WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

Махмадуллоев Зафар Насуллоевич

О КОРРЕКТНОЙ РАЗРЕШИМОСТИ

НЕСАМОСОПРЯЖЕННЫХ СМЕШАННЫХ ЗАДАЧ

ДЛЯ УРАВНЕНИЯ КОЛЕБАНИЙ МЕМБРАНЫ

01.01.02 - Дифференциальные уравнения, динамические

системы, оптимальное управление

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Душанбе – 2012 2

Работа выполнена в Таджикском государственном университете коммерции

Научный руководитель: доктор физико–математических наук, профессор Исмати Мухаммаджон

Официальные оппоненты: Курбонов Икром - доктор физикоматематических наук,член корреспондент АН РТ, профессор, Российско -Таджикский(Славянский) университет, заведующий кафедрой математики и ЕНД Шарипов Бобоали - кандидат физикоматематических наук,доцент,Институт предпринимательстваи сервиса,доцент кафедры математики в экономике

Ведущая организация: Курган - Тюбинский государственный университет имени Н. Хусрава

Защита состоится 4 апреля 2012 г. в 11ч. 00 мин. на заседании диссертационного совета ДМ 047.007.01 при Институте математики Академии наук Республики Таджикистан по адресу: 734063, г.Душанбе, ул. Айни 299/4.

С диссертацией можно ознакомиться в библиотеке Института математики Академии наук Республики Таджикистан.

Автореферат разослан " " марта 2012 г.

Ученый секретарь диссертационного совета Халилов Ш.Б.

Общая характеристика работы

Актуальность темы. Диссертационная работа посвящена проблемам абсолютной и равномерной сходимости разложений по собственным функциям одной нелокальной (несамосопряжнной) краевой задачи и корректной разрее шимости несамосопряжнных (нелокальных) смешанных задач для уравнения е колебаний мембраны.

Разложение по собственным функциям дифференциальных операторов является одним из известных методов решения смешанных задач математической физики. Проблемам суммируемости и сходимости разложений по собственным функциям самосопряжнных дифференциальных операторов пое священы работы В.А. Стеклова (1901), Н.М. Гюнтера (1934), С.Л. Соболева (1945), Ю.М. Березанского (1965), В.А. Ильина (1955-1968), Е.И. Моисеева (1976), М.А. Красносельского, Е.И. Пустыльника (1958), О.А. Ладыженской (1950-1958), Б.М. Левитана (1950-1955), А.Я. Повзнера (1953), Э.Ч. Титчмарша (1960-1961), К. Фридрихса (1947), Г. Вейля (1915), Т. Икебе (1967) И.К.

Кенджаева (1967,1968), М. Исмати (1970-1992гг) и других авторов.

Методу Фурье для общего гиперболического и волнового уравнения за последние четыре десятилетия посвящено большое число работ. Среды них мы отметим лишь работы Х.Л. Смолицкого (1949), О.А. Ладыженской (1950), и В.А. Ильина (1957-1960). Наиболее точные условия существования классического решения смешанных задач для общего гиперболического уравнения установил В.А. Ильин (1960) для произвольной нормальной1 области.

Однако исследованию этих проблем для несамосопряжнных дифферене циальных операторов посвящено сравнительно мало работ и эти проблемы далеки от своего полного разрешения. Это, прежде всего, относится и к спектральному разложению несамосопряжнных операторов. Хотя и относителье но этой проблемы также появилось достаточно много работ (см. например, работы Я.Д. Тамаркина (1917), В.А. Ильина (1976, 1983,1986), М.В. Келдыша (1951), В.Б. Лидского (1962), М.Г. Крейна, И.Ц. Гохберга (1965), М.А.

Наймарка (1969), А.Г. Рамма (1970), Н.И. Ионкина (1977,1979), М. Исмати и имеющуюся там библиографию).

Выдающимся вкладом в науку являются работы В.А. Ильина по спектральной теории несамосопряжнных дифференциальных операторов, вые полненные им, начиная с 1975г. Этим работам предшествовали известные работы М.В. Келдыша, в которых для широкого класса краевых задач установлен факт полноты специально построенной системы собственных и присоединнных функций дифференциального оператора ( такую систему Келдыш е назвал канонической). Следовательно, вышеупомянутые проблемы являются Области называется нормальной, если для этой области разрешима задачи Дирихле для уравнения Лапласа при любой непрерывной граничной функции актуальными.

