«ТЕХНОЛОГИЯ КЛЕЕНЫХ УЧЕБНОЕ ПОСОБИЕ ДЛЯ ВУЗОВ МАТЕРИАЛОВ 2003 В.Н. Волынский ТЕХНОЛОГИЯ КЛЕЕНЫХ МАТЕРИАЛОВ (Учебное пособие) Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для ...»
6.17. Технологические режимы склеивания фанерных плит.
Толщина Время склеивания, мин, для смол Время охплиты, мм карбамидных СФЖ-3014 СФЖ-3011 лаждения, мин карбамидных смол - 110 - 115 0С, для фенольных - 120 - 125 0С.
6.8.5. Производство гнутоклееных заготовок Гнутоклееные заготовки для деталей мебели выпускают более 45 видов и типоразмеров. Это, в частности, сиденья и спинки стульев и кресел, ножки, проножки, боковины и царги стульев, кресел и табуретов, опоры корпусной мебели, ножки столов, подлокотники кресел, ящики, спинкодержатели и т.п. В соответствии с деталью заготовка может быть самой различной формы, задаваемой конструкцией пресс - формы.
Заготовки могут быть однократные и многократные ( в виде блока заготовок).
При конструировании деталей нужно иметь в виду следующие ограничения:
а) заготовки толщиной до 12 мм склеивают преимущественно с перекрестной, а свыше 12 мм - с параллельной ориентацией волокон в смежных слоях;
б) толщину шпона назначают с учетом наименьшего радиуса изгиба и других факторов (табл.6.18);
в) динамика изменения углов изгиба заготовок проходит три стадии: 1-я после снятия давления (размыкания пресс - форм) происходит резкое увеличение углов под воздействием сил упругого восстановления согнутого шпона, 2-я - во время производственной выдержки деталей (относительная влажность воздуха 60 - 70%, температура 20 - 240С) в результате усушки шпона и усадки клея в течение 1 - 2 суток восстанавливаются исходные, задаваемые пресс - формами углы изгиба; 3-я - при дальнейшей выдержке деталей происходит постепенное уменьшение исходных углов на 1 - 20 для однократных заготовок и до 2,50 для заготовок, полученных склеиванием и распиловкой блоков; полностью форма стабилизируется через 20 - 40 суток после склеивания.
6.18. Минимальные радиусы кривизны заготовок, мм Толщи- Число Толщина Направление волокон древесины на, мм в пакете, ки, мм параллельное перпендикулярное Склеивают заготовки в основном карбамидными клеями. Для облицовывания применяют строганый или синтетический шпон, причем облицовывание производится одновременно со склеиванием. Технологический процесс предусматривает подготовку шпона шириной не менее 100 мм и длиной, соответствующей длине заготовки. Влажность шпона - 6-10%. Операции подготовки включают в себя сортирование, прирубку, починку, ребросклеивание, прирубку на заданные форматы. Затем происходит нанесение клея, сборка пакетов и склеивание заготовок в прессах, оснащенных соответствующими пресс - формами. Параметры склеивания – см. табл. 6.19.
6.19. Основные параметры процесса склеивания гнутоклееных заготовок:
То же в пресс-формах с эластичной передачей давления, МПа 0,4 - 0, Температура рабочей поверхности пресс-форм, 0С 135 - Время выдержки под давлением, мин / мм:
При высокочастотном нагреве время вычисляют по формуле где t - общая продолжительность; tн - время нагрева клеевых слоев до 100 - С (определяется в зависимости от удельной колебательной мощности пресса Руд, которая равна колебательной мощности генератора, деленной на объем склеиваемой заготовки, и выражается в Вт/см3); tо - продолжительность отверждения клея (зависит от марки связующего и может быть заимствовано из характеристики смол); tв - продолжительность выдержки под давлением без нагрева (1 - 2 мин).
Зависимость tн от Р уд приведена ниже:
Пресс - формы для получения гнутоклееных заготовок можно классифицировать:
- по материалу, из которого они сделаны (из стали, чугуна, сплавов алюминия, фанерных плит или древеснослоистых пластиков);
- по конструкции прессующих элементов (с цельными или разъемными пуансоном и матрицей, с эластичными элементами);
- по способу обогрева (с ТЭНами, с гибкими лентами для электроконтактного нагрева, с нагревом ТВЧ);
- по количеству рабочих промежутков ( от одного до четырех).
Прессование выполняется в специальных одноэтажных прессах (табл.6.19), организация рабочих мест показана на рис.6. Послепрессовая обработка гнутоклееных заготовок состоит в их обрезке или обработке по периметру, раскрое многократных заготовок на детали. Для этих целей используют круглопильные или ленточнопильные станки, а также фрезерные с шаблоном. Существуют и специализированные круглопильные станки для распиловки блоков.
Расход сухого шпона на 1м3 деталей составляет от 1,9 до 3 м3/м3, клея - примерно 110 - 120 кг/м3. Изготовление же криволинейных деталей из массивной древесины требует до 5 м3/м3 и сложного специального оборудования и оснастки.
Рис. 6.21. Схема участка изготовления гнутоклеенных заготовок: 1 - стопа шпона, 2 – клеенаносящий станок, 3 – сборочный конвейер, 4 - конвейер подачи пакетов к прессам, – прессы, 6 – конвейер заготовок.
6.20. Технические характеристики прессов для получения гнутоклееных деталей промежутка, мм 6.8.6. Производство шпоновых досок (балок LVL) Производство шпоновых досок отличается от производства фанеры в основном операциями сборки пакетов, прессования и конечной обработки продукции.
Толщина шпона составляет обычно 3,2 мм. Используют обычные лущильные станки фирмы Raute в линии с роторными ножницами с автоматической вырубкой дефектов из ленты шпона. Шпон сушится в роликовых сушилках до влажности не более 5% и сортируется по качеству на лицевой и средний слои. На участке сортировки можно использовать наряду с визуальным осмотром аппаратуру для определения внутренних напряжений в шпоне.
Листы шпона всех слоев пакета соединяются на «ус». Формирование скоса длиной 8-10 толщин шпона производится на специальной усовочной пиле. Затем выполняется сращивание шпона в непрерывную ленту, которая прирубается на листы постоянной длины, соответствующей длине продукции. Возможно автоматическое управление усовочной пилой для максимального использования длины каждого листа шпона.
Склеивание выполняют фенольным клеем, в том числе со специальными добавками для ускорения процесса горячего прессования и улучшения качества подпрессовки. Клей наносится методом распыления или экструзионным способом с расходом 220 – 250 г/м2. На верхний лицевой слой, хранящийся в отдельной стопе, клей не наносится. Затем листы в линии со специальным устройством для точного базирования набираются в пакет требуемой толщины, который сразу же подается на подпрессовку. Давление подпрессовки составляет 0,8 МПа.
При подпрессовке достигается равномерное распределение клея в слоях шпона и получается цельный пакет, выдерживающий нагрузки при последующей обработке. Подпрессованный пакет может храниться несколько часов без ухудшения качества готовой продукции.
Горячее прессование может производиться в однопролетном, двухпролетном или многоэтажном прессе при давлении 1,4 – 1,8 МПа и температуре плит пресса 140 – 180 0С. Ширина балки составляет 1200 мм, длина - до 24 м. Обогрев пресса производится горячей водой, паром или термомаслом. В начале прессования процесса создается максимальное давление, которое уменьшается в ходе прессования и после прогрева заготовки. Диаграмма прессования задается с помощью микропроцессорной системы управления и позволяет получить продукт точной заданной толщины.
В линии с однопролетным прессом используется подвижный подпрессовочный пресс, который выполняет также загрузку горячего пресса. Если длина заготовки превышает длину пресса, прессование происходит в две стадии.
После прессования заготовка полной ширины сначала остывает, а затем раскраивается по длине и ширине на требуемые размеры. Поперечная распиловка осуществляется автоматически по заданной раскройной карте. Продольная распиловка выполняется на многопильном станке. Наружные кромки измельчаются для использования в качестве топлива. Готовая продукция укладывается в стопы размером по ширине в 1200 мм и высотой обычно 900 мм. Перед отгрузкой потребителю они обертываются пленкой и обвязываются стальной лентой.
Глава 7. Контроль качества фанерной продукции В система контроля качества продукции различают три ступени - входной контроль сырья и материалов, текущий контроль параметров технологического процесса и выходной контроль качества готовой продукции.
Входной контроль древесного сырья заключается в визуальной оценке соответствия качества фанерных кряжей сортам, заявленным поставщиком. Как правило, эта работа совмещается с сортировкой сырья по породам и диаметрам.
Контроль качества поступающих смол выполнятся по показателям, регламентируемым соответствующими стандартами или техническими условиями (см. гл.
1).
Текущий (технологический) контроль проводится на рабочих местах самими рабочими или с участием отдела технического контроля (ОТК). Все большее применение находит постоянный автоматический контроль важнейших параметров с сигнализацией об отклонениях от нормы. К таким параметрам можно отнести: температуру воды в бассейнах ГТО; фактическую толщину шпона, выходящего из лущильного станка; температуру и влажность агента сушки в роликовых сушилках; начальную и конечную влажность шпона; давление и температуру пара в горячем многоэтажном прессе; фактическую полную упрессовку пакетов фанеры в ходе прессования.
Выходной контроль фанерной продукции касается проверки соответствия фактических показателей продукции нормативным, регламентированным в соответствующем ГОСТе или технических условиях. В данной главе по возможности полно представлены все стандартизованные методы испытаний фанерной продукции (кроме методов определения показателей электрических свойств).
Обязательность испытаний определяется техническими условиями на продукцию, а также соглашениями между потребителями и изготовителями продукции.
Особенно актуально проблема определения различных показателей клееной слоистой древесины стоит при выпуске новой продукции, введении новых клеев, новой технологии производства и облагораживания продукции. Описанные методы испытаний широко используются и в научно - исследовательской работе.
7.1. Испытания лущеного шпона Для лущеного шпона согласно ГОСТ 20800 - 75 требуется определение его плотности, влажности и предела прочности при растяжении. Плотность и влажность шпона определяют на образцах размером 100 х 100 х Sш, мм, где Sш - толщина шпона. Допускается определять влажность на образцах любой формы, но массой не менее 3 г. Размеры образцов для определения прочности составляют 200 х 20 х Sш при растяжении вдоль волокон, 240 х 20 х Sш при растяжении поперек волокон и 240 х 140 х Sш при растяжении под углом 450.
Плотность при данной влажности w (кг/м3) и влажность шпона W (%) можно определять на одних и тех же образцах. Расчетные формулы имеют вид где m1 - масса образца до высушивания, m2 - то же после высушивания, г, до абсолютно сухого состояния при температуре 103±20С; l, b и Sш - размеры образца, мм.
Массу образца определяют с точностью 0,01 г, длину и ширину образцов с точностью 0,1 мм, а толщину образцов с точностью 0,01 мм, то есть с использованием микрометра.
При определении предела прочности при растяжении (табл.7.1) на концы образцов приклеивают шпон или тонкую фанеру длиной, равной ширине образца, и шириной 30 мм. Образец устанавливают в захваты испытательной машины строго по оси захватов и нагружают со скоростью, обеспечивающей время испытания 60±30 с при испытании образцов вдоль волокон и 30±15 с при испытании образцов поперек волокон или под углом 450. Образцы, разрушившиеся не в рабочей части, в расчет не принимают, и они должны быть заменены.
