, реализуемых на компьютере. Для того чтобы это стало возможным, необходим специальный язык запросов, понимаемый АИС. Для пользователя желательно, чтобы язык запросов был как можно ближе к естественному языку. В этом случае АИС должна обладать системой понимания текстов на естественном языке или языке, близком к нему. В таких АИС используется диалоговая система.

Устройство блока расшифровки запроса зависит от выбранного языка запроса. Оно достаточно просто, если запросы жестко фиксированы. Если же в качестве языка запроса используется подмножество естественного языка, то этот блок может быть достаточно сложным.

После расшифровки запроса по информации, содержащейся в нем, формируется поисковое предписание (или поисковый образ), представляющее задание для процедуры поиска в банке данных. Поиск в банке данных осуществляется блоком поиска. Найденная информация выдается потребителю в удобной для него форме.

Банк данных требует постоянного обновления, пополнения и чистки. Для этого используется специальный входной канал, которым пользуется администратор банка данных.

Частным случаем АИС являются информационно-поисковые системы, предназначенные как для коллективного, так и для индивидуального пользования.

В таких системах хранится информационный массив, из которого по требованиям пользователей выдается нужная информация. Поиск информации по требованию пользователя осуществляется либо автоматически, либо вручную (как в библиотеках, когда с запросом к работнику справочного фонда обращается читатель, а работник пользуется системой каталогов).

Во втором случае используются ЭВМ, снабженные специальными программными средствами, анализирующими процессы запросов, поиска и выдачи нужных документов.

Информационно-поисковые системы делятся на два типа.

Документографическая ИПС. В такой ИПС все хранимые документы индексируются некоторым специальным образом. Каждому документу (статье, отчету, протоколу и т.п.) присваивается индивидуальный код, составляющий поисковый образ документа. Поиск идет не по самим документам, а по их поисковым образам, которые содержат информацию (адрес) о местонахождении документа. Именно так ищут книги по заказам читателя в больших библиотеках (в маленьких библиотеках библиотекарь обычно ищет книги сам). По требованию читателя сначала находят карточку в каталоге, а потом по шифру, указанному на ней, отыскивается и сама книга.

Различия документографических ИПС определяются тем, как устроен поисковый образ документа. В простейшем случае это просто его индивидуальное название (например, название, автор, год издания книги). В более сложных случаях нет однозначного соответствия между поисковым образом документа и самим документом. Вполне возможен случай, когда поисковый образ документа соответствует нескольким различным документам и, наоборот, один и тот же документ соответствует не одному, а нескольким поисковым образам.

Такой неоднозначностью обладают, например, поисковые образы документов в дескрипторных системах. Дескриптор - слово или словосочетание, которое тесно связано с содержанием документа. Совокупность дескрипторов определяет группу документов со сходным содержанием. В последнее время журналы, публикующие научные статьи, требуют от своих авторов, чтобы для каждой статьи они указывали список ключевых слов, которые и играют роль дескрипторов.

По набору этих ключевых слов (набору дескрипторов) можно найти статью среди всех статей, введенных в ИПС дескрипторного типа.

Общая блок-схема ИПС дескрипторного типа показана на рисунке.

Эта схема имеет два входа. По одному происходит пополнение хранящегося в системе информационного массива документов, а по второму поступают запросы пользователей.

Фактографическая ИПС. В отличие от документографических ИПС в ИПС такого типа хранятся не документы, а факты, относящиеся к какой-либо предметной области. Хранимые факты могут быть извлечены из различных документов. В базе фактов они связываются между собой системой разнообразных отношений. Такая сеть в ИПС носит название тезауруса предметной области. Запросы, поступающие в фактографические ИПС, используют тезаурус для поиска ответов на запросы. Поиск осуществляется методом поиска по образцу, широко применяющемуся в базах знаний систем искусственного интеллекта.

ИПС фактографического типа постепенно приближаются по своей организации и функционированию к развитым базам данных и знаний.

Любая ИС включает в себя четыре компонента: информационные средства, программные средства (обеспечение), технические средства, персонал. Информационное обеспечение реализуется в виде файловой системы или в виде базы данных. База данных (БД) –это совокупность описаний объектов предметной области и связей между ними, актуальных для конкретной предметной области.

Структура данных в ИС обычно сложна (сложность определяется не столько объемом, сколько количеством взаимосвязей), задачи по обработке данных однотипны для разных предметных областей (создание, поиск, ввод и вывод, группировка, сортировка). Поэтому все типовые функции по работе с данными выделены в специальную систему. Система управления базой данных (СУБД) – это комплекс программных и языковых средств создания, ведения и манипулирования данными.

Программные средства делят на две части: системное программное обеспечение (СПО) и прикладное программное обеспечение (ППО). В состав СПО входит операционная система ЭВМ (ОС) и СУБД. ОС настолько тесно связана с техническими средствами, что их часто объединяют и называют программно-аппаратной платформой, например, ПЭВМ IBM PC используется платформа WINTEL (Windows + Intel).

Персонал – это специалисты, которые обслуживают и сопровождают ИС, их часто включают в состав системы, поскольку без персонала невозможна работы сложной системы.

Жизненный цикл ИС В основе деятельности по созданию и использованию ИС лежит понятие жизненного цикла.

Жизненный цикл – это модель создания и использования ИС, отражающая ее различные состояния, начиная с момента возникновения необходимости в данном комплексе средств и заканчивая моментом его полного выхода из употребления у пользователей.

Опыт создания и использования ИС позволяет условно выделить следующие основные этапы их жизненного цикла:

• анализ – определение того, что должна делать система;

• проектирование – определение того, как система будет делать то, что она должна делать. Проектирование это, прежде всего, спецификация подсистем, функциональных компонентов и способов их взаимодействия в системе;

• разработка – создание функциональных компонентов и подсистем по отдельности, соединение подсистем в единое целое;

• тестирование – проверка функционального и параметрического соответствия системы показателям, определенным на этапе анализа ;

• внедрение – установка и ввод системы в действие;

• сопровождение – обеспечение штатного процесса эксплуатации системы на предприятии заказчика.

Этапы разработки, тестирования и внедрения ИС обозначаются единым термином – реализация.

Жизненный цикл образуется в соответствии с принципом нисходящего проектирования и, как правило, носит итерационный характер: реализованные этапы, начиная с самых ранних, циклически повторяются в соответствии с изменениями требований и внешних условий, введением дополнительных ограничений и т.п.

На каждом этапе жизненного цикла порождается определенный набор технических решений и отражающих их документов, при этом для каждого этапа исходными являются документы и решения, принятые на предыдущем этапе.

Существующие модели жизненного цикла, определяют порядок исполнения этапов в процессе создания ИС, а также критерии перехода от этапа к этапу. В соответствии с этим наибольшее распространение получили три следующие модели.

Каскадная модель – предполагает переход на следующий этап после полного завершения работ предыдущего этапа (характерна для военно-технических проектов).

Каскадный подход хорошо зарекомендовал себя при построении ИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем чтобы предоставить разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи. Однако, в процессе использования этого подхода обнаруживается ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания ПО никогда полностью не укладывается в жесткую схему. В процессе создания ПО возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений.

Поэтапная итерационная модель. Эта модель создания ИС предполагает наличие циклов обратной связи между этапами.

Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают большую гибкость и меньшую трудоемкость по сравнению с каскадной моделью. Однако время жизни каждого из этапов может растянуться на весь период создания системы.

Спиральная модель – опирается на начальные этапы жизненного цикла: анализ, предварительное и детальное проектирование. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Нерешенные вопросы и ошибки, допущенные на этапах анализа и проектирования ИС, порождают на последующих этапах трудные, часто неразрешимые проблемы и, в конечном счете, приводят к неуспеху всего проекта.

Главная особенность разработки современных ИС состоит в концентрации усилий на двух начальных этапах ее жизненного цикла - анализе и проектировании, при относительно невысокой сложности и трудозатратах на последующих этапах.