Цель работы.Целью данной работы является установление корректной разрешимости несамосопряжнных (нелокальных) смешанных задач для уравнения колебаний мембраны.

Методика исследований. В работе используются методы разложения функций по собственным и присоединнным (корневым) функциям несамосое пряжнных (нелокальных) краевых задач для уравнения колебаний мембрае ны (метод Фурье), современные методы уравнений в частных производных и функционального анализа.

Научная новизна. Основные результаты диссертации являются новыми и заключается в следующем:

1. Найдена биортогональная система собственных и присоединнных функе ций рассматриваемой эллиптической нелокальной краевой задачи. Показано, что эта система не только образует базис в пространстве, но и образует базис Рисса. Найдено выражение для формального решения несамосопряжнных е смешанных задач для однородного и неоднородного уравнений колебаний мембраны.



2. Дано обоснование метода Фурье для классического решения несамосопряжнной смешанной задачи и сопряжнной к ней задачи. Доказано сущее е ствование и единственность классического решения смешанной задачи.

3. Найдены априорные оценки в различных нормах, из которых, в частности, следует устойчивость, а следовательно, и корректная разрешимость рассматриваемых задач.

Практическая и теоретическая ценность работы. Работа носит теоретический характер. Результаты диссертации могут быть использованы при решении соответствующих задач физики плазмы, в общей теории кратных ортогональных и тригонометрических рядов, теории самосопряжнных и несае мосопряжнных дифференциальных операторов.

Апробация работы. Результаты диссертации докладывались на ежегодных конференциях Таджикского государственного университета коммерции, Института предпринимательства и сервиса, на научных семинарах Института предпринимательства и сервиса под руководством профессора М. Исмати;

на научном семинаре Таджикского национального университета под руководством профессора М.К. Юнуси, на международной конференции, посвященной 60-летию со дня образования Таджикского национального госуниверситета (апрель-май) 2009 года.

Публикации. Основные результаты диссертации опубликованы в 7 научных работах, список которых приведен в конце автореферата.

Структура и объм работы. Диссертация состоит из введения, двух глав и списка литературы, включающего 77 наименований. Объм диссертае ции составляет 107 страницы компьютерного набора.

Во введении дается краткая историческая справка рассматриваемых вопросов, обосновывается актуальность темы и приводится краткое содержание диссертации с указанием основных результатов.

В первой главе доказывается существование классических в смысле В.А.

Ильина решений несамосопряжнных (нелокальных) смешанных задач для уравнения колебаний мембраны.

В первом параграфе первой главы дается определение обобщенной производной, пространства Соболева W2 с целыми l и теоремы вложения.

Этот параграф носит вспомогательный характер. Однако основные результаты диссертации сформулированы именно в терминах пространства Соболева с целыми порядками частных производных l.

В втором параграфе первой главы дается постановка следующей нелокальной (несамосопряжнной) задачи:

U (x, y, 0) = (x, y), Ut (x, y, 0) = (x, y), (x, y) R R; R = [0; 1] U (x, 0, t) = 0, Uy (x, 0, t) = Uy (x, 1, t), x [0; 1], t [0, T ] Рассмотрим следующую редукцию этой задачи:

где V (x, y, t) и w(x, y, t) являются решениями смешанной задачи (1.2.1) при f (x, y, t) = 0 и ненулевых начальных функций и при f (x, y, t) = 0 (x, y) = 0, (x, y) = 0 соответственно. Задача (1.2.1) является нелокальной смешанной задачей. Кроме того, она является несамосопряжнной задачей в силу граничных условий.

