WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Авторефераты, диссертации, методички

 

Pages:     || 2 | 3 | 4 |

«А.А. Титов ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ Учебное пособие Томск – 2010 2 Федеральное агентство по образованию ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра ...»

-- [ Страница 1 ] --

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ

УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

А.А. Титов

ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ

Учебное пособие

Томск – 2010

2

Федеральное агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ

УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиоэлектроники и защиты информации (РЗИ)

УТВЕРЖДАЮ

Заведующий кафедрой РЗИ доктор технических наук, профессор _ А.С. Задорин _2010 г.

ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ

Учебное пособие для студентов специальностей «Организация и технология защиты информации» и «Комплексная защита объектов информатизации»

Разработчик:

Профессор кафедры РЗИ доктор технических наук А.А. Титов;

Томск – УДК 004. Рецензент: А.С. Красько, старший преподаватель кафедры Радиоэлектроники и защиты информации Томского государственного университета систем управления и радиоэлектроники.

Титов А.А.

Технические средства защиты информации: Учебное пособие для студентов специальностей «Организация и технология защиты информации» и «Комплексная защита объектов информатизации». – Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2010. – 77 с.

Учебное пособие предназначено для изучения основных разделов общепрофессионального курса «Технические средства защиты информации».

Для студентов высших учебных заведений специальностей «Организация и технология защиты информации» и «Комплексная защита объектов информатизации».

© Томский гос. ун-т систем управления и радиоэлектроники, ©Титов А.А.,

ОГЛАВЛЕНИЕ

Предисловие

1. Характеристика защищаемой информации

1.1. Понятие об информации как предмете защиты

1.2. Основные свойства информации как предмета защиты.................. 2. Назначение и классификация видов технической разведки ................. 2.1. Назначение и методы разведывательной деятельности................ 2.2. Классификация технической разведки

3. Оптическая разведка

3.1. Оптические каналы утечки информации

3.2. Технические характеристики средств оптической разведки........ 4. Радиоэлектронная разведка

4.1. Виды радиоэлектронной разведки

4.2. Радиоэлектронные каналы утечки информации

4.3. Средства наблюдения в радиодиапазоне

4.4. Средства перехвата радиосигналов

4.5. Методы и средства противодействия перехвату радиосигналов.. 5. Акустическая разведка

5.1. Понятия, определения и единицы измерения в акустике............ 5.2. Каналы утечки речевой информации

5.3. Технические средства подслушивания

5.4. Технические средства обнаружения и подавления радиоканалов утечки акустической информации

5.5. Средства противодействия перехвату электрических сигналов в телефонных линиях

6. Побочные электромагнитные излучения и наводки

6.1. Виды побочных электромагнитных излучений и наводок.......... 6.2. Технические средства обнаружения и подавления ПЭМИН ...... 6.3. Средства устранения ПЭМИН

7. Литература

ПРЕДИСЛОВИЕ

Примечательная особенность настоящего времени – переход от индустриального общества к информационному, в котором информация становится более важным ресурсом, чем материальные или энергетические ресурсы. Ресурсами, как известно, называют элементы экономического потенциала, которыми располагает общество и которые при необходимости могут быть использованы для достижения конкретных целей хозяйственной деятельности.

Давно стали привычными и общеупотребительными такие категории, как материальные, финансовые, трудовые, природные ресурсы, которые вовлекаются в хозяйственный оборот, и их назначение понятно каждому. Но вот появилось понятие «информационные ресурсы», и хотя оно узаконено, но осознано пока еще недостаточно. В приводимой литературе так излагается это понятие: «Информационные ресурсы – отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных, других информационных системах)». Информационные ресурсы являются собственностью, находятся в ведении соответствующих органов и организаций, подлежат учету и защите, так как информацию можно использовать не только для производства товаров и услуг, но и превратить ее в наличность, продав комунибудь, или, что еще хуже, уничтожить.

Собственная информация для производителя представляет значительную ценность, так как нередко получение (создание) такой информации – трудоемкий и дорогостоящий процесс. Очевидно, что ценность информации (реальная или потенциальная) определяется в первую очередь приносимыми доходами.

Особое место отводится информационным ресурсам в условиях рыночной экономики.

Важнейшим фактором рыночной экономики выступает конкуренция.

Побеждает тот, кто лучше, качественнее, дешевле и оперативнее производит и продает. И в этих условиях основным выступает правило: кто владеет информацией, тот владеет миром.

В конкурентной борьбе широко распространены разнообразные действия, направленные на получение (добывание, приобретение) конфиденциальной информации самыми различными способами, вплоть до прямого промышленного шпионажа с использованием современных технических средств разведки. Установлено, что 47% охраняемых сведений добывается с помощью технических средств промышленного шпионажа [1].

В этих условиях защите информации от неправомерного овладения ею отводится значительное место. При этом, целями защиты информации являются: предотвращение разглашения, утечки и несанкционированного доступа к охраняемым сведениям; предотвращение противоправных действий по уничтожению, модификации, искажению, копированию, блокированию информации; предотвращение других форм незаконного вмешательства в информационные ресурсы и информационные системы; обеспечение правового режима документированной информации как объекта собственности; защита конституционных прав граждан на сохранение личной тайны и конфиденциальности персональных данных, имеющихся в информационных системах;

сохранение государственной тайны, конфиденциальности документированной информации в соответствии с законодательством; обеспечение прав субъектов в информационных процессах при разработке, производстве и применении информационных систем, технологий и средств их обеспечения.

Следовательно, защита информации представляет собой многоцелевую проблему, часть которой еще даже не имеет четкой постановки. Наиболее разработаны вопросы защиты информации, содержащей государственную, коммерческую и прочие тайны.

Среди ее направлений выделяют организационно-правовую, программно-аппаратную и инженерно-техническую защиту информации. Организационно-правовая защита информации осуществляется путем выполнения требований и рекомендаций правовых документов. Программно-аппаратная защита занимается обеспечением средств вычислительной техники и автоматизированных систем от несанкционированного доступа и криптографической защитой циркулирующей в них информации. Инженерно-техническая защита информации обеспечивается с помощью технических средств защиты.

Технические средства защиты информации объективно приобретают все больший вес. Такая тенденция обусловлена следующими причинами [2]:

1. Развитием методов и средств добывания информации, позволяющих несанкционированно получать все больший объем информации на безопасном расстоянии от ее источников.

2. Огромными достижениями микроэлектроники, способствующими созданию технической базы для массового изготовления доступных рядовому покупателю средств нелегального добывания информации. Доступность миниатюрных и камуфлированных технических средств добывания информации превращает задачу нелегального добывания информации из уникальной и рискованной операции в прибыльный бизнес, что увеличивает число любителей легкой наживы противозаконными действиями.

3. Оснащением служебных и жилых помещений, а также в последнее время автомобилей, разнообразной радиоэлектронной аппаратурой, физические процессы в которой способствуют случайной неконтролируемой передаче (утечке) конфиденциальной информации из помещений и автомобилей.

Очевидно, что эффективная защита информации с учетом этих тенденций возможна при более широком использовании технических средств защиты.

Рассмотрению технических каналов утечки информации, различных средств технической разведки и технических средств защиты информации посвящено данное учебное пособие. Так как стержнем любой научной дисциплины является ее теория, то наибольшее внимание в книге уделено рассмотрению теоретических функционирования средств технической разведки и технических средств защиты информации.

1. ХАРАКТЕРИСТИКА ЗАЩИЩАЕМОЙ ИНФОРМАЦИИ

1.1. Понятие об информации как предмете защиты Термин информация появился в русском языке от латинского слова (informatio – разъяснение, изложение), и в соответствии с энциклопедическим словарем первоначально означал сведения передаваемые людьми в виде сообщений устным, письменным способом, сигналами, или техническими средствами. В соответствии с терминологией Федерального закона «Об информации, информатизации и защите информации» [3], слово информация означает – сведения о лицах, предметах, фактах, событиях и процессах независимо от формы их представления. Значит информация это сведения. Согласно словарю русского языка Ожегова, сведения – это знания. Следовательно, в общем случае информация – это знания в самом широком значении этого слова.

Раньше считалось, что когда прекращается литься кровь, наступает мир.

Сейчас войны идут постоянно. Эти войны называются информационными.

Нет необходимости уничтожать людей и материальные ценности. Можно управлять человеком через информационные каналы, подчинять его себе таким образом, что это подчинение он воспримет как благо. Опасность этого оружие не только в том, что оно носит массовый характер, но и в том, что большинство людей даже не осознают факта его применения. Например, покупая рекламируемый товар, человек думает, что выбор осуществляет он, хотя реально за него это сделал рекламодатель.

Как и в любых войнах в информационных войнах имеется нападающая сторона и обороняющаяся сторона. Оборона в этом случае ведется в двух направлениях. Это защита от информационного воздействия и защита собственной информации.

Решающее значение для исхода информационной войны имеет защита собственной информации. Среди направлений защиты информации выделяют организационно-правовую, программно-аппаратную и инженернотехническую защиту информации с техническими средствами защиты информации.

Организационно-правовая защита информации осуществляется путем выполнения требований и рекомендаций правовых документов.

Программно-аппаратная защита информации занимается обеспечением средств вычислительной техники и автоматизированных систем управления от несанкционированного доступа и криптографической защитой циркулирующей в них информации.

Инженерно-техническая защита информации и технические средства защиты информации обеспечивают защиту информации с помощью инженерных конструкций и технических средств.

Будем рассматривать информацию как предмет защиты. Защите подлежит секретная и конфиденциальная информация.

К секретной информации относится информация, содержащая государственную тайну. Ее несанкционированное распространение может нанести ущерб интересам государственных органов, организациям, субъектам РФ и РФ в целом. Федеральный закон Российской Федерации от 21.07.93 № 5486– 1 дает следующее определение: государственная тайна – защищаемые государством сведения в области его военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб безопасности Российской Федерации.

Под конфиденциальной информацией понимается информация, содержащую коммерческую и иную тайну. В Словаре терминов и определений по безопасности информации дается следующее определение: конфиденциальная информация – служебная, профессиональная, промышленная, коммерческая или иная информация, правовой режим которой устанавливается ее собственником на основе законов о коммерческой, профессиональной тайне, государственной службе и других законодательных актов. Понятие коммерческой тайны предприятия определено в Федеральном законе Российской Федерации о коммерческой тайне. «Коммерческая тайна – конфиденциальность информации, позволяющая ее обладателю при существующих или возможных обстоятельствах увеличить доходы, избежать неоправданных расходов, сохранить положение на рынке товаров, работ, услуг или получить иную коммерческую выгоду». К информации, составляющей коммерческую тайну относиться научно-техническая, технологическая, производственная, финансово-экономическая или иная информация (в том числе составляющая секреты производства (ноу-хау)), которая имеет действительную или потенциальную коммерческую ценность в силу неизвестности ее третьим лицам, к которой нет свободного доступа на законном основании и в отношении которой обладателем такой информации введен режим коммерческой тайны.

Особенности информации как объекта защиты:

• она нематериальная в том смысле, что нельзя измерить ее параметры, например, массу, размеры, энергию, известными физическими методами и приборами;

• информация, записанная на материальный носитель, может храниться, обрабатываться, передаваться по различным каналам • любой материальный объект содержит информацию о самом себе или о другом объекте.

Как указывает Торокин в книге «Инженерно-техническая защита информации» [2], без информации не может существовать жизнь в любой форме и не могут функционировать созданные человеком любые информационные системы. Без нее биологические и искусственные системы представляют груду химических элементов. Опыты по изоляции органов чувств человека, затрудняющие информационный обмен человека с окружающей средой, показали, что информационный голод (дефицит информации) по своим последствиям не менее разрушителен, чем голод физический.

