WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 |

«1 1. ИНФОРМАЦИЯ ИЗ ФГОС ОТНОСЯЩАЯСЯ К ДИСЦИПЛИНЕ 1.1. Вид деятельности выпускника Область профессиональной деятельности бакалавров включает: процессы переработки руд и других материалов с целью получения концентратов, ...»

-- [ Страница 1 ] --

1

1. ИНФОРМАЦИЯ ИЗ ФГОС ОТНОСЯЩАЯСЯ К ДИСЦИПЛИНЕ

1.1. Вид деятельности выпускника

Область профессиональной деятельности бакалавров включает: процессы переработки руд и других материалов с целью получения концентратов, процессы получения металлов и сплавов, металлических изделий требуемого качества, а также процессы обработки, при которых изменяются химический состав и структура металлов (сплавов) для достижения определенных

свойств.

Бакалавр по направлению подготовки 150400 Металлургия готовится к следующим видам профессиональной деятельности:

производственно-технологическая;

организационно-управленческая;

научно-исследовательская;

проектная.

1.2. Задачи профессиональной деятельности выпускника В дисциплине рассматриваются указанные в ФГОС задачи профессиональной деятельности выпускника.

производственно-технологическая:

осуществление технологических процессов переработки минерального природного и техногенного сырья;

осуществление технологических процессов получения и обработки металлов и сплавов, а также изделий из них;

осуществление мероприятий по защите окружающей среды от техногенных воздействий производства;

выполнение мероприятий по обеспечению качества продукции;

организация рабочих мест, их техническое оснащение, размещение технологического оборудования;

контроль за соблюдением технологической дисциплины;

организация обслуживания технологического оборудования;

организационно-управленческая:

информационное обеспечение организации производства, труда и управления, метрологическое обеспечение;

составление необходимой технической и нормативной документации;

проведение работы по управлению качеством продукции;

организация работы коллектива исполнителей;

разработка оперативных планов работы первичных производственных подразделений;

проведение анализа эффективности и результативности деятельности производственных подразделений;

научно-исследовательская:

проведение экспериментальных исследований;

выполнение литературного и патентного поиска, подготовка технических отчетов, информационных обзоров, публикаций;

изучение научно-технической информации, отечественного и зарубежного опыта по тематике исследования;

проектная:

сбор информации для технико-экономического обоснования и участие в разработке проектов новых и реконструкции действующих цехов, промышленных агрегатов и оборудования;

конструирование и расчет элементов технологической оснастки;

- разработка проектной и рабочей технической документации 1.3. Перечень компетенций, установленных ФГОС Освоение программы настоящей дисциплины позволит сформировать у обучающегося следующие общекультурные компетенции (ОК):

– владеть культурой мышления, обобщать и анализировать информацию, ставить цель и выбирать пути ее достижения (ОК-1).

Выпускник должен обладать следующими профессиональными компетенциями (ПК):

– уметь использовать фундаментальные общеинженерные знания (ПКуметь критически осмысливать накопленный опыт, изменять при необходимости профиль своей профессиональной деятельности (ПК-2);

– уметь осознавать социальную значимость своей будущей профессии (ПК-3).

1.4. Перечень умений и знаний, установленных ФГОС Студент после освоения программы настоящей дисциплины должен:

знать:

- основные этапы развития мировой науки и прикладных ее отраслей;

- историю становления металлургической деятельности в России и регионе;

- о требованиях, предъявляемых к инженеру-специалисту;

- особенности научных методов, используемых в производства цветных металлов из соответствующих руд;

- основные положения стратегии развития металлургической отрасли в России.

уметь:

– увидеть место бакалавра по направлению «Металлургия» среди других инженерных специальностей;

владеть:

- методологией инженерных и научных исследований, а также уметь отбирать и анализировать необходимую информацию.

2. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ПРОГРАММЫ ДИСЦИПЛИНЫ

Основными целями изучения дисциплины «История развития инженерного дела в России» являются:

- иметь представление о видах инженерной деятельности; об истории становления металлургической деятельности в России и регионе; о требованиях, предъявляемых к инженеру-специалисту;

- иметь представление о сущности и перспективах развития той отрасли, для которой готовят специалиста, о характере и методах изобретательства в технике.

