«ТЕХНОЛОГИЯ КЛЕЕНЫХ УЧЕБНОЕ ПОСОБИЕ ДЛЯ ВУЗОВ МАТЕРИАЛОВ 2003 В.Н. Волынский ТЕХНОЛОГИЯ КЛЕЕНЫХ МАТЕРИАЛОВ (Учебное пособие) Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для ...»
Наиболее простым и наглядным методом расчета потребности в пиломатериалах является метод определения коэффициентов пооперационных потерь. Он заключается в том, что потери древесины рассчитываются для каждой операции механической обработки по известным припускам на обработку.
Первичная торцовка на заданную длину. Отходы на этой операции зависят от характеристик используемых пиломатериалов (сорт, длина, размеры сечения), а также от кратности заготовок по длине и схемы раскроя. Поперечно - продольно - поперечная схема раскроя является оптимальной для продукции, склеиваемой из реек. При этой схеме первичная торцовка ведется без вырезки дефектов, а задается только необходимая длина (или несколько длин). Припуски по длине для делянок дощатого щита указаны в табл.11.16.
11.16. Припуски по длине делянок дощатого щита Длина щита, м м Ширина щита, мм Припуск по длине, мм Коэффициент выхода черновых заготовок из досок где l - заданная длина щита, мм; l - припуск по длине (табл. 11.15), мм; n - целое число заготовок из доски, Кд - коэффициент использования длины доски, учитывающий потери на оторцовку и пропилы, Кд = 0,98.
Предположим, предприятие выпускает щиты двух типоразмеров - 800 х 250 и 2000 х 600 мм. Следовательно, длина заготовок должна составить соответственно 820 и 2030 мм. При длине доски 6 м и заданных длинах 0,82 и 2,03 м можно выкроить:
Следовательно, при раскрое на короткие заготовки полезный выход составит 7 х 0,82 / 6 = 0,956, то есть потери составят 4,4% При раскрое на длинные заготовки возможно выпиливание только двух досок с остатком 1,82 м, который распиливается на две короткие заготовки. Суммарный полезный выход составит:
Продольный раскрой заготовок и строгание реек. Выбор схемы получения делянок зависит от толщины доски (рис 11.25).
Рис.11.25. Схемы получения чистовых заготовок (делянок) из черновых заготовок для толстых (а) и тонких (б) досок: 1 - пропилы; 2 - припуски на фрезерование.
Размеры делянок при известных размерах поперечного сечения доски можно рассчитать по формулам:
при раскрое по схеме (а) при раскрое по схеме (б) где B, H - ширина и толщина доски, мм; b, h - ширина и толщина делянки, мм;
n- число делянок, получаемых из доски (кратность); - ширина пропила, мм; b, h - припуски на двухстороннее фрезерование соответственно по ширине и толщине заготовки, мм (см. табл. 11.16, 11.17).
При раздельных операциях продольного раскроя и фрезерования коэффициент выхода нестроганых реек из черновых заготовок Р2 составит а коэффициент выхода фрезерованных реек из нефрезерованных :
11.17. Припуски на фрезерование по ширине с двух сторон деталей без предварительного фугования (ГОСТ 7307-75), мм Припуски при частичном непрофрезеровании одной из сторон 11.18. Припуски на фрезерование по толщине с двух сторон деталей без предварительного фугования (ГОСТ 7307-75), мм Припуски при частичном непрофрезеровании одной из сторон При работе с толстыми досками (Н>40 мм) операции фрезерования и продольного раскроя совмещаются в одном станке, поэтому можно записать Например, для сосновых досок 50х125 мм при толщине пропила 3 мм и n= получаем:
b= 50 - 5,5 = 44,5 мм; h = [(125 - 5,5 - (5 - 1).3] / 5 = 21,5 мм.
Р2. Р3 = (5 х 44,5х 21,5) / (125 х 50) = 0,765.
В данном случае имеем потери 100(1-0,765) = 23,5%, которые складываются из потерь в опилки и стружку.
Таблицы 11.17 и 11.18 не отражают всего многообразия условий производства. В частности, они не учитывают длину заготовки и характер ее предыдущей обработки. Поэтому фактические минимально допустимые припуски целесообразно находить опытным путем, а расчеты вести с точностью 0,1 мм.
Отбраковка и торцовка реек. Потери древесины на этом участке не могут быть подсчитаны аналитически, так как зависят от качества (сорта) пиломатериалов, в данном случае - от наличия пороков в рейках.
В практике технологических расчетов приняты следующие ориентировочные значения выхода заготовок из пиломатериалов (табл.11.19).
11.19. Полезный выход заготовок из пиломатериалов Пиломатериалы необрезные хвойных пород I Пиломатериалы необрезные из березы I - III Пиломатериалы обрезные хвойных пород I - IV Для хвойных обрезных досок можно считать, что полезный выход составляет 67% (Р4 = 0,67), а отпад примерно в 1/3 представляет собой кусковые отходы, частично пригодные для переработки на попутную продукцию.
Склеивание щитов. На данном участке не происходит механической обработки древесины, однако возможны потери из-за брака в работе, необходимости настройки и пробного склеивания щитов, по организационным причинам. По опыту предприятий можно принять потери в 1% (Р5 = 0,99).
Послепрессовая обработка щитов. Щит, вышедший из пресса, требует обработки по длине с помощью опиливания, по ширине путем фрезерования или опиливания и по толщине путем двухстороннего шлифования. Соответствующие припуски указаны в табл. 11.20.
Припуск по ширине может быть сведен к минимуму за счет приклеивания последней рейки малой ширины, дополняющей щит до размера, близкого к заданному.
Коэффициент выхода нешлифованных обрезных щитов из необрезных где l -длина реек,мм; bш - ширина щита после пресса, мм; n - число реек шириной b в щите; l и b - припуски на обработку щитов по длине и ширине (табл.11.20).
Коэффициент выхода шлифованных щитов из нешлифованных где h - толшина реек, мм; h - припуск по толщине (табл.11.19), мм.
11.20. Припуски на послепрессовую обработку щитов (ГОСТ 7307-75), мм Толщи- Длина Шири- толщине при ширине ширине при усло- длине Перемножая все коэффициенты потерь, получим полезный выход щитов из пиломатериалов Обратная величина называется расходным коэффициентом, показывающим расход пиломатериалов на м3 готовой продукции:
Для обрезных хвойных пиломатериалов эта величина колеблется в пределах 2,5 - 3,0 м3/м3, а для необрезных досок малой толщины может доходить до 4 - 4, м3/м3..
При известном расходном коэффициенте легко находится потребность в сухих пиломатериалах на программу М выпуска продукции:
Всю цепочку технологических расчетов можно вести и в обратном направлении, исходя из требуемых размеров щитов и выбирая оптимальные размеры заготовок и пиломатериалов.
11.2.4.3. Расчет объёмов вторичного сырья.
При известном объёме перерабатываемых пиломатериалов можно определить конкретный объём вторичного сырья, образующегося на каждой технологической операции. Это удобно представить в виде табл.11.21. Здесь Qi - объём отходов в пл. м3. Наиболее эффективными путями повышения полезного выхода продукции являются использование автоматических линий торцевания, уменьшение толщины пропила (например, с помощью ленточных пил для продольного раскроя заготовок), тщательное соблюдение режимов сушки пиломатериалов.
11.21. Пооперационные потери древесины в производстве реечных щитов..
Торцовка и отбраковка реек Кусковые Q4 = Qпм P1 Р2 P3(1-P4) Прессование Кусковые (отбраковка) Q5 = Qпм P1 Р2 P3 P4(1-P5) Форматная обрезка Кусковые и опилки Q6 = Qпм P1 Р2 P3 P4 P5(1-P6) 11.2.4.4. Расчет потребности в оборудовании Потребность в оборудовании рассчитывается аналогично методике, изложенной в п. 8.7. Число станков можно определить по формуле где Пчас - часовая производительность станка, определяемая из характеристики оборудования или расчетным путем, м3; Qчас - часовой объём работ, приходящийся на данный станок, м3.
М - программа предприятия; обычно принимается равной годовой производительности головного оборудования, м3; Тэф - эффективный фонд времени оборудования, зависящий от сменности работы предприятия. Для столярно - мебельных предприятий принимают 2000 часов при односменной работе и 4000 часов при двухсменной.
Производительность торцовочного станка на участке раскроя досок на заготовки, м3/ч где Кр - коэффициент рабочего времени, Кр =0,94; l, b, h - размеры заготовки, м;
n - число резов на одну заготовку, n =1,2 - 1,5; Тц - время цикла,с.
где Nр - число резов в минуту, Nр = 8 - 12.
Объём работ для данного станка следует принимать равным часовой потребности в заготовках (а не в пиломатериалах!). Малые торцовки для реек рассчитываются аналогично, а за объём работ принимается часовая потребность в чистовых рейках, идущих на склеивание.
Производительность проходных станков (прирезных, продольно - фрезерных, шлифовальных) зависит от скорости подачи V (м/мин):
а для концеравнителя: Пчас = 60 Кр Км V hln, где Кр и Км - коэффициенты рабочего и машинного времени (табл.11.22), b, l и h - размеры материала, м, выходящего из станка; n - число одновременно обрабатываемых заготовок (например, реек получаемых из одной заготовки, шт.) 11.22.Коэффициенты использования рабочего (Кр), машинного (Км) времени и скорости подачи (V) основного оборудования 4- сторонний продольно-фрезерный 0,8 - 0.9 0,9 10- Круглопильный с ручной подачей 0,85 - 0,9 0,6 - 0,7 4- Скорость подачи для конкретного станка выбирается с учетом характеристик оборудования и требуемого качества обработки. Не следует стремиться использовать максимальные скорости подачи, так как это отрицательно скажется на качестве обработки поверхностей. Обычно проходные станки имеют более высокую производительность, чем позиционные, и форсировать их работу не требуется.