Несмотря на определенные достижения прикладной области науки – информатики, занимающейся информационными процессами, достаточно четкого понимания сущности информации наука пока не имеет.

1.2. Основные свойства информации как предмета защиты Носители и источники информации Информация доступна человеку, если она содержится на материальном носителе. Так как с помощью материальных средств можно защищать только материальный объект, то объектами защиты являются материальные носители информации. Различают носители – источники информации, носители – переносчики информации и носители – получатели информации. Например, чертеж является источником информации, а бумага, на которой он нарисован, – носитель информации. Физическая природа источника и носителя в этом примере одна и та же – бумага. Однако между ними существует разница. Бумага без нанесенного на ней текста или рисунка может быть источником информации о ее физических и химических характеристиках. Когда бумага содержит семантическую (символьную) информацию, ей присваивается другое имя: чертеж, документ и т. д. Чертеж детали или узла входит в состав более сложного документа – чертежа прибора, механизма или машины и т. д.

вплоть до конструкторской документации образца продукции. Следовательно, в зависимости от назначения источнику могут присваиваться различные имена. Но независимо от наименования документа защищать от хищения, изменения и уничтожения информации надо листы бумаги, которые имеют определенные размеры, вес, механическую прочность, устойчивость краски или чернил к внешним воздействиям. Параметры носителя определяют условия и способы хранения информации. Другие носители, например, поля не имеют четких границ в пространстве, но в любом случае их характеристики измеряемы. Физическая природа носителя–источника информации, носителя–переносчика и носителя–получателя может быть как одинаковой, так и разной. Передача информации путем перемещения ее носителей в пространстве связана с затратами энергии, причем величина затрат зависит от длины пути, параметров среды и вида носителя.

Ценность информации Это свойство оценивается степенью полезности ее для пользователя (собственника, владельца, получателя). Информация может обеспечивать ее пользователю определенные преимущества: приносить прибыль, уменьшить риск в его деятельности в результате принятия более обоснованных решений и др. Нейтральная информация не влияет на состояние дел ее пользователя, но носитель с нейтральной для конкретного получателя информацией может оказывать вредное воздействие на другой носитель с полезной информацией, если близки по значениям параметры носителей, например, частоты колебаний электромагнитных полей разных источников. Носители информации, оказывающее воздействие на другой носитель, представляют собой помехи.

То, что для одного получателя является информацией, для другого – помеха.

Когда во время разговора по телефону из-за неисправности в цепях коммутации телефонной станции слышен разговор других людей, то каждая пара абонентов воспринимает разговор другой как помеху.

Вредной является информация, в результате использования которой ее получателю наносится моральный или материальный ущерб. Когда такая информация создается преднамеренно, то ее называют дезинформацией. Часто вредная информация создается в результате целенаправленной или случайной модификации ее при переносе с одного носителя на другой. Если в качестве таких носителей выступают люди, то вредная информация циркулирует в виде слухов. Широко практикуется способ дезинформирования людей путем использования механизма распространения слухов.

Полезность информации всегда конкретна. Нет ценной информации вообще. Информация полезна или вредна для конкретного ее пользователя. Под пользователями подразумевается как один человек или автомат, так и группа людей и даже все человечество. Чрезвычайно ценная информация для одних пользователей может не представлять ценности для других. Даже информация, ценная для всего человечества, например, технология изготовления лекарств от опасных болезней, для конкретного здорового человека может не представлять интереса. Поэтому при защите информации определяют, прежде всего, круг лиц (фирм, государств), заинтересованных в защищаемой информации, так как вероятно, что среди них окажутся злоумышленники.

В интересах защиты ценной (полезной) информации ее владелец (государство, организация, физическое лицо) наносит на носитель условный знак полезности содержащейся на нем информации, – гриф секретности или конфиденциальности. Гриф секретности информации, владельцами которой является государство (государственные органы), устанавливается на основании Федерального закона Российской Федерации от 06.10.97 № 131–ФЗ «О ГОСУДАРСТВЕННОЙ ТАЙНЕ», и ведомственных перечней сведений, составляющих государственную тайну. В соответствии с постановлением Правительства РФ № 870 от 4 сентября 1995 г. к информации секретной, совершенно секретной и особой важности относится информация, хищение или несанкционированное распространение которой может нанести ущерб соответственно государственной организации (предприятию, учреждению), отрасли (ведомству, министерству), субъекту Федерации и РФ в целом. Для несекретной информации, содержащей служебную тайну, вводят гриф «для служебного пользования».

Для обозначения степени конфиденциальности коммерческой информации применяют различные шкалы ранжирования. Распространена шкала:

«коммерческая тайна – строго конфиденциально» (КТ–СК), «коммерческая тайна – конфиденциально» (КТ–К), «коммерческая тайна» (КТ). Известна шкала: «строго конфиденциально – особый контроль», «строго конфиденциально», «конфиденциально». Применяется также двухуровневая шкала ранжирования коммерческой информации: «коммерческая тайна» и «для служебного пользования».

В качестве критерия для определения грифа конфиденциальности информации могут служить результаты прогноза последствий попадания информации к конкуренту или злоумышленнику, в том числе:

• величина экономического и морального ущерба, наносимого • реальность создания предпосылок для катастрофических последствий в деятельности организации, например, банкротства.

Информация – товар Учитывая, что информация может быть для получателя полезной или вредной, что она покупается и продается, то информацию можно рассматривать как товар. Цена информации связана с ее ценностью, но это разные понятия. Например, при проведении исследований могут быть затрачены большие материальные и финансовые ресурсы, которые завершились отрицательным результатом, т. е. не получена информация, на основе которой ее владелец может получить прибыль. Но отрицательные результаты представляют ценность для специалистов, занимающихся рассматриваемой проблемой, так как полученная информация укорачивает путь к истине.

Полезная информация может быть создана ее владельцем в результате научно-исследовательской деятельности, заимствована из различных открытых источников, может попасть к злоумышленнику случайно, например, в результате непреднамеренного подслушивания и, наконец, добыта различными нелегальными путями. Цена информации, как любого товара, складывается из себестоимости и прибыли.

Себестоимость определяется расходами владельца информации на ее получение путем:

• проведения исследований в научных лабораториях, аналитических центрах, группах и так далее;

• покупки информации на рынке информации;

• добывания информации противоправными действиями.

Прибыль от информации ввиду ее особенностей может принимать различные формы, причем денежное ее выражение не является самой распространенной формой. В общем случае прибыль от информации может быть получена в результате следующих действий:

• продажи информации на рынке;

• материализации информации в продукции с новыми свойствами или технологии, приносящими прибыль;

• использования информации для принятия более эффективных решений.

Последняя форма прибыли от информации не столь очевидна, но она самая распространенная. Это обусловлено тем, что любая деятельность человека есть по своей сути последовательность принятия им решений. Большинство решений принимается человеком бессознательно, он осознано принимает в основном жизненно важные решения. Для принятия любого решения нужна информация, причем, чем выше риск и цена решения, тем большего объема должна быть информация. Размышления перед принятием решения есть не что иное, как переработка человеком имеющейся у него информации.

По своему опыту каждый знает, как трудно принять ответственное решение в условиях дефицита информации или времени.

Дефицит времени при принятии решений возникает, когда недостаточно времени для восприятия (чтения) и обработки информации, необходимой для принятия обоснованного решения. При недостатке времени часть информации не учитывается, что по последствиям аналогично дефициту информации.

Поэтому руководитель требует от своих помощников представлять ему информацию в обобщенном виде и форме, позволяющих воспринять ее в сжатые сроки. Учитывая жизненную потребность в информации для любых живых организмов, природа создала механизм, заставляющий их искать информацию в случае ее дефицита. Таким общим механизмом для активизации деятельности живых существ по удовлетворению основных потребностей, в том числе информационной потребности, являются эмоции. Уровень отрицательных эмоций живого существа пропорционален дефициту информации, необходимой для принятия им решений. Алгоритм поведения живого человека формируется таким, чтобы устранить причины отрицательных эмоций, в том числе путем поиска информации.

Изменение ценности информации во времени Ценность информации изменяется во времени. Распространение информации и ее использование приводят к изменению ее ценности и цены. Характер изменения ценности во времени зависит от вида информации. Для научной информации эта зависимость часто имеет волнообразный вид. Информация об открытии даже новых законов или явлений природы вначале должным образом не оценивается. Например, в начале века результаты исследований по атомной физике носили чисто познавательный характер и интересовали узкий круг ученых. Информация в этой области приобрела чрезвычайно высокую ценность, когда появились реальные возможности практического использования атомной энергии. По мере того, как исчерпываются на определенном этапе научно-технического прогресса возможности практической реализации теоретических результатов, ценность информации убывает. Новые технологии или достижения в смежных областях могут увеличить ценность давно полученных знаний. Недаром говорят, что новое – это хорошо забытое старое.

Ценность большинства видов информации, циркулирующей в обществе, со временем уменьшается – информация стареет. Старение информации в первом приближении можно аппроксимировать выражением вида [4]:

где С0 – ценность информации в момент ее возникновения (создания);

– время от момента возникновения информации до момента ее использования;

жц – продолжительность жизненного цикла информации (от момента возникновения до момента устаревания).

В соответствии с этим выражением за время жизненного цикла ценность информации уменьшается до 0.1 первоначальной величины. В зависимости от продолжительности жизненного цикла коммерческая информация в классифицируется следующим образом:

• оперативно-тактическая, теряющая ценность примерно по 10% в день (например, информация выдачи краткосрочного кредита, предложения по приобретению товара в срок до одного месяца и др.);

• стратегическая информация, ценность которой убывает примерно 10% в месяц (сведения о партнерах, о долгосрочном кредите, развитии и т.

Информация о законах природы имеет очень большое время жизненного цикла. Ее старение проявляется в уточнении законов, например, в ограничениях законов Ньютона для микромира.

Виды защищаемой информации По содержанию любая информация может быть отнесена к семантической (символьной) или к информации о признаках материального объекта – признаковой. Сущность семантической информации не зависит от характеристик носителя. Содержание текста, например, не зависит от качества бумаги, на которой он написан, или физических параметров другого носителя.

Семантическая информация – продукт абстрактного мышления человека и отображает объекты, явления, как материального мира, так и создаваемые им образы и модели с помощью символов на языках общения людей. Языки общения включают как естественные языки национального общения, так и искусственные профессиональные языки. Языки национального общения формируются в течение длительного времени развития нации. В нем устаревшие слова постепенно отмирают, но появляются новые, вызванные развитием человечества, в том числе техническим прогрессом.

Семантическая информация на языке национального общения представляется в виде упорядоченной последовательности знаков (букв, цифр, иероглифов) алфавита этого языка и записывается на любом материальном носителе. В области средств регистрации и консервации семантической информации изыскиваются носители, обеспечивающие все более высокую плотность записи и меньшее энергопотребление. Профессиональные языки создаются специалистами для экономного и компактного отображения информации. Существует множество профессиональных языков: математики, музыки, радиоэлектроники, автодорожного движения, химии и т. д. Любая предметная область содержит характерные для нее понятия и условные обозначения, часто непонятные необученному этому языку человеку. Для однозначного понимания этого языка всеми специалистами областей науки, техники, искусства и др., термины и условные обозначения стандартизируются.