В состав основных задач изучения дисциплины «История развития металлургии в России» быть входит:

- ввести студентов в круг проблем, определяющих инженерную деятельность вообще, и в рамках направления «Металлургия» частности;

- способствовать осознанию студентами необходимости фундаментальной подготовки по гуманитарным, общеинженерным и специальным дисциплинам, определяющей эффективную работу инженера по выбранной специальности;

- способствовать более быстрой адаптации студентов-первокурсников в условиям вузовской жизни, психологически подготовить к повседневной самостоятельной работе;



- ознакомить студентов с научными основами организации учебной деятельности и методики инженерного труда, обеспечивающих высокое качество усвоения программного материала при оптимальной затрате сил и времени;

- ознакомить студентов с основами инновационной методологии инженерной деятельности, продемонстрировать такой подход на примерах и таким образом заложить мировоззрение, необходимое для изучения и освоения соответствующим образом поставленных специальных дисциплин.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

«История развития инженерного дела в России» преподается студентам первого курса и опирается на знания, полученные в средней школе.

В перечень дисциплин, используемых при изучении «История развития инженерного дела в России» входят в объеме средней школы физика, химия, математика. В перечень дисциплин, знания по которым будут необходимы при изучении «История развития инженерного дела в России», входят дисциплины общепрофессионального и специального циклов, к главным из которых следует отнести: «Математика», «Физика», «Химия».

4. ОСНОВНАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2 ЗЕТ, 72 часа.

Основная структура дисциплины приведена в таблице 1.

Таблица 1 – Структура дисциплины Трудоемкость, часов Самостоятельная работа (в том числе курсовое проектирование) Вид промежуточной аттестации (итогового контроля по дисциплине), в том числе курсовое про- зачет зачет ектирование

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1.Перечень основных разделов и тем дисциплины

Раздел 1. ЗАРОЖДЕНИЕ И ВЫЗРЕВАНИЕ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ. ЕЕ СУЩНОСТЬ И ФУНКЦИИ.

Раздел 2. ПОЯВЛЕНИЕ ЗНАНИЙ В ОБЛАСТИ МЕХАНИКИ И ИХ

РОЛЬ КАК ТЕОРЕТИЧЕСКОЙ И МЕТОДОЛОГИЧЕСКОЙ ОСНОВЫ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ.

Раздел 3. РАЗВИТИЕ МЕХАНИКИ КАК НАУКИ – УСЛОВИЕ

УСПЕШНОЙ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ.

Раздел 4. РАЗВИТИЕ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ, ПРОФЕССИИ ИНЖЕНЕРА И СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ.

Раздел 5. ОСОБЕННОСТИ СТАНОВЛЕНИЯ И РАЗВИТИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ И ПРОФЕССИИ ИНЖЕНЕРА В РОССИИ.

Раздел 6. ВКЛАД ОТЕЧЕСТВЕННЫХ УЧЕНЫХ В СТАНОВЛЕНИЕ И

РАЗВИТИЕ ИНЖЕНЕРНЫХ НАУК

Раздел 7. РАЗВИТИЕ ИНЖЕНЕРНОГО ДЕЛА И ПРОФЕССИИ ИНЖЕНЕРА В РОССИИ В ХІХ ВЕКЕ

Раздел 8. РАЗВИТИЕ ХИМИЧЕСКИХ (МЕТАЛЛУРГИЧЕСКИХ) ЗНАНИЙ И ТЕХНОЛОГИЙ НА РУСИ (Х – XVII вв.)

Раздел 9. ФОРМИРОВАНИЕ НАУЧНО-ТЕХНИЧЕСКОЙ ИНТЕЛЛИГЕНЦИИ В БЫВШЕМ СССР, ОСОБЕНОСТИ ЭТОГО ПРОЦЕССА

Раздел 10. СУЩНОСТЬ И СОДЕРЖАНИЕ СОВРЕМЕННОЙ НАУЧНО-ТЕХНИЧЕСКОЙ РЕВОЛЮЦИИ И ЕЕ ВЛИЯНИЕ НА РАЗВИТИЕ ИНЖЕНЕРНОГО ДЕЛА

Раздел 11. ПОЛОЖЕНИЕ ИНЖЕНЕРНОГО ОБРАЗОВАНИЯ НА СЕГОДНЯШНИЙ ДЕНЬ.