11.3. Производство столярных плит 11.3.1. Характеристика материала Столярные плиты представляют собой деревянные щиты с реечной серединкой, облицованные с двух сторон строганым или лущеным шпоном. Как следует из названия, столярные плиты применяются в основном в мебельном производстве. Их основное преимущество перед ДСтП заключается в более высокой прочности, отсутствии токсичных веществ, небольшой плотности плит. Реечная серединка, однако, обладает меньшей формостабильностью, чем стружечные плиты, поэтому облицовка в один слой здесь невозможна, так как она не обеспечивает качественной отделки поверхности.
ГОСТ 13715 - 78 указывает три типа столярных плит: НР - серединка из несклеенных реек, СР - серединка из склеенных реек; БР - серединка из склеенных реек, полученных блочным способом.
Кроме того, на практике нашли применение плиты марки БШ, у которых серединка получена блочно – шпоновым способом.
Плиты могут быть облицованы строганым шпоном с одной или двух сторон или быть без облицовки; могут быть нешлифованными, шлифованными с одной или двух сторон, а также обычной или повышенной точности. Стандартные размеры плит составляют: длина 2,5; 1,83; 1,525 м, ширина 1,525 и 1,22 м, толщина 16,19, 25 и 30 мм. Разнотолщинность нешлифованных плит ±0,6-0,8 мм, шлифованных ±0,4-0,6 мм, допуск по ширине и длине ± 5 мм. В плите должны быть наружние слои и подслой с параллельным направлением слоев, расположенных перпендикулярно длине плиты. В случае облицовки с одной стороны следует предусмотреть с обратной стороны третий слой лущеного шпона с тем, чтобы соблюсти требование строгой симметрии плиты относительно среднего слоя (реечной серединки). Толщина наружных слоев и подслоя должна быть не менее 3,0 мм.
Прочность столярных плит при изгибе определяют, как и для фанеры, по ГОСТ 9625-87. Нормируемые показатели зависят от толщины плиты и толщины облицовки (табл.11.23) :
11.23. Прочность столярных плит при изгибе Толщина Прочность при изгибе поперек реек, Мпа, не менее, прочность при изгибе имеют плиты типа БР. Если принять их показатель за 100%, то плиты СР покажут прочность примерно 89%, плиты НР – 80%, а плиты БШ – 65% (по результатам испытания образцов, выпиленных поперек волокон серединки столярных плит толщиной 25 мм).
Предел прочности при скалывании по клеевому слою определяют по ГОСТ 9624-93 в сухом виде. Для всех марок и толщин этот показатель не должен быть менее 1 МПа.
Сорта плит определяются качеством наружных слоев. Для необлицованных плит принимается во внимание сорт лущеного шпона и предусмотрены три сорта: А/АВ, АВ/ВВ, В/ВВ (в связи с тем, что ГОСТ на столярные плиты не был пересмотрен, в нем обозначение сортов шпона осталось без изменения). Для плит, облицованных с одной стороны, - сорт строганого шпона на лицевой поверхности столярной плиты: I/AB, II/AB. Плиты, облицованные с двух сторон, имеют сорта I/ II и II/II. Средняя плотность столярных плит составляет ориентировочно 520 кг/м3.
Рейки изготовляют из пиломатериалов 3-го и 4-го сортов по ГОСТ 8486 - 86 и 3-го сорта по ГОСТ 2695 - 83. Рейки в щите должны быть одной породы, не допускается гниль всех видов и обзол, трещины длиной более 200 мм. Для конструкции столярной плиты характерны жесткие требования к ширине делянок реечной серединки, так как от нее в значительной мере зависит формоустойчивость изделия. Идеальным считается соотношение ширины и толщины рейки 1:1,5, однако это приводит к значительному расходу пиломатериалов - для тонких плит ширина рейки должна быть примерно 20 мм. ГОСТ 13715-78 регламентирует ширину реек для плит обычной точности (ОТ) до 40 мм и для плит повышенной точности (ПТ) - до 20 мм.
На практике используют рейки шириной 40-60 мм. Имеет значение и направление годовых слоев на торцах реек. Наибольшую формостабильность обеспечивают рейки радиальной распиловки, получаемые при блочном способе изготовления. Можно применять стыковку реек по длине, но расстояние между стыками в соседних рейках должно быть не менее 150 мм. В плитах марки НР рейки должны быть плотно прижаты друг к другу (зазор не более 0,5 мм).
Обозначение столярной плиты должно содержать следующие данные: тип и сорт плиты, вид обработки поверхности (НШ, Ш1, Ш2), вид облицовки поверхности (необл., обл.1, обл.2), точность изготовления (ПТ, ОТ), размеры, породу древесины, толщину слоев шпона. Например, плита типа НР, сорта А/АВ, шлифованная с одной стороны, необлицованная, обычной точности, толщиной мм, шириной 1220 мм, длиной 1525 мм, с березовыми наружными слоями толщиной 3,0 мм обозначается следующим образом:
НР А/АВ Ш1 необл. ОТ 19 х 1220 х 1525 бер. 3,0 ГОСТ 13715 - 78.
Необлицованные плиты учитываются в м3, облицованные в м2. Области применения столярных плит отражены в табл. 11.24.
11.24. Области применения столярных плит плит мышленность. строение НР Детали мебели Перегородки, па-Полы, перегород- Элементы обычнели, багажные ки, двери, стено- ных конструкций СР, Детали мебели Перегородки, па- Полы, перегород- Элементы констБР нели, багажные ки, двери, стено- рукций повышенполки, встроен- вые панели, ной точности 11.3.2. Технологический процесс производства Технологический процесс производства столярных плит включает в себя изготовление серединок, подготовку облицовок, склеивание и послепрессовую обработку плит.
Для изготовления серединок столярных плит применяют сравнительно низкокачественные пиломатериалы хвойных и лиственных пород (3-го и 4-го сорта). Возможно использование реек, получающихся при обрезке пиломатериалов в лесопильном цехе. Особенно эффективно производство столярных плит вместе с производством реечных щитов, так как здесь возможно наиболее комплексное использование реек, в том числе низкокачественных и маломерных.
Блочно-реечный способ изготовления серединок основан на склеивании блока из строганых пиломатериалов, например, по схеме показанной на рис.11.22.В отличие от изготовления реечных щитов здесь требования к качеству древесины существенно ниже. Целесообразно использовать заготовки сращенные по длине на зубчатый шип или склеенные гладкоопиленными торцами клеем – расплавом.
В некоторых случаях можно применять даже несклеенные по торцам заготовки.
Полученный блок распиливают на щиты на ленточно - пильном станке и строгают с двух сторон в рейсмусовом станке при скорости подачи не более 8 м/мин (шлифование полученных щитов в данном случае является излишнее дорогой операцией).
Столярные плиты с серединкой из склеенных реек (марки СР) отличаются повышенной прочностью, но более склонны к покоробленности при изменении влажности древесины, чем плиты из несклеенных реек. Отсутствие клеевых швов создает более благоприятные условия для свободной деформации делянок серединки, поэтому плиты марки НР получили гораздо большее распространение в производстве столярно-мебельных изделий. Технология получения реек в этом случае аналогична описанной в предыдущем разделе. Для высококачественных плит необходимы рейки малой ширины, которая зависит от толщины столярной плиты:
Использование более широких реек возможно для деталей, к которым предъявляются менее жесткие требования к покоробленности и волнистости. Важным моментом является стабильная толщина рейки (разнотолщинность не более ± 0,3 мм), получаемая путем их строгания в рейсмусовом станке.
Для плит типа НР выполняют не склеивание, а стяжку реек шпагатом или металлической рейкой. Сборка пакетов из несклеенных реек производится на наборном столе. Щит сжимают струбцинами до полного прилегания реек, обрезают в размер торцовые кромки и в них зарезают проушины. Существуют и специальные щитонаборные станки, выполняющие весь цикл работ по получению реечной серединки (сплачивание, опиливание торцев, зарезка проушин, вставка рейки или шпагата). При совместном производстве столярных плит и реечных щитов весь отпад реек (кроме покоробленных и с гнилью) может найти применение в качестве серединок столярных плит.
Блочно - шпоновый способ используется на фанерных предприятиях, не имеющих собственных пиломатериалов. Для серединок используют толстый (3, мм) шпон. Пять листов склеивают (обычно казеиновым клеем) в плиты толщиной 18 мм с параллельным направлением волокон. Полученные плиты досушивают при температуре 40-50 0С до влажности 6 - 8%. Продолжительность досушки составляет при горячем склеивании 4-6 ч, при холодном склеивании –12ч. Затем заготовки для блоков распиливают вдоль волокон на полосы шириной по 500 мм, которые склеивают в блоки и после выдержки распиливают на серединки для плит.
Облицовка из шпона готовится путем его прирубки и ребросклеивания по технологии, описанной в главе 5. «Классическая» столярная плита имеет с двух сторон облицовку из лущеного и/или строганого шпона, при этом направление волокон в облицовке одинаково и перпендикулярно рейкам. Это дает так называемый «эффект фанеры», то есть обеспечивает высокую прочность плит при изгибе как в продольном, так и поперечном направлениях. Поскольку для большинства деталей корпусной мебели, для которых и предназначена столярная плита, не предъявляют высоких требований к прочности в двух направлениях, то целесообразным является облицовка не шпоном, а готовым листовым материалом, например, трехслойной фанерой или твердой ДВП. В этом случае технология сборки пакетов существенно упрощается. Кроме того, для лицевой стороны можно использовать ДВП с декоративным покрытием или другой материал, не требующий отделки.