Предел прочности определяют по формуле, МПа где Рmax - разрушающая нагрузка, Н ; b и Sш - ширина и толщина образца, мм 7.1. Нормативные показатели прочности лущеного шпона, МПа, не менее Прочность при растяжении:
7.2. Общие требования к испытаниям клееной слоистой древесины В стандартах и технических требованиях на конкретную продукцию указывается количество листов и порядок их отбора, причем это количество продукции засчитывается в объем поставок. У отобранных листов проверяют соответствие размеров нормативным, прямолинейность углов, шероховатость поверхности. Для оценки физико-механических показателей из листов фанеры выпиливают образцы для соответствующих испытаний. Фанера общего назначения испытывается только на скалывание по клеевому шву, авиационная - также на растяжение вдоль волокон, бакелизированная - на скалывание, растяжение и изгиб в двух направлениях, древеснослоистые пластики - дополнительно на сжатие вдоль волокон, плиты фанерные - на скалывание и изгиб. Существует специальный ГОСТ 9620 - 94, в котором регламентированы правила выпиливания образцов для продукции различных марок.
Объём материала для испытаний указывается в стандартах на продукцию. От каждого листа (плиты) вдоль волокон наружного слоя отрезают полосы, из которых выпиливают образцы для физико - механических испытаний согласно рис.7.1. (При меньшем количестве видов испытаний допускается иное расположение образцов в полосе).
Рис.7.1. Схема выпиливания образцов из клееной слоистой древесины: 1 - для определения плотности; 2 - влажности; 3 - предела прочности при скалывании по клеевому слою; 4 - предела прочности при статическом изгибе (вдоль волокон, поперек и под углом 450); 5 - предела прочности при растяжении (вдоль волокон, поперек и под углом 45)0; 6 и 7 - водопоглощения, влагопоглощения и объёмного разбухания; 8 - предела прочности при скалывании по древесине; 9 - изменения размеров в зависимости от относительной влажности воздуха; 10 - модуля упругости при сжатии;11 - модуля упругости при статическом изгибе; 12 - модуля упругости при растяжении, 13 ударной вязкости; 14 - маслостойкости; 15 - предела прочности при сжатии.
7.3. Определение физических свойств клееной слоистой древесины ГОСТ 9621-72 устанавливает методы определения влажности, плотности, водопоглощения, влагопоглощения и объёмного разбухания клееной продукции.
Влажность готовой продукции может определяться на образцах любой формы площадью не менее 25 мм2. С момента изготовления до взвешивания образцы должны храниться в полиэтиленовом пакете для обеспечения сохранения влажности. Затем, как и при определении влажности шпона, образцы взвешивают с точностью до 0,01 г, высушивают до постоянной массы при температуре 103±20С и рассчитывают влажность по формуле, указанной на с.160.
7.2. Нормативные значения влажности клееной продукции, %:
Фанера бакелизированная толщиной, мм:
Пластики древесные слоистые толщиной, мм При определении плотности (табл.7.3) образцы имеют размеры 100х100хSф мм, где Sф -толщина продукции. Длину и ширину образцов измеряют с точностью 0,1 мм, а толщину Sф измеряют в пяти точках с точностью 0,01 мм и в расчет берут среднее значение. Образцы взвешивают с точностью 0,01 г и рассчитывают плотность по формуле на с.161.
7.3. Нормативная плотность клееной слоистой древесины Пластики древесные слоистые толщиной 1 - 12 мм, Пластики древесные слоистые толщиной 15 - 60 мм не менее Плиты фанерные марок :
Следующие три показателя (водо-, влагопоглощение и объёмное разбухание) определяются на образцах размером 80 х 4 х S мм, где 80 - длина образца вдоль волокон наружного слоя, а толщина S равна толщине продукции, но не более мм. Для древеснослоистых пластиков определение водопоглощения производится на образцах размером 50х50хS, мм. Образцы измеряют и взвешивают с указанной выше точностью. Влагопоглощением называют увеличение массы образца в атмосфере влажного воздуха, водопоглощением - увеличение массы образца после его выдерживания в воде, а объёмным разбуханием - увеличение его объёма в результате водо- или влагопоглощения.
Для определения влагопоглощения и объёмного разбухания образцы выдерживают в эксикаторе над пересыщенным раствором соды при температуре 20± С. Образцы располагают на решетке в один ряд с расстоянием между ними 10 мм и выдерживают до 50 суток, периодически взвешивая через 1, 2, 3, 5 и суток, с тем чтобы проследить динамику набухания образцов.
При определении водопоглощения и объёмного разбухания образцы погружают в эксикатор с дистиллированной водой с температурой 20±2 0С и периодически взвешивают и измеряют через 1, 2, 3, и 5 суток. Образцы при этом предварительно следует осушить фильтровальной бумагой Влаго- и водопоглощение (W) и объёмное разбухание Р0 вычисляют по формулам, % где m1 - масса образца после увлажнения, г; m - масса образца до увлажнения, г;
S1, b1, l1 - размеры образца после увлажнения, мм; S, b, l -размеры образца до увлажнения, мм.
Согласно ГОСТ 13913 - 78 водопоглощение древесных слоистых пластиков зависит от толщины (табл.7.4).
7.4. Водопоглощение древесных слоистых пластиков Предельное водопоглощение должно быть не более 18% для пластика марки ДСП-А и не более 20% для пластика марки ДСП-Б, а предельное объёмное разбухание соответственно не более 20 и 22%.
В связи с тем, что в ряде случаев требуется знать не объёмное, а линейное изменение размеров фанерной продукции, разработан специальный метод определения изменения линейных размеров в зависимости от относительной влажности воздуха (ГОСТ 18068 - 72). Образцы размером 100 х 100 х Sф, мм, высушивают в сушильном шкафу до постоянной массы при температуре 103±2 0С, затем выдерживают в эксикаторе с безводным хлористым кальцием при температуре 20±2 0С и относительной влажности воздуха 5% в течение 1 ч. После измерения размеров образцы помещают в установку, где поддерживают температуру 20± С и относительную влажность воздуха 65±2 % (что соответствует равновесной влажности древесины примерно 12%). Образцы должны располагаться вертикально на расстоянии не менее 20 мм друг от друга. Выдерживание ведут при периодическом ежесуточном взвешивании образцов и заканчивают, когда разность между двумя последовательными взвешиваниями не превысит 0,5%. После этого снова измеряют длину, ширину и толщину образцов и помещают образцы в другую установку, где поддерживается температура 20±2 0С и относительная влажность воздуха 97±2%. (Это соответствует равновесной влажности древесины около 30 %.) После аналогичного взвешивания и выдерживания до постоянной массы у образцов измеряют толщину, длину и ширину.
Относительное изменение линейных размеров рассчитывают отдельно для двух диапазонов изменения влажности древесины - от 0 до 12% и от 0 до 30 % по формулам:
где l0, b0, S0 - начальные размеры образца (в абсолютно сухом состоянии), l1, b1, S1 - размеры образца после выдерживания в среде с относительной влажностью воздуха 65 или 97%.
К физическим свойствам следует отнести также тепло- и маслостойкость клееной слоистой древесины. Эти показатели нормированы для пластиков марок ДСП-Б-э и ДСП-В-э (как цельных, так и составных). Согласно ГОСТ 9627.2- и ГОСТ 9627.3-75 тепло- и маслостойкость определяются на образцах размером 300 х 300 х Sф, мм, при этом кромки должны быть защищены водостойким клеем, например фенолоформальдегидным или бутварфенольным. При определении теплостойкости образцы помещают в сушильный шкаф, температуру в котором поднимают с 20 до 103±2 0С в течение 4 часов. При данной температуре образцы выдерживают 24 часа, затем извлекают из сушильного шкафа и осматривают с целью обнаружения возможных дефектов. При оценке маслостойкости такие же образцы в металлической сетчатой емкости помещают в сосуд с трансформаторным маслом. Масло в течение 30 минут подогревают до 55±2 0С, выдерживают эту температуру в течение 30 минут, затем за 30-60 минут поднимают температуру до 103±2 0С. В этих условиях образцы выдерживают 6 часов, после чего извлекают из сосуда, осушают и осматривают для обнаружения дефектов. На образцах не должно быть пузырей, на кромках образцов трещин толщиной более 0,08 мм глубиной более 5 мм (контролируется щупом).
7.4. Определение предела прочности при скалывании Новый межгосударственный стандарт ГОСТ 9624 - 93 устанавливает метод определения предела прочности фанеры, фанерных и столярных плит, древесных слоистых пластиков при скалывании по клеевому слою и по древесине (см.
рис.7.2, 7.3 и табл.7.5) 7.5. Размеры образца для испытаний на скалывание.
Наименование Размеры, мм, согласно рис.7. ДСП и фанерные плиты: 85 40 Sф 2Sш 12 12,5 12, толщиной 2,5... 15 мм толщиной более 15 мм 85 40 Sф/2+5 5 12 12,5 12, Фанера толщиной до 15 мм 95 40 Sф 2Sш 12 12, Фанера толщиной более 15 мм 95 40 Sф/2+5 5 12 12, Примечания: 1- для 4-х слойной фанеры h = 3Sш ; 2- допускается другая ширина пропила b1 при изменении конструкции захватывающего приспособления; 3 - для фанеры толщиной более 15 мм образцы опиливаются (срезаются) до толщины h = Sф/2 + 5 мм, где Sф - толщина продукции.
Стандарт допускает и другую форму образца, который может быть испытан не в специальном приспособлении, а в обычных захватах испытательной машины (рис.7.3, табл.7.6).
Рис.7.3. Форма образцов для испытаний на скалывание: а) - для трехслойной авиационной фанеры толщиной до 2,5 мм; б) - для пятислойной авиационной фанеры толщиной до 2,5 мм; в) для фанеры любой слойности, кроме 4-слойной; г) для 4-слойной фанеры.
7.6. Размеры образцов, показанных на рис. 7. Авиационная 5-слойная фанера толщиной, мм При испытании фанеры любой слойности (кроме 4-слойной) образец должен быть 3-слойным, для чего лишние слои шпона срезают, оставляя средний слой, прочность склеивания которого определяют. Таким образом может быть проверена прочность склеивания в различных слоях фанеры по сечению. Образец должен иметь симметричную конструкцию. Глубина пропила должна быть такой, чтобы было пропилено 2/3 толщины среднего листа шпона..
Форма и размеры образцов для испытания на скалывание по древесине показаны на рис.7.4.
Особенность этого испытания заключается в том, что толщина образца должна быть равна толщине продукции, но не менее 15 мм. Поэтому для материала толщиной менее 15 мм проводят склеивание холодным способом нескольких листов фанеры до получения толщины 15 мм и более.
Испытания проводят на сухих или влажных образцах согласно требованиям стандартов на конкретную продукцию. Увлажнение может быть путем выдерживания в воде с температурой 20±5 0С в течение 24 часов или кипячения в воде (100 0С ) в течение 1 или 3 часов. После увлажнения образцы выдерживают минут при комнатной температуре и подвергают испытанию в специальном приспособлении или в захватах испытательной машины, работающих на растяжение.
Скорость испытания образца должна быть такой, чтобы время до разрушения составляло 60±30 с. Предел прочности рассчитывается по формуле, МПа где Рмах - максимальная нагрузка, Н; l1, b - размеры площади скалывания, мм.
Нормативы прочности продукции на скалывание указаны в табл. 7.7 -7.12.
7.7. Показатели прочности фанеры общего назначения при скалывании по клеевому слою 7.8. Показатели прочности авиационной фанеры при скалывании вдоль волокон, МПа, не менее Толщина фанеры, мм В сухом виде После кипячения 7.9. Показатели прочности фанерных плит при скалывании после вымачивания образцов, МПа, не менее продукции продукции, мм березовые Березовые, сосново Липовые, сосново березовые, осиновые липовые 7.10. Показатели прочности фанеры, облицованной строганым шпоном, при скалывании в сухом виде, МПа, не менее Порода подслоя Порода облицовки 7.11. Показатели прочности бакелизированной фанеры на скалывание после кипячения, МПа, не менее фанеры, мм ФБС ФБВ, ФБС-А ФБС1, ФБВ1, ФБС1 - А 7.12. Показатели прочности древесных слоистых пластиков толщиной 15-60 мм на скалывание по клеевому слою, МПа, не менее Цельные ДСП-В и ДСП-В-э, составные ДСП-Б, ДСП-Б-э и ДСП-Г 6, 7.5. Определение предела прочности и модуля упругости при растяжении Согласно ГОСТ 9622 - 87 образцы для испытаний на растяжение выпиливаются вдоль волокон наружного слоя, поперек волокон и под углом 450 по форме и размерам, указанным на рис.7.5.