В третьем параграфе первой главы для двухмерной квадратной области R2 = R R = (0; 1) (0; 1) находится последовательность собственных и присоединнных функций нелокальной (несамосопряжнными) задачи для уравнения Лапласа и сопряжнной к нему задачи (Мы сохраняем во введении те же самые номера формул, как в самих главах 1 и 2 диссертации). Отметим, что всюду в рассматриваемой диссертации мы сформулируем основные результаты для основного квадрата R2 = (0; 1) (0; 1), однако перенесение их для произвольного квадрата Ra = [0; a] [0; a] или прямоугольника Ra,b = [0; a] [0; b] не предоставляет трудности. А в этом параграфе мы приводим некоторые результаты из работы [24]. Сперва отметим, что смешанные задачи (1.2.6) и (1.2.7) при n = 2 (вместе с t) впервые были рассмотрены в работе [24] М. Исмати. Кроме того, смешанные задачи вида (1.2.6) и (1.2.7) для уравнения теплопроводности при n = 1 и n = 2 соответственно были рассмотрены и подробно исследованы в работах Н.И.Ионкина [21] и Н.М.Исматова.

Известно [24], что собственные значения и собственные функции задачи (1.2.6) имеют вид Последовательность собственных функций (1.2.8) не образует ортогональную систему и эта последовательность не образует полную систему и базис в пространстве L2 (R R). С этой целью, следуя работе В.А. Ильина [15], дадим следующее Определение 1. Под собственной функцией задачи (1.2.6), отвечающей собственному значению, понимается не равная тождественно нулю функция (x, y), которая принадлежит классу C 1 () C 2 (), = R R и является регулярным решением задачи (1.2.6).

Аналогично, под присоединнной функцией порядка p(p = 1, 2,...), отвее чающей тому же и собственной функции (x, y), понимается вещественная функция (x, y), которая принадлежит классу C 1 () C 2 () и с точностью до ненулевого постоянного множителя Р является регулярным решением уравнения и удовлетворяет граничным условиям задачи (1.2.6) (явный вид постоянной Р указывается ниже). Известно [24], что задача (1.2.6) имеет следующие присоединнные функции:

где k,m, k,m, k,m, k,m соответственно удовлетворяют уравнениям Отметим, что при k, m = 0, то есть при = 0,0 = 0 и P = 0 (например, при P = 1) присоединнная функция 0,0 (x, y) не существует. Систему всех собственных и присоединенных функций задачи (1.2.6) переобозначим следующим образом:

При этом видно, что при k, m > 0 каждому собственному значению k,m соответствует одна собственная и три присоединнные функции.

Собственные значения и система собственных и присоединнных функций сопряженной задачи (1.2.7) имеют вид:

0,0 = 0,0 = 0, k,m = k,m = (2k)2 + (2m)2, Z0,0 (x, y) = 2 · 2, 2k1,2m1 (x, y) = 4 cos 2kx4 cos 2my = Z2k1,2m Z2k,2m1 (x, y) = 4(1 x) sin 2kx4 cos 2my = Zk,m Z2k1,2m (x, y) = 4 cos 2kx4(1 y) sin 2my = Z k,m Z2k,2m (x, y) = 4(1 x) sin 2kx · 4(1 y) sin 2my =Z k,m, где присоединнные функции Zk,m = Z2k,2m1, Zk,m = Z2k1,2m, Z k,m = Z2k,2m соответственно удовлетворяют следующим уравнениям:

и граничным условиям задачи (1.2.7). Имеет место Лемма. Последовательность собственных и присоединнных функций зае дачи (1.2.6) и сопряжнной к ней задачи (1.2.7) образует биортогональную систему функции в L2 (QT ). Имеет место Теорема. Последовательность собственных и присоединнных функции {k,m (x, y)}k,m=0, определенная по формулам (1.3.4), образует базис в пространстве L2 (QT ) и для (x, y) L2 (QT ) имеют место неравенства где c = 0.9, C = 272, то есть последовательности функций k,m=0 и {Zk,m (x, y)}k,m=0 образуют базис Рисса в пространстве L2 (QT ).

В четвертом параграфе первой главы методом Фурье для решения смешанной задачи (1.2.1) при f (x, y, t) = 0 найдено следующее выражение:

где 2k1,2m1 = ((x, y), Z2k1,2m1 ), 2k1,2m1 = ((x, y), -коэффициенты биортогонального разложения начальных функций (x, y) и (x, y) по биортогональной системе Zkm (x, y).

Следуя [15], дадим следующее определение.

Определение. Функцию V (x, y, t) из класса C 1 (QT ) C 2 (QT ) назовем классическим решением смешанной задачи (1.2.1), если:

1.она удовлетворяет внутри области QT однородному уравнению колебаний мембраны;

2. удовлетворяет начальным и граничным условиям задачи (1.2.1) в обычном классическом смысле.