Склеивание проводится по технологии, близкой к технологии склеивания фанеры с использованием карбамидных или казеиновых клеев. Наряду с горячим склеиванием в многоэтажном прессе применяют и холодное склеивание в одноэтажном прессе при высоте пачки до 1200 мм. Давление горячего прессования составляет 1,2 - 1.3 МПа. После выдержки плиты опиливают на форматно - обрезных станках при скорости подачи до 15 м/мин.
Известен еще с 70-х годов метод непрерывного склеивания столярных плит на линии АНРА фирмы «Рауте» (Финляндия). В этой линии рейки, строганые с 4- сторон и прирезанные на заданную длину, пучками подаются на загрузочный стол и с помощью вибрационного устройства направляются в устройство для уплотнения реечного ковра. Здесь за счет разности скоростей подачи и верхнего прижима рейки плотно прижимаются друг к другу. Затем на реечный ковер с двух сторон наносится вальцами клей. Возможно также использование пленочного клея, который разматывается из рулона и прижимается к реечному ковру сверху и снизу. Обе поверхности реечного ковра облицовывают одновременно шпоном в формирующей машине. Листы шпона с прирубленными кромками укладывают на движущиеся подающие цепи, отдельно для нижних и верхних поверхностей. В своем движении листы шпона поджимаются друг к другу. Весь материал поступает затем в высокочастотный проходной пресс для предварительного приклеивания облицовки к реечному ковру. Окончательное отверждение клея происходит в подвижном горячем прессе. Он установлен на колесах и работает в возвратно-поступательном режиме. При движении вперед пресс закрыт и обеспечивает необходимое вертикальное давление и прогрев клееной продукции. В конце своего пути пресс открывается и быстро возвращается в исходную позицию для повторения цикла прессования. Этим обеспечивается непрерывное склеивание ковра столярной плиты с постоянной скоростью на всем протяжении производственной линии. За подвижным прессом установлен двухпильный станок для обрезки кромок и получения заданной длины продукции.
При этом обрезки измельчаются специальными фрезами и удаляются вместе с опилками. Ширина столярной плиты формируется с помощью мобильной пилы.
Каретка с пилой движется в продольном направлении (относительно производственного потока), а пила - в поперечном, то есть вдоль реек столярной плиты.
После выполнения реза каретка и пила возвращаются в исходное положение.
Готовые плиты поступают на приемный стол, а оттуда на дальнейшую обработку или склад продукции.
На линии АНРА можно выпускать столярные плиты неограниченной ширины длиной (вдоль реек) 1220, 1830, 2440 мм и толщиной от 10 до 25 мм. Скорость подачи в составляет 1 – 8 м/мин, а производительность примерно 60 т. м3 в год.
11.4. Производство деталей строительных конструкций 11.4.1. Требования к элементам строительных конструкций Строительные конструкции делятся на несущие и ограждающие. Использование древесины в несущих конструкциях дает наибольший эффект, так как в них удается сочетать высокие прочностные свойства древесины, ее малую плотность, декоративность. Клееные деревянные конструкции позволяют получать легкие безопорные сооружения большого пролета (до 120 м). Конструкции деталей показаны на рис. 11.26.
Рис.11.26. Типы клееных балок: 1а - сплошного сечения, 1b – тоже со склеиванием слоев по ширине, 1с – из вертикально расположенных слоев, 1d - в виде пустотелой рамки, 2а - гнутоклееная, 2b – с вставкой на зубчатый шип.
При проектировании криволинейных балок нужно иметь в виду, что минимальный радиус изгиба составляет 6 м. Для экономии древесины в качестве углового соединения можно использовать вставку на прямых или зубчатых шипах (рис.11.26.2b).
В качестве связующего применяют карбамидные клеи для балок, эксплуатируемых в защищенных условиях, и резорциновый клеи – для балок, находящихся в условиях повышенной влажности или под действием атмосферных условий.
Расход клея составляет 250-400 г/м2, что в среднем дает 18,5 – 20 кг/м3 готовой продукции В Германии различают три типа клееных деревянных балок – многослойные, двухслойные и трехслойные (рис.11.27). Многослойные формируются из нескольких горизонтальных слоев, двух- и трехслойные - соответственно из двух или трех слоев, которые располагаются вертикально.
Рис.11.27. Многослойные, двух- и трехслойные балки Двухслойные и трехслойные клееные балки склеиваются из слоев таким образом, чтобы в сооружении клеевой шов располагался вертикально. Доски располагаются внутренней стороной (обращенной к сердцевине) наружу, так как в этом случае образование трещин менее вероятно, а сучки менее крупные, чем с наружной стороны доски. Двухслойные и трехслойные балки применяют в рамных конструкциях, решетчатых сооружениях, стропилах, опорах.
Нашло применение армирование клееных деревянных деталей несущих конструкций путем вклеивания металла или стеклопластика. Арматура берет на себя большую часть усилий, что повышает несущую способность конструкции, позволяет уменьшить расход древесины. Для армирования чаще всего используют стальную арматуру периодического профиля, иногда - стальные полосы, проволоку, металлическую сетку. Вклеивают арматуру эпоксидным клеем в сжатые и растянутые зоны балок.
Нормы проектирования деревянных конструкций изложены в СНиП II-25-80.
По условиям эксплуатации различают категории конструкций:
А - внутри отапливаемых помещений, Б - внутри неотапливаемых помещений, В - на открытом воздухе, Г - в особых условиях, в том числе :
Г1 - соприкасающиеся с грунтом, Г2 - постоянно увлажняемые, Г3 - находящиеся в воде.
В зависимости от условий эксплуатации устанавливаются расчетные сопротивления на различные виды нагрузок.
Несмотря на обилие строительных материалов, большинство из которых значительно прочнее и долговечнее древесины, клееные деревянные конструкции (КДК) нашли свое применение в строительной индустрии и пользуются неизменным спросом. Этому способствуют следующие преимущества КДК перед другими конструкциями (в том числе металлическими и железобетонными):
1) высокая прочность при малом весе;
2) новые архитектурные возможности;
3) возможности получения больших пролетов;
4) возможность строительства на участках с малой механизацией;
5) высокая огнестойкость конструкций (для сплошных сечений характерно самозатухание огня по мере обгорания периферийных зон деталей и сохранение несущей способности конструкций);
6) отсутствие температурных деформаций.
На элементы деревянных строительных конструкций имеются отдельные технические условия (ТУ 13 - 247 - 75).
В зависимости от назначения различают три класса продукции:
1) Элементы, для которых главными являются архитектурные качества. Отделка должна подчеркивать природную структуру древесины, поверхности должны быть загрунтованы под прозрачное покрытие.
2) Элементы общестроительного назначения. Отделка может быть укрывистой.
3) Элементы, для которых внешний вид не имеет значения. Строгание боковых поверхностей не требуется, внешнее покрытие играет только защитную роль.
По температурно-влажностным условиям различают 3 группы элементов:
С - эксплуатируемые внутри отапливаемых помещений (влажность воздуха не более 75%). Соответствует группам А1,А2, Б1 по СНиП II-25-80;
В - эксплуатируемые в открытых атмосферных условиях и неотапливаемых помещениях (А3, Б2, В);
М - эксплуатируемые в воде или в земле, а также подвергающиеся сильному увлажнению.
Для изготовления элементов КДК допускаются пиломатериалы только хвойных пород (сосна, ель, пихта) с прочностью чистой древесины не менее: при изгибе - 65 МПа, при сжатии - 35 МПа, при растяжении - 85 МПа, при скалывании - 6 МПа.
Влажность пиломатериалов перед склеиванием должна быть не более 10% для элементов группы С и 14% для других групп. Разница во влажности отдельных досок не должна превышать 4%. В связи с опасностью больших внутренних напряжений при склеивании толстых досок принято ограничение по этому параметру - для элементов категории С толщина досок должна быть не более 50 мм, для других категорий - не более 40 мм. Для криволинейных деталей толщина досок не должна превышать 1/200 радиуса изгиба.
По качеству пиломатериалы для строительных конструкций разделяются на три категории, из которых первая предназначена для растянутой зоны изгибаемых элементов, вторая - для сжатой зоны и третья - для внутренних слоев.
11.4.2. Технологический процесс производства деталей КДК 11.4.2.1. Подготовка пиломатериалов Механическая обработка начинается с предварительной строжки досок.
Строжка слоев облегчает последующий контроль качества древесины при торцовке и сращивании пиломатериалов. В линии сращивания потери древесины значительно снижаются, так как устраняется разноширинность досок и создаются хорошие базовые поверхности для последующих технологических операций.
Сортировка досок в отличие от другой продукции, где на первое место выдвигаются требования к внешнему виду поверхностей, должна проводится по прочности досок. Сортировка по несущей способности позволяет существенно улучшить использование пиломатериалов, так как более жесткие слои можно расположить в нагруженных зонах изгибаемой балки и при равной прочности клееного элемента использовать меньшие поперечные сечения балок. Экономия материала при этом может составить от 20 до 25%. Установки для машинной сортировки пиломатериалов выпускают многие фирмы В большинстве из них пиломатериал движется поставленным на кромку и изгибается в двух направлениях в горизонтальной плоскости за счет точно регулируемых изгибающих роликов на заданную величину прогиба. Расстояние между опорами - переменное и зависит от толщины доски. Реакции доски на прогиб измеряются электрическими силовыми датчиками через небольшие равные интервалы (примерно 100 мм). По данным замеров компьютер может давать команду на маркировочное устройство для отметки наиболее слабых мест или постановку штампа категории качества данной доски. Оператор может вмешаться в эту процедуру и понизить сорт доски по условиям внешнего ее вида.