Второй тип образца рекомендуется для научно - исследовательских целей.
При испытании образцы помещают в клиновидные захваты машины, при этом тонкие образцы (толщиной до 15 мм) устанавливают так, чтобы сжимающие усилия были направлены перпендикулярно слоям образца, а толстые - так, чтобы сжатие в захватах приходилось на кромки образца. Время испытания должно составлять 30-90 с. Образцы, разрушение которых произошло не в рабочей части, в расчет не принимают, и они должны быть заменены.
Расчетная формула имеет вид, МПа где Рмах - максимальная нагрузка на образец, Н; b0 - ширина рабочей части образца, мм; Sф - толщина продукции, мм.
При определении модуля упругости на образец с двух сторон устанавливают тензометры и образец подвергают шестикратной нагрузке в диапазоне примерно 5 - 25% от разрушающей. После каждого нагружения нагрузку снижают до 1-2% от разрушающей. Продолжительность одного цикла нагружения должна быть в пределах 30 - 90 с. Модуль упругости рассчитывают по формуле:
где Р - нагрузка, Н, соответствующая средней величине приращения деформации l мм; l - база тензометра, мм.
Нормативы прочности продукции при растяжении приведены в табл.7.13Показатели прочности авиационной фанеры при растяжении вдоль волокон, МПа, не менее Толщина Фанера общего назначения Авиационная фанера марок 7.14. Показатели прочности бакелизированной фанеры при растяжении вдоль волокон, МПа, не менее фанеры, мм ФБС ФБВ, ФБС- А ФБС1, ФБВ1, ФБС1 - А мм) при растяжении вдоль волокон, МПа, не менее плит Цельные Составные плит Цельные Составные 7.16. Показатели прочности листов древесно - слоистых пластиков на растяжение, МПа, не менее Направление Норма для листов толщиной, Под углом 7.6. Определение предела прочности и модуля упругости при сжатии Согласно ГОСТ 9623 - 87 предел прочности определяется для продукции толщиной более 10 мм, а модуль упругости - для продукции толщиной более мм. Образцы изготовляют в виде прямоугольной призмы размерами Sф х Sф х 1,5 Sф при определении предела прочности и размерами Sф х Sф х 4Sф при определении модуля упругости, где Sф - толщина продукции. Для древесных слоистых пластиков толщиной более 15 мм образец для определения прочности должен быть изготовлен в виде призмы размерами 15 х 15 х 22,5 мм. При толщине фанерной продукции более 20 мм образец для определения модуля упругости имеет размеры 20 х 20 х 80 мм. Образцы изготовляют с направлением волокон вдоль наружного слоя фанеры, поперек или под углом 450.
Образец помещают в испытательную машину на шаровую опору и нагружают до разрушения в течение 30 - 90 с. Предел прочности и модуль упругости определяют и рассчитывают аналогично испытаниям на растяжение. Нормативы прочности см. табл.7.17.
7.17. Показатели прочности плит древеснослоистых пластиков (толщиной 15- мм) при сжатии вдоль волокон, МПа, не менее Марка Конструкция плит Марка Конструкция плит плит Цельные Составные плит Цельные Составные 7.7. Испытания фанерной продукции на изгиб В соответствии с ГОСТ 9625 - 87 образцы изготовляют с направлением волокон вдоль наружного слоя фанеры, поперек или под углом 450. Размеры образца:
ширина 50 мм, длина 15h при толщине h, равной или более 10 мм и 150 мм при толщине образцов менее 10 мм. Возможно испытание образцов в форме бруска квадратного сечения со стороной равной толщине материала, и длиной, равной 15-кратной толщине образца. Схема испытания образца показана на рис.7.6, а нормативы - в табл.7.18 - 7.21.
Время нагружения образца до разрушения должно быть в пределах 1-2 минут.
Прочность при изгибе определяется по формуле:
где Рmах - разрушающая нагрузка, Н; Р - интервал нагружения, H, в котором измеряется прогиб f, мм; l - расстояние между опорами, мм; b - ширина образца, мм; h - толщина образца, мм.
Рис.7.6. Схема испытания фанерной продукции на статический изгиб.
7.18. Прочность фанеры общего назначения на стат. изгиб, МПа, не менее фанеры шпона Sф, мм Береза Ольха, бук, Сосна, лист- Липа, осинаружных клен, ильм венница, ель, на, тополь 7.19. Показатели прочности бакелизированной фанеры при изгибе, МПа, не менее фанеры, мм изгиба ФБС ФБВ,ФБС-А ФБС1,ФБВ1, ФБС1-А 7.20. Показатели прочности плит древеснослоистых пластиков (толщиной 15- мм) при изгибе вдоль волокон, МПа, не менее Марка Конструкция плит Марки Конструкция плит плит Цельные Составные плит Цельные Составные 7.21. Прочность фанерных плит при статическом изгибе вдоль волокон наружного слоя, МПа, не менее продукции плит, мм Береза Сосна, береза + со- Липа, сосна + лисна, береза + осина па.
Такие же образцы и схему испытания используют для определения ударной вязкости клееной слоистой древесины при изгибе (ГОСТ 9626 - 90) с помощью маятникового копра (табл.7.22). Образец располагают на опорах так, чтобы удар был направлен посередине длины образца перпендикулярно или паралельно слоям согласно требованиям стандартов на продукцию. Следует использовать копер с запасом энергии 50-100 Дж. Ударную вязкость вычисляют по формуле, Дж/м где L - работа, затраченная на излом, Дж (кгс. см), b - ширина образца, м; h - высота образца, м.
7.22. Нормативные значения ударной вязкости при изгибе вдоль волокон наружного слоя, кДж/м2, не менее Материал Марка продукции Конструкция Толщина, мм Ударная вязкость Прочность при изгибе гнутоклееных заготовок определяют по ГОСТ 19921 табл.7.22). Образцы для испытаний высотой 20 мм выпиливают из криволинейных участков заготовок любого профиля по форме, указанной на рис.7.7.
Размеры S, Rвн, соответствуют размерам однократных гнутоклееных заготовок, а длины l2 и l1 определяются в зависимости от фиксированного расстояния между концами образца L = 200 мм. Влажность образцов должна быть 8±2 %.
Рис. 7.7. Образец (а) и схема испытания (б) гнутоклееных заготовок на изгиб: 1 - блок уравнительный; 2 - канат; 3 - блоки закрепления; 4 - образец; 5 - зажимные губки.
Образец закрепляют в приспособлении (рис.7.7), зажимая с двух сторон на длине, равной 2-3 кратной толщине образца, и нагружают равномерно со скоростью 10 мм/мин до его разрушения. После испытания определяют влажность каждого третьего образца, беря пробу вблизи места разрушения образца (не далее 10 мм). Разрушающий момент Мразр вычисляют по формуле, Н.м:
где Рmax - максимальная разрушающая нагрузка, Н; rбл - радиус блока закрепления, м.
Приведенный предел прочности при статическом изгибе прив вычисляют по формуле, Н/мм где прив - условная характеристика сопротивления сечения гнутоклееного образца, зависящая от соотношения внутреннего и наружного радиусов кривизны образца и характера анизотропии (табл.7.23); Rн - наружний радиус образца, мм; h - высота образца, мм.
При значениях Rвн/Rн > 0,8 приведенный предел прочности образца определяется по формуле:
где S - толщина образца, мм.
7.23. Значения условной характеристики сопротивления сечения гнутоклееного образца прив при статическом изгибе Rвн/Rн прив Rвн/Rн прив Rвн/Rн прив Rвн/Rн прив Rвн/Rн прив При паралельном расположении волокон древесины 0,41 49,5 0,51 61,0 0,61 76,3 0,71 103,4 - При перекрестном расположени волокон древесины 0,60 82,0 0,65 88,0 0,70 95,6 0,75 113,6 0,80 150, 0,61 83,2 0,66 89,5 0,71 99,2 0,76 120,9 - Нормативы прочности гнутоклееных заготовок при изгибе, МПа, не менее Дугообразный, Л-образный Царги и проножки стульев незамкну- скругленный, П-образный тые Уголковый Г- и Л-образный Ножки стульев, столов, табуретов кре- 7.8. Определение содержания свободного формальдегида Одним из самых существенных показателей фанерной продукции является класс эмиссии свободного формальдегида. Для того чтобы отнести фанеру к классу эмиссии Е1 или Е2, необходимо определить содержание формальдегида в продукции. ГОСТ 27678 - 88 с 01.07.90 г. распространяется не только на древесностружечные плиты, но и на фанеру и устанавливает перфораторный метод определения данного показателя.
Фанеру для испытаний отбирают в период от 3 до 6 дней после изготовления (обычно не менее трех листов от партии). Из листов выпиливают заготовки площадью не менее 0,1 м2 на расстоянии не ближе 300 мм от кромки листа. Заготовки следует хранить герметично упакованными не более 42 дней. Перед испытаниями из заготовок выпиливают образцы для испытаний размером 25 х мм общей массой около 500 г. Образцы можно хранить в упакованном виде до испытаний не более 24 часов при температуре 20±2 0С.
Сущность перфораторного метода заключается в экстракции формальдегида кипящим толуолом, поглощении его дистиллированной водой и обратном иодометрическом титровании. Аппарат для экстракции показан на рис.7.8. Он состоит из круглодонной колбы, перфоратора со спускным краном, фильтром ФКППОР-160 ТХС по ГОСТ 25336 - 82 и теплоизолированной верхней частью и отводной трубкой; холодильника типа ХСВО или ХСВ по ГОСТ 25336 - 82 общей длиной около 400 мм; трубки длиной 380 мм и наружным диаметром 10 мм с шаровым расширением диаметром 50 мм на расстоянии 200 мм от нижнего конца; колбы-сборника типа Кн-2 - 250 - 50 (34, 40) ТС по ГОСТ 25336 - 82.
Влажность фанеры в момент испытаний определяют по ГОСТ 9621-72, взвешивая одновременно 5-6 образцов общей массой не менее 25 г. Затем от общей массы образцов отбирают 105±5 г, взвешивают образцы с точностью 0,1 г и помещают в круглодонную колбу 1, куда наливают 600 см3 толуола. Колбу подсоединяют к перфоратору 2 и заполняют его водой в объёме примерно 1 литр так, чтобы между поверхностью воды и отверстием слива сифона оставалось пространство высотой 10 - 20 мм. Затем через трубку с шаровым расширением присоединяют холодильник и сборник. В сборник предварительно наливают Рис.7.8. Аппарат для экстракции формальдегида: 1 круглодонная колба, 2 - перфоратор, 3 - холодильник, внешнего электронагревателя. Мощность нагревателя регулируют так, чтобы время между включением и прохождением первых пузырей толуола через фильтр составляло 20 - 30 мин и скорость обратного регулярного потока толуола составляла - 70 капель в минуту в течение всего времени экстрагирования. Экстракцию проводят в течение 2 ч, через фильтр. Необходимо следить за тем, чтобы вода из сборника не попадала в другие части аппарата. Содержащуюся в перфораторе воду после охлаждения переливают через спускной кран в мерную колбу типа 2 - 2000 - 2 по ГОСТ - 74, а перфоратор промывают дважды водой (200 см3) и эту воду также сливают в мерную колбу. После этого туда же переливают раствор из сборника, доливают воду до метки и раствор перемешивают. Из мерной колбы пипеткой отбирают 100 см3 раствора в коническую колбу для титрования типа Кн-1 - 500 - 29/ по ГОСТ 25336 - 82, добавляют 50 см3 раствора иода ( 1/2 I2 концентрацией 0,01 моль/дм3) и 20 см3 раствора гидроксида натрия (NaOH концентрацией моль/дм3). Колбу закрывают и на 15 минут ставят в темноту, затем осторожно добавляют 10 см3 серной кислоты (по ГОСТ 4204 - 77, раствор, разбавленный по объёму в отношении 1:1). Раствор при этом должен приобрести темнокоричневый цвет. Выделившийся при этом избыточный иод титруют раствором серноватистокислого натрия (Na2S2O3. 5H2O концентрацией 0,01 моль/дм3) в присутствии 1%-ного раствора крахмала до исчезновения окраски. При этом фиксируют объём серноватистокислого натрия в см3, израсходованный на титрование.