В принципе все то, что описано на профессиональном языке, можно представить на языке общечеловеческого общения, но такая форма записи громоздка и неудобна для восприятия информации человеком. Кроме того, использование носителей различной физической природы позволяет подключать для ввода информации в мозг человека все многообразие его рецепторов (датчиков). При просмотре кинофильмов, например, основной объем информации зритель поручает через органы зрения. Музыкальное сопровождение фильма через слуховой канал ввода информации оказывает дополнительное воздействие на эмоциональную сферу зрителя. Известны попытки дополнить эти каналы воздействием на органы обоняния человека путем создания в кинозале соответствующих запахов. В ситуациях, когда нельзя использовать для информирования человека зрительные или акустические сигналы или эти каналы перегружены, воздействуют на его тактильные рецепторы. Например, нательное средство для обнаружения записывающего устройства в кармане собеседника информирует о работе диктофона с помощью индикатора, создающего вибрацию.

Информация признаковая описывает конкретный материальный объект на языке его признаков. Описание объекта содержит признаки его внешнего вида, излучаемых им полей и элементарных частиц, состава и структуры веществ, из которых состоит объект. Источниками признаковой информации являются сами объекты. К ним в первую очередь относятся интересующие зарубежную разведку или отечественного конкурента люди, новая продукция и материалы, помещения и даже здания, в которых может находиться конфиденциальная информация. В зависимости от вида описания объекта признаковая информация делится на информацию о внешнем виде (видовых признаках), о его полях (признаках сигналов), о структуре и составе его веществ (признаках веществ).

Классификация информации по содержанию представлена на рис. 1.1.

национального сиональном признаках Рис. 1.1. Классификация информации, защищаемой техническими Защищаемая информация неоднородна по содержанию, объему и ценности. Следовательно, защита будет рациональной в том случае, когда уровень защиты, а следовательно, затраты, соответствуют количеству и качеству ин формации. Если затраты на защиту информации выше ее цены, то уровень защиты неоправданно велик, если существенно меньше, то повышается вероятность уничтожения, хищения или изменения информации. Для обеспечения рациональной защиты возникает необходимость структурирования конфиденциальной информации, т. е. разделения ее на так называемые информационные элементы.

Информационный элемент представляет собой информацию на носителе с достаточно четкими границами, и удовлетворяет следующим требованиям:

• принадлежит конкретному источнику (документу, человеку, образцу;

продукции и т. д.);

• содержится на отдельном носителе;

• имеет конкретную цену.

Структурирование информации проводится путем последовательной детализации защищаемой информации, начиная с перечней сведений, содержащих тайну. Детализация предусматривает иерархическое разбиение информации в соответствии со структурой тематических вопросов, охватывающих все аспекты организации и деятельности частной фирмы или государственной структуры.

Вариант укрупненной типовой структуры конфиденциальной информации, составляющей коммерческую тайну, приведен на рис. 1.2.

- структура организации - качество продукции -принципы, концепция и - методы управления - себестоимость продукции стратегия маркетинга - проблемы и пути - возможности производства - партнеры - безопасность - исследовательские работы - переговоры и соглашения Рис. 1.2. Вариант структуры конфиденциальной информации Обобщенный перечень сведений, составляющих коммерческую тайну (на рис. 1.2. конфиденциальная информация), относится к нулевому (исходному) уровню иерархии структуры. На 1-м уровне эта информация разделяется на 3 группы, каждая из которых соответствует темам: «об организации», «о внутренней деятельности организации», «о внешней деятельности организации». На 2-м уровне эти темы конкретизируются тематическими вопросами: структура, методы управления,..., качество продукции, себестоимость продукции,..., принципы, концепция и стратегия маркетинга и т. д. На 3-м уровне детализируются тематические вопросы 2-го уровня и т. д. Такая информация является структурированной.

Зашита структурированной информации принципиально отличается от защиты информации вообще. Она конкретна, так как ясно, что (какой информационный элемент) необходимо защищать, прежде всего, исходя из его ценности, кто или что являются источниками и носителями этого элемента.

Для элемента информации можно выявить возможные угрозы его безопасности и определить, наконец, какие способы и средства целесообразно применять для обеспечения безопасности рассматриваемого элемента информации.

2. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ВИДОВ ТЕХНИЧЕСКОЙ

РАЗВЕДКИ

2.1. Назначение и методы разведывательной деятельности Жизненная необходимость в получении чужой информации и сохранении своей информации для любой государственной или коммерческой структуры вынуждает их расходовать людские, материальные и финансовые ресурсы на постоянное её добывание и защиту. Специализированными органами для добывания информации являются органы разведки.

Государственные органы разведки обеспечивают руководство страны информацией для принятия им политических, экономических, военных, научно-технических решений в условиях жестокой межгосударственной конкуренции.

Органы коммерческой разведки решают задачи по информационному обеспечению руководства организации информацией, необходимой для успешной деятельности организации в условиях конкурентной борьбы.

Для защиты и добывания информации необходимо знать методы разведывательной деятельности.

Разведывательная деятельность – это добывание какой-либо интересующей информации. Смысл разведывательной деятельности (далее – разведки) заключается в следующем:

• Добывание информации (политической, экономической, военной) для принятия стратегических, оперативных или тактических решений в соответствующих областях деятельности.

• Получение преимущества над противником из-за использования его информации в своих целях.

Разведка может вестись с помощью легальных, полулегальных и нелегальных методов:

• Легальные методы разведки – это исследование публикаций в СМИ (в том числе электронных СМИ – Интернет, телевидение, радио), участие в различных конференциях, анализ общественно-политических, научных и технических изданий, посещение выставок и использование подобных совершенно открытых источников.

• Полулегальные методы разведки – это разговоры с сотрудниками в неофициальной обстановке, заведомо ложные конкурсы и переговоры, получение информации от общих клиентов, поставщиков, через контролирующие органы.

• Нелегальные методы разведки – похищение образцов продукции и оборудования, похищение, копирование, подмена, ознакомление, уничтожение документов с интересующей информацией, съем информации по техническим каналам, проникновение в ЛВС, внедрение агентов, проникновение на территорию и так далее.

Разведывательная деятельность присуща не только государствам, но и частным организациям. Государственные интересы выражаются не только в сохранении государственной тайны, но и в лоббировании интересов своих крупных компаний, поэтому разведывательная деятельность государственных компаний и частных компаний переплетается. На защиту информации от конкурентов и контрразведывательную деятельность современные крупные западные компании тратят до 20% прибыли.

Условно разведку можно разделить на агентурную и техническую. Условность состоит в том, что добывание информации агентурными методами осуществляется с использованием технических средств, а техническую разведку ведут люди. Отличия заключаются в преобладании человеческого или технического факторов. Многообразие видов носителей информации породило множество видов технической разведки. Поскольку наш курс называется – технические средства защиты информации, рассмотрим классификацию видов технической разведки.

2.2. Классификация технической разведки Наиболее широко применяется классификация технической разведки по физической природе носителей информации [2]:

1. оптическая разведка (носитель – электромагнитное поле в видимом и инфракрасном диапазонах);

2. радиоэлектронная разведка (носитель – электромагнитное поле в радиодиапазоне или электрический ток);

3. акустическая разведка (носитель – акустическая волна в газообразных, жидких и твердых средах);

4. химическая разведка (носитель – частицы вещества);

5. радиационная разведка (носитель – излучения радиоактивных веществ);

6. сейсмическая разведка (носитель – акустическая волна в земной поверхности);

7. магнитометрическая разведка (носитель – магнитное поле);

8. компьютерная разведка (классифицируется по способу добывания информации – перехват сигналов в компьютерах и компьютерных сетях).

Оптическая разведка включает в себя:

Приведенная последовательность видов оптической разведки соответствует этапам развития оптической разведки по мере технического прогресса в области средств оптического наблюдения.

При визуально-оптической разведке человек добывает информацию с помощью визуальных приборов.

Фотографическая разведка позволяет регистрировать изображение объекта наблюдения на фотопленке или в цифровом виде в устройствах памяти.

Средства инфракрасной разведки преобразуют изображение из инфракрасного диапазона в видимое изображение.

Телевизионная разведка обеспечивает не только добывание информации о движущихся объектах, но и передачу этой информации на большие расстояния.

Лазерная разведка решает две группы задач: получение информации по результатам облучения объекта лазерным лучом (для подсветки, измерения дальности, дистанционного физического и химического анализа) и для определения источников и характеристик лазерного излучения.

Радиоэлектронная разведка в зависимости от характера добываемой информации подразделяется на виды:

• радиотехническую разведку;

• радиолокационную разведку;

• разведку побочных электромагнитных излучений и наводок Радиоразведка добывает в большинстве случаев семантическую, то есть символьную или знаковую, информацию путем перехвата радиосигналов с конфиденциальной информацией.

Радиотехническая разведка добывает информацию о параметрах (признаках) радиотехнических сигналов.

Радиолокационная разведка добывает информацию о дальности и направлении движения объекта, о видовых признаках радиолокационного изображения объекта на экране радиолокатора.

Радиотепловая разведка добывает информацию о признаках объектов, проявляющихся через их собственные электромагнитные излучения в радиодиапазоне.

Разведка ПЭМИН использует ту же радиоаппаратуру и методы, что и радиоразведка. Только эта аппаратура предназначена для улавливания очень слабых сигналов, то есть она более чувствительная.

Акустическая разведка включает в себя:

• акустическую разведку, добывающую информацию, распространяющуюся в воздушной среде;

• гидроакустическую разведку, добывающую информацию, • виброакустическую разведку, добывающую информацию, распространяющуюся в твердой среде, в основном в строительных конструкциях и различных трубах.

Химическая разведка добывает информацию о составе, структуре и свойствах веществ путем взятия проб и анализа их микрочастиц.

Радиационная разведка предназначена для обнаружения, локализации, определения характеристик и измерения уровней излучаемых радиоактивных веществ.

Сейсмическая разведка обеспечивает добывание информации из сейсмических волн, распространяющихся в земной коре.

Магнитометрическая разведка позволяет по изменению магнитного поля земли обнаруживать объекты, например, подводные лодки в погруженном состоянии.

Компьютерная разведка осуществляет несанкционированный доступ к информации, обрабатываемой средствами вычислительной техники, и также прием электромагнитных излучений компьютеров и наводок электромагнитных излучений, распространяющихся по соединительным кабелям.

3. ОПТИЧЕСКАЯ РАЗВЕДКА

Структура оптического канала утечки информации имеет вид, показанный рис. 3.1 [2].

Объект наблюдения (источник сигнала) - объект, отражающий внешний свет - объект, излучающий Рис. 3.1. Структура оптического канала утечки информации Объект наблюдения в оптическом канале утечки информации является одновременно источником информации и источником сигнала, потому что световые лучи, несущие информацию о видовых признаках объекта, представляют собой отраженные объектом лучи внешнего источника или его собственные излучения.

Отраженный от объекта свет содержит информацию о его внешнем виде (видовых признаках), а излучаемый объектом свет – о параметрах излучений (признаках сигналов). Запись информации производится в момент отражения падающего света путем изменения его яркости и спектрального состава. Излучаемый свет содержит информацию об уровне и спектральном составе источников видимого света, а в инфракрасном диапазоне по характеристикам излучений можно также судить о температуре элементов излучения. В общем случае объект наблюдения излучает и отражает свет другого источника как в видимом, так и ИК-диапазонах. Однако в конкретных условиях соотношения между мощностью собственных и отраженных излучений в видимом диапазоне волн и ИК-диапазоне могут существенно отличаться.

