На правах рукописи
МАЛЬШАКОВА Марина Вячеславовна
СИНТЕЗ И ХИМИЧЕСКАЯ МОДИФИКАЦИЯ АМИНО- И ГИДРОКСИХЛОРИНОВ
02.00.03 "Органическая химия"
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата химических наук
Иваново – 2006 2
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования “Сыктывкарский государственный университет”
Научный руководитель: кандидат химических наук, старший научный сотрудник Белых Дмитрий Владимирович
Официальные оппоненты:
Ведущая организация:
Защита состоится г. в часов на заседании диссертационного совета Д 212.063.01 при Государственном образовательном учреждении высшего профессионального образования ”Ивановский государственный химико-технологический университет” по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д. 7.
С диссертацией можно ознакомиться в библиотеке при Государственном образовательном учреждении высшего профессионального образования ”Ивановский государственный химико-технологический университет” по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д. 10.
Автореферат разослан " 2006 г.
"
Ученый секретарь диссертационного совета Хелевина О.Г.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы. Природные и синтетические порфирины и их аналоги находят применение в самых разных областях науки и техники. Из-за высокой стоимости и относительно низкой стабильности природные порфирины, в частности, хлорофиллы и их производные используются главным образом для синтеза биологически активных веществ и медицинских препаратов. Основные направления применения производных хлорофилла в медицине – онкология и гематология. В настоящее время ряд производных хлорофилла (а) активно исследуются в качестве фотосенсибилизаторов (ФС) для фотодинамической терапии (ФДТ) онкологических заболеваний.
Некоторые из этих веществ (хлорин е6) уже используются в клинической практике как действующие вещества медицинских препаратов. Хлорины, содержащие карборановые фрагменты, считаются перспективными препаратами для борнейтронзахватной терапии (Б-НЗТ) онкологических заболеваний, причем сочетание в одной молекуле хлоринового и карборанового фрагментов позволяет применять Б-НЗТ совместно с ФДТ (так называемые «двойные» или «бинарные» стратегии терапии). Высокая тропность производных хлорофилла к злокачественным новообразованиям позволяет рассматривать их как основу противоопухолевых препаратов с любым механизмом действия (ингибирование МЛУ, цитостатическое действие и т.п.). Присоединение к молекуле природного хлорина соответствующего фармакофора может дать соединение направленного действия, избирательно поражающее злокачественное новообразование. Кроме того, сочетание в одной молекуле двух и более фармакофоров может привести к усилению уже известных активностей вещества и возникновению новых. Спектральные характеристики природных хлоринов и их низкая темновая токсичность позволяют считать эти соединения так же потенциальными ФС для фотодинамической стерилизации донорской крови.
Кроме того, природные хлорины зачастую являются практически безальтернативными исходными соединениями для синтеза несимметричных хлоринов и порфиринов: синтез таких соединений, исходя из пиррола и его производных, зачастую более сложен, чем получение таких соединений из хлорофилла и его ближайших производных.
Таким образом, изучение химических превращений природных хлоринов и разработка методов введения в их молекулы фармакофорных групп и фрагментов биологически активных соединений представляет интерес, как с точки зрения фундаментальной науки, так и с практической точки зрения.
Цель и задачи исследования. Целью настоящей работы является разработка методов введения на периферию хлоринового макроцикла фрагментов биологически активных молекул, фармакофорных групп и других заместителей.
Для достижения поставленной цели необходимо было решить следующие задачи:
-синтез амидных производных хлорина е6, содержащих амино- и гидрокси-группы;
-изучение этилендиамином с целью синтеза ди- и три-аминохлоринов;
-синтез фрагменты биологически активных молекул и другие заместители с использованием реакций гидроксильных и амино-групп полученных производных хлорина е6.
Научная новизна работы. С высокими выходами синтезированы амидные производные хлорина е6, содержащие в молекуле одну, две и три амино-группы, а так же хлорины, содержащие амино-группы, присоединенные к хлориновому циклу мостиками различной длины. На примере синтеза ряда полифункциональных хлоринов показана возможность использования реакций алкилирования и ацетилирования периферических гидроксильных и амино-групп амидных производных хлорина е6 для введения дополнительных заместителей на периферию хлоринового цикла. Варьирование длины спейсера, присоединяющего амино-группу, позволяет регулировать расстояние, на котором располагается вводимый на периферию хлоринового цикла фрагмент.
В результате впервые синтезированы хлорины, содержащие на периферии хлоринового цикла один или два фрагмента дитерпеноида изостевиола. Получены новые производные хлорина е 6, содержащие в молекуле карборановый фрагмент. Осуществлено введение на периферию хлоринового макроцикла присоединенной гибкими длинными спейсерами винильной группы. Предложенный в настоящей работе подход к введению дополнительных заместителей на периферию хлоринового цикла может быть распространен на синтез других полифункциональных хлоринов.