Дополнительно необходимо провести контрольное испытание, используя реактивы из той же партии и в тех же количествах, но без испытуемых образцов.
Содержание формальдегида в миллиграммах на 100 г абсолютно сухой продукции вычисляют по формуле где V - объём раствора серноватистокислого натрия, израсходованный на титрование в контрольном испытании, см3; V1 - объём раствора серноватистокислого натрия, израсходованный на титрование в основном испытании, см3; W - влажность образцов, %; m - масса испытуемых образцов, г.
Результат вычислений округляют до целого числа. За результат испытаний принимают среднее арифметическое не менее двух титрований, расхождение между которыми не должно превышать 5 мг. В противном случае титрование повторяют. При содержании формальдегида не более 10 мг на 100 г сухого продукта фанеру относят к классу Е1, при содержании до 20 мг - к классу Е2.
Глава 8. Технологические расчеты в производстве лущеного шпона и фанеры 8.1. Расчет программы фанерного предприятия Программа (производственная мощность) - это максимально возможный годовой объем выпуска продукции при полном использовании головного оборудования (клеильных прессов) при работе в 3 смены. Для расчета программы и последующих работ необходимо иметь следующие исходные данные:
а) точное описание продукции с указанием ее марки и размеров;
б) марку головного оборудования (прессов) и их количество;
в) характеристики используемого сырья (порода, средний диаметр, длина, распределение по сортам), возможности поставки в кряжах или чураках, способ доставки (водный или сухопутный).
Производительность Пчас определяют отдельно для каждой марки продукции:
где Qэт - часовая производительность эталонного пресса, за который принимается пятнадцатиэтажный пресс с немеханизированной загрузкой и выгрузкой пакетов фанеры лиственных пород марки ФК размером в чистоте 1525х1525 мм, толщиной 4 мм, трехслойной, по 4 листа в каждом промежутке пресса (при этих условиях Qэт= 3,35.м3/ч); Кф - коэффициент формата, равный отношению площади обрезного листа фанеры к площади эталонной продукции; Кпр - коэффициент промежутков, равный отношению числа этажей пресса, данного в задании, к числу этажей эталонного пресса (характеристики прессов приведены в табл. 6.3); Км - коэффициент механизации (для цехов с предварительной подпрессовкой пакетов Км = 0,95, в остальных случаях Км = 1,02); Кт - технологический коэффициент фанерной продукции данного типоразмера (табл.8.1-8.3).
Технологический коэффициент выражает степень трудоемкости данного вида продукции по отношению к эталонной - чем меньше коэффициент, тем больше затрат требует изготовление фанеры данной марки. При нахождении нужного коэффициента следует выписать из таблицы все параметры, сопутствующие данному технологическому коэффициенту (слойность, число листов в промежутке пресса, марку клея и т.п.).
Годовая программа М определяется по формуле, м3, где N - число прессов; Тэф - фонд эффективного времени работы одного пресса, Тэф = 260. 3. 7,69 = 6000 ч, где 260 - число рабочих дней в году; 3 - число смен; 7,69 - средняя продолжительность смены, ч.
Все расчеты выполняются отдельно для каждой заданной марки продукции.
8.1. Технологические коэффициенты для фанеры марок ФК и ФСФ Для фанеры форматом 1830 х 1525, 2440 х 1525, 2440 х 1525 мм применяют поправочные коэффициенты 0,857; 0,914; 1,143 соответственно.
8.2. Технологические коэффициенты для авиационной и декоративной фанеры Толщина Число Фанера БС-1 при Фанера БП-А при склеива- ДекоративSф, мм листов в склеивании в проклад- нии в прокладках ная фанера промежутке пресса. Для плит форматом 1830 х 1525, 2440 х 1220 и 2440 - 1525 мм применят коэффициенты 0,857; 0,914 и 1,143 соответственно.
8.3. Технологические коэффициенты для фанерных плит.
плит, Sф, мм карба- СФЖ- СФЖ- плит, Sф, мм СФЖ-3011 СФЖ- Примечание. Коэффициенты указаны для плит форматом 1525 х 1525 мм, по 1 листу в промежутке пресса. Для плит форматом 1830 х 1525, 2440 х 1220 и 2440 х 1525 мм применяют коэффициенты 0,857; 0,914 и 1,143 соответственно.
8.2. Выбор конструкции фанеры и расчет толщин шпона Стандарты предписывают выбирать толщину шпона и фанеры из ряда рекомендуемых значений. Задача выбора конструкции фанеры заключается в согласовании слойности продукции nс с толщинами шпона Sш и заданной толщиной фанеры Sф с учетом упрессовки Уп. Зависимость имеет вид где Sш - сумма толщин шпона, мм, составляющего лист фанеры.
Для равнослойной фанеры имеем:
Тогда толщина шпона выразится формулой:
Величина упрессовки может быть рассчитана (с.134) или взята из табл. 8.4.
8.4. Упрессовка фанеры, %, при горячем способе склеивания породы роды Расчетная толщина шпона должна быть округлена до ближайшей стандартной величины (см. табл..2.1), а фактическая упрессовка рассчитана по формуле, % При расхождении фактической упрессовки с табличной величиной более 5% абс. можно предусмотреть конструкцию неравнослойной фанеры, в частности с толстым хвойным шпоном в средних слоях. Так как упрессовка хвойного (соснового) шпона больше, чем березового, то расчетная зависимость принимает вид где Уп1 и Уп2 упрессовка соответственно березового и соснового шпона.
Так как уравнение содержит два неизвестных, то одной толщиной шпона необходимо задаться, а вторую - рассчитать по формуле Некоторые рекомендуемые схемы сборки пакетов березовой фанеры даны в табл. 8. 8.5. Рекомендуемые схемы набора пакетов шпона 8.3. Расчет потребности в шпоне Необходимое количество сухого и сырого шпона для выполнения программы выпуска фанерной продукции М может быть рассчитано аналитическим путем.
Сначала определяется необходимый объем сухого шпона на программу выпуска фанеры данной толщины и марки, м3, где lш, bш - длина и ширина шпона, мм (можно считать, что припуск на обработку составляет 75 мм на две стороны); lф, bф - длина и ширина обрезной фанеры, мм; Sф - заданная толщина фанеры, мм; Кр - коэффициент потерь шпона на стадии прирубки кусков для их ребросклеивания; Кп - коэффициент потерь при починке шпона; Кш - коэффициент потерь при шлифовании фанеры.
Значения коэффициентов зависят от конкретных условий производства:
шпона, % неры, % Необходимый объем сырого шпона Qсш на программу, м3, где Ус - усушка шпона,%; для березы - 9,0 %; для осины - 7,0 %; для лиственницы, сосны и ольхи - 7,5 %; К1 - коэффициент потерь шпона на стадиях сушки и сортировки, К1= 1.01...1.03.
8.4. Расчет потребности в сырье.
В поперечном сечении чурака различают четыре зоны (рис.8.1):
При определении объёмов этих зон пользуются формулой объёма пустотелого цилиндра:
но добавляют к ней эмпирические коэффициенты, учитывающие отклонения формы чураков от формы идеального цилиндра. К таким коэффициентам относятся коэффициент выхода делового шпона Кд и коэффициент выхода форматного шпона Кф, зависящие от диаметра чурака и сорта сырья. В результате формулы расчета объёма делового Vдш и форматного Vфш шпона приобретают вид:
где l - длина чурака, м; Dc - диаметр чурака; dk - диаметр карандаша, м;
0бъём кускового шпона определяется как разность между объёмами делового и форматного шпона:
Объём отходов при оцилиндровке:
Если принять объём чурака за 100%, то можно записать:
При средних диаметрах чураков объём каждой зоны приблизительно составляет: Роц = 25 - 30 %; Рд.к = 5 - 8 %; Рф.ш = 55 - 60%; Рк = 10 - 12 %, а расход сырья на 1 мз шпона - 1,45-1,70 мз/мз.
Сущность метода расчета потребности в сырье заключается в определении процентного содержания основных составляющих баланса древесины при лущении чураков, а именно: объема шпона-рванины (отходов при оцилиндровке); объема делового шпона, в том числе форматного и кускового; объема карандаша.
Зная количество отходов (шпона-рванины и карандаша), рассчитывают потребность в чураках исходя из известного количества сырого шпона. В данных расчетах объем чурака принимают за 100%.
В расчетах необходимы следующие исходные данные:
1) Длина чурака lс, м. Принимается в соответствии с маркой намечаемого лущильного станка. Например, для отечественных станков типа ЛУ-17-10 длина чурака составляет 1,6 м.
2) Диаметр чурака Dc, м. В расчет целесообразно заложить средний диаметр чурака, характерный для данного предприятия. Если нет конкретных сведений по этому вопросу, то можно применить ориентировочные значения 24 см для березового сырья и 40 см для хвойного.
3) Объем чурака Vс, м. Определяется по таблицам объемов круглых лесоматериалов в зависимости от вершинного диаметра и длины сортимента (табл.3.5).
Не следует определять объём кряжа как объём цилиндра, так как это дает заниженную величину. Фактически форма кряжа ближе к форме усеченного конуса, а диаметр чурака показывает вершинный диаметр без коры.
4) Доля сырья 1, 2, 3-го сортов в общем объёме поставки q1, q2, q3 (по данным предприятия), при этом (q1 + q2 + q3) = 100% 5) Диаметр малого кулачка лущильного станка d0, м (табл.4.3).
6) Потребность в сыром шпоне Qсш, м.
7) Программа выпуска фанеры М, м.
Расчетные формулы.
1) Коэффициенты выхода делового шпона из сырья 1, 2, 3-го сортов:
2) Средневзвешенный коэффициент выхода делового шпона 3) Диаметры карандаша, из сырья 1,2,3-го сортов, м 4) Cредневзвешенный диаметр карандаша, м 5) Выход делового шпона, % 6) Коэффициенты выхода форматного шпона из сырья 1, 2, 3-го сортов соответственно:
7) Средневзвешенный коэффициент выхода форматного шпона 8) Выход форматного шпона, %:
9) Выход делового кускового шпона, % 10) Объем отходов на карандаш,% 11) Объем отходов на шпон-рванину, % 12) Всего отходов, % 13) Потребность сырья в чураках, м 14) Потребность сырья в кряжах, м Отходы при разделке Рразд в среднем составляют 5,5 %.
15) Расход сырья на 1 куб.м фанеры 16) Расход сырья на 1 м3 сырого шпона В ряде случаев требуются укрупненные расчеты для предварительной оценки потребности в сырье и шпоне. Для этих целей имеются нормы расхода сырья на 1 м3 сырого шпона, разработанные ЦНИИ фанеры с учетом породы, сорта и диаметра сырья (табл.8.6).