Наряду с сортировкой по модулю упругости существуют машины, оценивающие плотность чистой древесины в пиломатериалах. Они не способны реагировать на сучки и другие пороки древесины, но вместе с визуальной оценкой внешнего вида или машинной сортировкой по модулю упругости могут дать наиболее точную оценку несущей способности строительных пиломатериалов.
Затем доски поступают на торцовочные станки или на линию с автоматической торцовкой для вырезки дефектов, отмеченных оператором или машиной. В линиях Димтер торцовочный станок самостоятельно, без маркировки, опиливает все концы досок, которые часто имеют дефекты в виде трещин.
11.4.2.2. Сращивание пиломатериалов Доски различной длины далее сращиваются на зубчатый шип в непрерывную ленту, которая раскраивается на слои нужной длины. При вырезке дефектов типа сучков нужно иметь в виду, что зубчатое соединение не обеспечивает 100%ную прочность доски в месте стыка. Снижение прочности зависит от степени ослабления поперечного сечения в местах кончиков шипов. Степень ослабления равна отношению затупления шипа к шагу соединения. Согласно ДИН для несущих конструкций следует применять соединения со степенью ослабления не более 0,18. Этой величине соответствует снижение прочности и модуля упругости при изгибе примерно на 20 - 25% от прочности чистой древесины.
Поэтому при настройке сортировочной машины следует исходить из того, что отметки нужно делать только для сучков, которые снижают модуль упругости (а следовательно и прочность при изгибе) не менее, чем на 25%.
Зарезку вертикальных шипов и склеивание следует выполнять в течение одного дня с тем, чтобы изменения влажности не вызвали дефектов склеивания.
Нанесение клея должно быть двухсторонним. Сращивание осуществляется при продольном давлении, но в некоторых случаях требуется и поперечное давление для предотвращения отгибания крайних шипов. Полное давление следует прикладывать в течение не менее 2 с. Оно должно составлять для хвойной древесины при длине шипов до 10 мм не менее 12 МПа, при длине 60 мм – 2 МПа. Для лиственной древесины давление увеличивают на 30%. Поперечное давление для хвойной и лиственной древесины может не превышать 2-3 МПа. Для полного отверждения клея слои должны выдерживаться не менее 24 часов при температуре помещения не ниже 18 0С (если не используется дополнительный подогрев во время прессования). При ТВЧ-нагреве мощность генератора должна быть не менее 3 кВт. В противном случае есть опасность повреждения соединений при перемещении слоев и их укладке в штабель. После сращивания слои попадают на поперечный конвейер, длина которого определяется максимальной длиной слоя.
Рис.11.28. Схема линии сращивания слоев деталей строительных конструкций (ГреКон-Димтер) На рис. 11.28 показана схема линии сращивания слоев деталей КДК. По сравнению с линиями для сращивания короткомерных пиломатериалов она имеет другой шипорезный агрегат и пресс для сращивания. Линия работает в следующей последовательности. После вырезки недопустимых пороков на входном конвейере набирается пакет досок, который продвигается к упору шипорезного агрегата, где выравнивается по переднему торцу. Первый шипорезный узел формирует вертикальные шипы на торцах при вертикальной перемещении суппорта станка. После формирования шипов и нанесения клея на передние торцы досок пакет продвигается на выходной рольганг. При обратном его движении происходит выравнивание задних торцов досок и зарезка шипов на них с нанесением клея. Затем на следующем поперечном конвейере идет поштучная разборка пакета и подача досок в непрерывный пресс, где идет сборка и запрессовка соединений. При продвижении непрерывной ленты до упора происходит торцевание слоя на заданную длину.
Следующей операцией технологического процесса является строгание двух пластей сращенных слоев (ламелей). Соответствующий станок может располагаться непосредственно за установкой сращивания, после площадки буферного запаса сращенных слоев или непосредственно перед клеенаносящим станком.
Строжка непосредственно перед нанесением клея дает наиболее ровные и чистые поверхности. В строгальном станке главное внимание следует уделять качественной подготовке поверхностей под склеивание.
11.4.2.3. Нанесение клея на пласти Нанесение клея чаще всего производится методом налива и клеенаноситель находится сразу за строгальным станком. При этом необходимы большие скорости подачи (до 150 м/мин), что обеспечивает нужный расход клея (250 – г/м2) и малое открытое время выдержки. Клеенаносящее устройство (рис.11.28) готовит клей смешиванием двух компонентов, после чего он подается в трубу с отверстиями. Клей наносится на верхнюю пласть доски, которая сразу передается на участок сборки пакетов и прессования.
Рис.11.29. Нанесение клея методом налива 11.4.2.4. Прессы для получения крупногабаритных деталей В зависимости от конструкции различают следующие прессы для склеивания крупногабаритных деталей:
• Горизонтальный гидравлический и/или механический пресс с переставляемыми блоками для криволинейных балок, в том числе с дополнительным боковым давлением (силовой пол) • Вертикальный гидравлико-механический пресс (с боковыми цилиндрами для выравнивания слоев) • Вертикальный гидравлический проходной пресс с ТВЧ-нагревом.
Требуемое давление составляет 0,6 – 1,2 МПа, расстояние между зажимными элементами для прямых балок должно быть не менее 400 мм, для криволинейных балок - не менее 300 мм.
Фирма Гесс-Технологи выпускает большую веерную вайму (ротационный Клеильная установка образует три участка - ротационный пресс, накопитель для непрерывного приёма ламелей и отводящий транспортер. Шестнадцать прижимных цилиндров с усилием прессования до 10 кН смонтированы на накопителе для ламелей. Опорные цулаги при разгрузке действуют как выталкиватели.
Они могут занимать три положения. Их можно опустить на 260 - 300 мм, поставить в среднее положение (выдвинуть на 180 - 240 мм) или установить в крайнее верхнее положение (на 120 - 160 мм). Последний прессующий цилиндр оснащен специальными датчиками. Если подаваемаая заготовка короче, чем рабочая длина прижимных пластин, то прессование выполняется с учетом ее индивидуального размера, данные на который поступают на последний цилиндр с предпоследнего.
Табл.11.25. Характеристика ротационного пресса BHS Длина клееного бруса, м 3 - 16 Число гидроцилиндров на одной Ширина приемного отвер- 680 Диаметр гладкого штока, мм стия, мм Глубина укладки, мм 300 Расстояние между цилиндрами, мм Число рабочих зон прессо- 8 Ширина прижимных пластин, мм вания Число гидроцилиндров на 16 Макс. давление прессования, МПа 1, одной позиции, шт.
Время перехода на новую 30 Усилие на одном гидроцилиндре, Гидравлический вертикальный пресс ф. Minda Industrieanlage (рис.11.31) в стандартном исполнении состоит из двух прессующих камер, которые с помощью рольганга перемещаются к вертикально стоящему пакету слоев. Пресс имеет нижнее давление и используется для одинарного и двойного прессования.
пакеты шириной 160-320 мм, при двойном прессовании ширина пакетов составляет 2 х 80 … 2 х 160 мм.
пресса при полной загрузке и при давлении в гидросистеме 50 бар составляет 50 с, полное давление прессования в 190 бар достигается за 10 с. Выравнивающие элементы гарантируют, что при двойном прессовании каждый пакет будет нагружен равным давлением (выравнивающий ход составляет 17 мм). Через 1600 мм располагаются боковые прижимы, которые выравнивают слои по высоте. С помощью дополнительных приспособлений этот пресс можно использовать для изготовления реечных щитов, ограждающих балок и оконных брусков.
Модифицированный пресс этой же фирмы имеет одну зону прессования и верхнее расположение гидроцилиндров, которые расположены в два ряда (рис.11.32). Это позволяет прессовать одну широкую балку (до 320 мм) или одновременно две балки шириной до 160 мм, в том числе различной длины. Горизонтальное перемещение главных цилиндров позволяет точно выбирать место приложения усилия прессования. Выравнивающие боковые прижимы расположены точно против стойки пресса. Нижний ряд цилиндров этого приспособления зафиксирован, верхний - может настраиваться по высоте. При соответствующей автоматизации пресс обслуживает один рабочий.
Размеры и производительность пресса зависят от размеров продукции и производственной программы предприятия. Поэтому прессы делаются модульной конструкции и для каждого предприятия могут быть изготовлены прессы соответственно особенностям клееной продукции.
Проходные прессы служат главным образом для производства продукции стандартных размеров (рис.11.33). Для ускорения отверждения во время прессования (давление не менее 0,8 МПа) клеевые швы прогреваются в поле ТВЧ с помощью вертикальных электродов, расположенных с обеих сторон склеиваемой балки Необходимое давление создается двумя синхронно работающими цилиндрами. Слои выравниваются вертикальными подающими роликами. Размеры продукции составляют по ширине 80 – 200 мм, по высоте до 1500 мм. При скорости подачи 0,5 – 4,5 м/мин и мощности генератора 65 – 120 кВт (удельная мощность 2 – 5 ватт/мин.см2) производительность составляет 8,5 – 10,5 м3/ч (данные фирмы GreCon, 1995 г.). Для окончательного отверждения клеевых швов требуется 48 – 72 часа в условиях контролируемого климата.
На рис.11.34 показаны прессы с горизонтальным направлением прессования.
Рис.11.34. Прессы для склеивания деревянных балок.
11.3.2.5. Послепрессовая обработка деталей После распрессовки и выдержки для полного отверждения клея балки должны быть простроганы по пласти для удаления подтеков клея и получения ровной поверхности под отделку. Для этой цели созданы специальные рейсмусовые станки с шириной строгания от 400 до 2600 мм. Особенно широкие станки имеют вверху и внизу по два ножевых вала, расположенных под углом и перекрывающих друг друга в середине ширины строгания. Каждый вал имеет свой привод, поэтому при строгании узких балок можно включать только половину привода резания.