Практическая значимость. Синтезированные соединения являются потенциальными ФС для терапии онкологических и вирусных заболеваний (хлорины, содержащие на периферии хлоринового цикла один или два фрагмента дитерпеноида изостевиола); препаратами для совместного применения ФДТ и Б-НЗТ злокачественных новообразований (производные хлорина е6, содержащие карборановый фрагмент); мономерами для синтеза полимерных ФС для фотодинамической стерилизации крови (хлорины, содержащие на периферии макроцикла винильную группу, присоединенную мостиками различной длины).
Апробация работы и публикации. Основные материалы работы докладывлись и обсуждались на 3 Всероссийских конференциях:
Санкт-Петербург, (2005); Казань (2005); Сыктывкар, (2006). По материалам диссертации опубликовано 2 статьи и тезисы 5 докладов на Всероссийских конференциях. Получено положительное решение на патент.
Объем и структура диссертации. Диссертационная работа изложена на стр., содержит таблицы, рисунков и состоит из введения, 3-х глав, выводов и списка литературы из наименований.
В литературном обзоре рассмотрены методы введения амино- и гидрокси-групп на периферию хлоринового цикла и использование реакций введенных амино- и гидрокси-групп для дальнейшей химической модификации природных хлоринов. Анализ имеющихся литературных данных позволяет заключить, что одним из самых простых способов введения гидроксильной и амино-группы на периферию хлоринового цикла является реакция раскрытия экзоцикла метилфеофорбида (а) и его аналогов под действием амино-спиртов и диаминов соответственно. В то же время, дальнейшая химическая модификация с использованием реакций гидроксильных и амино-групп получаемых таким образом 13-амидов хлорина е6 в литературе не описана. Синтез хлоринов с двумя и тремя гидроксильными группами может быть осуществлен амидированием сложноэфирных групп хлорина е6 13-N-(2-гидроксиэтил)-амида 15,17-диметилового эфира при действии чистого этаноламина, причем реакция протекает в мягких условиях с высоким выходом ди- и три-аминохлоринов и не требует предварительной активации исходного соединения. Несмотря на то, что этот подход, по-видимому, ограничен и может быть использован только в случае простых аминов, жидких при обычных условиях, простота исполнения реакции, регио-селективность и высокие выходы являются его важными преимуществами. На основе анализа литературных данных определены цель и задачи исследования.
2.1. Синтез амино- и гидроксихлоринов Исходя из метилфеофорбида (а) (1) синтезирован ряд амино- и гидрокси-хлоринов.
NH N NH N
Взаимодействие с этаноламином для получения соответствующего амида проводилось согласно литературной методике, спектральные характеристики совпадают с описанными в литературе. Аминохлорины с амино-группами, присоединенными спейсерами различной длины получены при действии на метилфеофорбид (а) этилендиамина и гексаметилендиамина, изменения, происходящие в спектральных характеристиках (ИК и ЯМР) аналогичны описанным в литературе.Изучено взаимодействие (1) с этилендиамином. Показано, что при действии чистого этилендиамина на амид (3) происходит амидирование его сложноэфирных групп, причем сначала в реакцию вступает сложноэфирная группа заместителя в положении 17:
N HN N HN
N HN N HN
i: этилендиамин, CHCl3, 20 С, 3 ч; ii: этилендиамин, 20 С, 20 ч, без выделения исходного моноамида; iii: этилендиамин, 20 С, 40 ч.Получение ди- и три-аминохлоринов (5) и (6) может быть осуществлено с высокими выходами и без выделения промежуточных соединений. Показано, что в реакции амидирования этилендиамином большей реакционной способностью обладает сложноэфирная группа в положении 17, что совпадает с литературными данными по реакциям амидирования этаноламином и кислотно-катализируемого гидролиза сложноэфирных групп аналогичных амидных производных хлорина е6.
Более высокую реакционную способность сложноэфирной группы в положении 17 можно объяснить ее меньшей стерической затрудненностью.
Ввиду не очень хорошей растворимости синтезированного триаминохлорина (6) в органических растворителях, подтверждение его строения при помощи ПМР-спектроскопии оказалось затруднительным.
Поэтому был получен его триацетат (7), структура которого была установлена при помощи ИК- и ПМР-спектроскопии.