8.6. Нормы расхода березового сырья (длиной 1,6 м) на 1 м3 сырого шпона.
Dc, см 1-й сорт 2-й сорт 3-й сорт Dc, см 1-й сорт 2-й сорт 3-й сорт При другой длине березовых чураков поправочные коэффициенты на длину составляют:
Для сосны применяется коэффициент 0,98. (Так как форма ствола сосновых чураков более правильная, то расход снижается на 2 %.) 8.5. Составление баланса древесины Выполненные расчеты наглядно могут быть показаны в таблице, где отражен основной технологический поток и все потери древесины в ходе изготовления фанеры (табл.8.7).
8.7. Cхема движения материала в производстве фанеры 10. Горячее прессоова- Необрезная фа- Упрессовка Пояснения к составлению таблицы 8.7:
1. Отходы при разделке Qразд представляют собой разницу между объемом кряжей и объемом чураков 2. Объем коры ориентировочно можно принять равным 10-12 % от объема окариваемого материала. Если в технологии принята другая последовательность операций (например, окорка перед разделкой), то это должно быть отражено в данной таблице.
3. Объем чураков, поступающих на лущение, принимается равным 100%. После лущения он разделяется на три составляющие: деловой сырой шпон, шпон рванина и карандаши.
4. Потери на усушку Qус рассчитываются как разница между объёмом сырого и сухого шпона 5. Отходы на ленты для починки шпона Qпш принимаются с учетом коэффициента потерь на починку шпона Кп (стр.185).
6. Отходы на прирубку кусков Qзс рассчитываются с учетом соответствующего коэффициента потерь на прирубку и ребросклеивание (Кр).
7. Отходы на упрессовку Qуп рассчитываются от объёма сухого шпона, поступившего на сборку пакетов, с учетом упрессовки Уп.
8. Объём сухого шпона за вычетом всех потерь дает объём необрезной фанеры Qнф:
9. Отходы на форматную обрезку Qобр определяются разностью между размерами шпона (необрезной фанеры) и обрезной фанеры:
10. Объём шлифовальной пыли Qшлиф в пл.м3 может быть рассчитан по формуле Здесь Р - доля шлифованной фанеры в процентах от всего выпуска, n – число шлифуемых сторон фанеры (одна или две), – припуск на шлифование (в среднем 0,2 мм на сторону). При учете продукции толщина шлифованной и нешлифованной фанеры считается равной номинальной толщине.
По результатам расчетов определяется сумма всех отходов и отдельно - безвозвратные (потери на упрессовку и усушку). Неучтенные отходы представляют собой разницу между расчетной программой предприятия М и объёмом обрезной фанеры Qоф Они возникают из-за неполного учета возможных потерь (например, при транспортировке материала, потерь на физико - механические испытания продукции и пр.).
Итоговая таблица 8.7 позволяет увидеть возможные резервы производства и более полно планировать переработку вторичного сырья, объём которого превышает объём основной продукции даже на самых современных предприятиях.
Пути возможного использования вторичных ресурсов рассмотрены в гл.10.
8.6. Расчет потребности в связующем Расчету потребности должен предшествовать выбор марки связующего и рецептуры клея (табл. 8.8, 8.9). Производственный расход клея на программу выпуска составляет, кг, где qк - удельный расход клея, г/м2 (табл.8.11). Для пленочного клея принимается масса 1м2 пленки (68...74 г); Кп - коэффициент производственных потерь, Кп 8.8. Марки клеев, используемых в фанерном производстве.
ной продукции ФК Карбамидные КФ-0, КФ-Ж, КФ-Б, М- ФСФ Фенолоформальдегидные СФЖ-3013, СФЖ-3014, Ватекс-244, Экстер-А ФБА Альбуминовый, казеиновый, комбинированный БС-1 Фенолформальдегидный СФЖ- БП-А, БП-В Бакелитовая пленка марок А или В 8.9. Рецептура клеев для фанеры.
Карбамидный Смола 100, хлористый аммоний 0,7-1.0, древесная мука или формальдегидный Альбуминовый Альбумин 100, известь Комбинированный Альбумин 100, казеин - 20- Казеиновый Казеин 100, известь 20, жидкое стекло 30- 8.10. Расход клеев при контактном способе нанесения Клей Породы древесин Толщина шпона, мм Норма расхода клея, г/ м Величину Qк.уд можно сравнить с нормами расхода синтетических смол (табл.8.11). Потребность в отдельных компонентах рассчитывается согласно рецептуре клея.
8.11. Нормы расхода клеев, кг/м3, на производство фанеры фанеры Необходимое число станков (агрегатов, линий) находят по формуле где Qгод - годовой объем работ для данного участка фанерного предприятия, м3; для участка раскроя это потребный объем кряжей, для участка окорки и ГТО - объем чураков, для лущильного цеха - потребность в сыром шпоне и т.п.; Пгод - годовая производительность данного станка, Пчас - часовая производительность, м3/ч, определяемая для каждой единицы оборудования по формуле, зависящей от принципа работы станка, уровня механизации и других факторов; Тэф - эффективный годовой фонд времени работы оборудования, ч; зависит от сменности работы.
Фанерные предприятия относятся к предприятиям непрерывного цикла, поэтому основное оборудование работает в 3 смены. Годовой фонд рабочего времени определяют из расчета 95 выходных и праздничных дней в году и дней остановки оборудования на капитальный ремонт. Число рабочих суток составляет 365 - 95 - 10 = 260; число смен 260. 3 = 780.
Средняя продолжительность смены рассчитывается из следующих условий: 1я смена работает 6 дней в неделю по 8 часов; 2-я смена - 5 дней по 8 часов; 3-я смена - 5 дней по 7 часов. Всего в неделю отрабатывается 16 смен общей продолжительностью 123 ч, то есть средняя продолжительность смены составляет 123:16 = 7,69 ч. Следовательно, В ряде случаев необходимо отказываться от ночных смен, если выбранное (неголовное) оборудование может обеспечить выполнение программы в две или даже одну смену. При двухсменной работе средняя продолжительность смены составляет 8 часов, а Тэф = 260. 2. 8 = 4160 ч. При односменной работе Тэф = 2080 ч.
Если расчетное число станков N выражено дробным числом и дробь составляет более 10% от целого числа, то ее следует округлить до следующего целого числа; если меньше 10%, то ее не учитывают, полагая, что перегрузка может быть устранена за счет интенсификации работы, уплотнения рабочего времени.
Коэффициент загрузки оборудования,%:
где Nр - расчетное число станков, шт.; Nпр - принятое число станков, шт.
В некоторых случаях часовая производительность станка аналитически не может быть определена, поэтому приходится пользоваться справочными данными. Если в справочнике указана не часовая, а сменная (Псм) производительность, то где N - число смен в году, равное 780, 520 или 260 соответственно при трех-, двух- и односменной работе данного оборудования.
Значение Nр определяется отдельно для каждой марки фанеры, а число станков принимается после суммирования значений Nр. Например, имеем Nр1 = 0, и Nр2 = 1,29. Тогда Np = Np1+ Np2 = 1,66 и принимаем два станка (Nп =2 ) и коэффициент загрузки К = (1,66 /2)100 = 88 %.
Операция разделки является обычно первой операцией технологического процесса производства фанеры. В некоторых случаях целесообразно предусматривать два станка для разделки, даже если по расчетам получается один (в целях обеспечения надежности работы всего предприятия). Часовая производительность станков определяется по циклу одного реза (разд.3.2) или берется из паспортной характеристики оборудования. Это же касается и окорочных станков. В расчет следует закладывать минимальные скорости подачи, используемые в зимний период.
На участке гидротермообработки в обобщенных расчетах время прогрева чураков можно брать из табл. 3.9, 3.10.
Одновременно с выбором основного технологического оборудования нужно решать вопрос о рациональном использовании вторичных ресурсов - коры и отходов разделки (см. гл.10).
При выборе лущильного станка можно ориентироваться на отечественные станки ЛУ-17-10 или финские серии HV (cм. табл. 4.3). При расчете потребности в станках следует отдельно рассчитать часовую производительность лущильного станка и ножниц для рубки шпона, а затем определить потребность в линиях лущения - рубки шпона по меньшей производительности. При необходимости выпуска шпона разных толщин можно рассчитать средневзвешенную толщину шпона и расчеты вести с учетом этой величины.
Выбор схемы организации труда в лущильном цехе во многом зависит от размерно - качественных характеристик сырья и объёма производства. Неотъемлемой частью цеха являются системы сбора и переработки вторичного сырья шпона-рванины, карандашей, кускового и неформатного шпона. Лущильный цех работает в три смены, сырой шпон не должен храниться в плотных стопах более 4 часов.
Выбор марки сушилки должен производиться с учетом того, что базовой отечественной моделью является СРГ-25М. Наиболее удачным следует признать использование линий сушки и сортирования шпона, например, фирмы "Raute".
Для переработки кускового шпона в форматный наиболее современными являются линии, объединяющие прирубку и поперечное ребросклеивание шпона.
Клеильно - обрезной цех формируется на базе заданного количества головного оборудования - клеильных прессов конкретной марки. Часовая производительность пресса определена при расчете программы предприятия по эталонному прессу. Для контроля результатов расчета следует рассчитать производительность пресса аналитически (гл.5). При этом загрузка пресса должна быть близка к 100%. Участок нанесения клея и сборки пакетов следует планировать с учетом максимальной механизации работ и использования холодной подпрессовки пакетов. Послепрессовая обработка фанеры включает в себя выдержку необрезной фанеры, форматную обрезку, ремонт, сортирование, шлифование и упаковку фанеры.
По итогам расчета производительности станков и их потребности рекомендуется составить сводную таблицу загрузки оборудования (табл.8.12).
8.12. Сводная таблица загрузки оборудования 1 Окорка 2 Разделка...
18 Сортирование фанеры 19 Шлифование Данная таблица позволяет в обобщенном виде представить результаты расчетов по всему циклу производства фанеры, сделать анализ загрузки оборудования. Для некоторых станков с неполной загрузкой можно выбрать работу в две или одну смену, предварительно предусмотрев площади для хранения буферного запаса полуфабрикатов.
Наиболее трудным моментом заполнения таблицы является правильное определение объёма работ, приходящегося на данную технологическую операцию.
Объём работ выражается в м3 материала, выходящего из станка. Для окорки это объём кряжей, для разделки - объём чураков. Нужно иметь в виду, что кора не входит в баланс древесины, поэтому отходы окорки не вычитаются из объёма кряжей. Объём работ на участке ГТО выражается в куб.м сырья, подлежащего проварке. (Последовательность операций подготовки сырья к лущению может отличаться от представленной и тепловая обработка может быть первой операцией технологического процесса.) Объём работ для линий лущения - рубки шпона выражается в м3 сырого делового шпона. Технологию и оборудование для переработки вторичного сырья в лущильном цехе (шпона - рванины и карандашей) следует принимать сообразно рекомендациям, изложенным в гл. 10. Для сушильного оборудования объём работ - потребность в сухом деловом шпоне, для шпонопочиночных станков - та доля сухого форматного шпона, которая планируется для повышения сортности листов на один разряд (обычно 10 - 20%). Загруженность участка обработки кускового шпона определяется объёмом сухого кускового шпона.
Для участка нанесения клея и сборки пакетов объём работ равен объёму сухого делового шпона, поступающего в клеильно - обрезной цех. Здесь нужно учесть, что часть сухого шпона может реализовываться как товарный шпон. При расчете загрузки горячих прессов за объём работ принимают программу предприятия, выраженную в.м3 чистообрезной фанеры. Это же касается и форматно обрезных станков и линий сортирования фанеры. Загрузка шлифовальных станков зависит от доли продукции, подлежащей шлифованию. При расчете объёмов толщина шлифованной и нешлифованной фанеры считается одинаковой.