При обработке прямых балок впереди и позади станка достаточно иметь обыкновенные рольганги. Для строгания криволинейных балок рейсмусовый станок устанавливают на поворотный круг (рис.11.35), а загрузку выполняют с помощью специальной тележки. Подачу к станку и от станка производится с помощью кранового оборудования. Для особенно длинных балок применяют также транспортные тележки, регулируемые по высоте. Они занимают меньше производственной площади, чем стационарные рольганги.
Послепрессовая обработка не сводится только к строганию балок. Необходимо еще выполнить ряд операций для превращения балки в изделие, готовое для монтажа на строительной площадке. Нужно опилить торцы балок с помощью торцовочного станка и придать балке необходимую форму. Работы могут выполняться в том же потоке, что и строгание балок. Для этих целей имеется много специальных приспособлений для выполнения пропилов, запилов, сверлений и т.п. Иногда возникает необходимость раскроить длинную балку на более короткие (например, 12-метровую балку распилить на четыре 3-метровые). Для этого также существуют большие торцовочные станки. При больших размерах продукции целесообразно использовать ручные пилы, дрели и т.п.
Заключительной операцией является упаковка продукции для защиты от высокой влаги воздуха и атмосферных осадков. Операция выполняется на упаковочных машинах, которые обволакивают балку термоусадочной пленкой (рис.11.36). Это особенно касается балок стандартных размеров от 60 х 120 до 11.4.3.Контроль качества в производстве КДК Детали строительных конструкций являются наиболее ответственными, так как их дефекты могут привести к очень неприятным последствиям типа обрушения конструкций. Поэтому контроль качества здесь регламентирован очень строго и осуществляется на всех трех стадиях - входной контроль древесины и клея, текущий контроль параметров изготовления и выходной контроль готовой продукции.
Контроль качества древесины касается определения ее влажности и напряжений в пиломатериалах после сушки, а также оценки прочности пиломатериалов неразрушающим способом. Для определения равномерности сушки в разные места по вертикали и горизонтали штабеля укладывают контрольные доски, вырезают из них секции контроля конечной влажности через каждые 0,7 м длины доски. По изменению их влажности определяют равномерность сушки досок по объёму штабеля. Для определения перепада влажности по толщине материала из отобранной доски рядом с секцией влажности вырезают секцию послойной влажности толщиной около 2 см вдоль волокон древесины. Концы образца отпиливают, а среднюю часть раскалывают продольно на три равные полоски, влажность которых определяют весовым способом. Разность во влажности боковых (взвешивают вместе) и средней полосок дает перепад влажности по толщине доски.
Для определения остаточных напряжений в высушенном материале рядом с секцией послойной влажности выпиливают два торцевых среза размером вдоль волокон по 10 мм. Образцы выдерживают в комнатных условиях в течение суток, после чего из срезов выпиливают силовые секции. Если в процессе выпиловки форма секции не изменяется, значит, влажность распределена равномерно.
В противном случае зубцы изгибаются в сторону большей влажности. Изгиб зубцов наружу показывает на наличие растягивающих напряжений, а внутрь сжимающих напряжений в поверхностных зонах доски. Относительное отклонение зубцов секций в вершине от нормального положения не должно превышать 2% длины зубцов.
При контроле прочности конструкционных деталей следует руководствоваться нормативными значениями прочности (табл..11.26) 11.26. Нормативные значения прочности конструкционных деталей, МПа, не менее Модуль упругости при изгибе (ГПа) 8,1 7,0 6,1 5,3 4,6 4,0 3, При контроле технологических свойств клея определяют условную вязкость клеев по ВЗ-4 (ГОСТ 9070 - 75) в диапазоне вязкости от 80 до 300 - 400 с, при большей вязкости допускается применение вискозиметра ВЗ-1. Жизнеспособность, то есть время сохранения рабочей вязкости клея, определяют при температуре 200С для 200 г свежеприготовленного клея. Условное время отверждения определяют путем измерения времени от момента опускания пробирки с клеем в кипящую воду до начала гелеобразования. Известен также способ определения времени холодного отверждения, при котором 10 - 20 г клея распределяют равномерно на целлофановой или полиэтиленовой пленке слоем 1-2 мм и выдерживают при температуре склеивания. Временем отверждения считают время выдержки, после которого изгиб пленки на 900 приводит к хрупкому разрушению отливки. Клеящую способность проверяют в испытаниях на скалывание вдоль волокон по клеевому шву (см. п.1.4.10).
В ходе выходного контроля выполняют контроль качества клеевых соединений и всей клееной детали. Прочность склеивания на гладкую фугу проще всего оценивать методом послойного скалывания (рис.1.14), а прочность зубчатых клеевых соединений - в испытаниях на изгиб и растяжение (рис.1.8). В процессе изготовления рекомендуется испытывать крупные образцы, вырезанные из сращенных на зубчатый шип заготовок. Контрольные образцы должны иметь форму прямоугольной призмы с сечением равным сечению слоя и длиной 450 мм при толщине 20 - 30 мм и 750 мм при толщине более 30 мм. Схема испытания - 4 точечная.
Водостойкость соединений определяют по ГОСТ 17005-82. Метод основан на оценке относительной прочности клеевых соединений при скалывании их вдоль волокон по ГОСТ 15613.1 - 84. Испытывают образцы пяти видов: контрольные, мокрые и высушенные после вымачивания, а также мокрые и высушенные после кипячения. Для испытаний должно быть изготовлено по 10 образцов, выдерживаемых в воде и подвергаемых кипячению. Образцы помещают в сосуд с водопроводной водой и нагружают таким образом, чтобы они были покрыты водой на 2-3 см. Выдержка продолжается 48 часов при температуре 20±2 0С. Затем образцы протирают фильтровальной бумагой и испытывают на скалывание. Если средняя прочность клеевых соединений образцов окажется меньше 3,2 МПа, то соединения относят к низкой группе водостойкости и не подвергают кипячению. В противном случае проводят кипячение образцов в течение 3 часов, их охлаждение в течение 30 мин в холодной воде и испытание на скалывание вдоль волокон. Группы водостойкости и соответствующие нормативы даны в табл.11.27.
11.27. Группы водостойкости клеевых соединений древесины Группа водостойкости при температуре воды Помимо этих испытаний, при разработке новых клеев и в ряде других случаев может возникнуть необходимость проверить стойкость клеевых соединений к цикличным температурно-влажностным воздействиям.. Согласно ГОСТ 17580образцы выпиливают из элементов конструкций или изготавливают специально в зависимости от цели испытания. Всего требуется 10 контрольных и образцов для циклических испытаний. Один цикл включает в себя вымачивание образцов в воде с температурой +20 0С в течение 20 ч, замораживание в течение 6 ч при температуре -20 0С, оттаивание в течение 16 ч при температуре воздуха +20 0С, сушку в сушильной камере в течение 6 ч при температуре 55 - 65 0С и влажности воздуха 60-75 %. Всего выполняют 40 циклов. Испытания проводят на скалывание вдоль волокон с определением относительной прочности испытанных образцов. Различают три группы стойкости - малая (относительная прочность до 30 %), средняя (до 60 %) и повышенная стойкость (более 60%). При оценке результатов обращают внимание на характер разрушения клеевых соединений. При скалывании по древесине и низкой прочности соединений рекомендуется провести испытания на более прочной древесине.
Теплостойкость и морозостойкость клеевых соединений определяют по ГОСТ 18446-73. Общее количество испытываемых образцов слагается из трех серий по 8 образцов в каждой. Первая серия состоит из контрольных образцов (влажность 8-12 %), подлежащих испытанию на скалывание по истечении трех суток после склеивания. Вторая и третья серии состоят из образцов, подлежащих испытаниям на теплостойкость или морозостойкость. Образцы одной из них испытывают на скалывание при заданной температуре, а другой - после выдерживания их в течение двух недель в нормальных условиях. Теплостойкость проверяют выдерживанием образцов в термокамере в течение двух недель при температуре 60 ± 3 0С, а морозостойкость - путем выдержки в морозильной камере в течение двух недель при температуре -30 0С сухих образцов или с влажностью более 30 % (выбираются в зависимости от условий эксплуатации продукции). После температурного воздействия половину образцов испытывают при температуре испытания, а половину - после двухнедельной выдержки в нормальных условиях. По относительной прочности соединений оценивают их группу тепло - или морозостойкости (табл.11.28).
11.28. Группы теплостойкости и морозостойкости клеевых соединений древесины ГОСТ 19100-73 регламентирует испытания клеевых соединений на атмосферостойкость. Образцы склеивают специально в количестве не менее 8 штук на каждый вид испытания и выдерживают не менее 14 суток. Испытания проводят в различных климатических зонах - сухой, нормальной и влажной. В журнале испытаний ежемесячно отмечают температуру воздуха (среднюю, минимальную и максимальную), количество часов с температурой воздуха в интервалах от +30 до - 30 0С с шагом 150С, количество осадков в мм, количество солнечных часов, количество дней с осадками (дождь, снег), количество часов с относительной влажностью воздуха от 100 до 90 %, от 90 до 70 % и ниже 70 %, а также максимальную скорость и преобладающее направление ветра. Образцы помещают на испытательных площадках лицевой стороной на юг с углом наклона к горизонту равным географической ширине места испытания на высоте 0,5 - 0, м. Стенд должен систематически очищаться от снега, расстояние между образцами - не менее 10 мм. Образцы снимают для испытаний после каждого времени года при экспозиции образцов на срок до 3 лет, два раза в год - при сроке испытаний до 5 лет и один раз в год - при сроке испытания свыше 5 лет. В течение первого года экспозиции съём образцов должен производиться через 1, 3, 6, 9 и 12 месяцев после начала испытания. Контрольные образцы испытывают одновременно с началом испытаний и хранят их в отапливаемом помещении. Образцы со стенда испытывают после их кондиционирования в лабораторных условиях в течение не менее двух недель. В качестве критерия атмосферостойкости принимают следующие показатели: изменение механической прочности образцов, изменение внешнего вида образцов (растрескивание, коробление, изменение цвета), изменение линейных размеров образцов в момент съёма со стенда.