5.2. Краткое описание содержания теоретической части разделов и

ВВЕДЕНИЕ

Ушедший ХХ век можно с полным правом назвать и «временем инженерии», и «веком инженеров». Прогресс науки и техники привел к расцвету инженерной профессии, мобилизовал невиданные созидательные силы и в то же время возложил на инженеров немалую ответственность за судьбы человеческой цивилизации. Прежде чем приобрести нынешнее значение и размах, профессия инженера, само инженерное дело прошло непростой, исторически длительный путь становления. Ценой усилий многих поколений человечество по крохам добывало знания по крохам добывало знание, накапливало технические умения, готовя почву для ростков инженерной мысли.

Без участия инженерных кадров невозможно сегодня представить оперативное решение ни одной из сложных проблем, выдвигаемой новой научно-технической и экономической реальностью. Ведь наука непосредственно соединяется с техникой и воплощается в проектах сложных агрегатов, автоматизированных линий, мощных производственных комплексов, прежде всего, благодаря творческим усилиям большого и разнообразного по своему составу отряда инженеров. Инженерная деятельность является на сегодняшний день ключевым звеном в известной цепочке «наука-техника-производство», и вместе с тем она превратилась в наиболее массовый вид высококвалифицированного умственного труда. Новая техника требует, с одной стороны, качественно иного инженерного мышления, направленного прежде всего на поиск оптимальных решений в области человеко-машинных взаимодействий, а с другой – нравственной зрелости инженерного работника, умения решать сложные технические проблемы «человечно». В настоящем курсе, посвященном истории зарождения и развития инженерной деятельности, сделана попытка осмыслить прошлое инженерии, соотнеся его с сегодняшнем состоянием инженерной профессии, что позволит глубже осознать закономерности ее развития, разобраться в сущности перемен, происходящих в ее структуре и содержании в наши дни, предвидеть ее будущее.

Кстати, слово «инженер», означающее знания, гений, способность, талант, ум, остроумная выдумка, изобретательность (лат.) впервые стало использоваться для обозначения особого рода занятий в античном мире, повидимому, не ранее III в. до н.э. Причем, так назывались лица, управляющие военными машинами, а также изобретатели этих машин. Менялось время, развивались производительные силы общества, расширялся объем понятия «инженер» и «инженерное дело», но неизменным оставалось одно – инженерами называли людей, связанных с созданием различной техники, ее разработкой и эксплуатацией, т.е. специалистов, обладающих техническими знаниями, способными создавать разнообразные технические структуры.

Раздел I. ЗАРОЖДЕНИЕ И ВЫЗРЕВАНИЕ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ. ЕЕ СУЩНОСТЬ И ФУНКЦИИ

В истории становления и развития производительных сил общества на различных этапах проблема инженерной деятельности занимает особое место. Инженерное дело прошло довольно непростой, исторически длительный путь становления. История материальной культуры человечества знает немало примеров удивительного решения уникальных инженерных задач еще на довольно ранних этапах развития человеческого общества. Если мы обратимся к истории создания знаменитых семи чудес света, то убедимся в наличии оригинального решения конкретных инженерных проблем.

Семь чудес света получили свое название во времена античности как сооружения, поражающие своим великолепием, размерами, красотой, техникой исполнения и оригинальностью решения инженерных проблем. К ним относятся: египетские пирамиды, появившиеся почти 5 тыс. лет назад (28 в.

до н.э.), имя одного из первых зодчих, решивших ряд инженерных проблем при их сооружении, было Имхотен; храм Артемиды Эфесской (V в. до н.э.);

мавзолей в Галикарнасе; «висячие сады» Семирамиды, Фаросский маяк (ІІІ в.