В приложении II даны нормативы расхода пара, электроэнергии, воды, режущего инструмента на производство различных видов фанерной продукции, а также приведена структура себестоимости продукции. Эти данные будут полезны при выполнении экономической части проектов соответствующих цехов.
Глава 9. Производство строганого шпона 9.1. Характеристика материала Строганый шпон представляет собой тонкие листы древесины, полученные методом строгания брусьев (табл.9.1, 9.2). Он применяется главным образом в мебельной промышленности для облицовки мебельных щитов. Согласно ГОСТ 2977-82 изготовляют шпон как из лиственных, так и хвойных пород (лиственница, сосна). По текстуре древесины строганый шпон классифицируют на виды:
радиальный (Р), полурадиальный (ПР), тангентальный (Т) и тангентально - торцовый (ТТ), получаемый из наростов. В зависимости от качества древесины, размеров по длине и ширине шпон разделяют на 1-й и 2-й сорта.
9.1. Размеры строганого шпона, мм Влажность древесины шпона должна составлять 8 ± 2%.
9.2. Характеристика сырья для получения строганого шпона.
Порода древесины Сорта сырья Диаметр, см, не менее Длина, м,не менее 9.2. Технологический процесс получения строганого шпона 9.2.1. Подготовка к строганию Поперечный раскрой бревен необходим при их длине более 3 м. Используют бензомоторные или электропилы. Использование круглопильных станков ограничено из-за больших диаметров поступающего сырья (для красного дерева до 120 см).
Для продольного раскроя следует применять ленточнопильные станки - вертикальные или горизонтальные (табл.9.3).
Продольный раскрой кряжей на брусья и ванчесы (несимметричные брусья) может выполняться различными способами, выбор которых зависит в основном от диаметра сырья (см. табл. 9.4). Методы отличаются также по трудности крепления ванчесов, по выходу радиального (наиболее ценного) шпона, по количеству одновременно строгаемых брусьев.
9.3. Оборудование для продольного раскроя кряжей комле, мм Производительность ленточнопильного станка, м3 бруса где Кр - коэффициент рабочего времени Кр = 0,9-0,93; Км - коэффициент машинного времени, Км = 0,7- 0,8); U - скорость подачи кряжа при его пилении, м/мин;
b, h - ширина и толщина бруса; м; z - число пропилов.
Рис.9.1 Схемы продольного раскроя кряжей: а - кряжевой, б - брусовой тупокантный, в - ванчесный 4-х сторонний, г - способ троения, д - тоже с выпиливанием сердцевинной доски, е - ассиметричный, ж - комбинированный, з - раскрой на четверти, и ванчесный с выпиливанием сердцевинной доски, к -секторно-радиальный.
Гидротермообработка сырья проводится для повышения ее пластических свойств. Оптимальная температура древесины составляет 40 - 750 в зависимости от ее плотности (зависимость примерно прямопропорциональная).
Можно использовать парильные ямы (прогрев над водой), парильные камеры и автоклавы (прогрев в среде пара) - табл.9.5. Проварка не используется, так как она способна вызвать нежелательное изменение цвета древесины.
9.4. Способы продольного раскроя кряжей и их характеристики Способ раскроя Диаметр Выход Характеристика способа Кряжевой Трудоемкость надежного крепления, тангенциальная текстура шпона.
Способ троения без Более 80 Наибольший выход радиального шпона, выпиливания серд- высокая трудоемкость процесса раскроя цевинной доски Комбинированный Более 80 Для сырья больших диаметров с отлупными трещинами Раскрой на четверти Высокий выход радиального шпона. Строгание ванчесов в две стадии.
Брусья загружаются на вагонетке, куда укладываются с помощью тельфера.
Цикл гидротермообработки в автоклаве включает в себя:
- время подъема давления ( 20 - 30 минут), - время выдержки при максимальном давлении (80 - 240 минут в зависимости от породы, размеров бруса и начальной температуры), - время снижения давления (20 - 30 минут), - время вспомогательных операций (загрузка и выгрузка брусьев).
Время выравнивания температур после выгрузки брусьев составляет 120 - минут в зависимости от толщины брусьев.
Производительность парильной камеры, парильной ямы или автоклава, м3/см где tсм -продолжительность смены, ч; tц - время полного цикла тепловой обработки, включающее время пропарки и время вспомогательных операций, ч; V объём загружаемого сырья, м3.
9.5. Характеристика пропарочных агрегатов Характеристики пара Острый насыщенный Отработанный 9.6. Продолжительность пропарки брусьев в парильных камерах и ямах 9.2.2.Строгание брусьев и ванчесов Строгание брусьев и ванчесов выполняется на шпонострогальных станках, которые в зависимости от направления главного движения могут быть горизонтальными, наклонными или вертикальными. Основными узлами горизонтального станка (рис.9.1) являются суппорт, совершающий возвратно - поступательное движение, и стол с брусьями поднимающимися на толщину шпона за ход суппорта (в вертикальных станках наоборот).
В нашей стране наиболее распространены горизонтальные станки марок FMM-3100, DK-4000, DKV-3000 производства б. ЧССР (табл. 9.7) Цикл работы на станке складывается из следующих операций:
- загрузка ванчесов на стол станка, их установка и крепление;
- строгание и вынос листов;
- раскладка листов в кноли (кноль - пачка шпона из одного бруса);
- перекантовка ванчесов (брусьев);
- строгание после перекантовки;
- удаление отструга.
Рис. 9.2. Схема работы шпонострогального станка: 1 - стол станка; 2 - зажимы; 3 брусья; 4 - суппорт; 5 - прижимная линейка; 6 - строгальный нож.
Рис.9.3. Общий вид станка DKV-3000: 1 - суппорт, 2 - шатун, 3 - кривошип, 4 - зубчатое колесо, 5 - электродвигатель, 6 - клиноременная передача.
9.7. Техническая характеристика шпонострогальных станков..
Максимальные размеры блока заготовок, мм Толщина строгаемого шпона, Рис.9.4 Схема вертикального шпонострогального станка модели TZ/E (Cremona).
На рис. 9.4 показана схема вертикального шпонострогального станка ф. Cremona с возвратно-поступательным движением в вертикальной плоскости зажимного приспособления и поступательным движением ножевого суппорта.
Для уборки листов шпона из полости суппорта разработаны специальные приспособления, которые значительно облегчают труд рабочих и повышают производительность горизонтального станка. Для вертикальных станков такие приспособления не требуются.
В станках используют ножи с углом заточки 16-170 и задним углом 1-20. При этом сам нож движется под углом 10-120 к оси бруса, что позволяет снизить ударные нагрузки при строгании. Величина обжима шпона - 10-15%.
В последние годы появились станки принципиально новой конструкции. Желание избавиться от возвратно - поступательного движения больших масс привело к созданию роторных и ротационных шпонострогальных станков. В первых вращательное движение совершает режущий инструмент, а во вторых - балка с зажатыми брусьями (станок ф.Cremona - рис.9.5). В обоих случаях строгание фактически превращается в прерывистое лущение чураков с получением сравнительно широких кусков шпона. Станок позволяет получать в основном При криволинейном строгании на станке Cremona листы не свертываются и обеспечивается максимальное использование бревна. Перед строганием на бревне фрезеруются два параллельных паза и строгается одна сторона бревна, что экономит время и сырье. Максимальная длина 4000 мм, наибольший диаметр сырья 800 мм, получаемая толщина шпона от 0,1 до 3,3 мм. Число резов станка изменяется в пределах от 20 до 110 в минуту, установленная мощность 207 кВт.
За станком установлен конвейер для подачи шпона в 3-ярусную сушилку. Производительность всей линии до 5 млн. м2 в год, число работающих - 5 человек.
Заслуживает внимания технология получения тонких досок методом строгания (безопилочного резания вдоль По сравнению с выпиливанием тонких досок на ленточнопильных станках при этом варианте экономия древесины составляет 12-18%. Получаемый на таких станках материал отличается хорошим качеством поверхности, стабильной толщиной. После сушки и шлифования слои используют в качестве лицевого слоя трехслойного паркета и в других изделиях.
9.8.Технические характеристики строгальных станков ф. Линк Максимальная длина бруса, мм Не ограничена Не ограничена Последующая обработка строганого шпона практически совпадает с операциями, выполняемыми над лущеным шпоном (сушка, сортировка, прирубка и упаковка). Из отечественного оборудования для сушки строганого шпона рекомендуется паровая сушилка марки СУР - 5, для прирубки шпона - гильотинные ножницы НГ-30.
9.3. Технологические расчеты в производстве строганого шпона Обычно требуется рассчитать программу цеха, определить потребное количество сырья на программу, составить баланс его использования, а также рассчитать необходимое количество оборудования цеха производства строганого шпона. Все расчеты можно выполнить, используя нормативные данные или аналитически. Обычно первый способ применяют для получения более общих результатов, при оценке возможных затрат на материалы, оборудование, при оценке вариантов проектов и т.п. Аналитический способ более точен и возможен для конкретных условий производства.
9.3.1.Расчет по нормативным данным Программа участка (цеха) определяется по производительности головного оборудования, в данном случае шпонострогательных станков. Производительность может быть рассчитана по часовой эталонной мощности и коэффициентам приведения (табл. 9.9).
Годовая программа цеха в тыс.м где Тэф - эффективный фонд времени ( 6000 часов при трехсменной работе и 4032 часа - при двухсменной), n - количество станков в цехе.
Потребность в сырье на программу выпуска строганого шпона определяется по индивидуальным нормам расхода, указанным в табл. 9.10.
9.9. Часовая эталонная мощность (Qэт) шпонострогательных станков и коэффициенты приведения (Кэт) при длине бруса 3 м.
ДКВ- FMM - Линия Cremona Станки с механизмом отбора a - число рабочих ходов суппорта в минуту, N - количество брусьев в одном поставе (определяется максимальной шириной блока заготовок, зажимаемых в станке).
9.10. Нормативы расхода дуба, бука и ясеня на 1000 м2 строганого шпона толщиной 0,8 мм.
Диаметр Обычно предприятие выпускает шпон различных толщин и использует сырье различных пород и диаметров. Поэтому при расчете программы и потребности в сырье следует пользоваться средневзвешенными нормами расхода. Средневзвешенная величина в общем случае определяется по формуле:
где qi - номинальное значение параметра, Рi - доля соответствующей величины, %;. Например, планируется использовать буковое сырье 1 сорта диаметром 40 см (35%) и 50 см (65%). Соответствующие нормы расхода составляют (см.
табл.9.9) 1,905 и 1,796. Тогда средневзвешенная величина составит:
9.11. Нормативы расхода красного дерева на 1000 м2 строганого шпона толщиной 0,8 мм Диаметр Расход, Диаметр Расход Диаметр Расход, Диаметр Расход, При строгании шпона другой толщины используют поправочные коэффициенты:
Баланс сырья можно составить с учетом потерь по операциям технологического процесса (табл.9.12).
9.12. Ориентировочные потери древесины в цикле получения строганого шпона, % Потери древесины Лиственные породы Тропические породы В соответствие с этим выход сырого шпона составляет 72-70%, а выход сухого шпона 50-40% (за 100% принят объём кряжа). Расчеты ведутся на 1000 м сухого товарного шпона. Из вторичного сырья подлежат переработке: горбыль и отструг - на мелкую пилопродукцию, срезки - на технологическую щепу и др.
продукцию (см. глава 10).