Определение группы стойкости - аналогично испытаниям по ГОСТ 17580-82.
Наряду с испытаниями клеевых соединений имеется необходимость испытания клееных конструкций или их элементов с тем, чтобы выявить существенные дефекты и принять меры к их устранению. Здесь нет строго нормированных методов испытаний. В каждом конкретном случае выбирают такую схему, которая позволяет приблизиться к напряженно - деформированному состоянию в момент эксплуатации конструкции. Данные рекомендации могут содержаться в технических условиях или рабочих чертежах деталей и конструкций. В соответствии с ГОСТ 20850-84 нагрузку прикладывают ступенями по 10% контрольной нагрузки с длительностью нагружения 1 - 3 мин и временем выдержки на каждой ступени 5-10 мин. Максимальную (контрольную) нагрузку определяют из условия, что в наиболее напряженном сечении возникают напряжения равные удвоенному расчетному сопротивлению. Такие испытания особенно оправданы в период организации выпуска клееной продукции.
ЦНИИМОДом разработан также метод испытания клеевых соединений на расслаивание (ГОСТ 27812 - 88). Метод основан на определении суммарной длины расслоившихся участков клеевых швов на торцовых поверхностях образца после искусственного создания в образце напряжений разбухания и усушки.
Образец выпиливают в виде прямоугольной пластины длиной вдоль волокон ± 3 мм на расстоянии не менее 50 мм от торца и высотой не менее 150 мм. Из каждого элемента должно быть изготовлено не менее двух образцов, по одному с каждого торца, возможно деление образца по высоте сечения на части, в которых должно быть не менее трех клеевых швов.
При отработке технологии или проверке новых клеев применяют специальное склеивание заготовки из 4 слоев, которую затем распиливают на 5 образцов (не менее чем через 3 суток после склеивания). Образцы помещают в автоклав с водой температурой 10 - 25 0С, где выдерживают в течение 1 ч под вакуумом 0, ± 0,01 МПа, а затем под давлением 0,5 ± 0,03 МПа в течение 3 часов, после чего помещают в сушильную установку. Образцы высушивают при температуре 60 ± 5 0С и скорости движения воздуха 2,5 ± 0,5 м/с до начальной массы (разница не более 5 %). После окончания сушки с помощью щупов толщиной от 0,08 до 0, мм определяют наличие расслоений в клеевых швах на обоих торцах и фиксируют шов с максимальным расслоением. Не учитывают расслоения длиной менее 2,5 мм и участки в зоне сучков, а также разрушения по древесине вблизи клеевых швов.
Показатель общего расслоения определяют по формуле где lo - суммарная длина расслоившихся участков клеевых швов на обеих торцовых поверхностях образца, мм; В - ширина образца, мм; n - количество клеевых швов в образце.
Показатель максимального расслоения отдельного клеевого шва Р определяют где l - суммарная длина расслоившихся участков клеевого шва на обеих торцовых поверхностях образца, мм.
За результат испытаний принимают наибольший показатель общего расслоения клеевых швов из числа всех испытанных образцов и показатель максимального расслоения отдельного клеевого шва.
11.2.4. Технологические расчеты в производстве клееной продукции 11.2.4.1. Определение программы цеха.
Программа производства обычно определяется по производительности головного оборудования, под которым в цехах клееной продукции понимается клеильный пресс, как наиболее сложное и дорогостоящее оборудование, под которое подстраивается вся технологическая цепочка в цехе. Производительность позиционного пресса зависит главным образом от цикла его работы:
где l, b, h - чистовые размеры продукции, м (хотя из пресса выходят необрезные щиты, расчет выполняют с учетом чистовых размеров щитов, так как программа цеха выражается в размерах товарной продукции); n - число щитов в одной запрессовке, шт.; Кр - коэффициент рабочего времени, Кр = 0,94 - 0,95; t - время цикла одной запрессовки, мин tскл - время склеивания, мин; зависит главным образом от вида клея и температуры плит пресса. Ориентировочно можно принять следующие цифры:
Холодное склеивание карбамидными клеями – 4 часа Горячее склеивание карбамидными клеями – 5-10 мин Холодное склеивание ПВА- клеями - 15 - 30 мин Теплое склеивание ПВА-клеями - 5 мин Склеивание в поле ТВЧ – 1 мин.
tвсп - время вспомогательных операций, мин (включает в себя время загрузки реек и выгрузки щитов, время подъема и снятия давления). Зависит от уровня механизации работ. В среднем составляет 1- 2 мин.
Для прессов проходного типа формула расчета часовой производительности имеет вид, м3:
где V - скорость подачи, м/мин; Км - коэффициент машинного времени (учитывает потери рабочего времени на настройку станка, межторцовые разрывы и пр.) Годовая программа зависит от сменности работы оборудования:
Эффективный фонд работы оборудования принимают равным при односменной работе - 2000 часов, при двухсменной - 4000 и трехсменной - 6000 часов.
11.2.4.2. Расчет потребности в пиломатериалах.
Наиболее простым и наглядным методом расчета потребности в пиломатериалах является метод определения коэффициентов пооперационных потерь. Он заключается в том, что потери древесины рассчитываются для каждой операции механической обработки по известным припускам на обработку.
Первичная торцовка на заданную длину. Отходы на этой операции зависят от характеристик используемых пиломатериалов (сорт, длина, размеры сечения), а также от кратности заготовок по длине и схемы раскроя. Поперечно - продольно поперечная схема раскроя является оптимальной для продукции, склеиваемой из реек. При этой схеме первичная торцовка ведется без вырезки дефектов, а задается только необходимая длина (или несколько длин). Припуски по длине для делянок дощатого щита указаны в табл.11.16.
11.16. Припуски по длине делянок дощатого щита Длина щита, м м Ширина щита, мм Припуск по длине, мм Коэффициент выхода черновых заготовок из досок где l - заданная длина щита, мм; l - припуск по длине (табл. 11.15), мм; n - целое число заготовок из доски, Кд - коэффициент использования длины доски, учитывающий потери на оторцовку и пропилы, Кд = 0,98.
Предположим, предприятие выпускает щиты двух типоразмеров - 800 х 250 и 2000 х 600 мм. Следовательно, длина заготовок должна составить соответственно 820 и 2030 мм. При длине доски 6 м и заданных длинах 0,82 и 2,03 м можно выкроить:
Следовательно, при раскрое на короткие заготовки полезный выход составит х 0,82 / 6 = 0,956, то есть потери составят 4,4% При раскрое на длинные заготовки возможно выпиливание только двух досок с остатком 1,82 м, который распиливается на две короткие заготовки. Суммарный полезный выход составит:
Продольный раскрой заготовок и строгание реек. Выбор схемы получения делянок зависит от толщины доски (рис 11.25).
Рис.11.25. Схемы получения чистовых заготовок (делянок) из черновых заготовок для толстых (а) и тонких (б) досок: 1 - пропилы; 2 - припуски на фрезерование.
Размеры делянок при известных размерах поперечного сечения доски можно рассчитать по формулам:
при раскрое по схеме (а) при раскрое по схеме (б) где B, H - ширина и толщина доски, мм; b, h - ширина и толщина делянки, мм; nчисло делянок, получаемых из доски (кратность); - ширина пропила, мм; b, h припуски на двухстороннее фрезерование соответственно по ширине и толщине заготовки, мм (см. табл. 11.16, 11.17).
При раздельных операциях продольного раскроя и фрезерования коэффициент выхода нестроганых реек из черновых заготовок Р2 составит а коэффициент выхода фрезерованных реек из нефрезерованных :
11.17. Припуски на фрезерование по ширине с двух сторон деталей без предварительного фугования (ГОСТ 7307-75), мм Припуски при частичном непрофрезеровании одной из сторон 11.18. Припуски на фрезерование по толщине с двух сторон деталей без предварительного фугования (ГОСТ 7307-75), мм Припуски при частичном непрофрезеровании одной из сторон При работе с толстыми досками (Н>40 мм) операции фрезерования и продольного раскроя совмещаются в одном станке, поэтому можно записать Например, для сосновых досок 50х125 мм при толщине пропила 3 мм и n= 5 получаем:
b= 50 - 5,5 = 44,5 мм; h = [(125 - 5,5 - (5 - 1).3] / 5 = 21,5 мм.
Р2. Р3 = (5 х 44,5х 21,5) / (125 х 50) = 0,765.
В данном случае имеем потери 100(1-0,765) = 23,5%, которые складываются из потерь в опилки и стружку.
Таблицы 11.17 и 11.18 не отражают всего многообразия условий производства.
В частности, они не учитывают длину заготовки и характер ее предыдущей обработки. Поэтому фактические минимально допустимые припуски целесообразно находить опытным путем, а расчеты вести с точностью 0,1 мм.
Отбраковка и торцовка реек. Потери древесины на этом участке не могут быть подсчитаны аналитически, так как зависят от качества (сорта) пиломатериалов, в данном случае - от наличия пороков в рейках.