Эффективность ИС Для оценки эффективности ИС служит набор критериев, которые количественно определяют степень соответствия системы целям ее создания. Критерий эффективности должен быть наглядным, напрямую зависеть от работы системы, допускать приближенную оценку по результатам экспериментов. Оценивают как ИС в целом, так и ее компоненты.

Одновременное достижение всех целей невозможно, поэтому на практике выбирают компромиссное решение: один из критериев оптимизируется, а остальные служат в качестве ограничений. Приведем типичные цели создания ИС и критерии для их оценки:

Максимальная полнота отображения информации Максимальная скорость Время обработки данных предоставления информации Время ответа на запрос 3 Максимальное удобство пользователя 4 Минимальные расходы Капитальные вложения + Текущие затраты Максимальное извлечение полезной Отношение объема входной информации к Минимальная избыточность базы Отношение объема избыточной информации к Пользователи ИС. Трехуровневое представление данных Пользователей ИС можно разделить на следующие группы:

• случайный пользователь, взаимодействие которого с ИС не обусловлено служебными обязанностями;

• конечный пользователь (потребитель информации) - лицо или коллектив, в интересах которых работает ИС. Он работает с ИС повседневно, связан с жестко ограниченной областью деятельности и, как правило, не является программистом, например, это может быть бухгалтер, экономист, руководитель подразделения;

• коллектив специалистов (персонал ИС), включающий администратора банка данных, системного аналитика, системных и прикладных программистов.

Рассмотрим более подробно состав и функции персонала ИС.

Администратор - это специалист (или группа специалистов), который понимает потребности конечных пользователей, работает с ними в тесном контакте и отвечает за определение, загрузку, защиту и эффективность работы банка данных. Он должен координировать процесс сбора информации, проектирования и эксплуатации БД, учитывать текущие и перспективные потребности пользователей. Системные программисты занимаются разработкой и сопровождением базового математического обеспечения ЭВМ (ОС, СУБД, трансляторов, сервисных программ общего назначения). Прикладные программисты разрабатывают программы для реализации запросов к БД. Аналитик строит математическую модель предметной области, исходя из информационных потребностей конечных пользователей; ставит задачи для прикладных программистов. На практике персонал небольших ИС часто состоит из одного - двух специалистов, которые выполняют все перечисленные функции.

Для разных классов пользователей можно выделить несколько уровней представлений об информации в ИС.

Внешнее представление данных - это описание информационных потребностей конечного пользователя и прикладного программиста. Связь между этими двумя видами внешнего представления осуществляет аналитик.

Концептуальное представление данных - отображение знаний обо всей предметной области ИС. Это наиболее полное представление, отражающее смысл информации, оно может быть только одно и не должно содержать противоречий и двусмысленностей.

Концептуальное представление - это сумма всех внешних представлений, которое учитывает перспективы развития ИС, знания о методах обработки информации, знания о структуре самой ИС и др.

Принято различать две формы концептуального представления информации:

инфологическую (информационно - логическую) модель которая не привязана к конкретной реализации и ориентирована на пользователя; и даталогическую модель, которая учитывает требования конкретной СУБД.

Внутреннее (физическое) представление - это организация данных на физическом носителе информации. Этот уровень характеризует представления системных программистов и практически используется только тогда, когда СУБД не обеспечивает требуемого быстродействия или специфического режима обработки данных.

Таким образом, многоуровневое представление об информации в ИС обусловлено потребностями различных групп пользователей и уровнем развития инструментальных средств создания ИС. Оно позволяет разделить работу по созданию и обслуживанию ИС на относительно независимые части.

История и основные направления развития ИС Понятие информационной системы (ИС) на протяжении своего существования претерпело значительные изменения. Условно можно выделить три поколения ИС.

Рассмотрим основные характеристики компонентов этих ИС.

Первое поколение (до 70-х годов) предназначалось для решения установившихся задач, которые четко определялись на этапе создания системы и затем практически не изменялись.

Основные черты 1-го поколения ИС:

• Техническое обеспечение систем составляли маломощные ЭВМ 2-3 поколения.

• Информационное обеспечение (ИО) представляло собой массивы (файлы) данных, структура которых определялась той программой, в которой они использовались.

• Программное обеспечение специализированные прикладные программы, например, программа начисления заработной платы.

• Архитектура ИС - централизованная. Как правило, применялась пакетная обработка задач. Конечный пользователь не имел непосредственного контакта с ИС, вся предварительная обработка информации и ввод производились персоналом ИС.

Недостатки ИС 1-го поколения:

• Сильная взаимосвязь между программами и данными, то есть изменения в предметной области приводили к изменению структуры данных, а это заставляло переделывать • Трудоемкость разработки и модификации систем.

• Сложность согласования частей системы, разработанных разными людьми в разное Второе поколение.

Стремление преодолеть недостатки 1-го поколения ИС породило в 70-х годах технологию баз данных. База данных создается для группы взаимосвязанных задач, для многих пользователей и это позволяет частично решить проблемы 1-го поколения ИС.

Вначале СУБД разрабатывались для больших ЭВМ, и их количество не превышало десятка.

Благодаря появлению ПЭВМ технология БД стала массовой, создано большое количество инструментальных средств и СУБД для разработки ИС, что в свою очередь вызвало появление большого количества прикладных ИС в прикладных областях.

Основные черты 2-го поколения ИС:

• Основу ИО составляет база данных, • Программное обеспечение состоит из прикладных программ и СУБД.

• Технические средства: ЭВМ 3-4 поколения и ПЭВМ.

• Средства разработки ИС: процедурные языки программирования 3-4поколения, расширенные языком работы с БД (SQL, QBE).

• Архитектура ИС: наиболее популярны две разновидности: персональная локальная ИС, централизованная БД с сетевым доступом.

Большим шагом вперед явилось развитие принципа "дружественного интерфейса" по отношению к пользователю (как к конечному, так и к разработчику ИС). Например, повсеместно применяется графический интерфейс, развитые системы помощи и подсказки пользователю, разнообразные инструменты для упрощения разработки ИС: системы быстрой разработки приложений (RAD-системы), средства автоматизированного проектирования ИС (CASE- средства).

К концу 80-хгодов выявились и недостатки систем 2-го поколения:

• большие капиталовложения в компьютеризацию предприятий не дали ожидаемого эффекта, соответствующего затратам (увеличились накладные расходы, но не произошло резкого повышения производительности);

• внедрение ИС столкнулось с инертностью людей, нежеланием конечных пользователей менять привычный стиль работы, осваивать новые технологии;

• к квалификации пользователей стали предъявляться более высокие требования (знание персонального компьютера, конкретных прикладных программ и СУБД, способность постоянно повышать свою квалификацию).

В связи с этим постепенно стало формироваться 3-е поколение ИС. Рассмотрим основные черты современного поколения ИС.

Техническая платформа - мощные ЭВМ 4-5поколения, использование разных платформ в одной ИС (большие ЭВМ, мощные стационарные ПК, мобильные ПК). Наиболее характерно широкое применение вычислительных сетей - от локальных до глобальных.

Информационное обеспечение - ведутся интенсивные разработки с целью повышения интеллектуальности банка данных в следующих направлениях:

• новые модели знаний, учитывающие не только структуру информации, но и активный характер знаний, • средства оперативного анализа информации (OLAP) и средства поддержки принятия решений (DSS), • новые формы представления информации, более естественные для человека (мультимедиа, полнотекстовые БД, гипертекстовые БД, средства восприятия и синтеза Программное обеспечение - новым является появление и развитие открытой компонентной архитектуры ИС. Компонент - это программа, выполняющая какой-либо осмысленный с точки зрения конечного пользователя набор функций и имеющая открытый интерфейс. ПО ИС собирается из готовых компонентов. Компонент может функционировать на разных типах ЭВМ и связь между компонентами устанавливается не на этапе компиляции, а в реальном масштабе времени. Такой принцип построения позволяет использовать накопленный опыт программистов, ускорять разработку ИС, создавать распределенные ИС.