до н.э.), создателем этого чуда был Сострат; Зевс Олимпийский (V в. до н.э.), творцом которого являлся прославленный скульптор Фидий, а также Колосс Родосский (ІV в. до н.э.), сооруженный известным скульптором Харесом.

Вместе с тем история материальной культуры иногда отрицает наличие инженера в обществе древности, а в этой связи и наличия и целенаправленной инженерной деятельности так, как мы понимаем эту деятельность сегодня, как она наполнена в век электричества, электронно-вычислительных машин, спутников, межконтинентальных воздушных лайнеров и ракет. Но некоторое отрицание инженера и инженерной деятельности на ранних ступенях развития общества еще не означает отрицания инженерной деятельности вообще при решении конкретных задач. Она в различных формах существовала в человеческой истории и существовала вполне активно.

1. Сущность инженерной деятельности и ее зарождение.

2. Факторы вызревания инженерного труда и его функции.

Как уже отмечалось во введении, на заре становления общества не существовало в явном виде инженерной специальности (это результат позднейшего общественного разделения труда), ни тем более «инженерного цеха», «касты», «корпорации» или, пользуясь строгим научным термином, – социально-профессиональной группы. Но за многие века, даже тысячелетия до того, как общественный способ производства сделал возможным и необходимым появление инженеров в полном смысле этого слова, перед людьми возникали инженерные задачи и находились индивиды, способные их решать. Ведь человеческая цивилизация основана на преобразовании природного мира с помощью орудий труда, то есть совокупности разнообразных технических средств. История их создания – одновременно и история инженерной деятельности.

История инженерной деятельности относительно самостоятельна; ее нельзя свести ни к истории техники, ни к истории науки. Корни ее теряются в глубине прошедших тысячелетий. Зачастую мы можем догадываться, какого упорства и таланта требовал каждый новый шаг в освоении и преобразовании мира, какие творческие коллизии, взлеты и крушения скрыты от нашего взгляда дымкой веков. Данные археологических раскопок позволяют лишь очень приблизительно реконструировать уровень знаний и умений, доступных творцам техники далекого прошлого. Судить об особенностях инженерной деятельности давно ушедших поколений приходится по ее результатам, сохранившимся в натуре или хотя бы в описании. И техника может рассказать о своих создателях очень многое.

Так что же такое техника? Большинство современных исследователей считают, что под техникой надо понимать совокупность искусственно созданных средств деятельности людей. Техника создается и применяется в целях получения, передачи и превращения энергии, воздействия на предметы труда при создании материальных и культурных благ, сбора, хранения, переработки и передачи информации, исследования законов и явлений природы и общества, передвижения, управления обществом, обслуживания быта, обеспечения обороноспособности и ведения войн.

По своему происхождению именно техническая деятельность стала одним на первых видов социальной деятельности. Чтобы выжить, добыть пищу, защитить себя от диких животных, первобытные люди вынуждены были прибегнуть к помощи орудий. Переход к труду, основанному на применении орудий, первых примитивных технических средств, был необходим. Все доступные нам факты борьбы рода человеческого за выживание подтверждают, что техническое (технологическое) направление и характер цивилизации являются не случайностью и не ошибкой общественного развития, а единственно возможным его путем.

Изготовление орудий, переход к производству - это та грань, тот скачок, который позволил человечеству преодолеть пропасть, отделяющую животный мир от мира цивилизации. Длился этот скачок невообразимо долго.

Достаточно сказать, что возраст обнаруженных в ходе археологических раскопок возле озера Рудольф (Кения) первых искусственных орудий - они изготовливались из гальки - составляет 2 миллиона 600 тысяч лет! У этих заостренных кусков камня нет еще даже определенной формы. Но нет и сомнения, что они создавались целенаправленно. Об этом говорит сходство приемов обработки.