NH N NH N
N HN N HN
Рис. 3. Синтез триацетата триаминохлорина (7).2.2. Химическая модификация амино- и гидрокси-производных хлорина е6 с использованием реакций амино- и гидрокси-групп 2.2.1. Алкилирование амино- и гидрокси-групп производных соответствующим N-бензильным производным:
Рис. 4. Синтез N-бензильных производных хлорина е Рис. 5. Спектры ПМР хлорина е6 13-N-(6-аминогексил)-амида-15,17диметилового эфира (4) – (А) и хлорина е6 13-N-(6-(N-бензил) аминогексил)-амида-15,17-диметилового эфира (9) – (В), (область 6.8-10. Алкилирование аминогруппы одного из полученных аминопроизводных хлорина е6 позволяет получить хлорины с удаленной от макроцикла винильной группой:
Рис. 6. Синтез хлорина е6 13-N-(2-(N-аллил) аминоэтил)-амида-15,17диметилового эфира (10) Наилучший выход (30%) был достигнут при использовании в качестве алкилирующего агента бромистого аллила (реакция проводилась при кипячении в ТГФ в присутствии ацетата натрия).
Дополнительная винильная группа может быть введена в одну стадию при действии на метилфеофобид (а) аллиламина:
NH N NH N
N HN N HN
Рис. 7. Синтез хлорина е6 13-N-аллиламида-15,17-диметилового Однако, несмотря на высокий выход продукта реакции (90%), мостик, соединяющий винильную группу с макроциклом, в этом соединении заметно короче.Винильную группу на более длинном мостике можно ввести на периферию хлоринового макроцикла с хорошим выходом (72%) действием аллиламина на пирофеофорбид (а) с использованием дитретбутилпирокарбоната:
NH N NH N
N HN N HN
(А) (В) Полученные хлорины с винильной группой могут быть использованы в качестве мономеров для получения хлоринсодержащих полимеров путем сополимеризации.Реакция алкилирования амино- и гидрокси-групп была использована так же для введения на периферию хлоринового цикла карборанового фрагмента. В качестве алкилирующего агента использовался соответствующий карборанилтрифлат:
Как и следовало ожидать, наилучшие результаты были получены при алкилировании амино-группы. Полученное при этом соединение (15) проходило испытания на цитотоксичность и исследование фармакинетики и распределение между опухолью и здоровой тканью.
Исследования показали, что борированный хлорин обладает фотоактивными свойствами и проведение работ, направленных на создание борсодержащих хлоринов перспективно.
Деборирование карборанового фрагмента позволяет повысить гидрофильность карборанил-хлоринов. Нами было исследовано деборирование при использовании теттрабутиламмоннийфторида двухводного ((C4H9)4NF2H2O). Реакция проводилась при кипячении в ТГФ. Данный способ деборирования оказался неудачным ввиду образования большого количества примесных веществ, строение которых установить не удалось. Успешной оказалась попытка деборирования при использовании пиперидина в абсолютном бензоле при комнатной температуре. Этот способ оказался более селективным и выход основного продукта реакции (16) составил 60 %.
NH N NH N
N HN N HN
Рис. 11. Синтез хлорина е6 13-N-(2-(N-о-метил-нидо-карборанил) аминоэтил)-амида-15,17-диметилового эфира (16) 2.2.2. Ацетилирование амино- и гидрокси-групп производных Для введения на периферию хлоринового цикла фрагмента изостевиола была использована реакция ацетилирования. Мы предполагаем, что введение на периферию хлоринового цикла дитерпеноида изостевиола, проникающего в мембраны клеток и проявляющего разноплановую биологическую активность (антигипертензивный эффект, ингибирование окислительного фосфорилирования, снижение АТФ-активности некоторых фосфотаз и оксидаз) может привести к соединениям, обладающим новыми, полезными свойствами, например, увеличить способность хлорина к взаимодействию с клеточными мембранами.В качестве ацетилирующего агента был использован хлорангидрид изостевиола:
CO2CH Рис. 12. Схема ацетилирования гидрокси- и аминохлоринов Как и в случае реакции алкилирования, наилучших результатов удалось достичь при ацетилировании амино-группы (см. табл.).
Введенный изостевиольный фрагмент может быть подвергнут дальнейшим химическим превращениям. Так, с использованием реакции кето-группы изостевиольного фрагмента нами был получен ряд иминных производных:
NH N NH N
N HN N HN
NH2NHC(S)NH2 NH2NHC(S)NH2*HCl, Py, кипячение 1 ч.Рис. 13. Синтез иминных производных изостевиолхлоринов Использование в качестве субстрата для ацетилирования диаминохлорина и двукратного избытка хлорангидрида изостевиола позволяет получить хлорины с двумя дитерпеноидными фрагментами:
NH N C NH N
N HN N HN
Рис. 14. Схема ацетилирования диаминохлорина (5) хлорангидридом Рис. 15. Спектры ПМР хлорина е6 13,17-N,N-(2-аминоэтил)диамида-15-метилового эфира (5) – (А) и хлорина е6 13,17-N,N-(2N,N-диизостевиол) аминоэтил)-диамида-15-метилового эфираВЫВОДЫ
1. С целью введения в молекулу хлорина дополнительной реакционно-способной функциональной группы проведено взаимодействие этилендиамина и гексаметилендиамина с метилфеофорбидом (а). В результате с высоким выходом синтезированы амидные производные хлорина е6, содержащие в молекуле амино-группы, присоединенные к хлориновому циклу мостиками различной длины.2. С целью синтеза хлоринов с несколькими амино-группами изучено взаимодействие метилфеофорбида (а) с этилендиамином.