В видимом диапазоне мощность излучения определяется в подавляющем большинстве случаев мощностью отраженного света и содержащихся в спектре искусственных источников света. Например, габариты автомобиля в ночное время обозначаются включенными фонарями красного цвета, укрепленными по краям автомобиля. Объект наблюдения или его элементы излучают собственные электромагнитные излучения в видимом диапазоне при высокой температуре. В ближнем (0.76–3 мкм) и среднем (3–6 мкм) диапазонах собственная мощность ИК-излучения объектов значительно меньше мощности отраженного от объекта потока солнечной энергии. Однако с переходом в длинноволновую область ИК-излучения мощность теплового излучения объектов может превышать мощность отраженной солнечной энергии.

Основным и наиболее мощным внешним источником света является Солнце. При температуре поверхности около 6000° Солнце излучает огромное количество энергии в достаточно широкой полосе – от ультрафиолетового до инфракрасного (0.17–4 мкм). Видимая часть спектра излучения лежит в диапазоне 0,4 мкм (фиолетовый цвет) до 0,76 мкм (красный цвет). Максимум солнечного излучения приходится на 0.47 мкм, в ультрафиолетовой части оно резко убывает, в инфракрасной – регистрируется в виде широкой и пологой кривой.

При прохождении через атмосферу солнечные лучи взаимодействуют с содержащимися в ней молекулами газов, частицами пыли, дыма, кристалликами льда, каплями воды. В результате такого взаимодействия часть солнечной энергии поглощается, другая – рассеивается.

Процессы рассеяния и поглощения солнечной энергии уменьшают интенсивность солнечной радиации на поверхности Земли и меняют спектр солнечного света, освещающего наземные объекты. В кривой излучения этого света, характеризующей интенсивность излучения в зависимости от длины волны, появляются участки поглощения и пропускания. Последние называются окнами прозрачности. Излучения длиной менее 0.27 мкм полностью поглощаются озоном. Атмосферное рассеяние света уменьшает прямую солнечную радиацию и повышает рассеянное (диффузное) излучение атмосферы. Рассеяние в коротковолновой части спектра сильнее, чем в длинноволновой. Особенно заметно оно в голубой и ультрафиолетовой областях. Поэтому небо имеет голубой цвет. Интенсивность рассеяния солнечного света в ближнем инфракрасном диапазоне незначительная. Задымленность приповерхностного слоя атмосферы мало влияет на излучения в ближнем ИКдиапазоне, если размеры твердых частиц дыма в атмосфере не превышают мкм. Туман и облака очень сильно рассеивают ИК-излучение в этом интервале длин, так как водяные капли имеют размер около 4 мкм. Молекулярное и аэрозольное рассеяние солнечного света вызывает ее свечение в атмосфере, которое называют дымкой. Рассеянное излучение создает освещенность теневых участков земной поверхности, увеличивая их относительную яркость.

Облачность существенно влияет на суммарную освещенность. Наличие облачности высоких ярусов, не закрывающих солнечный диск, повышает рассеянное излучение и при сохранении значения прямой освещенности увеличивает ее суммарную величину на (20–30)% по сравнению с освещенностью при безоблачном небе. Низкая облачность так же, как и тени облаков, снижают суммарную освещенность в 2–5 раз, в зависимости от высоты Солнца.

При снежном покрове и облачности многократное отражение ими излучения повышает суммарную освещенность, особенно в теневых участках. Освещенность в дневное время земной поверхности Солнцем составляет в зависимости от его высоты, облачности атмосферы 104–105 лк. Для сравнения уровней освещенности скажем, что наименьшая освещенность, воспринимаемая привыкшим к темноте глазом, составляет 10-9 лк, а свет свечи виден на расстоянии 4…9 км. Напомню, что 1 люкс освещенности равен 1 люмену светового потока на 1 квадратный метр площади. С движением Солнца к горизонту Земли, когда зенитное расстояние между ними достигает максимума, освещенность, создаваемая Солнцем, составляет приблизительно 10 лк. При этом изменяется и спектр солнечного света, так как при прохождении толщи атмосферы синие и фиолетовые лучи ослабляются сильнее, чем оранжевые и красные, вследствие чего максимум излучения Солнца смещается в красную область цвета. С заходом Солнца за горизонт и наступлением сумерек освещенность убывает вплоть до наступления астрономических сумерек, за которыми следует наиболее темное время суток – ночь.

Освещенность в лунную ночь при безоблачном небе, когда так называемую естественную ночную освещенность (ЕНО) создает отраженный от Луны солнечный свет, составляет около 0.3 лк. Величина ЕНО, создаваемая светом Луны, в течение месяца меняется приблизительно в 100 раз в зависимости от взаимного положения Луны, Солнца и Земли. Лунный месяц разделяется по уровню освещенности на четыре части, каждая длительностью около недели. Источниками излучения в безлунную ночь при безоблачном небе, называемым звездным светом, являются солнечный свет, отраженный от планет: туманностей, свет звезд, а также свечение кислорода и азота в верхних слоях атмосферы на высоте 100–300 км. Освещенность поверхности Земли звездным светом составляет в среднем 0.001 лк.

В инфракрасном диапазоне мощность излучения объекта зависит от температуры тела или его элементов, мощности падающего на объект света коэффициента отражения объекта в этом диапазоне. Коэффициент теплового излучения для реальных объектов не постоянен по спектру и определяется соответствии с законом Кирхгофа отношением спектральной плотности энергетической яркости объекта к спектральной плотности энергетически яркости абсолютно черного тела, которое обладает максимумом энергии теплового излучения по сравнению со всеми другими источниками при той температуре. Средняя температура поверхности Земли близка к 17 градусов по Цельсию. Максимум ее теплового излучения приходится на 9.7 мкм. Объекты под действием солнечной радиации в течение дня по-разному отдают накопленное тепло в окружающее пространство. Различия в температуре излучении могут рассматриваться как демаскирующие признаки.

Объекты могут иметь собственные источники тепловой энергии, например, высокотемпературные элементы машин, дизель-электростанции и др., температура которых значительно выше температуры фона. Максимум теплового излучения таких объектов смещается в коротковолновую область, что служит демаскирующим признаком для таких объектов.

Длина (протяженность) канала утечки зависит от мощности света, от объекта, свойств среды распространения и чувствительности фотоприемника.

Среда распространения в оптическом канале утечки информации возможна трех видов:

• безвоздушное (космическое) пространство;

• оптические световоды.

Оптический канал утечки информации, среда распространения которого содержит участки безвоздушного пространства, возникает при наблюдении за наземными объектами с космических аппаратов. Граница между космическим пространством и атмосферой достаточно условна. На высотах 200– км существуют еще остатки газов, проявляющиеся в тормозящем действии на космические аппараты.

Сложный состав атмосферы определяет ее пропускную способность различных составляющих света. В общем случае прозрачность атмосферы зависит от соотношения длины проходящего сквозь нее света и размеров взвешенных в атмосфере частиц. Если размеры частиц соизмеримы с длиной волны света (больше половины длины волны), то пропускание значительно ухудшается. Уровень пропускания меняется в зависимости от длины световой волны. В видимой области прохождению света препятствуют абсорбирующие молекулы кислорода и воды. Коэффициент пропускания в ней немногим более 60%. В ближней ИК-области пропускание несколько большее – до 70%. Адсорбентом в этой области являются пары воды. В средней ИКобласти, в диапазоне 3–4 мкм, пропускание достигает почти 90%. Высокое пропускание имеет довольно обширный участок в дальней ИК-области (с до 13 мкм). Абсорбентом в нем являются молекулы кислорода и воды, а также углекислого газа и озона в атмосфере.

Метеорологическая видимость даже в окнах прозрачности зависит от наличия в атмосфере взвешенных частиц пыли и влаги, образующих мглу и туман, капелек и кристаллов воды в виде дождя и снега, а также аэрозолей и дымов, содержащих твердые частицы. Все это вызывает замутнение атмосферы и ухудшает видимость. Призрачность атмосферы как канала распространения света оценивается метеорологической дальностью видимости. Под метеорологической дальностью понимается предельно большое расстояние, начиная с которого при данной прозрачности атмосферы в светлое время суток абсолютно черный предмет с угловыми размерами 20'х20' сливается с фоном у горизонта и становится невидимым. В зависимости от состояния атмосферы дальность видимости, определяющая протяженность оптического канала утечки, имеет значения, приведенные в таблице 3.1.

Таблица 3.1.

Если объект наблюдения и наблюдатель находятся на земле, то протяженность канала утечки зависит не только от состояния атмосферы, но и ограничивается влиянием кривизны Земли. Дальность прямой видимости D в километрах с учетом кривизны Земли можно рассчитать по формуле:

где h 0 – высота размещения объекта над поверхностью земли в метрах, h н – высота расположения наблюдателя в метрах.

Например, для h 0 = 3 м и h н = 5 м, D = 14 км, что меньше метеорологической дальности при хорошей видимости. Эта формула не учитывает неровности Земли и различные инженерные сооружения (башни, высотные здания и т. д.), создающие препятствия для света. Так как параметры источников сигналов и среды распространения зависят от значений спектральных характеристик носителя информации, то протяженность оптического канала утечки ее в видимом диапазоне и ИК-диапазоне могут существенно отличаться.

До недавнего времени атмосфера, и безвоздушное пространство были единственной средой распространения световых волн. С разработкой волоконно-оптической технологии появились направляющие линии связи в оптическом диапазоне, которые в силу больших их преимуществ по отношению к традиционным электрическим проводникам рассматриваются как более совершенная физическая среда для передачи больших объемов информации.

Линии связи, использующие оптическое волокно, устойчивы к внешним помехам, имеют малое затухание, долговечны, обеспечивают значительно большую безопасность передаваемой по волокну информации.

Оптическое волокно представляет собой нить диаметром около 100 мкм, изготовленную из кварца на основе двуокиси кремния. Волокно состоит из сердцевины (световодной жилы) и оболочки из оптически менее плотного кварца. Значения показателей преломления (отношений скорости света в вакууме к скорости распространения света в среде) жилы и оболочки выбираются такими, чтобы обеспечить полное отражение света, распространяющегося по световодной жиле, от границы между жилой и оболочкой. Пример изменения угла преломления света в стекле приведен на рис. 3.2.

Рис. 3.2. Изменение угла преломления света в стекле Показатель преломления равен величине:

где С – скорость света в вакууме;

С ст – скорость света в стекле.

Чем больше величина показателя преломления n, тем больше значение угла. Пример распространения света в оптическом волокне приведен на рис. 3.3.

Световой луч Рис. 3.3. Распространение света в оптическом волокне Предельный угол полного отражения света (угол падения света на границу раздела среды, при равенстве или превышении которого наблюдается полное отражение света от этой границы) определяется из соотношения:

где n 0 – показатель преломления оболочки оптического волокна;

n ж – показатель преломления световодной жилы оптического волокна.

Волокно с постоянным показателем преломления сердцевины называется ступенчатым, с изменяющимся – градиентным. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. В одномодовом волокне световодная жила имеет диаметр порядка 8–10 мкм, по которой может распространяться один луч (одна мода). В многомодовом волокне диаметр световодной жилы составляет 50–60 мкм, что делает возможным распространение в нем большого числа лучей.

Волокно характеризуется двумя основными параметрами: затуханием и дисперсией. Затухание измеряется в децибелах на километр (дБ/км) и определяется потерями на поглощение и рассеяние света в оптическом волокне.

Потери на поглощение зависят от чистоты материала, а потери на рассеяние – от неоднородности показателя преломления. Лучшие образцы волокна имеют затухание порядка 0.15–0.2 дБ/км, разрабатываются еще более «прозрачные» волокна с теоретическими значениями затухания порядка 0. дБ/км для волны длиной 2.5 мкм, где у кварца наблюдается повышенная прозрачность. При таком затухании сигнала могут передаваться на расстояние в сотни километров без ретрансляции (регенерации).