Характер и содержание технической деятельности на ранних стадиях человеческой истории менялись крайне медленно; наверняка, технические новинки сотни раз находились и сотни раз утрачивались, погибали вместе с их изобретателями. Однако общее направление развития техники не вызывает сомнений. Тенденция к совершенствованию приемов труда, увеличению их эффективности явственно прослеживается хотя бы на примере количественного нарастания операций первобытной технологии. Так, первые галечные орудия получали тремя – десятью ударами, древнейшие ручные рубила – десятью – тридцатью ударами, ручные рубила правильной геометрической формы пятидесятью – восьмидесятью ударами. Изготавливая галечные сколы, наши далекие предки применили одну операцию – оббивку, а для производства рубила нужны были уже три операции: отщепление заготовки, оббивка, ретушь.

Шли тысячелетия, и вместе с ними неуклонно шел дальше и дальше технический прогресс. На границе между верхним и нижним древнекаменным веком (палеолитом), примерно 40–30 тысяч лет назад, завершается предыстория человеческого общества и начинается его история. Этот переход совершился во многом благодаря накопленным техническим достижениям. В производственной деятельности человек освоил много новых пород камня, научился изготавливать свыше двадцати видов различных каменных орудий (резцов, сверл, скобелей и т. п.). Были созданы гарпун и копьеметалка.

Но улучшение традиционных приемов обработки камня уже не повышало эффективности производимых орудий. Требовалось принципиально новое решение. И оно было найдено. Были изобретены и – как мы иногда говорим – «нашли широкое применение в практике» так называемые вкладышевые орудия. Апофеозом инженерной мысли каменного века стал лук. Человек, сообразивший, как использовать потенциальную энергию согнутой палки, натянувший на нее тетиву из жил животных и заостривший тонкую стрелу, совершил эпохальное техническое открытие.

Стоящие перед создателем лука и стрел сложности были двоякого рода: во-первых, необходимо было объединить разные технические элементы в одном орудии; во-вторых, осмыслить и доказать преимущества нового приспособления. Отметим, что преимущества лука по сравнению с прежними видами оружия были настолько очевидны, что он довольно скоро получил признание у разных племен и народов. И результат быстрого внедрения не замедлил сказаться – жизнь охотничьих племен заметно облегчилась, освободилось время для других видов деятельности.

В период неолита достоянием человечества сделались новые приемы обработки материалов – пиление, шлифование, сверление, появились составные орудия, был приручен огонь. Трудно, точнее говоря – невозможно, представить, что эти элементы материально-технической культуры возникли без целенаправленной умственной работы их создателей. Можно согласиться, что познание, техническое проектирование и организация производства не были расчленены и не существовали вне повседневной рутинной деятельности.

Однако генетическая связь того, что человек делал, с тем, что он задумывал, планировал сделать, не заслоняет такого факта, что для решения технических проблем периода между дикостью и варварством нужен был довольно высокий уровень аналитико-синтетических свойств мышления. Поэтому уже применительно к первобытнообщинному способу производства мы вправе говорить о существовании инженерной деятельности в ее неявной форме. Обозначим ее как доинженерную деятельность.

Накопление прибавочного продукта, ставшее возможным благодаря успехам техники, повело к дальнейшему расслоению общества. Появилось рабство, сменившее древнюю общину. Возникли классы и государство. Ширилась специализация труда.

Материально-технической основой перехода от домашнего ремесла к специализированному ремесленному производству послужили ирригационное земледелие и распространение металлических орудий. Если первые немногочисленные медные предметы – шильца, проколки, бусинки – найдены при раскопках культурного слоя VII-VI тысячелетий до н.э., то в V тысячелетии до н.э. орудия из меди и ее сплавов встречаются все чаще и чаще. Использование цветных металлов в хозяйственной деятельности стало предпосылкой изобретения колесного транспорта и гончарного круга, а также бронзового плуга. В рабовладельческую эпоху были сделаны и многие другие технические открытия: налажено производство стекла, изразцов, шелковой ткани.

Однако центром технической (и инженерной) деятельности было строительное дело. Возникновение древних городов, которые становились центрами ремесленного производства, возведение культовых и ирригационных сооружений, мостов, плотин, дорог требовало кооперации труда огромного количества людей. Колоссальные защитные сооружения были возведены вокруг Вавилона: город окружали три ряда стен, каждая из которых была толщиной 8–12 метров. Самая большая из египетских пирамид – усыпальница фараона Хуфу (Хеопса) – возвышается над пустыней на 150 метров. На ее постройку ушло около 2300 тыс. каменных блоков весом от 2 до 15 тонн каждый. Сто тысяч людей выполняли эту работу непрерывно в течение лет.