Пятый параграф первой главы посвящается обоснованию метода Фурье для классического, в смысле В.А. Ильина, решения смешанной задачи (1.2.3) для однородного уравнения колебаний мембраны. Основным результатом этого параграфа является Теорема 1.5.1. Пусть начальные функции несамосопряженной смешанной задачи (1.2.1) удовлетворяют следующим условиям:

1. Функция (x, y) имеет в прямоугольнике R = [0, 1][0, 1] непрерывные производные до третьего порядка,интегрируемые с квадратом производные четвертого порядка и функции и удовлетворяют краевым условиям задачи (1.2.1) в обычном смысле.

2. Функция (x, y) имеет непрерывные производные до второго порядка,интегрируемые с квадратом производные третьего порядка в R и, удовлетворяют краевым условиям задачи (1.2.1). Тогда для любого отрезка времени t [0, T ] сумма биортогонального ряда (1.4.44) дает классическое, в смысле В.А. Ильина, решение смешанной задачи (1.2.1). При этом ряд (1.4.44) и ряды Vt, Vtt (i = 1, 2), полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно во всей замкнутой области R [0, T ] = QT. Кроме того, ряды, полученные из (1.4.44) двукратным почленным дифференцированием Vxi,t, Vxi,xj (i, j = 1, 2), сходятся абсолютно и равномерно в любой строго внутренней подобласти QT QT при t > 0.

В шестом параграфе первой главы находится формальное решение несамосопряженной смешанной задачи (1.2.4). Это решение имеет вид Здесь же доказано существование классической в смысле В. А. Ильина смешанной задачи (1.2.4).

Теорема 1.6.1. Пусть плотность вынуждающих сил f (x, y, t) удовлетворяет следующим условиям:

1. функции f (x, y, t) имеет в области GT = R R [0, T ] непрерывные частные производные до второго порядка,интегрируемые с квадратом производных третьего порядка, 2. она такова, что функции f (x, y, t), f (x, y, t) для всех t [0, T ] и (x, y) R R по переменным x и y удовлетворяют граничным условиям задачи (1.2.4). Тогда ряд (1.6.22) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области QT = R R, а ряды, полученные двукратным почленным дифференцированием по любым переменным x, y, и t, сходятся абсолютно и равномерно в любой подобласти QT = (0, T ] области QT при всех t > 0. При этом сумма ряда (1.6.22)определяет классическое решение смешанной задачи (1.2.4) в смысле В.А. Ильина.

Замечание 1.6.1. Условия 1) и 2) теоремы 1.6.1. могут быть обобщены следующим образом: Достаточно потребовать, чтобы f W2 2 (QT ) и по x удовлетворяла соответствующему краевому условию в обобщенном смысле (т.е. в среднем). Аналогично обобщаются и условия, наложенные на функции и теоремы 1.5.1.

В седьмом параграфе первой главы дается обоснование метода Фурье для классического, в смысле В.А. Ильина, решения несамосопряжнной е смешанной задачи (1.2.1).

Методом Фурье для решения смешанной задачи (1.2.1) получим следующее выражение где V (x, y, t) и w(x, y, t) соответственно определяются по формулам (1.4.44) и (1.6.22).

Основным результатом этого параграфа является Теорема 1.7.1. Пусть начальные функции (x, y) и (x, y) и правая часть f (x, y, t) задачи (1.2.1) соответственно удовлетворяют условиям теорем 1.5.1 и 1.6.1. Тогда ряд (1.7.1) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области T = (0, T ], = R R, а ряды, полученные двукратным почленным дифференцированием по любым переменным x, y и t, сходятся абсолютно и равномерно в любой подобласти QT (0, T ] области QT при всех t > 0. При этом сумма ряда (1.7.1) U (x, y, t) определяет классическое решение несамосопряжнной смешанной задачи (1.2.1) в смысле В.А. Ильина.

В восьмом параграфе первой главы найдено формальное решение сопряженной к задаче (1.2.3) смешанной задачи (1.8.1).

Решение задачи (1.8.1) дается формулой (1.8.36).