В качестве источника света для оптических каналов связи используются лазеры. Однако лазер излучает не идеальное монохроматическое колебание, а некоторый спектр длин волн. Поэтому спектральные составляющие оптического сигнала распространяются с разными фазовыми скоростями, которые зависят от показателя преломления. В результате происходит разброс – дисперсия моментов прихода спектральных составляющих сигнала в точку приема. Дисперсия приводит к искажению (расширению) формы сигнала при его распространении в волокне, что ограничивает дальность передачи и верхнее значение частоты спектра передаваемого сигнала.

Дисперсия волокна оценивается величиной увеличения длительности оптического сигнала на один километр длины или верхней граничной частотой модулирующего сигнала.

Волокна объединяют в волоконно-оптические кабели, покрытые защитной оболочкой. По условиям эксплуатации кабели подразделяются на монтажные, станционные, зоновые и магистральные. Кабели первых двух типов используются внутри зданий и сооружений. Зоновые и магистральные кабели прокладываются в колодцах кабельных коммуникаций, в грунтах, на опорах, под водой. Постоянные соединения отрезков оптических волокон между собой осуществляют свариванием, сплавлением или склеиванием в юстировочном устройстве. Оптические разъемы (соединители) должны допускать многократные соединения–разъединения оптических волокон. Рассогласование волокон возникает из-за имеющихся различий в числовой апертуре, профиле показателя преломления, диаметре сердцевины или из-за погрешностей во взаимной ориентации волокон при их соединении.

Основными причинами излучения световой энергии в окружающее пространство в местах соединения оптических волокон являются:

• смещение (осевое несовмещение) стыкуемых волокон (рис.

• наличие зазора между торцами стыкуемых волокон (рис. 3.4,б);

• непараллельность торцевых поверхностей стыкуемых волокон • угловое рассогласование осей стыкуемых волокон (рис. 3.4,г);

• различие в диаметрах стыкуемых волокон (рис. 3.4,д).

Рис. 3.4. Основные причины излучения из мест соединения световолокна в окружающее пространство.

Исследования показывают, что наиболее интенсивное излучение в окружающее пространство наблюдается при наличии сдвига соединяемых волокон относительно друг друга.

Для съема информации теоретически можно разрушить защитную оболочку кабеля, прижать фотодетектор приемника к очищенной площадке волокна и изогнуть кабель на угол, при котором часть световой энергии направляется на фотодетектор приемника.

Практически информацию из оптического волокна добывают в местах соединения кабеля с техническими средствами, или в местах соединения кабелей друг с другом.

3.2. Технические характеристики средств оптической разведки В оптическом (видимом и инфракрасном) диапазоне информация разведкой добывается путем визуального, визуально-оптического, фото- и киносъемки, телевизионного наблюдения, наблюдения с использованием приборов ночного видения и тепловизоров.

Наибольшее количество признаков добывается в видимом диапазоне.

Видимый свет как носитель информации характеризуется следующими свойствами:

• наблюдение возможно, как правило, днем или при наличии мощного внешнего источника света;

• сильная зависимость условий наблюдения от состояния атмосферы, климатических и погодных условий:

• малая проникающая способность световых лучей в видимом диапазоне, что облегчает задачу защиты информации о видовых ИК-лучи как носители информации обладают большей проникающей способностью, позволяют наблюдать объекты при малой освещенности. Но при их преобразовании в видимый свет для обеспечения возможности наблюдения объекта человеком происходит значительная потеря информации об объекте.

Так как физическая природа носителя информации в видимом и инфракрасном диапазонах одинакова, то различные средства наблюдения, применяемые для добывания информации в этих диапазонах, имеют достаточно общую структуру. Ее можно представить в виде, приведенном на рис. 3.5 [2].

Рис. 3.5. Структурная схема оптического приемника Большинство средств наблюдения содержит оптический приемник, включающий оптическую систему, светоэлектрический преобразователь, усилитель и индикатор. В зависимости от вида светочувствительного элемента оптические приборы делятся на:

• визуально-оптические;

• фотографические;

• оптико-электронные.

В визуально-оптических средствах наблюдения светочувствительным элементом является сетчатка глаза человека. В традиционных фотоаппаратах и киноаппаратах светочувствительным элементом является фотопленка. В оптико-электронных приборах светочувствительным элементом является мишень светоэлектрического преобразователя.

Оптическая система или объектив проецирует световой поток от объекта наблюдения на поверхность светоэлектрического преобразователя (сетчатку глаза, фотопленку, фотодиод, фототранзистор, мишень светоэлектрического преобразователя). На мишени оптическое изображение преобразуется в электронное изображение, количество «свободных» электронов каждой точки которого пропорционально яркости соответствующей точки оптического изображения. Способы визуализации изображения для разных типов оптического приемника могут существенно отличаться. Изображение в виде зрительного образа формируется в мозгу человека, на фотопленке – в результате химической обработки светочувствительного слоя, на экране технического средства – путем параллельного или последовательного съема электронов с мишени, усиления электрических сигналов и формирования под их действием видимого изображения на экране оптического приемника.

Характеристики средств наблюдения определяются, прежде всего, параметрами оптической системы и светочувствительным элементом. Зависят они и от способов обработки электрических сигналов и формирования изображения при индикации. Основными характеристиками средств наблюдения являются:

• диапазон длин волн световых лучей, воспринимаемых средством • разрешающая способность;

• поле (угол) зрения и изображения;

• динамический диапазон интенсивности света на входе оптического приемника, не вызывающий искажения изображения на Диапазон длин волн, воспринимаемых средством наблюдения, в видимом диапазоне 0,4…0,76 мкм, в инфракрасном диапазоне 0,76…14 мкм.

Чувствительность средства наблюдения оценивается минимальным уровнем энергии светового луча, при котором обеспечивается требуемое качество изображения объекта наблюдения. Качество изображения зависит как от яркости и контрастности проецируемого изображения, так и от помех.

Помехи создают лучи света, попадающие на вход приемника от других источников света, и шумы светоэлектрического преобразователя. На экране светоэлектрического преобразователя при посторонней внешней засветке наблюдается ухудшение контраста изображение аналогичное варианту прямого попадания на экран телевизионного приемника яркого солнечного света.

Разрешающая способность характеризуется минимальными линейными или угловыми размерами между двумя соседними точками изображения, которые наблюдаются как отдельные. Так как изображение формируется из точек, размеры которых определяются разрешающей способностью средства наблюдения, то вероятность обнаружения и распознавания объекта возрастает с повышением разрешающей способности средства наблюдения (увеличением количества точек изображения объекта).

Поле зрения это часть пространства, изображение которого проецируется на экран оптического приемника. Угол, под которым средство наблюдения «видит» предметное пространство, называется углом поля зрения. Часть поля зрения, удовлетворяющая требованиям к качеству изображения, называется полем изображения.

Динамический диапазон оптического приемника определяет в децибелах интервал силы света на входе оптического приемника, при котором обеспечивается заданное качество изображения на его выходе. Если диапазон силы света от объектов наблюдения больше динамического диапазона оптического приемника, то происходит искажение добываемой информации и может вызвать выход его из строя.

Характеристики человеческого глаза. Наиболее совершенным средством наблюдения в видимом диапазоне является зрительная система человека, включающая глаза и области мозга, осуществляющие обработку сигналов, поступающих с сетчатки глаз. Возможности зрения человека характеризуются следующими показателями:

• глаз воспринимает световые лучи в диапазоне 0.4…0.76 мкм, причем максимум его спектральной чувствительности в светлое время суток приходится на границу зелено-голубого цвета (0.51мкм), в темноте – на границу желто-зеленого (0.55 мкм);

• порог угловых размеров, которые глаз различает как две раздельные точки на объекте наблюдения, составляют днем – 0.5…1 угловых минут, ночью–30 угловых минут;

• порог контрастности различимого объекта по отношению к фону составляет днем –0.01…0.03, ночью – 0.6;

• диапазон освещенности объектов наблюдения, к которым адаптируется глаз, достигает – 60…70 дБ;

• при освещенности менее 0.1 лк (в безоблачную лунную ночь) – в горизонтальной плоскости 65…95°;

– в вертикальной плоскости 60…90°;

– резкого изображения 30°;

• расстояние наилучшего зрения – 250 мм;

• время удержания взглядом изображения –0,06 с.

Рассмотрим понятие контрастности. Контрастность это отношение разности яркости объекта и фона к яркости объекта:

где В0 ; Вф – яркость объекта и фона соответственно.

Яркость это отношение силы света J, какой либо площадки к её площади Сила света измеряется в канделах (кандела–кд) и определяется как сила света источника монохроматического излучения частоты 5401012 Гц (около мкм) излучающего 0,00146 Вт на 1 ср (1 стерадиан это телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы).

Уникальные возможности зрительной системы человека обеспечиваются хрусталиком глаза, выполняющего функции объектива. Совершенство хрусталика проявляется, прежде всего, тем, что его кривизна с помощью специальных глазных мышц изменяется таким образом, чтобы обеспечить на сетчатке глаза максимально четкое изображение объектов, расположенных на различных расстояниях от наблюдателя. Хотя ведутся исследования по созданию подобных искусственных объективов, но приблизиться к возможностям хрусталика глаза пока не удается.

Характеристики объективов. Основу оптических систем и средств наблюдения составляют объективы, которые в силу постоянства кривизны поверхностей линз и оптической плотности стекла проецируют изображения с различного рода погрешностями. Наиболее заметны из них:

• сферическая аберрация, проявляющаяся в отсутствии резкости изображения на всем поле зрения (оно резко в центре или по • астигматизм – отсутствие одновременной резкости на краях поля изображения для вертикальных и горизонтальных линий;

• дисторсия – искривление прямых линий;

• хроматическая аберрация – появление цветных окантовок на границах световых переходов, вызванных различными коэффициентами преломления линз объектива спектральных составляющих световых лучей.

С целью уменьшения погрешностей объективы выполняются из большого (до 10 и более) количества линз с различной кривизной поверхностей. Все или отдельные группы линз склеиваются между собой.

Качество объективов описываются совокупностью характеристик, основными из которых являются:

• угол поля зрения и изображения;

• разрешающая способность.

Фокусное расстояние f объектива представляет собой расстояние от оптической плоскости объектива до плоскости, где фокусируются входящие в объектив параллельные лучи света. По величине фокусного расстояния объективы делятся на короткофокусные, с фокусным расстоянием f, меньшим длины диагонали кадра поля изображения d (можно сказать, что d есть диаметр объектива), нормальные или среднефокусные (f = d), длиннофокусные и телеобъективы с f > d, а также с переменным фокусным расстоянием.

По углу поля зрения (изображения) различают узкоугольные объективы, у которых величина угла не превышает 30°, среднеугольные (угол в пределах 30°–60°), широкоугольные с углом более 60° и, наконец, – с переменным углом поля изображения у объективов с переменным фокусным расстоянием.

Чем больше фокусное расстояние f объектива, тем больше деталей объекта можно рассмотреть на его изображении, но тем меньше угол поля зрения. Поэтому для обнаружения объекта используют короткофокусные объективы, а для распознавания – длиннофокусные.

Светосила характеризует уровень световой энергии, пропускаемой объективом к светочувствительному элементу. На светосилу объектива влияют следующие факторы:

• относительное отверстие объектива;

• прозрачность (коэффициенты пропускания, поглощения, отражения) линз;

Светосила без учета реальных потерь света в линзах оценивается величиной геометрического относительного отверстия, равного k = d/f, где d – диаметр входного отверстия объектива (апертура), f – фокусное расстояние.

В зарубежной литературе светосила оценивается фокальным числом F = f/d.