Архитектура ИС - разнообразна в связи с многоплатформенностью. Развивается трехступенчатая модель ИС.

Благодаря такому построению снижаются требования к клиентским машинам и общая стоимость системы, повышается общая эффективность и производительность. Узким местом является пропускная способность и надежность вычислительных сетей.

Методы разработки ИС: при традиционном подходе сначала выявлялись информационные потоки на предприятии, а затем к этой структуре привязывалась ИС, повторяя и закрепляя тем самым недостатки организации бизнеса. В 90-93 г.г. бурно обсуждалась идея бизнес - реинжиниринга, предложенная М. Хаммером. Она состоит в том, что для получения существенного эффекта от ИС необходимо одновременно с разработкой ИС пересмотреть и бизнес-процессы, удалив и упростив некоторые из них.

Таким образом, современная корпоративная ИС должна создаваться как часть предприятия, включающая бизнес-архитектуру, персонал и информационные технологии.

Классификация ИС По режиму работы ИС делятся на пакетные, диалоговые и смешанные. Пакетные ИС работают в пакетном режиме: вначале данные накапливаются и формируется пакет данных, а затем пакет последовательно обрабатывается рядом программ. Недостаток этого режима низкая оперативность принятия решений и обособленность пользователя от системы.

Диалоговые ИС работают в режиме обмена сообщениями между пользователями и системой (например, система продажи авиабилетов). Этот режим особенно удобен, когда пользователь может выбирать перспективные варианты из числа предлагаемых системой.

По способу распределения вычислительных ресурсов ИС делятся на локальные и распределенные. Локальные ИС используют одну ЭВМ, а в распределенных ИС взаимодействуют несколько ЭВМ, связанных сетью. Отдельные узлы сети обычно территориально удалены друг от друга, решают разные задачи, но используют общую информационную базу.

По функциям различают три вида ИС: информационно - поисковые системы (ИПС), системы обработки данных (СОД) и автоматизированные системы управления (АСУ).

Системы обработки данных (СОД) предназначены для решения задач типа расчета заработной платы, статистической отчетности и т.п. Такие системы наряду с функциями ввода, выборки, коррекции информации выполняют математические расчеты без применения методов оптимизации. АСУ отличается от СОД тем, что сама выполняет управленческие функции по отношению к объекту. В АСУ включаются прикладные программы для принятия и оптимизации управленческих решений. Примером АСУ является система для оптимального управления запасами материалов на складе.

Информационно-поисковые системы (ИПС) предназначены для поиска требуемого документа или факта в множестве документов.

Поисковый образ документа (ПОД) получается в результате процесса индексирования, который состоит из двух этапов: выявление смысла документа и описание смысла на специальном информационно-поисковом языке (ИПЯ).

Запрос к ИПС описывается также на этом языке. Поиск документа состоит в сравнении множества хранящихся в системе ПОД и текущего поискового образа запроса (ПОЗ), в результате чего пользователю выдается требуемый документ или отказ. Различают два режима работы ИПС: текущее информирование пользователей о новых поступлениях и ретроспективный поиск по разовым запросам [6].

По концепции построения ИС делятся на файловые системы, автоматизированные банки данных (АБД), интеллектуальные банки данных (банки знаний) и хранилища данных.

Информационное обеспечение ИС первого типа построено в виде файловых систем. В современных ЭВМ операционная система берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса во внешней памяти и обеспечение доступа к данным. Программное обеспечение ИС напрямую использует функции ОС для работы с файлами. Файловые системы обычно обеспечивают хранение слабо структурированной информации, оставляя дальнейшую структуризацию прикладным программам. В таких системах сложно решить проблемы согласования данных в разных файлах, коллективного доступа к данным, модификации структуры данных.

Банком данных называют систему специальным образом организованных баз данных, программных, технических, языковых и организационно - методических средств, предназначенных для обеспечения централизованного накопления и коллективного многоцелевого использования данных.

В отличие от файловых систем, структура базы данных меньше зависит от прикладных программ, а все функции по работе с БД сосредоточены в специальном компоненте – системе управления базами данных (СУБД), которая играет центральную роль в функционировании банка данных, так как обеспечивает связь прикладных программ и пользователей, данными. Сведения о структуре БД сосредоточены в словаре-справочнике (репозитории). Этот вид информации называется метаинформацией. В состав метаинформации входит семантическая информация, физические характеристики данных и информация об их использовании. С помощью словарей данных автоматизируется процесс использования метаинформации в ИС.

Интеллектуальный банк данных ИБД - это сравнительно новый способ построения ИС, при котором информация о предметной области условно делится между двумя базами.

База данных содержит сведения о количественных и качественных характеристиках конкретных объектов. База знаний содержит сведения о закономерностях в ПО, позволяющие выводить новые факты из имеющихся в БД; мета информацию; сведения о структуре предметной области; сведения, обеспечивающие понимание запроса и синтез ответа.

Диалоговый процессор предназначен для понимания смысла запроса и его перевода в термины знаний, заложенных в БЗ. Планировщик преобразует полученный запрос в рабочую программу, составляя ее из модулей, имеющихся в БЗ. Подсистема пополнения знаний позволяет ИС обучаться.

Если в традиционном банке данных знания о предметной области заложены программистом в каждую прикладную программу, а также в структуру БД, то в интеллектуальном банке данных они хранятся в базе знаний и отделены от прикладных программ. В отличие от данных, знания активны: на их основе формируются цели и выбираются способы их достижения. Например, ИБД в системе складского учета может автоматически реагировать на такое событие, как уменьшение количества деталей на складе до критической нормы, при этом ИБД без участия пользователя генерирует документы для заказа этих деталей и отправляет их по электронной почте поставщику.

Другое характерное отличие знаний от данных - связность, причем знания отражают как структурные взаимосвязи между объектами предметной области, так и вызванные конкретными бизнес - процессами, например такие связи, как "происходит одновременно", "следует из...", "если - то" и др.

Наконец, существенную роль в ИБД играет форма представления информации для пользователя: она должна быть как можно ближе к естественным для человека способам обмена данными (профессиональный естественный язык, речевой ввод / вывод, графическая форма).

В настоящее время в корпоративных базах данных накоплены гигантские объемы информации, однако она недостаточно эффективно используется в процессе управления бизнесом, поэтому бурно развивается новая форма построения ИС - склады (хранилища) данных.

Хранилище данных представляет собой автономный банк данных, в котором база данных разделена на два компонента: оперативная БД хранит текущую информацию, квазипостоянная БД содержит исторические данные, например, в оперативной БД могут содержаться данные о продажах за текущий год, а в квазипостоянной БД хранятся систематизированные годовые отчеты и балансы за все время существования предприятия.

Подсистема оперативного анализа данных позволяет эффективно и быстро анализировать текущую информацию. Подсистема принятия решений пользуется обобщенной и исторической информацией, применяет методы логического вывода. Для общения с пользователем служит универсальный интерфейс.

Выбор того или иного класса ИС зависит от ее назначения и конкретных условий применения.

Структура программного обеспечения ИС ПО информационной системы состоит из нескольких взаимосвязанных частей, каждая из которых определяет в системе заданные свойства. Анализ этих свойств позволяет выделить следующие блоки:

Обеспечение управления • Управляющий блок. Содержит элементы, обеспечивающие управление системой и технологию работы отдельных приложений. Управляющие приложения ориентированы на предоставление информации для обработки или настройке различных параметров ИС. Кроме того, они включают в себя, приложения предоставляющие информацию для принятия решений, либо как элемент управления последовательностью выполнения технологического процесса. Управляющий блок состоит из нескольких частей:

Административная часть - содержит элементы, ориентированные на управление системой, в которой принятие решений лежит в области действий пользователя.

Например, управление допуском к информации в приложениях.