В пункте 1.8.2 доказывается существование классического решения сопряженной смешанной задачи (1.8.1).А именно, имеет место Теорема 1.8.2. Пусть в задаче (1.8.1) функции (x, y) и (x, y) удовлетворяют следующим двум условиям:

1. (x, y) в области = R R обладает непрерывными производными до третьего порядка и интегрируемые с квадратом производные четвертого порядка и такова, что функции, в классическом смысле удовлетворяют граничным условиям задачи (1.8.1).

2. (x, y) в области = R R обладает непрерывными производными до второго порядка включительно и такова, что функции,, в классическом смысле удовлетворяют граничным условиям задачи (1.8.1) Тогда ряд (1.8.36) дает классическое решение смешанной задачи(1.8.1) В девятом параграфе первой главы найдено выражение для формального решения смешанной задачи (1.9.1).

Здесь же в теореме 1.9.1 дано обоснование метода Фурье для классического решения смешанной задачи (1.9.1). А именно,имеет место Теорема 1.9.1. Пусть функция f (x, y, t) удовлетворяет следующим условиям:

1. функции f (x, y, t) имеет в области GT = R R [0, T ] непрерывные частные производные до второго порядка 2. она такова, что функции f (x, y, t), f (x, y, t), для всех t [0, T ] и (x, y) R R по переменным x и y удовлетворяет граничным условиям задачи (1.9.1). Тогда ряд (1.9.14) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области Q = R R [0, T ], а ряды, полученые двукратным почленным дифференцированием по любым переменным x, y и t сходятся абсолютно и равномерно в любой подобласти QT области QT = R R [0, T ] при всех t > 0. При этом сумма ряда (1.9.14) определяет классическое решение смешанной задачи (1.9.1) в смысле В. А. Ильина Наконец, в десятом параграфе первой главы найдено формальное решение общей сопряжнной задачи и дано обоснование метода Фурье для классического решения этой задачи (Теорема 1.10.1). В пункте 10.1 первой главы найдено выражение для решения смешанной задачи 1.2.4 при f (x, y, t) = f (x, y) В второй главе диссертации доказана единственность классического решения рассматриваемых задач и получены некоторые априорные оценки в нормах пространства L2 и W2. Из этих оценок, в частности, следует устойчивость решения и, в конечном итоге, корректная разрешимость рассматриваемых задач.

В первом параграфе второй главы доказана единственность классического решения смешанной задачи (2.1.1). А именно, имеет место Теорема 2.1.1. Пусть выполнены все условия теоремы 1.7.1. Тогда задача (2.1.1) имеет не более одного классического решения.

В втором параграфе второй главы 2 найдены выражения для формального решения задачи (1.2.4) из главы 1 при f (x, y, t) = f (x, y).

В третьем параграфе второй главы получены априорные оценки для решения неоднородного уравнения при f (x, y, t) = f (x, y), из которых, в частности, следует устойчивость задачи (точнее, непрерывная зависимость решения от правой части в норме пространства L2 ). А именно, имеет место Теорема 2.3.1. Для решения w(x, y, t) задачи (1.2.4) из главы 1 при f (x, y, t) = f (x, y) справедливы следующие двухсторонние оценки:

где m = 0, 9, M = 272, K = A1 + A2 T 2 + A3 T 4, а положительные постоянные A1, A2, A3 определены ниже (см. формулу (2.4.8)). При этом для решения задачи (1.2.4) при f (x, y, t) = f (x, y) получено выражение вида (2.2.4) Кроме того, имеет место Теорема 2.3.2. Решение смешанной задачи 1.2.4 из главы 1 при f (x, y, t) = f (x, y) непрерывно зависит от правой части уравнения f (x, y).

В четвертом параграфе второй главы получены априорные оценки для решения сопряжнной смешанной задачи (1.9.1) для неоднородного воле нового уравнения. А именно, в пункте 2.4.1 найдено выражение (2.4.1) для формального решения задачи (1.9.1). В том числе имеет место Теорема 2.4.1.Для решения сопряжнной смешанной задачи (1.9.1) имее ют место оценки пространстве L2 (Q), Q = (0, 1)(0, 1). В частности, из оценки (2.4.1) следует непрерывная зависимость решения смешанной задачи (1.9.1) от правой части f (x, y, t) в норме пространства L2 (или устойчивость задачи (1.9.1)). Для формального решения смешанной задачи (1.9.1) при f (x, y, t) = f (x, y) получено выражение в виде (2.4.5).