По величине относительного отверстия объективы делятся на сверхсветосильные, у которых (d/f>1/2), светосильные (d/f=1/2…1/4) и малосветосильные (d/f 1, а КПД < 1, то коэффициент усиления в зависимости от значений сомножителей может теоретически принимать значения как меньше, так и больше 1. Чем выше КУ, тем больший энергетический эффект обеспечивает антенна, но тем точнее необходимо ориентировать направление основного лепестка на источник излучения.

Для обеспечения эффективного излучения и приема в широком диапазоне используемых радиочастот создано большое количество видов и типов антенн, классификация которых представлена на рис. 4.8.

Назначение передающих и приемных антенн ясно из их наименований.

По своим основным электрическим параметрам они не различаются. Многие из них в зависимости от схемы подключения (к передатчику или приемнику) могут использоваться как передающие или приемные, например антенны радиолокационных станций. Однако если к передающей антенне подводится большая мощность, то в ней принимаются специальные меры по предотвращению пробоя между элементами антенны, находящимися под более высоким напряжением.

Эффективность антенн зависит от согласования размеров элементов антенны с длинами излучаемых или принимаемых волн. Минимальная длина согласованной с длиной волны электромагнитного колебания штыревой антенны близка к /4, где – длина волны электромагнитного колебания. Размеры и конструкция антенн различаются как для различных диапазонов частот, так и внутри диапазонов.

Если для стационарных антенн требование к геометрическим размерам антенны может быть достаточно просто выполнено для коротких и ультракоротких волн, то для антенн, устанавливаемых на мобильных средствах, оно неприемлемо. Например, рациональная длина антенны (/4) для обеспечения связи на частоте 30 МГц составляет 2,5 м, что неудобно для пользователя.

Поэтому применяют укороченные антенны, но при этом уменьшается их эффективность. По данным [2], укорочение длины этой антенны в 2 раза уменьшает её эффективность до 60%, в 5 раз (до 50 см) – до 10%, а эффективность антенны, укороченной в 10 раз, составляет всего около 3% от рационального варианта.

По типу излучающих элементов антенны делятся на линейные, апертурные и антенны поверхностных волн.

У линейных антенн поперечные размеры малы по сравнению с продольными и с длиной излучаемой волны. Линейные антенны выполняются из протяженных токопроводящих элементов (металлических стержней и проводов), вдоль которых распространяются токи высоких частот. В зависимости от величины нагрузки линии в ней возникают стоячие (линия разомкнута) или бегущие волны (сопротивление нагрузки равно волновому сопротивлению линии). По конструкции различают симметричные и несимметричные электрические вибраторы, бегущей волны, ромбические и рамочные антенны. В симметричном вибраторе провода линии – вибраторы разведены на 180° (рис. 4.9,а).

Несимметричным вибратором называется одиночный линейный проводник, расположенный вертикально над проводящей поверхностью (корпусом, «землей») (рис. 4.9,б).

Антенна бегущей волны, применяемая в коротковолновом диапазоне, представляет собой длинную двухпроводную линию с нагрузкой, равной волновому сопротивлению и к которой на одинаковом расстоянии, не более 1/8 длины принимаемой волны, присоединены симметричные вибраторы.

Ромбическая антенна имеет высокую направленность излучения и представляет собой длинную двухпроводную линию, провода которой расходятся у входа, а потом, образуя ромб, сходятся, замыкаясь на активное сопротивление, равное волновому сопротивлению линии. Рамочную антенну образуют один или несколько последовательно соединенных витков провода квадратной, круглой, треугольной формы, расположенных обычно в вертикальной плоскости (рис. 4.9,в). Линейные антенны используются при ДВ, СВ, KB и УКВ диапазонах длин волн. В ДВ, СВ и KB диапазонах вибраторы укрепляют на мачтах, высота которых в ДВ диапазоне может достигать 100 и более метров.

Излучающим элементом апертурных антенн является их раскрыв. По виду апертуры различают рупорные, линзовые, зеркальные и щелевые антенны (рис. 4.10).

Так как для эффективного излучения размеры апертуры антенн должны быть соизмеримы с длиной волны, то эти антенны имеют приемлемые размеры в СВЧ диапазоне.

Рупорная антенна (рис. 4.10,а) представляет собой конец волновода с рупором прямоугольной или круглой формы. По волноводу передается электромагнитная энергия от генератора передатчика, а рупор обеспечивает плавный переход от волновода к свободному пространству, уменьшающий отражение электромагнитной волны от конца волновода.

Основным элементом линзовых антенн (рис. 4.10,б) является линза, принцип работы которой аналогичен оптической линзе. В передающей антенне линза преобразует расходящуюся от облучателя (рупор, конец волновода или вибратор) электромагнитную волну в плоскую волну. Приемная антенна фокусирует на облучатель падающую на раскрыв линзы электромагнитную волну. Линзы делятся на замедляющие, в которых фазовая скорость распространения электромагнитной волны ниже скорости света, и ускоряющие. Замедляющие линзы выполняются из диэлектрика, в который вкраплены токопроводящие элементы. Ускоряющие линзы изготовляются из параллельных металлических пластин или секций прямоугольных волноводов.

Наиболее широко используются многолучевые линзы, обеспечивающие широкий сектор излучения и приема: сферические и цилиндрические линзы Люнеберга, линзы Ротмана и так называемые линзы R-2R.

Линзы, у которых электромагнитное поле в ее раскрыве формируется в результате отражения электромагнитной волны, излучаемой облучателем, от металлической поверхности специального рефлектора (зеркала), называются зеркальными (рис. 4.10,в). Форма линзы в виде параболоида вращения, усеченного параболоида, параболического цилиндра или цилиндра специальной формы создает требуемую диаграмму направленности антенны. В диапазоне дециметровых и более длинных волн в качестве облучателя применяется вибратор, более коротких длин волн – волноводно-рупорные облучатели.

В линзовых антеннах путем увеличения размеров зеркала можно обеспечить высокое угловое разрешение. Они широко применяются в сантиметровом и дециметровом диапазонах волн, прежде всего для обеспечения космической связи и в радиоастрономии. Например, зеркало радиотелескопа РАТАН-600, работающего в диапазоне 0,8-30 см, состоит из 895 щитов размерами 7,42 м2, расположенных по кругу диаметром 600 м.

Щелевая антенна (рис. 4.10,г) представляет собой металлический лист со щелью, облучаемый электромагнитным полем. В основном применяется узкая прямоугольная щель шириной (0,03-0,05), и длиной 0,5, но щель может быть иной формы, в виде угла, креста и др. В щели, расположенной перпендикулярно наводимым в листе токам, возбуждается электромагнитное поле. Для обеспечения односторонней направленности излучаемого поля щель с тыльной стороны закрывается резонатором в виде металлической коробки.

Возбуждающий сигнал подводится к краям щели с помощью коаксиального кабеля непосредственно или с помощью зонда, укрепляемого внутри резонатора.

В антеннах поверхностных волн направленное излучение (прием) возникает в результате интерференции волн, излучаемых собственно возбудителем и распространяющихся с меньшей скоростью вдоль направителя поверхностной волны. В качестве возбудителей чаще всего используются односторонние направленные излучатели: рупор, открытый конец волновода, вибратор с рефлектором. Направители бывают диэлектрические (рис. 4.11) и металлические, а по форме – плоские, дисковые и стержневые.

Рис. 4.11. Антенна поверхностных волн с диэлектрическим направителем В общем случае частотная характеристика антенны представляет собой зависимость амплитуды напряженности электрического поля в дальней зоне в направлении максимума излучения от частоты питающего антенну тока при неизменной амплитуде питающего ее напряжения и может быть представлена в виде:

где I Af – амплитудное значение питающего тока на частоте колебаний f.

Полоса частот, в пределах которых сохраняются заданные технические характеристики антенны, называется полосой пропускания антенны.

Создание антенн с высоким коэффициентом усиления и широкой полосой пропускания представляет основную проблему в области конструирования антенн. Чем выше КУ, тем труднее обеспечить широкополосность антенны. В зависимости от полосы пропускания антенны разделяются на узкополосные, широкополосные, диапазонные и широкодиапазонные.

Узкополосные антенны обеспечивают прием сигналов в диапазоне 10% от основной частоты. У широкополосных антенн эта величина увеличивается до 10-50%, у диапазонных антенн коэффициент перекрытия (отношение верхней частоты полосы пропускания антенны к нижней) составляет 1,5-4, а у широкодиапазонных антенн это отношение достигает значений в интервале 4-20 и более.

Совокупность однотипных антенн, расположенных определенным образом в пространстве, образует антенную решетку. Сигнал антенной решетки равен сумме сигналов от отдельных антенн. Различают линейные (одномерные) и плоские (двухмерные) антенные решетки. Антенные решетки, у которых можно регулировать фазы сигналов отдельных антенн, называют фазированными антенными решетками. Путем изменения фаз суммируемых сигналов можно менять диаграмму направленности в горизонтальной и вертикальной плоскостях и производить быстрый поиск сигнала по пространству и ориентацию приемной антенны на источник излучения.

Для работы в широкой полосе частот часто используют логопериодические антенны. Общая конструктивная схема логопериодической антенны приведена на рис. 4.12. с логарифмической периодичностью плеч.

Периодическая структура антенны образуется с помощью коаксиального кабеля, укрепленного на деревянных продольном образующем брусе и поперечных рейках-держателях разной длины. Свободный конец кабеля подключается к приемнику. Внутренняя жила кабеля, расположенного в нижней части антенны (нижний этаж), припаивается в передней части антенны к оплетке кабеля, расположенного в верхней части (А на рис. 4.14). При этом оплетка скручивается вместе с внутренней жилой в одну жилу. С помощью металлических скоб кабель крепится к поперечным рейкам (Б на рис. 4.14). Вдоль верхней и нижней граней образующего бруса укладываются полосы медной фольги.

В местах пересечения кабеля образующего бруса следует обеспечить надежный электрический контакт с фольгой. С этой целью удаляется хлорвиниловая оболочка кабеля, и оплетка кабеля припаивается к фольге (В на рис. 4.12).

На рис. 4.13 приведены фотографии нескольких видов антенн, используемых в средствах перехвата радиосигналов [15].

Антенна измерительная дипольная активная АИ5-0 (рис. 4.13,а) предназначена для измерения напряженности синусоидальных, шумовых и импульсных электрических полей радиопомех в лабораторных помещениях, экранированных камерах и на открытых площадках в комплекте с измерительными приемниками, анализаторами спектра, селективными микровольтметрами любого типа в задачах обеспечения электромагнитной совместимости радиоэлектронных средств, защиты информации, а также предельно допустимых уровней электромагнитных полей в задачах обеспечения экологозащитных мероприятий. Рабочий диапазон частот 9 кГц…2000 МГц.

Рис. 4.13. Антенны, используемые в средствах перехвата радиосигналов Антенна измерительная рамочная активная АИР3-2 (рис. 4.13,б) предназначена для измерения напряженности синусоидальных, шумовых и импульсных магнитных полей радиопомех в лабораторных помещениях, экранированных камерах и на открытых площадках в комплекте с измерительными приемниками, анализаторами спектра, селективными микровольтметрами любого типа в задачах обеспечения электромагнитной совместимости радиоэлектронных средств, защиты информации, а также предельно допустимых уровней электромагнитных полей в задачах обеспечения экологозащитных мероприятий. Рабочий диапазон частот 9 кГц…30 МГц.

Антенна логопериодическая ЕЛВ-26 (рис. 4.13,в) используется для измерения и мониторинга радиочастотных сигналов в диапазоне 1…26,5 ГГц.