Древний историк Геродот свидетельствует, что в IV в. до н.э. в горах Ливии была сооружена плотина, изменившая русло Нила. Там, где раньше протекала река, был построен город Мемфис.

В процессе строительства технический замысел (проект) мог быть реализован только на основе совместного труда рабов. Именно так создавались первые инженерные сооружения, такие как городские системы и шахты Шумерийского государства, ирригационные каналы и пирамиды Египта».

Как же осуществлялась эта простейшая кооперация труда рабов? Явно недостаточно было номинально обладать властью над тысячами людей, чтобы суметь использовать их труд при возведении крепостей, дворцов, храмов.

Заставить рабов мог, конечно, любой царек или рабовладелец. Но для того чтобы организовать трудовые усилия больших масс низкоквалифицированных работников, подчинить их единой задаче, требовался инженер.

Архитектурное дело и строительство стали исторически первой областью производства, где возникла потребность в людях специально занятых функциями проектирования и управления (инженера).

Сложный умственный труд, благодаря которому первоначальный технический замысел вызревал, обрастал конкретными деталями, становился проектом, не мог уже быть выполнен походя. Во-первых, для того чтобы продвинуться вперед в поиске архитектурной формы, сочетающей прочность, удобство и гармоничную соразмерность, нужно было проникнуть в тайны сделанного предшественниками, не копировать, а переосмыслить и обобщить их достижения. Во-вторых, новые, усложнившееся инженерностроительные задачи не допускали решения «на глазок». А для этого следовало овладеть нехитрым – с позиций сегодняшнего дня, но достаточно обширным арсеналом специальных инженерных средств и инструментов. Во времена Древней Греции и Рима в распоряжении инженера-строителя различных конструкций были циркуль (его, кстати, знали еще вавиловяне), счетная доска – так называемый абак, нивелиры и другие простейшие геодезические приборы.

Иными словами, для успешного решения древнеинженерных задач периода рабовладения требовался не только практический опыт, но и специальные знания и умения. И еще время, свободное от забот о хлебе насущном.

Отделение умственного труда от физического и противопоставление их друг другу имели четко выраженную классовую окраску, поскольку досугом и материальными средствами для овладения элементами духовной культуры располагали лишь представители эксплуататорского класса. Соответственно и технические достижения служили одним из средств порабощения труда.

Таким образом, материально-техническая и духовная культура человечества в эпоху рабовладения достигла такого уровня, что в отдельных ее сферах – строительстве и архитектуре – возникла потребность в профессиональном инженерном труде.

Исходя из приведенных выше соображений, точнее можно обозначить этот период становления инженерии как прединженерный. Хронологически его рамки довольно широки – от II-I тысячелетия до н.э. до XVII–XVIII вв.

современного летоисчисления. Этот период неоднороден с точки зрения способа производства – рабовладельчество сменил феодализм, который в свою очередь, готовился уступить место капитализму. Менялось общественнополитическое устройство: возникали и гибли империи, возвышались и приходили в упадок нации, классы, религии. Развивалась техника и технология, рождались гениальные изобретения, создавались принципиально новые технические объекты, изделия, инструменты, приемы обработки материалов.

Неизменным оставалось одно: основным создателем технических нововведений, субъектом технической деятельности по-прежнему оставался ремесленник.

Достижения ремесленной деятельности древности и средневековья поражают воображение. Военное дело, сельское хозяйство, мореплавание, металлургическое, текстильное, бумажное производство – вот далеко не полный перечень областей деятельности, где в предынженерный период развития техники произошли технические революции. Вспомним, к примеру, «порох, компас, книгопечатание – три изобретения, предваряющие буржуазное общество».