Управляющая часть - содержит элементы, ориентированные на автоматическое управление технологическим циклом информационной системы, где принимаются решения по работе ИС без участия пользователей.

Обеспечение бизнес-процессов • Конвейерный блок. Содержит элементы, составляющие группу решений обеспечивающих производственный цикл работы информационной системы.

Конвейерные приложения выполняют сбор и обработку информации по заданным правилам и в определенной последовательности.

• Учетный блок. Содержит элементы, обеспечивающие учетные функции системы, с регистрацией происходящих изменений. Учетные приложения ориентированы на ввод, хранение и предоставление информации необходимой для выполнения технологического цикла.

Структура приложений в ИС Пользовательские приложения могут быть классифицированы не только по их функциональной принадлежности к той или иной группе, но и по формам организации отношений между ними. Форма организации взаимодействия пользовательских приложений в единую систему может иметь следующий вид:

• Технологическая организация;

• Временная организация;

• Административная организация.

Технологическая организация взаимодействия приложений в системе основана на задаваемой управляющим блоком ИС, последовательностью работы приложений. Эта форма наиболее приемлема для построения отношений в клиент/серверной технологии. Ею достигается, необходимая “технологическая” последовательность в работе приложений.

Порядок выполнения решений основан на механическом контроле работы различных частей системы.

Временная организация взаимодействия приложений в системе строится на работе элементов в строго заданные интервалы времени. Приложение может быть активизировано в четко определенное или заданное время. Порядок выполнения решений основан на управлении последовательностью выполнения приложений во временных интервалах.

Административная организация приложений основана на информационном взаимодействии, в котором одно из приложений является управляющим, а другие подчиненными. В такой структуре правила работы подчиненных приложений зависят от работы управляющего приложения. Порядок выполнения решений основан на постоянном взаимодействии подчиненных и управляющего приложения.

Структура хранения информации в ИС При проектировании структуры хранения информации следует учитывать не только требования, предъявляемые программно-аппаратной платформой, но и “жизненный цикл” информации хранимой в БД.

“Жизненный цикл информации” отражает то, что все данные введенные в базу данных имеют целесообразный временной интервал их использования. Проектирование без учета этой особенности приводит, к излишнему хранению информации в оперативных элементах базы данных. Это может увеличивать время реакции системы на запросы и усложнить обслуживание базы данных производственными приложениями. Проектирование с учетом “жизненного цикла информации” позволяет повысить устойчивость БД, и на внести ограничения на объем хранимых данных.

Анализ различных информационных систем позволяет выделить несколько групп, по которым возможно классифицировать таблицы базы данных:

• Технологическая группа;

• Обеспечивающая группа;

• Архивная группа.

К “технологической группе” относятся таблицы, в которых храниться информация обеспечивающая полный цикл выполнения “бизнес-процессов”. Она актуальна только на момент выполнения процессов. Например, набор данных, который формируется и используется в определенный временной интервал. Как правило, в ИС подобный тип данных является наиболее объемным. Для построения оптимальных моделей хранения и предоставления данных, с тем, что бы иметь возможность реконструировать состояние системы на определенный момент времени, следует организовать перевод используемой информации в “архивную группу”, или уничтожать накопившиеся данные. Наличие в активных элементах БД неиспользуемой информации приводит к увеличению времени реакции системы на запросы и усложняет организацию по обслуживанию базы данных.

К “обеспечивающей группе” относятся таблицы, информация в которых не привязана к отдельным бизнес процессам. Например, различные справочники, классификаторы и т.п.

“Жизненный цикл” этой информации можно считать бесконечным.

К “архивной группе” относятся таблицы, в которых использование информации носит эпизодический характер. Например, в качестве статистического материала, или как место хранения большого объема информации не участвующего в оперативной работе системы.

Единое информационное пространство Взаимодействие базовых блоков системы основано на использовании данных из "единого информационного пространства". "Единое информационное пространство" – это специальным образом организованное хранилище данных. В рамках хранилища каждое приложение может на основе уже существующей общедоступной информации создавать новый тип данных, также доступный всем элементам системы. Однако "единое информационное пространство" - это не только хранилище, но и единый механизм управления доступом, позволяющий предоставлять разным группам пользователей различный объем данных. "Единое информационное пространство" - это комплекс административных и системных мероприятий, обеспечивающих выполнение следующих правил:

• Один источник данных – имеет много потребителей;

• Каждый потребитель - собственный способ предоставления информации;

Для разных групп потребителей доступен разный объем данных. "Единое информационное пространство" позволяет вводить элементы "самоконтроля", поддерживающие "целостность" имеющихся в системе данных.

При проектировании "единого информационного пространства" следует учитывать не только функциональность структуры базы данных, но и возможность дальнейшего развития информационной системы, модификации пользовательских приложений, оперативность проектирования. При этом проектировка структуры базы данных должна вестись с учетом "жизненного цикла" информации, "возможного" развития самой структуры, т.е.

предусматривать развитие функциональности системы. Кроме того, информационная система должна иметь "развивающую основу" в эксплуатируемой модели.

Для построения "развивающейся" информационной системы необходимо выполнение следующих условий:

• Структура системы должна быть построена на "блочной" основе, где один и тот же блок может быть использован в нескольких приложениях;

• Механизм проектирования системы должен позволять производить модификацию и наращивание информационных блоков без внесения деструктивного влияния на действующую систему.

Классификация программных решений Рассмотрим в рамках автоматизации обработки информации классификацию программных решений. Основой классификации служит объем конечных функций, реализованных в программе, и метод их объединения. Существуют три группы моделей:

• Модель, состоящая из одного компонента и отражающая одну функцию;

• Модель, состоящая из одного компонента и отражающая несколько функций;

• Модель, состоящая из нескольких компонентов объединенных в единую систему.

Существуют следующие типы организации информационных моделей:

• Программный продукт (ПП) • Интегрированное решение (ИР) • Информационная система (ИС) “Программный продукт (ПП)” – модель, в которой решение поставленной задачи организовано в рамках единого компонента, ориентированного на выполнение единственной функции. Не смотря на то, что набор отдельных ПП, может решать и сложные задачи, отсутствие механизмов по их организации позволяет отнести такую информационную модель к простым программным решениям.

“Интегрированное решение (ИР)” – модель, в которой решение поставленной задачи организовано в рамках одного компонента, ориентированного на выполнение нескольких функции. В моделях данного типа все функции объединены под общей оболочкой осуществляющей управление их работой. Отсутствие механизмов по организации работы функций и их отношений, позволяет отнести данную информационную модель к систематизированным программным решениям.

“Информационная система (ИС)” – модель, в которой решение поставленной задачи организовано из нескольких компонентов, использующих единый информационный источник, и объеденных в технологическую цепочку. Правила работы данного объединения могут быть выражены как в логике работы отдельных приложений, так и их группы. В рамках ИС могут быть использованы приложения, функционирующие на разных программных платформах, и ориентированные на решения узкоспециализированных задач.

При этом возможно применение ПП и ИР, если есть доступ к их информационным ресурсам или функциям. Наличие механизмов организации взаимодействия компонентов, в процессе выполнения, и их влияние на правила работы друг друга, позволяет отнести такую модель к сложным системам.

Данная классификация определяет и систематизирует отличия в методах организации и способах решения задач. Она не влияет на особенности процесса проектирования и не может быть использована как критерий оценки способов реализации. Эта классификация позволяет принимать решения по организационным методам построения программных приложений. Она потенциально дает представление об административных и производственных возможностях рассматриваемых решений.

Этапы разработки автоматизированных информационных систем Основные этапы проектирования АИС представлены в следующей таблице.

№ Наименование этапа Основные характеристики 1 Разработка и анализ бизнес - модели технических требований (аппаратное, 2 разработка логической модели бизнес - процессов программного обеспечения АИС.

4 Тестирование и отладка АИС 5 Эксплуатация и контроль версий эксплуатации старых. Если ежедневный Разработка и анализ бизнес-модели При построении эффективной автоматизированной информационной системы первым этапом является исследование и формализация бизнес-процессов деятельности предприятия.