Антенна логопериодическая ЛПА-2-01 (рис. 4.13,г) предназначена для измерения напряженности синусоидальных, шумовых и импульсных электрических полей радиопомех в лабораторных помещениях, экранированных камерах и на открытых площадках в комплекте с измерительными приемниками и анализаторами спектра любого типа в задачах обеспечения электромагнитной совместимости радиоэлектронных средств, защиты информации, а также для использования в качестве излучателя при измерении параметров электромагнитной восприимчивости различных электронных устройств. Рабочий диапазон частот 0,3…3,0 ГГц.

Радиоприемники. Радиоприемник – основное техническое средство перехвата, осуществляющее поиск, селекцию, прием и обработку радиосигналов. В состав его входят устройства, выполняющие:

• перестройку частоты настройки приемника и селекцию (выделение) нужного радиосигнала;

• усиление выделенного сигнала;

• детектирование (съем информации);

• усиление видео- или низкочастотного первичного сигнала.

Различают два вида радиоприемников: прямого усиления и супергетеродинные. Появившиеся первыми приемники прямого усиления уступили супергетеродинным почти во всех радиодиапазонах, за исключением сверхвысоких частот. Такая тенденция объясняется более высокой селективностью и чувствительностью супергетеродинного радиоприемника по сравнению с приемником прямого усиления.

В приемниках прямого усиления сигнал на входе приемника (выходе антенны) селектируется и усиливается без изменения его частоты. Структурная схема приемника прямого усиления (рис. 4.14) включает в себя входную цепь, усилитель высокой частоты (УВЧ), детектор (Д) и усилитель низкой частоты (УНЧ).

Рис. 4.14. Структурная схема приемника прямого усиления Входная цепь и УВЧ составляют высокочастотный тракт приемника и содержат системы резонансных контуров, которые выделяют требуемый сигнал из множества других сигналов и помех. УВЧ, кроме высокочастотной селекции сигнала, осуществляет его усиление. В некоторых случаях при достаточной мощности принимаемого сигнала УВЧ может отсутствовать. Такие приемники применялись ранее (в начале 20-го столетия) и носили название «детекторных», поскольку в них не осуществлялось усиление ни на высокой, ни на низкой частотах и принятый антенной сигнал поступал непосредственно на амплитудный детектор. В настоящее время детекторные приемники используются в измерительной или регистрирующей технике СВЧ диапазона.

Термин «приемник прямого усиления» подчеркивает ту его особенность, что селекция и усиление производятся на несущей частоте принимаемого радиосигнала. Приемник прямого усиления имеет ряд существенных недостатков. В частности, для обеспечения высокой избирательности приходится увеличивать число высокодобротных резонансных контуров, что усложняет перестройку приемника по диапазону. Поэтому приемники прямого усиления находят ограниченное применение.

Сложность проблемы обеспечения избирательности в радиоприемниках прямого усиления обусловлена техническими трудностями создания одновременно перестраиваемых по частоте узкополосных фильтров с высокими показателями по селективности, в особенности при их промышленном производстве.

В супергетеродинном приемнике проблема одновременного обеспечения высоких значений чувствительности и селективности решена путем преобразования принимаемого высокочастотного сигнала после его предварительной селекции и усиления в усилителе высокой частоты в сигнал постоянной частоты, называемой промежуточной частотой (рис. 4.15).

Рис. 4.15. Структурная схема супергетеродинного приемника Усиление и селекция сигналов после преобразования выполняются на промежуточной частоте. Для постоянной промежуточной частоты задачи по обеспечению высокой избирательности и чувствительности решаются проще и лучше.

Преобразователь частоты состоит из гетеродина и смесителя. Гетеродин представляет собой перестраиваемый вручную или автоматически высокочастотный генератор гармонического колебания с частотой, отличающейся от частоты принимаемого сигнала на величину промежуточной частоты.

Процесс преобразования частоты происходит в смесителе, основу которого составляет нелинейный элемент (полупроводниковый диод, транзистор, радиолампа). На него поступают принимаемый сигнал с частотой fС и гармонический сигнал гетеродина с частотой fГ, На выходе смесителя возникает множество комбинаций гармоник принимаемого сигнала и колебаний гетеродина, в том числе на промежуточной частоте fП = fС–fГ. Селективные фильтры усилителя промежуточной частоты пропускают только сигналы промежуточной частоты, которые усиливаются до величины, необходимой для нормальной работы детектора. В длинноволновом и средневолновом радиовещательном диапазонах fП = 465 кГц, в УКВ – 10 МГц и более.

Однако супергетеродинному приемнику присущ ряд недостатков, вызванных процессом преобразования частоты. Основной из них состоит в том, что фильтры усилителя промежуточной частоты пропускают не только полезные сигналы, частота которых равна fС = fГ + fП, но и ложные с частотой fС = fГ – fП симметричной («зеркальной») по отношению к частоте гетеродина. Помехи на «зеркальной» частоте ослабляются путем двойного или даже тройного преобразования частот в супергетеродинном приемнике. Промежуточная частота каждого последующего преобразования понижается. В результате этого первую промежуточную частоту можно без ущерба для избирательности приемника выбрать достаточно высокой. При больших значениях промежуточной частоты «зеркальная» частота существенно отличается от сигнала и подавляется входными фильтрами радиоприемника.

Основными техническими характеристиками радиоприемника являются:

• диапазон принимаемых частот;

• динамический диапазон;

• качество воспроизведения принимаемого сигнала (уровни нелинейных и фазовых искажений);

• эксплуатационные параметры.

Диапазон принимаемых частот обеспечивается шириной полосы пропускания селективных элементов входных фильтров и интервалом частот гетеродина. Настройка приемника на нужный диапазон или поддиапазон частот производится путем переключения элементов входных контуров и контура гетеродина, а настройка на частоту внутри диапазона (поддиапазона) – путем изменения частоты гетеродина. В радиоприемниках все шире в качестве гетеродина используется устройство – синтезатор частот, создающее множество (сетку) гармонических колебаний на стабилизированных фиксированных частотах с интервалом, соответствующих шагу настройки частоты приемника.

Чувствительность радиоприемника оценивается минимальной мощностью или напряжением сигнала на его входе, при которой уровень сигнала и отношение сигнал/шум на выходе приемника обеспечивают нормальную работу оконечных устройств (индикации и регистрации). Такая чувствительность называется реальной. Предельная чувствительность соответствует мощности (напряжения) входного сигнала, равного мощности (напряжению) шумов входных цепей радиоприемника. Информация полезного сигнала мощностью менее мощности шумов радиоприемника настолько сильно ими искажается, что передача информации возможна только при кодировании ее специальными помехоустойчивыми кодами.

В диапазонах дециметровых и более коротких волн чувствительность измеряют в ваттах или децибелах по отношению к уровню в 1 мВт (дБм), на метровых и более длинных – в микровольтах (мкВ). Реальная чувствительность современных профессиональных супергетеродинных приемников дециметровых и сантиметровых волн составляет 10-12…10-15 Вт, приемников метровых и более длинных волн – 0,1…10 мкВ.

Избирательность приемника оценивается параметрами амплитудночастотной характеристики (АЧХ) его селективных цепей, определяющей зависимость коэффициента усиления приемного тракта от частоты. Избирательность приемника максимальная, когда его амплитудно-частотная характеристика повторяет форму спектра принимаемого сигнала. В этом случае будут приняты все его спектральные составляющие, но не пропущены спектральные составляющие других сигналов (помех). Практически реализовать это требование чрезвычайно трудно, так как спектр сигналов с различной информацией имеет изрезанную постоянно меняющуюся форму, и существуют большие технически проблемы при формировании амплитудночастотной характеристики сложной заданной формы. В качестве идеальной АЧХ рассматривается П-образная форма с шириной, равной средней ширине спектра сигнала.

Основными показателями избирательности являются избирательность по соседнему каналу и избирательность по зеркальному каналу приема. Для бытовых приемников этот показатель должен соответствовать 60 дБ.

Избирательность реального приемника оценивается двумя основными показателями: шириной полосы пропускания и коэффициентом прямоугольности АЧХ радиоприемника, реальная форма которой имеет колоколообразный вид.

Ширина полосы пропускания измеряется на уровне 0,7 по напряжению, а коэффициент прямоугольности оценивается отношением полосы пропускания на уровне 0,1 к полосе пропускания на уровне 0,7. Чем более пологой является АЧХ радиоприемника, тем шире полоса пропускания на уровне 0,1 по отношению к уровню 0,7 и тем больше величина коэффициента прямоугольности. Коэффициент пропускания позволяет количественно оценить пологий характер амплитудно-частотной характеристики радиоприемника. Чем ближе коэффициент прямоугольности АЧХ к 1, тем круче ее скаты и тем меньше помех «пролезет» по краям полосы пропускания. С целью уменьшения мощности помех, прошедших в тракт приемника, ширину его полосы пропускания устанавливают соответствующей ширине спектра сигнала. В приемниках для приема сигналов, существенно отличающихся по ширине, например речи и телеграфа, ширину полос пропускания различных селективных цепей изменяют путем коммутации селективных элементов (катушек индуктивности, конденсаторов).

Так как активные элементы усилительных каскадов радиоприемника (транзисторы, диоды и др.) имеют достаточно узкий интервал значений входных сигналов, при которых обеспечивается их линейное преобразование, то при обработке сигналов с амплитудой вне этих интервалов возникают их нелинейные искажения, в результате которых искажается информация. Возможность приемника обрабатывать с допустимым уровнем нелинейных искажений входные радиосигналы, отличающиеся по амплитуде, характеризуется динамическим диапазоном. Величина динамического диапазона оценивается отношением в децибелах максимального уровня к минимальному уровню принимаемого сигнала.

Для повышения динамического диапазона в современных радиоприемниках применяется устройство автоматической регулировки усиления (АРУ) приемного тракта, изменяющего его коэффициент усиления в соответствии с уровнем принимаемого сигнала.

Несоответствие амплитудно-частотной и фазовой характеристик, динамического диапазона радиоприемника текущим характеристикам сигнала приводят к его частотным, фазовым и нелинейным искажениям и потере информации.

Частотные искажения в радиоприемнике вызываются неодинаковыми изменениями с оставляющих спектра входного сигнала. Из-за частотных искажений сигнал на входе демодулятора искажается, что приводит к изменению содержащейся в нем информации.

Фазовые искажения сигнала возникают из-за нарушений фазовых соотношений между отдельными спектральными составляющими сигнала при прохождении его цепями тракта приемника.

Искажения, проявляющиеся в появлении в частотном спектре выходного сигнала дополнительных составляющих, отсутствующих во входном сигнале, называются нелинейными. Нелинейные искажения вызывают элементы радиоприемника, имеющие нелинейную зависимость между выходом и входом.

Они возникают при превышении отношения значений максимального и минимального напряжений сигнала на входе приемника к его динамическому диапазону. Эти виды искажений приводят к изменению информационных параметров сигнала на входе демодулятора и, как следствие, к искажению информации после демодуляции.

Кроме указанных электрических характеристик возможности радиоприемников оцениваются также по их надежности, оперативности управления, видам электропитания и потребляемой мощности, масса-габаритным показателям.

Традиционные аналоговые радиоприемники постепенно вытесняются цифровыми, в которых сигнал преобразуется в цифровой вид с последующей его обработкой средствами вычислительной техники.

Средства определения координат источников радиосигналов. Информативными признаками источника радиосигналов являются его координаты. Для определения координат применяется радиоприемник с поворачиваемой антенной, диаграмма направленности которой имеет острый максимум или минимум. Поворачивая антенну в направление достижения максимума (минимума) сигнала на выходе антенны, определяют направление на источник радиосигнала. Этот процесс называют пеленгованием, значения углов между направлениями на север и источник – пеленгами, а средство для пеленгования – радиопеленгатором, или пеленгатором.