Металлурги древней Индии поражают своим искусством. Индийцы давно научились плавить качественную сталь, делать отливки, чеканки. Вот уже почти 16 веков стоит восьмое чудо – делийская колонна диаметром у основания 0,4 метра и высотой 7,5 метра. Вес ее около шести тонн. Древние мастера сделали ее из отдельных кусков железа, сваренных в кузнечном горне. Колонна была воздвигнута в 415 году в честь царя Чандра Гупты II, скончавшегося в 413 году. Она посвящена богу Вишну. Первоначально находилась на Востоке страны и стояла перед храмом. В 1050 году царь Ананг Пола перевез ее в Дели. Самое удивительное, что колонна стоит сотни лет и не ржавеет. Время оказалось бессильным, на нее не действует ни ливни, ни тропическая жара.

На заре своего существования человек сталкивался главным образом с камнем. Но однажды он нашел ярко окрашенный кусок медной руды. Самые первые металлические орудия человек изготовил именно из самородной меди в Египте в V тысячелетии до н.э. Несколько позже появилась бронза – сплав меди с оловом и другими металлами.

Медь и ее сплав с оловом – бронза – долгое время были самыми распространенными металлами. Целая эпоха в развитии человечества называлась бронзовым веком. Шествие бронзы по планете было стремительным. Но вот загадка. Почему первые изделия из бронзы появились именно там, где совершенно не было необходимого сырья, и олово везли морем с Кавказа, Пиренейского полуострова и Британских (оловянных) островов к древним очагам цивилизации – в Египет и Двуречье? Видимо, металлургия пришла в Египет из какой-то другой страны.

Бронзовый век принес человечеству новые загадки. Археологи до сих пор находят такие бронзовые изделия, которые смущают даже современных металлургов. Несколько лет тому при проведении археологических раскопок найдена бронзовая статуя лежащего Будды длиною около 10 метров. Ученые утверждают, что «возраст» этой уникальной отливки 7000–8000 лет. Процесс получения фасонных бронзовых отливок известен в Абиссинии, Египте, Индии, Древней Греции еще в IV–III тысячелетиях до н.э., т.е. литейное ремесло является одним из старейших на нашей планете.

В национальном музее Египта в Каире хранится литая бронзовая скульптура одного из фараонов. Скульптуре около 2500 лет. Она отлита в рост человека и является пустотелой, со стенками толщиной от 15 до 30 миллиметров. Следует заметить, что никакой другой способ обработки металлов не может соперничать с литьем в деле создания произведений подлинного искусства.

Легенд, вымыслов, небылиц хватало в истории техники во все времена.

Нельзя, конечно, всерьез относится к технологическим рецептам превращения меди в золото с помощью пепла василиска, размягчения драгоценных камней в крови козла или производства небьющегося стекла путем сбрызгивания его поверхности кровью дракона.

Что же могли и чего не могли старые мастера-ремесленники?

Успехи ремесленничества в решении инженерно-технических задач неоспоримы, и все же этот путь развития технического творчества – тупиковый!

Но не разобравшись в прошлом, нельзя осмыслить диалектику сегодняшних перемен в инженерном деле.

Инженерную сторону технической деятельности периода ремесленного производства оценивают по-разному. Чаще всего источники технического творчества ремесленников видят в обыденном, хаотически накопленном знании, основанном на «голом эмпиризме, простых обобщениях, наблюдениях и рецептах», т.е. в профессиональной сноровке. Случай, удача не нуждаются в письменных правилах.

В то же время сторонники этого подхода признают, что «совокупность взаимосвязанных процессов и приемов, эмпирически освоенных в тысячелетней практике их осуществления и изменения», есть реальное, хотя и не теоретическое знание, которое зафиксировано в виде практических навыков, расчетно-рецептуарных технологических схем.

Другая концепция гласит, что наука и инженерия – прямые потомки практических искусств и ремесел, ибо «осмысление опирающейся на эмпирические наблюдения практики создания и использования новых технических средств исторически было первой формой новых понятий технического знания».