Т.е. описание системы ведения делопроизводства с целью эффективного использования информации для достижения поставленных задач и решения проблем, стоящих перед организацией. Организация работы с документами является важной составной частью процессов управления и принятия управленческих решений, существенно влияющей на оперативность и качество управления. Процесс принятия управленческого решения состоит из:

• Получения информации;

• Переработки информации;

• Анализа, подготовки и принятия решения.

Все эти этапы связаны с документным обеспечением процессов управления, проектирования и производства. Если на предприятии отсутствует четкая организация работы с документами, то формируются документы низкого качества, как в оформлении, так и в полноте и ценности содержащейся в них информации и увеличиваются сроки их обработки. Это приводит к ухудшению качества управления, увеличению сроков принятия решений и увеличению числа неверных решений. С ростом масштабов предприятия и численности его сотрудников вопрос об эффективности документного обеспечения управления становится наиболее актуальным. При этом возникают следующие проблемы:

• руководство теряет целостную картину происходящего;

• структурные подразделения, не имея информации о деятельности друг друга, не могут согласованно осуществлять свою деятельность. Падает качество обслуживания клиентов и способность организации поддерживать внешние контакты;

• происходит падение производительности, что вызывает ощущение недостатка в людских, технических, коммуникационных и других ресурсах;

• расширяется штат, вкладываются деньги в оборудование новых рабочих мест, помещений, коммуникации, обучение новых сотрудников;

• для производственных предприятий увеличение штата может привести к изменению технологии производства, что потребует дополнительных инвестиций;

• штат увеличивается, производительность падает, производство требует инвестиций, возникает потребность в увеличении оборотного капитала. Это может потребовать новых кредитов и уменьшить плановую прибыль.

В итоге предприятие замедляет рост и развитие происходит экстенсивным путем за счет ранее созданной прибыли.

Основные понятия электронного документооборота Документ – это слабоструктурированная совокупность блоков или объектов информации, понятная человеку. Он представляет собой совокупность трех составляющих:

• Физическая регистрация информации.

• Форма представления информации • Активизация определенной деятельности.

Документооборот может иметь один из двух типов:

• универсальный - автоматизирующий существующие информационные потоки слабоструктурированной информации;

• операционный - ориентированный на работу с документами, содержащими операционную атрибутику, вместе с которой ведется слабоструктурированная Кроме собственно документов важен еще регламент работы с ними.

Электронный документооборот К основным преимуществам электронного документооборота можно отнести следующие:

• Полный контроль за перемещением и эволюцией документа, регламентация доступа и способов работы пользователей с различными документами и их отдельными частями.

• Уменьшение расходов на управление за счет высвобождения (на 90% и более) человеческих ресурсов, занятых различными видами обработки бумажных документов, уменьшение задержек обработки за счет маршрутизированного перемещения документов и жесткого контроля за порядком и сроками их прохождения.

• Быстрое создание новых документов из уже существующих.

• Поддержка одновременной работы многих пользователей с одним и тем же документом, предотвращение его потери или порчи.

• Сокращение времени поиска нужных документов.

Использование АИС может рассматриваться в качестве базы для общего совершенствования управления предприятием. При этом управление предприятием реализует следующие основные функции:

• обслуживание клиентов;

• разработка продукции;

• учет и контроль за деятельностью предприятия;

• финансовое обеспечение деятельности предприятия.

Модели информационного пространства предприятия Комплексная автоматизация перечисленных функций требует создания единого информационного пространства предприятия, в котором сотрудники и руководство могут осуществлять свою деятельность, руководствуясь едиными правилами представления и обработки информации в документном и бездокументном виде.

Для этого в рамках предприятия требуется создать единую информационную систему по управлению информацией или единую систему управления документами, включающую возможности:

• удаленная работа, при которой сотрудники могут работать в разных помещениях или в разных зданиях;

• доступ к информации, при котором разные пользователи имеют доступ к одним и тем же данным без потерь в производительности независимо от своего местоположения в • средства коммуникации (электронная почта, факс, печать документов);

• сохранение целостности данных в общей базе данных;

• полнотекстовый и реквизитный поиск информации;

• открытость системы, при которой пользователи имеют доступ к привычным средствам создания документов и к уже существующим документам, созданным в других • защищенность информации;

• удобство настройки на конкретные задачи пользователей;

• масштабируемость системы для поддержки роста организации, защиты вложенных Начальным этапом создания такой системы является построение модели предметной области или другими словами модели документооборота для конкретного предприятия.

Основными направлениями автоматизации документооборота являются: поддержка фактографической информации, возможность работы с полнотекстовыми документами, поддержка регламента прохождения документов. Они определяют трехмерное пространство свойств, в котором любой программный продукт данного класса движется по некоторой траектории, проходя различные стадии в своем развитии.

Ось ( F ) характеризует уровень организации хранения фактографической информации, которая привязана к специфике конкретного рода деятельности компании или организации. Например: при закупке материальных ценностей происходит оформление товарно- сопроводительных документов (накладных, приемо-передаточных актов, приходных складских ордеров и т.п.), регистрируемых в качестве операционных документов. Их атрибутика очень важна для принятия управленческих решений. Информация из операционных документов используется при сложной аналитической и синтетической обработке, и, может быть получена пользователем через систему отчетов.

Ось ( D ) - полнотекстовые документы. Она отражает необходимость организации взаимодействия при формировании и передачи товаров, услуг или информации как внутри корпорации, так и вне ее. В этих документах наряду с фактографической информацией содержится слабо структурированная информация, не подлежащая автоматизированной аналитической обработке, такая, как форс-мажорные факторы и порядок предъявления претензий при нарушении условий договора. Все взаимоотношения между субъектами бизнеса сопровождаются документами, которые являются отражением результата взаимодействия.

Ось ( R ) отражает регламент процессов прохождения документов, а именно: описание того какие процедуры, когда и как должны выполняться. Основу для позиционирования относительно данной оси представляет набор формальных признаков (атрибутов) и перечень выполнения операций.

Точка в пространстве ( F, D, R ) определяет состояние системы документооборота и имеет координаты f, d, r, где f, d, r принадлежат множествам F, D, R соответственно.

Положение этой точки зависит от уровня развития и стадии внедрения системы документооборота на предприятии, а также от его специфики и самих масштабов бизнеса.

Представив модель документооборота таким образом, можно, зная текущее положение дел с организацией делопроизводства на предприятии, четко представить, в каких направлениях следует двигаться, чего недостает в текущий момент и каким образом использовать уже существующие системы автоматизации.

В общем случае, процесс автоматизации делопроизводства на предприятии можно представить в виде кривой в трехмерном пространстве координат F, D, R.

Эволюция модели документооборота Рассмотренная модель прошла 3 фазы развития.

Первая фаза - фактографическая. Она характеризуется периодом накопления информации, имеющей жесткую структуру и атрибутику. Условно уровень организации этой информации откладывается вдоль одной оси.

Точка данной оси определяет текущее состояние системы документооборота.

Движение по оси вверх характеризует накопление фактографической информации. Начиная с определенного момента данного этапа можно отметить второй этап первой фазы возникновение понятия "операция". Документ представляется как некоторый привязанный к бизнес - процессам предприятия агрегат из имеющихся характеристик (атрибутов). Движение по оси приобретает более операционный характер. Привязка к конкретным бизнес – процессам делает дальнейшее развитие документооборота в одномерном пространстве невозможным - необходим качественный переход к новой фазе.

Вторая фаза - полнотекстовая. Расширение организации и увеличение круга решаемых задач требуют использования полнотекстовых документов, включающих не только тексты, но и другие способы представления информации: графики, таблицы, видео и различные виды конструкторско-технологической документации. Появляется новая ось полнотекстовые или, мультимедийные документы. Точка в новом, двумерном, пространстве характеризует систему документооборота предприятия, где кроме фактографической базы документов имеются хранилища и архивы информации.