В пятом параграфе второй главы получены двухсторонние априорные оценки для решения смешанной задачи (1.2.3) для однородного волнового уравнения в нормах L2 (R R) через начальные функции. Из этих оценок, в частности, следует устойчивость решения, и с учетом результатов диссертации и корректная разрешимость соответствующих несамосопряжнных сме-е шанных задач.

Наконец, в шестом параграфе второй главы получены априорные оценки в норме пространства W2 для решения смешанной задачи (2.6.1) для неоднородного уравнения при f (x, t) = f (x) В заключение автор выражает глубокую благодарность своему научному руководителю доктору физико - математичесих наук, профессору М. Исмати за постановку задач и обсуждение результатов данной диссертации.

1. Махмадуллоев З.Н. Решение одной несамосопряжнной задачи для неоде нородного уравнения колебаний мембраны. // Вестник (Пам) Института предпринимательства и сервиса, 2005, №13, с.62- 2. Махмадуллоев З.Н. Об одной нелокальной краевой задаче для уравнения колебаний мембраны. //ДАН Республики Таджикистан,2006, т.49,№3, с.215-220.

3. Исмати М., Махмадуллоев З.Н. О корректной разрешимости самосопряжнных смешанных задач для уравнения колебаний мембраны.

//Вестник (Пам) Института предпринимательства и сервиса, 2007, №16, с.34-38.

4. Исмати М., Махмадуллоев З.Н. Априорные оценки. Корректная разрешимость смешанных задач для уравнения колебаний мембраны //Известия Академии наук Республики Таджикистан.Отделение физ-мат,химии геолог.наук, 2007, №3(128), с.7-15.

5. Исмати М., Махмадуллоев З.Н. О существовании и единственности решения одной сопряжнной задачи для неоднородного уравнения колебаний мембраны. //Материалы международной научной конференции "Наука и современное образование: проблемы и перспективы", посвящено 60-летию ТГНУ, окт., 2008, - с. 21-23.

6. Махмадуллоев З.Н.- О существовании и единственности решения одной сопряженной задачи для неоднородного уравнения колебаний мембраны.

//Материалы республиканской научной конференции "Проблемы математических и естественных наук, ТГУК, март, 2010, - с. 122-124.

7. Махмадуллоев З.Н. Априорные оценки для классического решения одной несамосопряжнной задачи //ДАН Республики Таджикистан, 2011,т.54,№12, с.960-965.





Похожие работы:

«УДК 622.684:629.114.42 + + 622.271.4:621.879.033 Фурин Виталий Олегович ОБОСНОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ УГЛУБОЧНОГО КОМПЛЕКСА ДЛЯ ДОРАБОТКИ КРУТОПАДАЮЩИХ МЕСТОРОЖДЕНИЙ Специальность 25.00.22 – Геотехнология (подземная, открытая, строительная) Автореферат диссертации на соискание ученой степени кандидата технических наук Екатеринбург 2009 2 Работа выполнена в Институте горного дела УрО РАН Научный руководитель доктор технических наук, член-корр. РАН В.Л. Яковлев...»

«Городнянская Валентина Валерьевна ПОСТПЕНИТЕНЦИАРНЫЙ РЕЦИДИВ 12.00.08 - уголовное право и криминология; уголовно-исполнительное право АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Томск - 2011 Работа выполнена в ГОУ ВПО Томский государственный университет на кафедре уголовно-исполнительного права и криминологии Научный руководитель : заслуженный юрист РФ, доктор юридических наук, профессор Уткин Владимир Александрович Официальные оппоненты :...»

«СТРЕЛЕЦКИЙ Александр Владимирович ГЕОМЕХАНИЧЕСКОЕ ОБОСНОВАНИЕ УСТОЙЧИВОСТИ ГОРНЫХ ВЫРАБОТОК ПОД ЗАЩИТНЫМ ПЕРЕКРЫТИЕМ (НА ПРИМЕРЕ ЯКОВЛЕВСКОГО РУДНИКА) Специальность 25.00.20 – Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт–Петербург - 2013 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального...»