В практике технологических расчетов приняты следующие ориентировочные значения выхода заготовок из пиломатериалов (табл.11.19).
11.19. Полезный выход заготовок из пиломатериалов Пиломатериалы необрезные хвойных пород I Пиломатериалы необрезные из березы I - III Пиломатериалы обрезные хвойных пород I - IV Для хвойных обрезных досок можно считать, что полезный выход составляет 67% (Р4 = 0,67), а отпад примерно в 1/3 представляет собой кусковые отходы, частично пригодные для переработки на попутную продукцию.
Склеивание щитов. На данном участке не происходит механической обработки древесины, однако возможны потери из-за брака в работе, необходимости настройки и пробного склеивания щитов, по организационным причинам. По опыту предприятий можно принять потери в 1% (Р5 = 0,99).
Послепрессовая обработка щитов. Щит, вышедший из пресса, требует обработки по длине с помощью опиливания, по ширине путем фрезерования или опиливания и по толщине путем двухстороннего шлифования. Соответствующие припуски указаны в табл. 11.20.
Припуск по ширине может быть сведен к минимуму за счет приклеивания последней рейки малой ширины, дополняющей щит до размера, близкого к заданному.
Коэффициент выхода нешлифованных обрезных щитов из необрезных где l -длина реек,мм; bш - ширина щита после пресса, мм; n - число реек шириной b в щите; l и b - припуски на обработку щитов по длине и ширине (табл.11.20).
Коэффициент выхода шлифованных щитов из нешлифованных где h - толшина реек, мм; h - припуск по толщине (табл.11.19), мм.
11.20. Припуски на послепрессовую обработку щитов (ГОСТ 7307-75), мм Толщи- Длина Шири- толщине при ширине ширине при условии длине Перемножая все коэффициенты потерь, получим полезный выход щитов из пиломатериалов Обратная величина называется расходным коэффициентом, показывающим расход пиломатериалов на м3 готовой продукции:
Для обрезных хвойных пиломатериалов эта величина колеблется в пределах 2,5 м3/м3, а для необрезных досок малой толщины может доходить до 4 - 4,5 м3/м3..
При известном расходном коэффициенте легко находится потребность в сухих пиломатериалах на программу М выпуска продукции:
Всю цепочку технологических расчетов можно вести и в обратном направлении, исходя из требуемых размеров щитов и выбирая оптимальные размеры заготовок и пиломатериалов.
11.2.4.3. Расчет объёмов вторичного сырья.
При известном объёме перерабатываемых пиломатериалов можно определить конкретный объём вторичного сырья, образующегося на каждой технологической операции. Это удобно представить в виде табл.11.21. Здесь Qi - объём отходов в пл.
м3. Наиболее эффективными путями повышения полезного выхода продукции являются использование автоматических линий торцевания, уменьшение толщины пропила (например, с помощью ленточных пил для продольного раскроя заготовок), тщательное соблюдение режимов сушки пиломатериалов.
11.21. Пооперационные потери древесины в производстве реечных щитов..
Торцовка и отбраковка реек Кусковые Q4 = Qпм P1 Р2 P3(1-P4) Прессование Кусковые (отбраковка) Q5 = Qпм P1 Р2 P3 P4(1-P5) Форматная обрезка Кусковые и опилки Q6 = Qпм P1 Р2 P3 P4 P5(1-P6) 11.2.4.4. Расчет потребности в оборудовании Потребность в оборудовании рассчитывается аналогично методике, изложенной в п. 8.7. Число станков можно определить по формуле где Пчас - часовая производительность станка, определяемая из характеристики оборудования или расчетным путем, м3; Qчас - часовой объём работ, приходящийся на данный станок, м3.
М - программа предприятия; обычно принимается равной годовой производительности головного оборудования, м3; Тэф - эффективный фонд времени оборудования, зависящий от сменности работы предприятия. Для столярно - мебельных предприятий принимают 2000 часов при односменной работе и 4000 часов - при двухсменной.
Производительность торцовочного станка на участке раскроя досок на заготовки, м3/ч где Кр - коэффициент рабочего времени, Кр =0,94; l, b, h - размеры заготовки, м; n число резов на одну заготовку, n =1,2 - 1,5; Тц - время цикла,с.
где Nр - число резов в минуту, Nр = 8 - 12.
Объём работ для данного станка следует принимать равным часовой потребности в заготовках (а не в пиломатериалах!). Малые торцовки для реек рассчитываются аналогично, а за объём работ принимается часовая потребность в чистовых рейках, идущих на склеивание.
Производительность проходных станков (прирезных, продольно - фрезерных, шлифовальных) зависит от скорости подачи V (м/мин):
а для концеравнителя: Пчас = 60 Кр Км V hln, где Кр и Км - коэффициенты рабочего и машинного времени (табл.11.22), b, l и h размеры материала, м, выходящего из станка; n - число одновременно обрабатываемых заготовок (например, реек получаемых из одной заготовки, шт.) 11.22.Коэффициенты использования рабочего (Кр), машинного (Км) времени и скорости подачи (V) основного оборудования 4- сторонний продольно-фрезерный 0,8 - 0.9 0,9 10- Круглопильный с ручной подачей 0,85 - 0,9 0,6 - 0,7 4- Скорость подачи для конкретного станка выбирается с учетом характеристик оборудования и требуемого качества обработки. Не следует стремиться использовать максимальные скорости подачи, так как это отрицательно скажется на качестве обработки поверхностей. Обычно проходные станки имеют более высокую производительность, чем позиционные, и форсировать их работу не требуется.
1. Применимость клеев к различным материалам 1. Термореактивные тата, полиамида На основе производных акриловой и *+++- +*+*+метакриловой кислот Латексные клеи на основе:
4. Белковые клеи 1. Термореактивные 2. Термопластичные полиамида метакриловой кислот 3. Каучуковые Латексные клеи на основе:
Резиновые клеи на основе:
4. Белковые клеи Примечание: Знак "+" - рациональное применение клея, знак "*" - склеивание возможно, знак "-" - склеивание невозможно.
2. Структура себестоимости фанерной продукции, % ное страхование ния расходы 2. (продолжение) 3. Расход пара на участке гидротермообработки фанерного сырья, кг/м 4. Полная трудоемкость 1м3 обезличенной фанеры Виды трудоемкости и операции Чел.-ч % Технологическая трудоемкость 16,61 45, В том числе:
7. сборка пакетов и склеивание 4,78 12, шлифование фанеры маркировка и упаковка транспортировка фанеры прочие операции Общепроизводственное обслуживание 12,57 34, Производственная трудоемкость 33,01 89, 5. Расход электроэнергии на лущение шпона 6. Расход пара на сушку шпона, кг/м сушилок Береза ядро заболонь лиственные 7. Расход электроэнергии на сушку шпона, кВт ч/м сухого шпона Оборудование Расход Оборудование Расход 9. Расход электроэнергии на 1м фанеры Марка продукции Расход, кВт. ч/м3 Марка продукции Расход, кВт. ч/м 10. Расход режущего и заточного инструмента 11. Расход условного топлива на выпуск фанерной продукции Указатель стандартов, использованных в пособии ГОСТ 99 – 96 Шпон лущеный ГОСТ 102 – 75 Фанера авиационная ГОСТ 1770 – 74 Посуда мерная лабораторная стеклянная ГОСТ 2695 – 83 Пиломатериалы лиственных пород ГОСТ 2977-82 Шпон строганый ГОСТ 3252 – 80 Клей мездровый ГОСТ 3916.1-96 Фанера общего назначения из древесины лиственных пород ГОСТ 3916.2 –96 Фанера общего назначения из древесины хвойных пород ГОСТ 4204 – 77 Кислота серная ГОСТ 5244 – 79 Стружка древесная ГОСТ 7016 – 82 Изделия из древесины и древесных материалов. Параметры шероховатости поверхности ГОСТ 7307 – 75 Детали из древесины и древесных материалов. Припуски на механическую обработку ГОСТ 8242 – 88 Детали профильные из древесины и древесных материалов для ГОСТ 8486 – 86 Пиломатериалы хвойных пород ГОСТ 8673 – 93 Плиты фанерные ГОСТ 9070 – 75 Вискозиметры для определения условной вязкости лакокрасочных материалов ГОСТ 9462-88 Лесоматериалы круглые хвойных пород ГОСТ 9463-88 Лесоматериалы круглые лиственных пород ГОСТ 9620-94 Древесина слоистая клееная. Отбор образцов и общие требования при испытании ГОСТ 9621-72 Древесина слоистая клееная. Методы определения физических ГОСТ 9622 – 87 Древесина слоистая клееная. Методы определения предела прочности и модуля упругости при растяжении ГОСТ 9623 – 87 Древесина слоистая клееная. Методы определения предела прочности и модуля упругости при сжатии ГОСТ 9624 – 93 Древесина слоистая клееная. Метод определения предела прочности при скалывании ГОСТ 9625 – 87 Древесина слоистая клееная. Метод определения предела прочности и модуля упругости при статическом изгибе.
ГОСТ 9626 – 90 Древесина слоистая клееная. Метод определения ударной вязкости при изгибе ГОСТ 9627.2 – 75 Древесина слоистая клееная. Метод определения теплостойкости.
ГОСТ 9627.3 – 75 Древесина слоистая клееная. Метод определения маслостойкости.