Хранилища позволяют накапливать документы в различных форматах, предполагают наличие их структуризации и возможностей поиска. Если на предприятии уже используется автоматизация, то хранилище - это электронный архив. Движение по оси "полнотекстовые документы" предполагает наращивание атрибутивных возможностей: разграничение доступа, расширение средств поиска, иерархию хранения, классификацию. Возникают такие понятия как электронная подпись, шифрование и т.п.

На данной оси имеются свои этапы - с определенного момента развития хранилища можно говорить не об индивидуальном, а о корпоративном архиве, обслуживающем деятельность рабочих групп. Точка на плоскости FD, достигнутой во второй фазе, характеризует систему документооборота, позволяющую отображать фактографическую информацию в виде полнотекстовых документов, имеющих необходимое количество атрибутов. Доступ к этим документам может быть осуществлен по маршруту любого уровня сложности с соблюдением различных уровней конфиденциальности. Если, например, говорить о точке "А", то соответствующее ей состояние системы документооборота позволяет осуществлять синхронизацию работы различных рабочих групп сотрудников корпорации. Система для этой точки предполагает структурирование информации по уровням управления и наличие средств репликации данных.

Третья фаза - регламентирующая. Нормальный документооборот в масштабах корпорации невозможен без решения вопросов согласования или соблюдения регламента работы. Если ранее, на второй фазе присутствовал лишь один, простейший регламент (нулевая точка) - сотрудник имел доступ к архиву или его части, либо в папку сотрудника помещалось индивидуальное задание, то теперь необходим, контроль за тем, как работник выполнил задание, или как продвигается документ в условиях нелинейного процесса его согласования (например согласования пакета конструкторско-технологической документации на сборочную единицу).

Третья ось в пространстве документооборота предприятия, как и две другие имеет свое деление на этапы. Первоначальный этап движения по оси характеризуется наличием упрощенного регламента, отображаемого появлением атрибутов, отвечающих за регламент, например: "оплатить до", "действителен для". Количественное накопление атрибутов и расширение возможностей по управлению регламента сопровождается постепенным переходом ко второму этапу, отличительная черта которого - появление системы, специально предназначенной для отслеживания процесса соблюдения регламента. При дальнейшем движении вдоль этой оси можно говорить о появлении единой системы управления проектом. Теперь документ в системе "документооборота" становится вторичным.

Первичной является цель бизнеса и процесс реализации бизнес - процедур, оставляющий после себя документы. Т.о. от модели потока документов приходим к модели потока работ (work flow).

Оси " F " и " D " определяют специфику деятельности организации, регламентируемую положением третьей координаты ( R ) пространства модели документооборота. При этом модель не зависит от технологии обработки документов, принятой на предприятии - все решает только цель деятельности, будь то государственная организация, торговая компания и промышленная фирма. В общем случае можно выделить три типа организаций:

• Банк и торговая компания (приобретение, наценка, продажа, получение прибыли главный объект деятельности);

• бюджетная организация: (основная деятельность - формирование документов);

• промышленное предприятие: (закупка сырья, переработка, создание нового продукта, реализация, получение прибыли. Цель деятельности – операция).

Если задачей организации является формирование документов, например мэрия, суд или министерство, то ее позиция в модели будет занимать достаточно высокое положение относительно осей " F " и " D ". Однако если рассматривать деятельность коммерческого банка или фирмы задача которой - производство операций, материальных ценностей, то здесь все три координаты должны иметь сбалансированные значения.

Теоретические основы информационных систем Знаковые системы В самом общем виде знания в памяти компьютера представляются в виде некоторой знаковой системы. Знаковые системы изучает наука семиотика. Основным понятием семиотики является понятие знак.

Знак - это объект или событие, которые способны что-то обозначать, т.е. указывать на некоторый другой объект, и что-то означать, т.е. иметь некоторый смысл. Например, «Луна»

обозначает конкретный физический объект и имеет смысл «естественный спутник Земли»;

знак « » обозначает число 3.14, имеет смысл «отношение длины окружности к диаметру».

Не все объекты, сопоставленные другим объектам, выступают в качестве знаков.

Например, паспорт, квитанции или гардеробные номерки не являются знаками.

С понятием знак непосредственно связаны понятия денотат и концепт знака.

Денотат - это объект, обозначаемый данным знаком, а концепт - свойство денотата, выражаемое знаком. Концепт определяет свой денотат. Отношение между знаком, его концептом и денотатом выражает так называемый семиотический треугольник, или треугольник Фреге (рис. 1) Рисунок 1. Семиотический треугольник Когда знак реально вступает во взаимодействие со своим денотатом и концептом, возникает знаковая ситуация. Возможны знаковые ситуации, в которых одна из вершин семиотического треугольника отсутствует (рис. 2) Рисунок 2. Знаковая ситуация Поскольку, по мнению Г.Фреге, знак обозначает денотат через посредство своего концепта, изобразим семиотический треугольник вытянутым в цепь (3, К, Д) (рис. 3).

Рисунок 3. Вытянутый семиотический треугольник Соответствия между знаками, концептами и денотатами не являются взаимнооднозначными. Отметим основные особенности употребления знаков (рис. 4).

Рисунок 4. Неоднозначность элементов семиотического треугольника Знаки З1, З2 называются синонимичными, если они выражают один и тот же концепт.

Знаки З1, З2, каждый со своим концептом, называются денотативно тождественными, если они обозначают один и тот же денотат.

Знак З называется омонимичным (или многозначным), если он может выражать более чем один концепт. Знак З называется денотативно неоднозначным, если он при одном и том же концепте может обозначать различные денотаты.

Знак З автонимен, если его денотатом в данной знаковой ситуации выступает сам знак З.

Из семиотического треугольника следует, что знак имеет две знаковые функции:

обозначает не только денотат, но и его концепт - десигнат данного знака.

Как следует из рис. 4, один и тот же знак может обозначать разные денотаты. Объем знака - это объем поля денотатов. Важными понятиями, имеющими к треугольнику Фреге непосредственное отношение, являются понятия экстенсионал и интенсионал.

Экстенсионал знака определяет конкретный класс всех его допустимых денотатов.

Если имя есть предложение, высказывание (т.е. запись некоторого суждения), то его денотатом служит истинное значение этого предложения (высказывания, суждения), т.е.

«истина» или «ложь».

Интенсионал знака определяет содержание понятия и характеризует концепт.

Интенсиональность знака зависит не только от истинных его значений, но и от прагматических оттенков этого смысла.

Рисунок 5. Знаковая система Знаковая система (рис. 5) - это множество знаков с регулярными отношениями между ними, отражающими регулярные отношения между их концептами и денотатами. В знаковой системе выделяют три аспекта: синтактику, семантику и прагматику.

Синтактика изучает внутреннее устройство знаковой системы, правила построения сложных знаков из простых. Для естественных языков синтактика выступает в виде синтаксиса, определяющего правильное построение предложения и связного текста. В искусственных языках синтактика определяет правильное логическое построение потенциально осмысленных выражений.

Семантика изучает соотношения, с одной стороны, между знаками и их денотатами, с другой - между знаками и их концептами (смыслами).

Прагматика изучает знаки с точки зрения их отношения к адресату сообщений.

Классификационные системы Классификационные системы с давних пор применяются для структурирования и обобщения знаний. В таких системах, с одной стороны, все сущности разбиваются по определенным признакам на некоторое число классов, с другой стороны, группируются вместе. При классифицировании наблюдателю дается набор объектов, которые можно описать некоторым множеством признаков. Каждый объект принадлежит одному или более классам из некоторого фиксированного множества. В задаче классификации (образов) наблюдатель должен применить установленное ранее правило, чтобы решить, к какому классу принадлежит объект. В задаче распознавания (образов) правило классификации вырабатывается на основе исследований множества объектов с известной принадлежностью различным классам. Эти объекты в совокупности называются обучающим множеством, или выборкой. В задаче формирования образов объекты предъявляются наблюдателю без указания их принадлежности классам. Наблюдатель должен самостоятельно построить соответствующее определение классов. Задача классификации эквивалентна задаче выяснения: является ли некоторая цепочка предложением в формальном языке.