Показано, что при действии на метилфеофорбид (а) чистого этилендиамина происходит не только раскрытие экзоцикла, но и амидирование сложноэфирных групп образующегося амида хлорина е6, причем в реакцию сначала вступает сложноэфирная группа в положении 17. Более высокую реакционную способность сложноэфирной группы в положении 17 можно объяснить ее меньшей стерической затрудненностью. В результате предложен простой способ синтеза амидных производных хлорина е6, содержащих в молекуле две и три амино-группы: ди- и три-аминохлорины могут быть получены с высоким выходом действием чистого этилендиамина на метилфеофорбид (а) без выделения промежуточных соединений.
3. Впервые синтезированы хлорины, содержащие на периферии хлоринового цикла один или два фрагмента биологически активного дитерпеноида изостевиола, присоединенных к макроциклу мостиками различной длины. Введение изостевиольного фрагмента было осуществлено при помощи реакции ацетилирования амино- и гидрокси-групп полученных в ходе настоящей работы производных хлорина е6 хлорангидридом изостевиола. Показана возможность дальнейшей модификации изостевиольного фрагмента, присоединенного к хлориновому макроциклу.
4. Синтезированы новые хлорины, содержащие винильную группу, удаленную от макроцикла мостиками различной длины. Полученные хлорины могут быть использованы в качестве мономеров для получения полимерных ФС для фотодинамической стерилизации крови.
5. Синтезированы новые производные хлорина е6, содержащие в молекуле карборановый фрагмент. В настоящее время проводится изучение биологической активности одного из полученных карборанил-хлоринов.
Основное содержание работы
изложено в следующих 1. Мальшакова М.В., Белых Д.В.. Синтез хлоринов, содержащих аминогруппы. // Тезисы докладов VI школы-конференции молодых ученых стран СНГ по химии порфиринов и родственных соединений.
г. Санкт-Петербург – 2005. - С. 65-66.
2. Мальшакова М.В., Белых Д.В., Кучин А.В.. Синтез и модификация производных хлорофилла, содержащих аминогруппу. // Тезисы докладов VIII школы-конференции по органической химии. г. Казань – 2005. - С. 393.
3. Мальшакова М.В., Белых Д.В., Корочкина М.Г., Катаев В.Е., Кучин А.В.. Синтез коньюгатов на основе хлориновых и изостевиольных строительных блоков. // Тезисы докладов IV всероссийской научной конференции по химии и технологии растительных веществ. г.
Сыктывкар – 2006. - С. 118.
4. Мальшакова М.В., Белых Д.В., Кучин А.В.. Синтез аминохлоринов и алкилирование их амино-групп аллильными и бензильными галогенидами. // Тезисы докладов IV всероссийской научной конференции по химии и технологии растительных веществ.
г. Сыктывкар – 2006. - С. 119.
5. Мальшакова М.В., Белых Д.В., Ольшевская В.А., Петровский П.В., Калинин В.Н., Штиль А.А., Кучин А.В.. Синтез новых карборановых производных хлорина е6. // Тезисы докладов IV всероссийской научной конференции по химии и технологии растительных веществ. г. Сыктывкар – 2006. - С. 120.
6. Мальшакова М.В., Белых Д.В.. Синтез амидов хлорина е 6, содержащих аминогруппу. // Труды Коми научного центра УрО РАН, № 176. Химия и технология растительных веществ. г. Сыктывкар – 2005. - С. 60-74.
7. Кучин А.В., Ольшевская В.А., Мальшакова М.В., Белых Д.В., Петровский П.В., Иванов О.Г., Штиль А.А., Калинин В.Н. // Доклады Академии Наук. – 2006. - Т. 409, № 4. - С. 493-496.
8. Белых Д.В., Мальшакова М.В., Кучин А.В.. Способ синтеза ди- и три-аминохлоринов. // Патент на изобретение № 024009, заявка № 2006122108, зарегистрировано в Федеральном государственном учреждении «Федеральный институт промышленной собственности Федеральной службы по интеллектуальной собственности, патентам и товарным знакам» (ФГУ ФИПС) (РОСПАТЕНТ) 20 июня 2006 г.