ГОСТ 10587 – 93 Смолы эпоксидно – диановые неотвержденные ГОСТ 11368-79 Массы древесные прессовочные ГОСТ 11539 – 83 Фанера бакелизированная ГОСТ 13913 – 78 Пластики древесные слоистые ГОСТ 13715 – 78 Плиты столярные ГОСТ 14231 – 88 Смолы карбамидо – формальдегидные ГОСТ 14614 – 79 Фанера декоративная ГОСТ 15613.1 – 84 Древесина клееная массивная. Методы определения предела прочности клеевого соединения при скалывании вдоль волокон ГОСТ 15613.4 – 78 Древесина клееная массивная. Метод испытания клеевого соединения на двухстороннее раскалывание ГОСТ 15815 – 83 Щепа технологическая ГОСТ 16361 – 87 Мука древесная ГОСТ 17005 – 82 Древесина клееная массивная. Метод определения водостойкости ГОСТ 17580 – 82 Конструкции деревянные клееные. Метод определения стойкости клеевых соединений к цикличным температурно – влажностным ГОСТ 18446 – 73 Древесина клееная. Метод определения теплостойкости и морозостойкости клеевых соединений ГОСТ 18992 – 80 Дисперсия поливинилацетатная, гомополимерная, грубодисперсная ГОСТ 19100 – 73 Древесина клееная. Метод испытания клеевых соединений на атмосферостойкость ГОСТ 19414 - 90 Древесина клееная массивная. Общие требования к зубчатым ГОСТ 19921 – 74 Заготовки гнутоклееные. Метод определения предела прочности ГОСТ 20800 – 75 Шпон лущеный. Методы испытаний ГОСТ 20850 – 84 Конструкции деревянные клеевые ГОСТ 20907- 75 Смолы фенол – формальдегидные жидкие ГОСТ 20996 – 75 Пластик древесный слоистый марки ДСП-Б-а ГОСТ 21178 – 80 Заготовки гнутоклееные ГОСТ 25584 – 90 Конструкции деревянные клееные. Метод определения прочности клеевых соединений при послойном скалывании ГОСТ 27812 – 88 Древесина клееная массивная. Метод испытания клеевых соединений на расслаивание ГОСТ 27678 – 88 Метод определения содержания формальдегида ГОСТ 28015 – 89 Щиты покрытий пола деревянные однослойные ГОСТ 2977 – 82 Шпон строганый ГОСТ 30427 – 96 Фанера общего назначения. Общие правила классификации по Использованная литература Бердинских И.П. Склеивание древесины. «Техника», Киев. 1959.
Бюриков В.Г Синтетические смолы и клеи (текст лекций). М.; МГУЛ, 1995.
Васечкин Ю.В. и др. Справочное пособие по производству фанеры.. М.; Экология, Веселов А.А. Использование древесных отходов фанерного и спичечного производства. М. Лесн. пром-сть, 1987. 160 с.
Волынский В.Н. Каталог деревообрабатывающего оборудования отечественного Доронин Ю.Г. и др. Синтетические смолы в деревообработке. М.; Лесн. пром-сть, Зыков В.И., Симонов Основы технологии и оборудование в производстве лущеного А.С. шпона и сырой спичечной соломки. М.; Экология, 1991.160 с.
Кардашов Д.А. Конструкционные клеи. М.; Химия, 1980. 288 с Ковальчук Л.М. Производство деревянных клееных конструкций. М.; Лесн.
10. Кондратьев В.П., Водостойкие клеи в деревообработке, М.; Лесн.пром-сть, 1988.
11. Куликов В.А. Производство фанеры. М.; Лесн. пром-сть, 1976. 368 с.
12. Куликов В.А., Чубов Технология клееных материалов и плит. Учебник для вузов. М.;
13. Любченко В.И. Шпонострогательные станки и оборудование для обработки 14. Михеев И.И. и др Производство лущеного и строганого шпона. Учебное пособие Мотовилин Г.В. Склеивание. Параллельный словарь – справочник (англ. – нем. – 16. Мурзин В.С. Клеи и процессы склеивания древесины. Воронеж, ЛТИ, 1993.
17. Орлов А.Т. и др. Механизация трудоемких операций в производстве фанеры”, М.;
18. Пластинин С.Н Производство клееной пилопродукции на лесопильных предприятиях. М.; Лесн. пром-сть., 1983. 46 с.
19. Симонов А.С., Воро- Производство и сортировка лущеного и строганого шпона. М.;
20. Стерлин Д.М Сушка в производстве фанеры и стружечных плит. 2-е изд., М.;
21. Фрейдин А.С. Полимерные водные клеи. М.; Химия, 1985. 144 с.
22. Чубинский А.Н Формирование клеевых соединений древесины. СПб. 1992. 163с.
23. Юрьев Ю.И., Морга- Организация инструментального хозяйства на деревообрабатычев А.М. вающих предприятиях. Л., ЛЛТА, 1980. 80с.
24. Справочник мебельщика.Т.1../Под ред. П Бухтиярова, М.; Лесн. пром-сть, 1985, 360 с.
25. Справочник фанерщика. /Под ред. И.А.Шейдина, 3-е изд. М., Лесн. пром., 1968, 830 с.
26. Справочник по производству фанеры /Под ред. Н.В.Качалина. М., Лесн. пром-сть, 1984.
27. Справочник по лесопилению /Под ред. А.М. Копейкина.. М., Экология, 1991. 496 с.
28. Склеивание пиломатериалов на лесопильно-деревообрабатывающих предприятиях. Сб.
науч. Тр. /ЦНИИМОД. Архангельск, 1980. 154 с.
29. Материалы фирмы «Raute Wood» (Финляндия), 1990 – 2001 гг.
ОГЛАВЛЕНИЕ
Классификация клеев для древесины Основные компоненты и способы регулирования свойств синтетических клеев Основные типы клеев, применяемых в деревообработке Основные показатели синтетических смол и клеев Вязкость синтетических смол и клеев Водородный показатель синтетических смол и клеев Стабильность (срок хранения) смолы Температура пленкообразования Процессы, протекающие при склеивании Увлажнение древесины клеем, повышение вязкости и концентрации Переход клея в твердое состояние (появление когезии) Появление адгезии клеевого шва Усадка клеевого шва и появление внутренних напряжений Влажностные напряжения в клеевом соединении древесины Составляющие режима склеивания древесины Состояние склеиваемой древесины 1.6. Время открытой выдержки (открытая выдержка) Время закрытой выдержки (закрытая выдержка) Температура и время прессования. Способы нагрева клеевых швов Послепрессовая выдержка клееной продукции Соотношение различных периодов процесса склеивания Методы испытаний клеевых соединений древесины Термореактивные смолы и клеи на их основе Карбамидоформальдегидные смолы и клеи на их основе Фенолоформальдегидные смолы и клеи на их основе Резорциновые и фенолорезорциновые смолы Другие термореактивные клеи Полимеризационные клеи Изоцианаты и полиуретановые клеи Прочие клеи, используемые в деревообработке и смежных областях Фанера березовая авиационная Оборудование для гидротермической обработки Устройство и работа лущильного станка Структура лущильного цеха фанерного предприятия Глава 5 Сушильно-сортировочный цех фанерного предприятия Особенности технологии сушки шпона Нормализация размеров и качества шпона Приготовление и нанесение клея на шпон Холодная подпрессовка пакетов Прессы для получения клееных материалов Технология склеивания фанеры Послепрессовая обработка фанеры Производство специальных видов фанерной продукции Производство облицованной и декоративной фанеры Производство бакелизированной фанеры Производство древеснослоистых пластиков Производство гнутоклееных заготовок Общие требования к испытаниям клееной слоистой древесины Определение физических свойств клееной слоистой древесины Определение предела прочности при скалывании 7.5 Определение предела прочности и модуля упругости при растяже- 7.6 Определение предела прочности и модуля упругости при сжатии Глава 8 Технологические расчеты в производстве шпона и фанеры 8.7 Расчет потребности в оборудовании для производства шпона и фа- 9.2 Технологический процесс получения строганого шпона Строгание брусьев и ванчесов 9.3 Технологические расчеты в производстве строганого шпона Расчет по нормативным данным Аналитический способ расчета Выбор и расчет потребности в оборудовании Глава 10 Использование вторичного сырья фанерного производства Переработка отходов в товарный шпон Переработка отходов в технологическую щепу Переработка отходов в технологическую и упаковочную стружку Переработка отходов в пилопродукцию и товары народного потребления Переработка отходов в форматный шпон и заполнитель комбинированных материалов Переработка отходов в дробленку и технологическую щепу Переработка кусковых отходов в технологическую и упаковочную стружку и частицы для пресс-масс Переработка кусковых отходов в товары хозяйственного и культурно-бытового назначения Переработка отходов для производства древесных плит Использование отходов для гидролиза, пресс-масс и пресс-изделий Использование отходов как топлива Характеристика зубчатых соединений Технологический процесс сращивания Линии сращивания пиломатериалов Послепрессовая обработка и контроль качества склеивания Характеристика реечных щитов Характеристика трехслойных брусков Технологический процесс производства клееных щитов и брусков Оборудование для склеивания щитов и брусков Блочный способ получения реечных щитов Особенности получения трехслойных щитов Послепрессовая обработка щитов Технологические расчеты в производстве клееной продукции Расчет потребности в пиломатериалах Расчет потребности в оборудовании Характеристика материала Технологический процесс производства 11.4 Производство клееных деталей строительных конструкций Требования к элементам строительных конструкций Технологический процесс производства КДК Прессы для получения крупногабаритных изделий Послепрессовая обработка деталей Контроль качества в производстве КДКТЕХНОЛОГИЯ КЛЕЕНЫХ МАТЕРИАЛОВ
Сдано в произв.Подписано в печать Формат Усл. печ. л.
Уч.-изд. л.
Заказ № Тираж Издательство АГТУ. 163007 Архангельск, наб.Сев.Двины, Отпечатано в ИПП "Правда Севера". Архангельск, Новгородский пр.,