Некоторые классификационные системы широко применяются при представлении декларативных знаний.

Вся совокупность употребляемых при классификации слов называется лексикой. Для обеспечения лексической однозначности должны быть учтены отношения синонимии, омонимии и полисемии (или многозначности), свойственные словам естественного языка.

Отношения синонимов, омонимов и многозначных слов к обозначенным ими предметам или выражаемым ими понятиям показаны в таблице.

Синонимы: сумка - саквояж, размытые множества - расплывчатые множества;

Омонимы: мосты - мосты (строения), мосты (зубные), мосты (ходовая часть), электрические мосты;

Полисемия: отражение (нападения), отражение (света), отражение (звука), отражение (электромагнитных волн).

Между словами естественных языков существуют два вида отношений.

1. Парадигматические (базисные, имманентные, аналитические)- отношения, обусловленные наличием логических связей между предметами и явлениями, обозначаемые этими словами. Такие отношения носят вне-языковый характер и не зависят от ситуации, для описания которой используются слова. Например, СТОЛ и СТУЛ - МЕБЕЛЬ (соподчинение, координация); СТОЛ и МЕБЕЛЬ - отношение вид род; ПЕРЕПЛЕТ и КНИГА – отношение часть - целое; ЛАМПА и СВЕТ - отношение причина - следствие; ЛОПАТА и ЭКСКАВАТОР - отношение функционального 2. Синтагматические (текстуальные, ситуативные) - линейные отношения, которые устанавливаются непосредственно при соединении слов в словосочетания и фразы.

Синтагматические средства составляют синтаксис языка и относятся к его грамматическим средствам. Классом называется совокупность (множество) предметов, каждому, из которых присущи признаки, отражаемые в содержании соответствующего понятия. Слово или словосочетание, выражающее это понятие, служит именем данного класса.

Классификацией называется система распределения предметов или отношений на основании наиболее существенных признаков, присущих этим предметам или отношениям и отличающих их от других предметов или отношений. Классы могут быть простыми и сложными. Простым называется такой класс, члены которого характеризуются только одним общим признаком, выражаемым или обозначаемым именем этого класса. Такое имя обычно выражается одним словом или одним устойчивым словосочетанием. Например, самолеты;

пассажиры; реактивные двигатели и т. д. Как правило, простой класс нельзя расчленить на более простые, не теряя при этом возможности однозначно восстановить исходный класс путем логического умножения полученных более узких классов.

Сложным называется такой класс, члены которого имеют не один общий признак, а сочетание признаков. Именами сложных классов являются различные словосочетания и даже целые фразы. Например, реактивные пассажирские самолеты; вычислительные машины на интегральных схемах. Сложные классы всегда можно расчленить на простые, без потери возможности их однозначного восстановления путем логического умножения полученных простых классов.

Иерархические системы классификации. Иерархическая система классификации – это такая система, в которой между классификационными группировками установлено отношение подчинения, как правило, родовидовое. Классификационное множество объектов делится по некоторому выбранному признаку (основание деления) на крупные группировки, затем каждая группировка в соответствии с выбранным основанием деления разбивается на ряд последующих группировок, которые в свою очередь распадаются на более мелкие, постепенно конкретизируя объект классификации (рис. 6).

Рисунок 6. Классификационная система При построении иерархической системы классификации необходимо соблюдать следующие наиболее важные формально-логические правила:

• каждая классификационная группировка должна делиться только по одному основанию деления;

• получаемые в результате деления группировки должны исключать друг друга (т.е. не повторяться);

• сумма подмножеств деления должна составлять делимое множество.

Основными преимуществами иерархической системы классификации являются большая информационная емкость и простота поиска (возможность ручного поиска).

Недостатки заключаются в малой гибкости структуры и невозможности агрегировать объекты по любому произвольному сочетанию признаков.

Рисунок 7. Фасетная классификация Фасетная система классификаций. Это такая система (рис. 7), при которой классифицируемое множество образует независимые группировки по различным аспектам классификации. Классификационные группировки образуются путем комбинаций значений, взятых из соответствующих фасетов.

Рисунок 8. Фасетные формулы.

Последовательность расположения фасетов задается фасетной формулой, которая в каждом конкретном случае устанавливается в зависимости от характера решаемых задач и алгоритма обработки информации (рис. 8).

Порядок следования фасетов в фасетной формуле строго фиксировании определяется с учетом предмета, для которого разрабатывается фасетная классификация. Преимущества фасетных классификаций заключаются в гибкости структуры, возможности агрегировать объекты по любому сочетанию фасетов, возможности блочного построения классификаций.



Pages:     || 2 | 3 |


Похожие работы:

«Под редакцией С. В. Симоновича ИНФОРМАТИКА БАЗОВЫЙ КУРС 2-е издание Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов высших технических учебных заведений 300.piter.com Издательская программа 300 лучших учебников для высшей школы в честь 300-летия Санкт-Петербурга осуществляется при поддержке Министерства образования РФ Москва • Санкт-Петербург • Нижний Новгород • Воронеж Ростов-на-Дону • Екатеринбург • Самара • Новосибирск Киев • Харьков •...»

«Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра экономической теории и маркетинга ТОВАРНАЯ ПОЛИТИКА ПРЕДПРИЯТИЯ ОТРАСЛИ Программа, методические рекомендации и контрольные работы для студентов специальности 1-26 02 03 Маркетинг заочной формы обучения Минск 2004 УДК 338.242 Рассмотрены и рекомендованы к изданию редакционноиздательским советом университета Составители: ст преп., канд. экон. наук Л. В. Лагодич;...»

«СМОЛЕНСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПСИХОЛОГИИ И ПРАВА ОТДЕЛЕНИЕ ПРАВА КАФЕДРА ГОСУДАРСТВЕННО-ПРАВОВЫХ ДИСЦИПЛИН О.В. Савченкова АДМИНИСТРАТИВНОЕ ПРАВО Учебно-методическое пособие (для студентов, обучающихся по специальности 030501.65 Юриспруденция – заочная форма обучения) Смоленск – 2008 ПРОГРАММА (СОДЕРЖАНИЕ) УЧЕБНОЙ ДИСЦИПЛИНЫ РАЗДЕЛ 1. АДМИНИСТРАТИВНОЕ ПРАВО КАК ОТРАСЛЬ ПРАВА РОССИЙСКОЙ ФЕДЕРАЦИИ. ТЕМА 1. Управление, государственное управление, исполнительная власть. Общее...»

«МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОФРМЛЕНИЮ ОТЧЁТОВ О РЕАЛИЗАЦИИ СОЦИАЛЬНО ЗНА ЧИМЫХ ПРОЕКТОВ У в а ж а е м ы е победители конкурса! В соответствии с Р а с п о р я ж е н и е м Губернатора области от 30.04.2009 г. № 114-р Об итогах конкурса социально значимых проектов до 1 июня 2 0 0 9 года Вам необхо­ д и м о з а к л ю ч и т ь Д о г о в о р о предоставлении Гранта. Ф о р м у д о г о в о р а м о ж н о найти на официальном сайте а д м и н и с т р а ц и и Новосибир­ ской области (www.adm.nso.ru) в...»

«Программно-методическое обеспечение УП 2 ступень обучения (5-9 кл) Предметн Предмет по Программа Учебник (автор, Методическое пособие Кол-во ая Классы часов в учебному плану (название, автор, год издания) название, издательство, год издания) область неделю Русский язык 5 5 Русский язык 6 класс в 2 частях с приложением под ред А.Д. Шмелева. 6а Москва Издательский центр Вентана Граф Русский язык: учебник для 6 класса/ М. Т. Поурочные разработки по русскому Программы для 6б языку. 6 класс/ О. В....»