Pages:     || 2 | 3 | 4 |


Похожие работы:

«Министерство образования и науки Самарской области Министерство имущественных отношений Самарской области Государственное бюджетное образовательное учреждение среднего профессионального образования Тольяттинский индустриально-педагогический колледж (ГБОУ СПО ТИПК) ПУБЛИЧНЫЙ ОТЧЕТ о результатах деятельности Государственного бюджетного образовательного учреждения среднего профессионального образования Тольяттинского индустриально-педагогического колледжа за 2012-2013 учебный год Тольятти, 2013 г....»

«Федеральное агентство по образованию Южно-Уральский государственный университет Институт открытого и дистанционного образования Юридический факультет Кафедра Уголовный процесс и криминалистика Г.А. Васильева ПРОФЕССИОНАЛЬНАЯ ЭТИКА ЮРИСТА Учебно-методический комплекс по дисциплине Челябинск 2005 Учебно-методический комплекс (УМК) по дисциплине Профессиональная этика юриста предназначен для студентов, обучающихся по специальности Юриспруденция. УМК включает: рабочую программу дисциплины,...»

«Методические указания по дисциплине Теория управления для студентов направления подготовки 081100 Государственное и муниципальное управление квалификация (бакалавр) (самостоятельная работа, методические указания для выполнения курсовой работы) Творческая работа (эссе) представляет собой оригинальное произведение объемом до 10 страниц текста (до 3000 слов), посвященное какой-либо изучаемой проблеме. Творческая работа не является рефератом и не должна носить описательный характер, большое место в...»

«Основы философии История Иностранный язык Физическая культура Математика Информатика и информационно – коммуникационные технологии (икт) в профессиональной деятельности Общая и профессиональная педагогика Общая и профессиональная психология Возрастная анатомия, физиология и гигиена Правовое обеспечение профессиональной дисциплины Безопасность жизнедеятельности Основы изобразительного искусства Черчение и перспектива Народные художественные промыслы россии Основы композиции и дизайна Правовое...»

«З.М. СЕЛИВАНОВА, А.В. ПЕТРОВ ТЕХНОЛОГИЯ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ • ИЗДАТЕЛЬСТВО ТГТУ • Министерство образования и науки Российской Федерации ГОУ ВПО Тамбовский государственный технический университет З.М. Селиванова, А.В. Петров ТЕХНОЛОГИЯ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ Лабораторные работы для студентов 5, 6 курсов дневного и заочного отделений, экстерната и дистанционного обучения специальности 210201 Проектирование и технология радиоэлектронных средств Тамбов Издательство ТГТУ УДК 621.396. ББК...»

«СМОЛЕНСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ Городниченко Эдуард Александрович ФИЗИОЛОГИЯ ПИТАНИЯ Учебно-методическое пособие (для студентов заочной формы обучения, обучающихся по специальности 260501.65 Технология продуктов общественного питания) Смоленск, 2008 1. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Тема 1. Основы физиологии человека Лекция 1. Онтогенетические закономерности формирования организма человека. Механизмы регуляции физиологических функций. Обмен веществ и энергии – основа жизнедеятельности...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕЖДУНАРОДНЫЙ ИНСТИТУТ ФИНАНСОВ, УПРАВЛЕНИЯ И БИЗНЕСА Кафедра Управления качеством А.Г. Рыбка, А.В. Воронцова ПОРЯДОК ВЫПОЛНЕНИЯ, ОФОРМЛЕНИЯ, ЗАЩИТЫ КУРСОВЫХ И ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ / ДИПЛОМНЫХ РАБОТ Учебно-методический комплекс Методические рекомендации для студентов специальности...»

«Министерство образования Российской Федерации ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ А.Г.Ветошкин ПРОЦЕССЫ И АППАРАТЫ ПЫЛЕОЧИСТКИ Учебное пособие Пенза 2005 УДК 628.5 ББК 20.1 Ветошкин А.Г. Процессы и аппараты пылеочистки. Учебное пособие. – Пенза: Изд-во Пенз. гос. ун-та, 2005. - с.: ил., библиогр. Рассмотрены основы процессов и аппаратов технологии защиты атмосферы от аэрозольных пылевых выбросов с использованием различных методов и способов: гравитационные, центробежные, мокрые,...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования Витебский государственный технологический университет КОНСТРУИРОВАНИЕ И ТЕХНОЛОГИЯ ИЗДЕЛИЙ ИЗ КОЖИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по дипломному проектированию для студентов специальности 1-50 02 01 специализаций 1-50 02 01 03 Конструирование обуви и 1-50 02 01 04 Конструирование кожгалантерейных изделий Витебск 2008 УДК 685.34.016 + 685.51.002.1 (07) Методические указания по дипломному проектированию для студентов специальности 1-50 02...»

«Внедренческая деятельность 2013 г. № Автор, соавторы Форма (вид) внедрения Место внедрения Сроки внедрения п/п 1 2 3 4 5 Кафедра иностранных языков Дроздова Н.П., Филатова Л.А. Методические рекомендации Словообразование в СГАФКСТ, учебный 2013/2014 учебный год 1. спортивной лексике. Смоленск, 2013. процесс Филатова Л.А. Туризм (сфера обслуживания). Учебное пособие. СГАФКСТ, учебный 2013/2014 учебный год 2. Смоленск, 2013. процесс Филатова Л.А. Практическая грамматика английского языка. СГАФКСТ,...»

«Секция 4 Рынок: исследования, проекты, технологии Tirgus: ptjumi, projekti, tehnoloijas RESEARCH and TECHNOLOGY – STEP into the FUTURE 2010, Vol. 5, No 2 ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ПОСТРОЕНИЯ ОРГАНИЗАЦИОННЫХ СТРУКТУР Алексей Акимов Институт транспорта и связи ул. Ломоносова, 1, Рига, LV-1019, Латвия Тел. +371 29562043. E-mail: [email protected] Ключевые слова: функционирование, неустойчивость, пересмотр, полномочия, критерий, эффективность Организационные структуры создаются для обеспечения...»

«Л.И. Горбунова, Г.С. Келлер КУЛЬТУРОЛОГИЯ Часть I ЧЕЛОВЕК – ОБЩЕСТВО - КУЛЬТУРА 2 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Л.И. Горбунова, Г.С. Келлер КУЛЬТУРОЛОГИЯ ЧЕЛОВЕК – ОБЩЕСТВО - КУЛЬТУРА Допущено Ученым советом МГТУ в качестве учебного пособия для студентов и курсантов по дисциплине Культурология для всех специальностей МГТУ Мурманск УДК 008.001...»

«Негосударственное образовательное учреждение высшего профессионального образования ЮРИДИЧЕСКИЙ ИНСТИТУТ Кафедра гражданского права и процесса УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС Учебная дисциплина Гражданский процесс (Гражданское процессуальное право) по специальности 030500 - Юриспруденция Разработчик к. ю. н., доцент Шестакова Н. Д. ст. преподаватель Осина Ю. Ю. Санкт-Петербург 2012 Учебно-методический комплекс по дисциплине Гражданский процесс (Гражданскопроцессуальное право) составлен в...»

«Министерство культуры Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарская государственная академия культуры и искусств Научная библиотека НОВЫЕ ПОСТУПЛЕНИЯ за 2012 г. Самара 2012 1. ФИЛОСОФИЯ. ПСИХОЛОГИЯ. ЭСТЕТИКА. ЭТИКА Азарнова, А. Г. Метод ролевой игры в тренинге [Текст] : создание, проведение и разбор ролевой игры / А. Г. Азарнова. - СПб. : Речь, 2011. - 352 с. : ил. - (Бизнес-тренинг) Метод ролевой игры в...»

«А.В. МОРОЗОВ, И.Л. САВЕЛЬЕВ М ЕТОД ИКА ИСС ЛЕДО ВА НИЙ В С ОЦИАЛЬНО Й РАБО ТЕ У ЧЕБНОЕ ПОСОБИЕ Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение Высшего профессионального образования Казанский государственный технологический университет А.В. МОРОЗОВ, И.Л. САВЕЛЬЕВ М ЕТО ДИКА И ССЛ ЕДОВАН ИЙ В СО ЦИАЛ ЬНО Й РАБ ОТ Е УЧЕБ НОЕ П ОСОБ ИЕ Рекомендовано Учебно-методическим объединением вузов России по образованию в...»

«Программа первоначальной подготовки спасателей МЧС России Москва 1999 г. Программа разработана на основании утвержденной Межведомственной аттестационной комиссией Программы первоначальной подготовки спасателей Российской Федерации и определяет первоначальную подготовку спасателей МЧС России. В ней излагаются; организация первоначальной подготовки спасателей; расчет часов по предметам обучения; задачи обучения; методические указания по предметам обучения; тематический расчет часов; наименование...»

«СМОЛЕНСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПСИХОЛОГИИ И ПРАВА КАФЕДРА ГОСУДАРСТВЕННО-ПРАВОВЫХ ДИСЦИПН ОДОБРЕНО УТВЕРЖДАЮ на заседании кафедры Протокол № 7 от 27 марта 2012 г. Проректор по учебной и Заведующий кафедрой воспитательной работе / Лопатина Т.М. / Мажар Л.Ю. Рабочая программа дисциплины Теория государства и права Направление подготовки 030900.62 Юриспруденция Профиль подготовки Квалификация (степень) выпускника Бакалавр Формы обучения очная очно-заочная заочная СМОЛЕНСК...»

«Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановская государственная текстильная академия ( ИГТА) Кафедра проектирования текстильных машин ОПРЕДЕЛЕНИЕ СМЕЩЕНИЯ ОСЕЙ ДАВИЛЬНЫХ ВАЛОВ ОТНОСИТЕЛЬНО ДРУГ ДРУГА Методические указания к лабораторной работе по дисциплинам РКТТМ и ПТМ студентов специальностей 170700,280300. Иваново 2003 Настоящие методические указания к лабораторной работе по дисциплине Расчет и...»

«В.П. ЯРЦЕВ, О.А. КИСЕЛЕВА ПРОЕКТИРОВАНИЕ И ИСПЫТАНИЕ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ ИЗДАТЕЛЬСТВО ТГТУ Учебное издание ЯРЦЕВ Виктор Петрович КИСЕЛЕВА Олеся Анатольевна ПРОЕКТИРОВАНИЕ И ИСПЫТАНИЕ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ Учебное пособие Редактор Е.С. М о р д а с о в а Компьютерное макетирование М.А. Ф и л а т о в о й Подписано в печать 20.12.05 Формат 60 84 / 16. Бумага офсетная. Печать офсетная Гарнитура Тimes New Roman. Объем: 7,44 усл. печ. л.; 7,58 уч.-изд. л. Тираж 100 экз. С....»

«Учреждение образования Белорусский государственный технологический университет УТВЕРЖДЕНА Ректором БГТУ профессором И.М. Жарским 22 марта 2010 г. Регистрационный № УД-268/баз. ТЕПЛОТЕХНИЧЕСКИЕ УСТАНОВКИ И АГРЕГАТЫ ПРЕДПРИЯТИЙ КЕРАМИКИ И ОГНЕУПОРОВ Учебная программа для специальности 1-48 01 01 Химическая технология неорганических веществ, материалов и изделий специализаций 1-48 01 01 09 Технология тонкой функциональной и строительной керамики и 1-48 01 01 11 Химическая технология огнеупорных...»










 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.