9.3.2. Аналитический способ расчета Производительность шпонострогального станка где t1 - время на установку и правку ножа, в среднем t1 =25 мин; tc - время строгания, мин где tвсп - вспомогательное время цикла строгания, tвсп =8-9 мин; Nбр - число брусьев в закладке,шт (принимается соответственно ширине бруса и максимальной ширине блока заготовок, загружаемых на стол станка); Н - высота бруса,мм; h1 - толщина срезков, ( в среднем h1 = 6 мм); h2 - толщина отструга, h2 = 25 - 40 мм; l - длина бруса, м; bср средняя ширина листа шпона, м; Sш - толщина шпона, мм; nх - число ходов суппорта в мин. Годовая программа цеха М определяется аналогично (см. стр. ) Потребность в сырье определяется методом расчета пооперационных потерь. Разберем этот метод на примере четырехкантного способа раскроя (рис.9.7) Баланс древесины при получении сырого строганого шпона можно выразить такой формулой, м где Vкр - объём кряжа,; V1 - потери на горбыль; V2 - потери на опилки; V3 - потери на срезки; V4 - потери на отструг; Vшп - полезный выход шпона.
Потери на горбыль (V1) и опилки (V2 ) рассчитываются как разница между объемом кряжа и объемом бруса:
Vкр - объем кряжа данного диаметра и длины, м. Определяется по таблицам объемов круглых лесоматериалов (см. табл.3.5). Для больших диаметров объем кряжа можно рассчитать как объем цилиндра; L - длина кряжа, м; Н - высота бруса, м; К1 - коэффициент, учитывающий наличие обзола на брусе, К1 = 0,98.
Потери на опилки зависят от ширины пропила (b0, мм):
где n - число пропилов на брусе.
Потери на срезки составят где - высота срезков, можно принять h1 = 6 мм на две стороны; К2 - коэффициент, учитывающий потери древесины при гидротермической обработке брусьев, К2 = 0,96.
Потери на отструг (V4) определяются толщиной отструга, которая составляет 25 - 40 мм. (можно принять в среднем 30 мм). Тогда где h2 - толщина отструга, h2 = 25-40 мм.
Полезный выход шпона в % от объема кряжа Потребность в сырье на программу цеха, м При последующей обработке сырого шпона имеют место потери при сушке, сортировке и прирубке листов шпона. Безвозвратные потери на усушку шпона составляют примерно 7%, при сортировке и прирубке - 14% для лиственных пород и 22 % - для красного дерева. Проведенные расчеты для наглядности можно отразить в табл. 9.13.
9.13. Баланс сырья при получении строганого шпона..
Брус после ГТО Сухой шпон Товарный шпон В этой таблице объем бруса после ГТО меньше исходного на величину потерь при гидротермообработке. Объём сухого шпона меньше объема сырого на величину потерь при сушке, а объем товарного шпона меньше, чем объем сухого - на величину потерь при сортировке и прирубке (см. табл. 9.12).
9.3.3. Выбор и расчет потребности в оборудовании Выбор той или иной марки оборудования определяется многими факторами как технического, так и экономического характера - возможная производительность, занимаемая площадь, потребляемая мощность, наличие расходных материалов, безопасность труда, современность конструкции, соответствие параметрам имеющегося сырья и т.п. Потребное количество оборудования в общем случае определяется по часовой (сменной) производительности станка (агрегата) и объему работ, приходящемуся на данный станок:
Годовая производительность оборудования :
где Nсм - число смен, при двухсменной работе Nсм = 500, при трехсменной Nсм = 750); Тэфф - эффективный фонд времени, при двухсменной работе Тэф = 6000 ч, при двухсменной Тэф = 4160 ч.
Количество единиц оборудования где Q - объём работ, приходящийся на данный станок Загрузка головного оборудования (шпонострогального станка) принимается равной 100%.
Для сушки шпона применяют те же роликовые паровые сушилки, что и для лущеного шпона. При загрузке и выгрузке шпона необходимо сохранять последовательность выхода листов шпона из-под ножа шпонострогального станка, укладывая их в отдельные стопы с сохранением “кноля” - пачки шпона из одного бруса с одинаковой текстурой. Расчет потребности сушилок приведен в разделе 5.3. Это же касается и гильотинных ножниц для прирубки кусков (рекомендуется марки НГ-30). В результате расчетов целесообразно заполнить таблицу по форме табл. 9.14.
При составлении данной таблицы особо следует обратить внимание на размерность величин. Дело в том, что потребность в сырье оценивается в м3, а потребность в шпоне - в м2. При расчете потребности в оборудовании целесообразно все величины перевести в м3.
9.14. Cводная таблица загрузки оборудования.
Продольный раскрой Гидротермообработка Строгание шпона Сушка шпона Прирубка шпона 9.3. Технологические расчеты в производстве строганого шпона Обычно требуется рассчитать программу цеха, определить потребное количество сырья на программу, составить баланс его использования, а также рассчитать необходимое количество оборудования цеха производства строганого шпона. Все расчеты можно выполнить, используя нормативные данные или аналитически. Обычно первый способ применяют для получения более общих результатов, при оценке возможных затрат на материалы, оборудование, при оценке вариантов проектов и т.п. Аналитический способ более точен и возможен для конкретных условий производства.
9.3.1.Расчет по нормативным данным Программа участка (цеха) определяется по производительности головного оборудования, в данном случае шпонострогательных станков. Производительность может быть рассчитана по часовой эталонной мощности и коэффициентам приведения (табл. 9.9).
Годовая программа цеха в тыс.м где Тэф - эффективный фонд времени ( 6000 часов при трехсменной работе и 4032 часа - при двухсменной), n - количество станков в цехе.
Потребность в сырье на программу выпуска строганого шпона определяется по индивидуальным нормам расхода, указанным в табл. 9.10.
9.9. Часовая эталонная мощность (Qэт) шпонострогательных станков и коэффициенты приведения (Кэт) при длине бруса 3 м.
ДКВ- FMM - Линия Cremona Станки с механизмом отбора a - число рабочих ходов суппорта в минуту, N - количество брусьев в одном поставе (определяется максимальной шириной блока заготовок, зажимаемых в станке).
9.10. Нормативы расхода дуба, бука и ясеня на 1000 м2 строганого шпона толщиной 0,8 мм.
Диаметр Обычно предприятие выпускает шпон различных толщин и использует сырье различных пород и диаметров. Поэтому при расчете программы и потребности в сырье следует пользоваться средневзвешенными нормами расхода. Средневзвешенная величина в общем случае определяется по формуле:
где qi - номинальное значение параметра, Рi - доля соответствующей величины, %;. Например, планируется использовать буковое сырье 1 сорта диаметром 40 см (35%) и 50 см (65%). Соответствующие нормы расхода составляют (см.
табл.9.9) 1,905 и 1,796. Тогда средневзвешенная величина составит:
9.11. Нормативы расхода красного дерева на 1000 м2 строганого шпона толщиной 0,8 мм Диаметр Расход, Диаметр Расход Диаметр Расход, Диаметр Расход, При строгании шпона другой толщины используют поправочные коэффициенты:
Баланс сырья можно составить с учетом потерь по операциям технологического процесса (табл.9.12).
9.12. Ориентировочные потери древесины в цикле получения строганого шпона, % В соответствие с этим выход сырого шпона составляет 72-70%, а выход сухого шпона 50-40% (за 100% принят объём кряжа). Расчеты ведутся на 1000 м сухого товарного шпона. Из вторичного сырья подлежат переработке: горбыль и отструг - на мелкую пилопродукцию, срезки - на технологическую щепу и др.
продукцию (см. глава 10).
9.3.2. Аналитический способ расчета Производительность шпонострогального станка строгания, мин где tвсп - вспомогательное время цикла строгания, tвсп =8-9 мин; Nбр - число брусьев в закладке,шт (принимается соответственно ширине бруса и максимальной ширине блока заготовок, загружаемых на стол станка); Н - высота бруса,мм; h1 - толщина срезков, ( в среднем h1 = 6 мм); h2 - толщина отструга, h2 = 25 - 40 мм; l - длина бруса, м; bср средняя ширина листа шпона, м; Sш - толщина шпона, мм; nх - число ходов суппорта в мин. Годовая программа цеха М определяется аналогично (см. стр. ) Потребность в сырье определяется методом расчета пооперационных потерь. Разберем этот метод на примере четырехкантного способа раскроя (рис.9.7) Баланс древесины при получении сырого строганого шпона можно выразить такой формулой, м где Vкр - объём кряжа,; V1 - потери на горбыль; V2 - потери на опилки; V3 - потери на срезки; V4 - потери на отструг; Vшп - полезный выход шпона.
Потери на горбыль (V1) и опилки (V2 ) рассчитываются как разница между объемом кряжа и объемом бруса:
Vкр - объем кряжа данного диаметра и длины, м. Определяется по таблицам объемов круглых лесоматериалов (см. табл.3.5). Для больших диаметров объем кряжа можно рассчитать как объем цилиндра; L - длина кряжа, м; Н - высота бруса, м; К1 - коэффициент, учитывающий наличие обзола на брусе, К1 = 0,98.
Потери на опилки зависят от ширины пропила (b0, мм):
где n - число пропилов на брусе.
Потери на срезки составят где - высота срезков, можно принять h1 = 6 мм на две стороны; К2 - коэффициент, учитывающий потери древесины при гидротермической обработке брусьев, К2 = 0,96.
Потери на отструг (V4) определяются толщиной отструга, которая составляет 25 - 40 мм. (можно принять в среднем 30 мм). Тогда где h2 - толщина отструга, h2 = 25-40 мм.
Полезный выход шпона в % от объема кряжа Потребность в сырье на программу цеха, м При последующей обработке сырого шпона имеют место потери при сушке, сортировке и прирубке листов шпона. Безвозвратные потери на усушку шпона составляют примерно 7%, при сортировке и прирубке - 14% для лиственных пород и 22 % - для красного дерева. Проведенные расчеты для наглядности можно отразить в табл. 9.13.
9.13. Баланс сырья при получении строганого шпона..
Брус после ГТО Сухой шпон Товарный шпон В этой таблице объем бруса после ГТО меньше исходного на величину потерь при гидротермообработке. Объём сухого шпона меньше объема сырого на величину потерь при сушке, а объем товарного шпона меньше, чем объем сухого - на величину потерь при сортировке и прирубке (см. табл. 9.12).
9.3.3. Выбор и расчет потребности в оборудовании Выбор той или иной марки оборудования определяется многими факторами как технического, так и экономического характера - возможная производительность, занимаемая площадь, потребляемая мощность, наличие расходных материалов, безопасность труда, современность конструкции, соответствие параметрам имеющегося сырья и т.п. Потребное количество оборудования в общем случае определяется по часовой (сменной) производительности станка (агрегата) и объему работ, приходящемуся на данный станок:
Годовая производительность оборудования :
где Nсм - число смен, при двухсменной работе Nсм = 500, при трехсменной Nсм = 750); Тэфф - эффективный фонд времени, при двухсменной работе Тэф = 6000 ч, при двухсменной Тэф = 4160 ч.
Количество единиц оборудования где Q - объём работ, приходящийся на данный станок Загрузка головного оборудования (шпонострогального станка) принимается равной 100%.
Для сушки шпона применяют те же роликовые паровые сушилки, что и для лущеного шпона. При загрузке и выгрузке шпона необходимо сохранять последовательность выхода листов шпона из-под ножа шпонострогального станка, укладывая их в отдельные стопы с сохранением “кноля” - пачки шпона из одного бруса с одинаковой текстурой. Расчет потребности сушилок приведен в разделе 5.3. Это же касается и гильотинных ножниц для прирубки кусков (рекомендуется марки НГ-30). В результате расчетов целесообразно заполнить таблицу по форме табл. 9.14.
При составлении данной таблицы особо следует обратить внимание на размерность величин. Дело в том, что потребность в сырье оценивается в м3, а потребность в шпоне - в м2. При расчете потребности в оборудовании целесообразно все величины перевести в м3.