«2 Автор-составитель Житников Дмитрий Львович, доктор экономических наук, профессор. Программа предназначена для поступающих в аспирантуру НОУ ВПО МПСИ по специальности 08.00.05 – Экономика и управление народным хозяйством (по отраслям и сферам деятельности в т.ч.: экономика, организация и управление предприятиями, отраслями, комплексами – сфера услуг). Цель вступительного экзамена в аспирантуру приобретение соискателями, поступающими в аспирантуру, с последующей демонстрацией на вступительном...»

«Министерство образования Российской Федерации Архангельский государственный технический университет И н с т и т у т э к о н о м и к и, ф и н а н с о в и бизнеса Внешнеэкономическая деятельность Методические указания по в ы п о л н е н и ю р а с ч е т н о - г р а ф и ч е с к о й и к о н т р о л ь н о й р а б о т ы Архангельск 2003 г. Рассмотрено и рекомендовано к изданию м е т о д и ч е с к о й к о м и с с и е й И н с т и т у т а э к о н о м и к и, ф и н а н с о в, бизнеса Архангельского...»

«Книжные новинки У А 29 Адизес, Ицхак К. Управляя изменениями : перевод с английского / Ицхак К. Адизес. - СанктПетербург [и др.] : Питер, 2012. - 223 с. : ил. + 1 электрон. опт. диск (CD). Книга Управляя изменениями посвящена процессам принятия управленческих решений. А.Ицхак наглядно показывает, как эффективно разрешить ситуации, связанные с созданием работоспособной команды, столкновением интересов, поступлением конструктивных предложений, неуважением к чужому мнению, взаимным недоверием...»

«УЧЕБНО-НАГЛЯДНОГО ОБОРУДОВАНИЯ КАБИНЕТА РУССКОГО ЯЗЫКА И ЛИТЕРАТУРЫ (каб. 406) Сенченко А.Ф. Мультимедийный проектор шт. 1 Экран шт. 1 Компьютер шт. 1 Сетевой фильтр ^ '/ шт. 1 Таблицы по курсу литературы шт. 1 Таблицы по курсу русского языка компл. 1 УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ Для учащихся 1. Полухина В.Г., Коровина В.Я., Журавлев В.П., Коровин В.И. Литература. 6 класс: Учебник для общеобразовательных учреждений. В 2 ч. / Под ред. В.Я. Коровиной. М: Просвещение, 2010. 2. Полухина В.П....»

«Министерство образования и науки Украины Севастопольский национальный технический университет МЕТОДИЧЕСКИЕ УКАЗАНИЯ К СЕМИНАРСКИМ ЗАНЯТИЯМ по дисциплине Основы экономической теории для студентов неэкономических специальностей всех форм обучения Севастополь 2006 Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) 2 УДК 303. Методические указания к семинарским занятиям по дисциплине Основы экономической теории для студентов неэкономических специальностей...»

«1 2 3 1. Цели освоения дисциплины Целями освоения дисциплины Избранные главы неорганической химии являются: - освоение студентами теоретических основ химии, химии элементов и их соединений; - понимание роли химии и химической технологии в охране окружающей среды; - формирование естественнонаучного мировоззрения и представлений о дальнейшем развитии химической науки; - способность и готовность использовать основные законы химии в профессиональной деятельности. 2. Место дисциплины в структуре ООП...»

«Негосударственное образовательное учреждение высшего профессионального образования Институт экономики и управления (г. Пятигорск) НОУ ВПО ИнЭУ УТВЕРЖДАЮ Председатель УМС Щеглов Н.Г. (Протокол № _ от 2011г.) РАБОЧАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ ЭКОНОМИЧЕСКАЯ ГЕОГРАФИЯ И РЕГИОНАЛИСТИКА (название курса, дисциплины) для студентов специальности 080102.65 Мировая экономика очной и заочной формы обучения Пятигорск, 2011 Составитель: Бурим С.М., к.и.н., доцент Рецензент: Крымская Т.Н., к.пед.н., доцент...»

«Учебное пособие Актуальные проблемы экономики образования по курсу Экономика образования. (Часть 1) Содержание. Стр. Введение 5 1. Основные направления развития экономики 32 образовательного сектора. 1.1. Предмет и метод экономики образования. 33 1.2. Особенности образовательных услуг. 1.3. История развития экономики образования. 1.4. Общемировые проблемы образования. 1.5. Образование за рубежом 77 2. Правовое и административное регулирование 80- деятельности образовательных учреждений в...»

«Методические рекомендации по использованию набора ЦОР Химия для 8 класса Авторы: Трусова Л.В., Черникова С.В. под редакцией Солоповой Н.К. Урок 1. Предмет химии. Вещества Цель: формирование представлений о предмете химии. Урок учитель начинает со вступительного слова о химии как естественной дисциплине. Он отмечает, что предмет химии изучается только с 8 класса в связи со сложностью материала и необходимостью сформированности абстрактного мышления. Для структурирования и наглядного...»

«В.В. Пиляева ГРАЖДАНСКОЕ ПРАВО В СХЕМАХ И ОПРЕДЕЛЕНИЯХ УЧЕБНОЕ ПОСОБИЕ Пятое издание, переработанное УДК 347(075.8) ББК 67.404я73 П32 Пиляева В.В. П32 Гражданское право в схемах и определениях : учебное пособие / В.В. Пи­ ляева. — 5е изд., перераб. — М. : КНОРУС, 2012. — 272 с. ISBN 978-5-406-01946-7 Учебный материал представлен в наглядной форме — структурнологи е­ ч ски и схемами, что способствует успешному усвоению курса граждан кого м с права России. Для студентов, аспирантов и...»

«В. И. Ляшков ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ МОСКВА ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1 2005 В. И. Ляшков ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ Допущено Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированных специалистов Теплоэнергетика Издание второе, стереотипное МОСКВА ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1 УДК 536.7(07) ББК 311я73- Л Р е ц е н з е н т ы: Кафедра промышленной...»

«СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ФИЗИЧЕСКОЙ КУЛЬТУРЕ И СПОРТЕ Тезисы докладов международной научно-практической конференции, посвященной 70-летию образования Удмуртского государственного университета 17-18 октября 2001 года Ижевск 2001 Министерство образования Российской Федерации Удмуртский государственный университет Учебно-методический совет по физической культуре и спорту при УМО по педагогическому образованию вузов РФ Институт информатизации образования РАО Государственный комитет...»

«С.П. Кудаев Методические рекомендации по проведению практических занятий и самостоятельной работы студентов по курсу теоретической механики 2 Федеральное агентство по образованию ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н.П. ОГАРЕВА) РУЗАЕВСКИЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ (ФИЛИАЛ) КАФЕДРА ОБЩЕТЕХНИЧЕСКИХ ДИСЦИПЛИН Методические рекомендации по проведению практических занятий и самостоятельной работы студентов по курсу...»

«РУССКИЙ ЯЗЫК СОДЕРЖАНИЕ ПРОГРАММЫ................................ 2 ОСНОВНАЯ ШКОЛА........................ 2 Линия учебно методических комплектов Т. А. Ладыженской, М. Т. Баранова, Л. А. Тростенцовой и др...................... 2 Учебно методический комплект С. Г. Бархударова и др........................ 4 СРЕДНЯЯ (ПОЛНАЯ) ШКОЛА................ 4 Линия учебно методических...»

«1. Методические указания по написания контрольной работы В соответствии с планом изучения курса студенты заочного отделения должны выполнить контрольную работу. Кафедра предлагает десять вариантов, из которых студент выбирает один. При подготовке и написании контрольной работы студент изучает и прорабатывает нормативные акты, статьи, монографии, учебные пособия, указанные в данных заданиях, и другие материалы по теме, в том числе опубликованные после подготовки данных заданий. Студентам...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.