«Полунина Алиса Александровна Экспериментальное определение тонких механизмов поглощения водорода титаном для расширения номенклатуры эксплуатационных характеристик пористых геттеров Специальность 05.27.06 – Технология и оборудование для производства полупроводников, материалов и приборов электронной техники Автореферат диссертации на соискание ученой степени кандидата технических наук...»

«Салтанова Татьяна Викторовна МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИЗБЫТОЧНЫХ ОСТАТОЧНЫХ ПОРОВЫХ ДАВЛЕНИЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ 05.13.18 - математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Тюмень - 2008 Работа выполнена на кафедре математики и информатики ГОУ ВПО Тюменский государственный университет Научный руководитель : доктор физико-математических наук, доцент Мальцева...»

«Стрелкова Ирина Витальевна Формирование филологической культуры студентов в образовательной деятельности 13.00.01 – общая педагогика, история педагогики и образования АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата педагогических наук Ижевск 2004 Работа выполнена в ГОУ ВПО Удмуртский государственный университет Научный руководитель : доктор педагогических наук, профессор А.Н. Утехина Официальные оппоненты : доктор педагогических наук, профессор М.А. Кондратьева;...»

«ГАЗЕТДИНОВ РЕНАТ РАСИМОВИЧ ИСПОЛЬЗОВАНИЕ ЛИЧНОСТНО-РАЗВИВАЮЩИХ МЕТОДОВ ПРИ ОБУЧЕНИИ СТАРШЕКЛАССНИКОВ ИНОЯЗЬИНОЙ РЕЧЕВОЙ ДЕЯТЕЛЬНОСТИ 13.00.01 - общая педагогика, история педагогики и образования АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Казань - 2002 Работа выполнена на кафедре педагогики гуманитарных факультетов Казанского государственного педагогического университета Научный доктор педагогичеких наук, профессор Габдулхаков...»

«БУЛЯКОВ Ильнур Ильдусович ЗОЛОТООРДЫНСКИЕ ГОСУДАРСТВЕННЫЕ ТРАДИЦИИ В УПРАВЛЕНИИ УФИМСКИМ УЕЗДОМ (ВТОРАЯ ПОЛОВИНА XVI — ПЕРВАЯ ТРЕТЬ XVIII в.) Специальность 07.00.02 — Отечественная история АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата исторических наук Оренбург 2011 2 Работа выполнена на кафедре историографии и источниковедения ФГБОУ ВПО Башкирский государственный университет Научный руководитель : доктор исторических наук, профессор Азнабаев Булат Ахмерович...»

«УДК 811.111 К 78 Краснощекова Галина Алексеевна ФУНДАМЕНТАЛИЗАЦИЯ НЕСПЕЦИАЛЬНОГО ЛИНГВИСТИЧЕСКОГО ОБРАЗОВАНИЯ 13.00.02 - теория и методика обучения и воспитания (иностранные языки, уровень высшего профессионального образования) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора педагогических наук Рекомендуется в печать Председатель...»

«Вотинцева Ольга Николаевна СВАДЕБНЫЙ ФОЛЬКЛОР СРЕДНЕЙ И НИЖНЕЙ ВЫЧЕГДЫ (ФУНКЦИОНАЛЬНОЕ ОПРЕДЕЛЕНИЕ МУЗЫКАЛЬНОПОЭТИЧЕСКИХ ЖАНРОВ) Специальность 10.01.09. - фольклористика Автореферат диссертации на соискание ученой степени кандидата филологических наук Ижевск 2002 Работа выполнена на кафедре фольклора и истории книги Сыктывкарского государственного университета Научный...»

«МАХАЛИН Александр Николаевич ОБОСНОВАНИЕ СТРУКТУРЫ И ПАРАМЕТРОВ ЭЛЕКТРОТЕХНИЧЕСКИХ КОМПЛЕКСОВ ОБЪЕКТОВ ГАЗОТРАНСПОРТНЫХ СИСТЕМ Специальность 05.09.03 – Электротехнические комплексы и системы АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург - 2014 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Национальный минерально-сырьевой университет Горный Научный...»