9.14. Cводная таблица загрузки оборудования.
Продольный раскрой Гидротермообработка Строгание шпона Сушка шпона Прирубка шпона Глава 10. Использование вторичного сырья фанерного производства Фанерное производство, несмотря на внедрение прогрессивной техники и технологии, остается материалоёмкой отраслью промышленности. Затраты на сырье в отрасли составляют 60% себестоимости продукции, а удельный вес древесных отходов превышает 50%. Использование этих отходов происходит далеко не самым оптимальным образом. Основная масса используется на топливо, а часть просто вывозится в отвалы.
Опыт передовых предприятий в России и за рубежом показывает, что существует множество способов рационального и комплексного использования древесного сырья в полном его объеме с получением десятков наименований продукции, пользующейся спросом в самых различных отраслях промышленности и сферы потребления.
10.1. Классификация и характеристика отходов Вторичное сырье фанерного производства (табл.10.1) классифицируется по следующим признакам:
1) по структуре - крупномерные, кусковые, мягкие;
2) по наличию коры - из окоренного или неокоренного сырья;
3) по породному составу - хвойные, твердолиственные, мягколиственные и смешанного состава;
4) по влажности - влажные (более 12%) и сухие.
10.1. Максимальные размеры древесных отходов, мм Крупномерные Отрезки долготья, кряжей и чураков 1300 - Наиболее предпочтительные размерно - качественные характеристики с точки зрения использования имеют крупномерные отходы, которые сохраняют все свойства природной древесины и основные размеры сырья. Наибольший интерес представляют карандаши и отструги, не имеющие коры.
Кусковые отходы отличаются большим видовым разнообразием и неопределенностью размеров. Они могут содержать кору до 35 % либо отвержденную смолу (до 15%) в обрезках фанеры. Преимущества этих отходов - в стабильности толщины, в сравнительно большой длине. Шпон-рванина, кроме того, представляет наиболее здоровую периферийную часть ствола.
Ценность мягких отходов - в том, что их можно использовать без доизмельчения, а иногда и без сушки (древесная пыль, опилки при обрезке фанеры).
Наиболее специфическим вторичным сырьем является кора, которая не вошла в классификационную таблицу. Она содержит не только кору и луб, но и до 3 древесины периферийной части ствола. При этом кора имеет и особые химические свойства, различные у разных пород древесины.
Общие ресурсы отходов в фанерной и спичечной промышленности потенциально составляют 56,6% перерабатываемого сырья, из них крупномерные примерно 32%, кусковые 60% и мягкие 8%. Отходы окорки не входят в баланс древесины, их объем оценивается примерно в 12,5% общего объема сырья.
10.2. Переработка и использование крупномерных отходов Крупномерные отходы являются наиболее ценным вторичным сырьем в производстве шпона и фанеры. Их переработка возможна в товарный шпон путем долущивания или дострагивания сортиментов, в технологическую щепу путем измельчения в рубительных машинах, в технологическую стружку - в стружечных станках, в упаковочную стружку - в древошерстных станках, а также в пилопродукцию и товары народного потребления - на станках общего назначения.
10.2.1. Переработка отходов в товарный шпон От 3 до 6% сырья могут составлять некондиционные кряжи и чураки, отбракованные по наличию ядровой гнили или загнивающего ложного ядра, что препятствует их лущению в станках, оснащенных обычными кулачками. Для такого сырья разработаны методы центровки в лущильных станках специальными зажимными элементами - планшайбами, которые передают осевое усилие со шпинделей на периферийную, здоровую часть чурака. Диаметр планшайбы должен быть не менее диаметра чурака. Для обеспечения нормального процесса лущения на суппорте станка установлена выносная траверса с лущильным ножом, длина которого меньше длины чурака, а по концам траверсы и ножа закреплены подрезающие ножи.
древесины минимальной толщины, а сам карандаш имеет вид катушки. Опыт показал, что выносной траверсы от корпуса ножедержателя должна составлять 140 - 150 мм, длина торцовых шайб - 90 - 100 мм, а наименьшая толщина кольца здоровой древесины карандаша - 10 - 15 мм. При этом способе получают неформатный шпон из-за уменьшенной длины зоны лущения.
Значительный эффект в использовании некондиционного сырья дает использование бесшпиндельных лущильных станков. Наилучшие результаты они дают при долущивании карандашей (см. рис.4.6). Долущивание карандашей возможно и на малых лущильных станках типа СпЛУ. Перед этим они распиливаются на три или две заготовки. Долущивание позволяет уменьшить диаметр карандашей с 80 - 100 мм до 45 - 70 мм и получить дополнительно от 0,2 до 0,6 м3 шпона на каждые 100 штук карандашей длиной 0,8 м.
Заслуживает внимания способ, разработанный в Японии, который состоит в том, что карандашам на специальном станке путем строгания сначала придаётся шестигранная форма. Затем семь таких брусков специальным клеем склеивают в блок, имеющий форму чурака, пригодного для лущения на обычном лущильном станке.
В производстве строганого шпона самым ценным вторичным продуктом являются отструги твердолиственных пород, максимальные размеры которых могут составлять до 3000 х 300 х 70 мм. Для получения из них дополнительного шпона существует несколько способов.
Первый способ предусматривает крепление отстругов на столе шпонострогального станка специальными крюками толщиной 7 - 8 мм, что позволяет обеспечить их строгание с толщины 60 - 70 мм до толщины 15 - 20 мм. Второй способ связан с реконструкцией станка, на котором устанавливается плита с системой присосов и манжетами. Включение вакуум - насоса создает разрежение, и отструги плотно прижимаются к столу с усилием 100 - 150 кН, после чего могут строгаться до толщины 5 - 10 мм. Третий способ основан на соединении нескольких отстругов в один блок с помощью деревянных нагелей или специальным клеем. Соединение на клею более перспективно, так как дает более высокий выход шпона, и более безопасно, чем при использовании нагелей. Клей КМ - на основе смолы СМ 60 - 08 обеспечивает склеивание древесины влажностью до 80 - 90%. Он наносится на обе склеиваемые поверхности в количестве 200 - г/м2. Количество отстругов в блоке определяется средней высотой ванчеса и возможностями оборудования. Блоки склеивают в струбцинах при совмещении операций склеивания и гидротермической обработки при давлении не менее 0, МПа. После этого блоки обрезают с четырех сторон с целью образования достаточно ровной плоскости прилегания блоков при их креплении в станке. Выход строганого шпона из склеенного блока составляет 50 -56 %.
10.2.2 Переработка отходов в технологическую щепу ГОСТ 15815 - 83 предусматривает следующие марки щепы в зависимости от ее назначения:
Ц-1 для производства сульфитной целлюлозы и древесной массы, предназначенной для изготовления бумаги с регламентируемой сорностью;
Ц-2 - то же для бумаги и картона с нерегламентируемой сортностью и для производства сульфатной и бисульфатной целлюлозы, предназначенной для изготовления бумаги и картона с регламентируемой сорностью;
Ц-3 - для производства сульфатной целлюлозы и различных видов полуцеллюлозы, предназначенной для изготовления бумаги и картона с нерегламентируемой сорностью;
ГП-1 для производства спирта, дрожжей, глюкозы и фурфурола;
ГП-2 для производства пищевого кристаллического ксилита;
ГП-3 для производства фурфурола и дрожжей при двухфазном гидролизе;
ПВ - для производства древесноволокнистых плит;
ПС - для производства древесностружечных плит.
Показатели качества щепы зависят от её марки (табл. 10.2 ).
10.2. Показатели качества технологической щепы.
Массовая доля коры, %, не более Массовая доля гнили, %, не более Массовая доля минеральных примесей, Остаток, % не более, на ситах с диаметром, мм:
Для плитного производства можно использовать все лиственные породы или их смесь с хвойными в любом соотношении. ЦНИИФ рекомендует двухпоточную технологию переработки крупномерных отходов фанерного производства (рис.10.2).
Рис.10.2. Схема переработки крупномерных отходов на технологическую щепу: 1, 2, - конвейеры для отходов, 4 - колун, 5 - поперечные конвейеры, 6 - сбрасыватели, 7, 8 дисковые рубительные машины; 9, 10 - гирационные сортировки для щепы, 11 - конвейер для кондиционной щепы, 12 - конвейер для крупной фракции, 13 - конвейер для мелкой фракции, 14 - бункер-накопитель кондиционной щепы, 15 - пневмоустановка для некондиционной фракции.
В первом потоке в щепу перерабатываются отходы с участка раскряжевки и отбраковки чураков, а во втором - карандаши. Схема предусматривает полную механизацию переместительных операций, непрерывность процесса, возможность переключения подачи отходов с одного потока на другой, доизмельчение крупной фракции.
Наиболее характерным недостатком участков измельчения древесины является несоответствие характеристик оборудования размерно - качественным особенностям используемых отходов. Для крупномерных отходов фанерного производства обязательной операцией является раскалывание отрезков кряжей и чураков в случае недопустимого для рубительных машин диаметра, внутренней гнили, трещин и включения металла. Характеристики дровокольных станков отечественного производства даны в табл.10.3.
10.3 Технические характеристики дровокольных станков.
пл.м /ч шт.
ность, кВт В отличие от других станков колун ДО-20 работает по принципу тангенциально - радиального деления. Число получаемых частей при этом равно числу ячеек сменной делительной головки. Для раскалывания бракованных чураков, имеющих длину 1,6 - 1,9 м, то есть более указанной в таблице для всех марок колунов, можно применять станки марок К-131 и 10-32 фирмы “Raute”, обеспечивающие раскалывание чураков длиной 2,5-3,2 м, или предусматривать предварительный поперечный раскрой чураков про длине.
Для измельчения отходов в фанерном производстве рекомендуются машины с наклонной подачей МРН-25 и подобные, а также машины фирмы “Кархула”.
Машины с горизонтальной загрузкой можно использовать для измельчения карандашей. Для переработки больших объемов и при отсутствии дровокольных станков эффективны машины МРН-50 и МРН-100, имеющие большое проходное окно. Для доизмельчения крупной фракции щепы рубительные машины марок МРГ или МРН можно оборудовать дополнительным патроном и повысить выход кондиционной фракции на 6 - 8%.
Для фанерной отрасли наибольший интерес представляет рубительная машина МРНП-40-1, имеющая лучшие показатели по энерго- и металлоемкости и занимаемой производственной площади. Она имеет практически безударный выброс щепы из зоны рубки и снабжена шумопоглощающими устройствами. Для маломерного сырья типа обрезок и отторцовок представляет интерес роторные рубительные машины МРБ-04 и фирмы “Raute”.
Перед подачей щепы на сортировку целесообразно иметь небольшие бункера с дозаторами. Это позволит избежать переполнения сит и проваливания части щепы на среднее сито без сортирования. Хранение готовой кондиционной щепы осуществляется в вертикальных бункерах или на специальном механизированном складе, разработанном в НПО “Научфанпром” с производительностью шнековых питателей до 40 пл.м3/ч и вместимостью 2800 м3.
10.2.3. Переработка отходов в технологическую и упаковочную стружку.
Для предприятий, имеющих собственный цех стружечных плит, возможна переработка отходов, не имеющих коры ( в основном карандашей), не в щепу, а непосредственно в стружку. Для этого требуется распиловка карандашей на мерные отрезки, создание буферного запаса, измельчение заготовок в стружку на стружечных станках, складирование полученной стружки и дозированная выдача ее в производство плит (рис.10.3).
Для стабильной работы стружечных станков необходим не менее чем односменный запас мерных заготовок на конвейере - накопителе. Для поштучной подачи заготовок удобен трехсекционный цепной питатель со скоростями движения цепей соответственно 4,5; 6,5 и 8,5 м/мин. При достаточных запасах заготовок в накопителях их подготовка может проводиться в одну - две смены. Рекомендуемые марки стружечных станков - ДС-6 и ДС-8.