«Юденков Андрей Владимирович КОНТРОЛЬ ЧАСТОТЫ И РАЗМАХА ВИБРАЦИИ ПО ИЗМЕНЕНИЮ КОНТРАСТА В ИЗОБРАЖЕНИИ ШТРИХОВ ПИРАМИДАЛЬНОЙ МИРЫ Специальность: 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Барнаул – 2009 Работа выполнена в Алтайском государственном техническом университете им. И.И.Ползунова Научный руководитель : доктор технических наук, профессор Пронин Сергей...»

«Майорова Татьяна Дмитриевна ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ДИНАМИКА НЕЙРОМЕДИАТОРНЫХ ВЕЩЕСТВ И РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ В ОНТОГЕНЕЗЕ СТРЕКАЮЩИХ 03.02.04 – зоология 03.03.05 – биология развития, эмбриология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Москва 2013 Работа выполнена на кафедре эмбриологии биологического факультета Московского государственного университета имени М.В. Ломоносова. Научный руководитель : доктор биологических наук...»

«Вышнепольский Владимир Игоревич Методические основы подготовки и проведения олимпиад по графическим дисциплинам в высшей школе Специальность 13.00.02 - теория и методика обучения общетехническим дисциплинам и трудовому обучению АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Москва 2000 Работа выполнена на кафедре машиноведения факультета технологии и предпринимательства Московского педагогического государственного университета Научный...»

«УДК 524.45 Чупина Наталия Викторовна СТРУКТУРА И КИНЕМАТИКА БЛИЖАЙШИХ К СОЛНЦУ ЗВЕЗДНЫХ ГРУППИРОВОК Специальность 01.03.02 астрофизика и радиоастрономия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Санкт-Петербург 2009 Работа выполнена в Институте астрономии Российской Академии наук Научный руководитель : доктор физико-математических наук Пискунов Анатолий...»

«Пролубникова Татьяна Ивановна ЭВОЛЮЦИОННЫЕ ПРОЦЕССЫ СТРУКТУРИРОВАНИЯ ГЕЛЯ ОКСИГИДРАТА ЦИРКОНИЯ Специальность 02.00.21 – химия твердого тела Автореферат диссертации на соискание ученой степени кандидата химических наук Челябинск - 2011 Работа выполнена на кафедре химии твердого тела и нанопроцессов ФГБОУ ВПО Челябинский государственный университет Научный руководитель доктор химических наук, профессор Сухарев Юрий Иванович Официальные оппоненты : доктор химических наук,...»

«Гатин Айрат Ахмадуллович ПРОИЗВОДСТВО ПО ДЕЛАМ ОБ ОСПАРИВАНИИ НЕНОРМАТИВНЫХ ПРАВОВЫХ АКТОВ, РЕШЕНИЙ, ДЕЙСТВИЙ (БЕЗДЕЙСТВИЯ) ГОСУДАРСТВЕННЫХ ОРГАНОВ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ, ИНЫХ ОРГАНОВ, ДОЛЖНОСТНЫХ ЛИЦ, ГОСУДАРСТВЕННЫХ И МУНИЦИПАЛЬНЫХ СЛУЖАЩИХ В ГРАЖДАНСКОМ И АРБИТРАЖНОМ ПРОЦЕССЕ Специальность 12.00.15 – гражданский процесс; арбитражный процесс АВТОРЕФЕРАТ...»

«Гусев Алексей Васильевич Синтез, электрофизические и оптические свойства тонкопленочных полимерных и металлополимерных наноструктурированных покрытий на основе поли-пара-ксилилена 01.04.13 – электрофизика, электрофизические установки АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва - 2011 Работа выполнена в Учреждении Российской академии наук...»

«БРОСОВА Карина Николаевна Формирование нравственно-эстетических идеалов старшеклассников на занятиях мировой художественной культурой Специальность 13.00.02 – теория и методика обучения и воспитания (художественное воспитание в дошкольных учреждениях, общеобразовательной и высшей школе) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Москва 2011 3 Работа выполнена в Учреждении Российской академии образования Институт художественного...»

«Казимиров Алексей Сергеевич Операторные преобразования и минимизация полиномиальных представлений булевых функций 01.01.09 дискретная математика и математическая кибернетика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Красноярск 2007 Работа выполнена на кафедре математической информатики Иркутского государственного педагогического университета Научный руководитель : доктор физико-математических наук, профессор Винокуров Сергей...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.