И в том, и в другом содержится «рациональное зерно», однако оба они не отражают сути ремесла как способа технического творчества. Это явление со своей необычной логикой трудно поддается пониманию человека, воспитанного в духе научного мировоззрения. Донаучное знание – функциональный заменитель науки – не было результатом целенаправленного изучения природы. Законы мира, качества предметов осваивались непосредственно – чувствами, руками, а уж потом мышлением. Не было деления на «знать» и «применять знания»; теория и практика были неразделимы и с точки зрения, современной науки – неформализуемы. Интересен анализ истории бронзолитейного ремесла, проведенный историками.

Показательна в этом отношении древнекитайская книга «Чжоу ли»

(«Записка для контроля работы ремесленников»), хронологически относящаяся к III в. до н.э. В ее главе «Као-гун-цзы» («Шесть рецептов») приведены пропорции соотношения меди и олова в сплавах для различных изделий. Для колоколов и котлов, к примеру, требуется 1/6 часть олова и 5/6 меди, для мечей – 1/3 олова и 2/3 меди, для зеркал медь и олово берутся поровну и т.п.

Казалось бы, все ясно. Бери, переплавляй, отливай. Не тут-то было! При наличии примесей более 2 % о собственных физических свойствах сплава меди и олова нужно забыть. Так что за коротенькой формулой рецепта прячется неописанная, но необходимая технологическая система очистки исходных материалов. Измерить количество инородных примесей в металле древний мастер не мог; тем не менее ему удавалось получить нужный сплав с соответствующими качествами. Каким образом? Успешные действия металлургов прошлого основывались на наглядно-чувственном способе технического мышления, внешней формой которого служил рецепт.

Образно говоря, технологический рецепт времен средневековья представлял собой «вершину айсберга», тогда как главная, невидимая нам часть ремесленного мастерства состояла в особом способе мировосприятия. Рабочему и в наши дни приходится иногда работать «на глазок», скажем, определять температуру нагретого металла для его закалки. Так же действовали металлурги и кузнецы тысячелетия назад. Но если для ремесленников прошлого признаком этой готовности был сам цвет, то для современного рабочего цвет является прежде всего показателем нужного температурного режима. Абстракция вытесняет красочность в буквальном смысле слова. Для того чтобы действовать, рабочему наших дней недостаточно чувственных впечатлений, они должны быть соотнесены с абстрактным научным понятием.

Необходимо подчеркнуть, что взаимодействия ремесла и науки, строго говоря, не было. Ремеслу, технической мысли средневековья требовались теоретические основания. Однако наука того времени была слишком умозрительной, слишком схоластичной, чтобы помочь технической практике перейти от методов рецептурных к методам инженерным. Подспорьем в решении технических задач служили лишь геометрия и искусство счета. Место науки в системе ремесленного знания занимал миф, сам по себе к научному знанию никакого отношения не имеющий.

Следует заметить, что господство ремесленника в сфере технического творчества не было абсолютным. Хотя магистральным путем развития техники был путь проб и ошибок, параллельно ему из глубины веков тянется тропинка рационального осмысления технических проблем. Далеко не всех из тех, кто ее прокладывал, мы знаем поименно. В числе первых – Архит из Тарента (V–IV в. до н.э.), применивший математический аппарат к исследованию технических устройств; Евклид, создавший начертательную геометрию; Диоген Лаэртский и др. Невозможно не упомянуть о легендарной личности Архимеда (ок. 287–212 гг. до н. э.). Вклад этого древнегреческого мыслителя в развитие технических основ цивилизации грандиозен; его деятельность мы вправе именовать инженерной без малейших скидок, оговорок. Достижения Архимеда в области рациональной и технической (прикладной) механики, как считают историки, представляют собой первую в истории теоретическую систему научно-технического знания, которая завершает развитие предпосылок технических теорий.

Следует особо отметить, что одностороннее изучение античности в течение длительного времени привело к тому, что понятие «инженер» связывалось только с именем Архимеда и вместо собственно инженерной деятельности рассматривались ее результаты: рудники, мосты, отопительные системы, дороги, театры, туннели, гидротехнические сооружения. В большой степени недооценены успехи инженерной деятельности в области измерительных приборов, тонкой механической аппаратуры, а также «обыкновенной», но необходимой грузоподъемной техники. Несколько более известны те инженеры, труды которых о строительстве оборонительных сооружений дошли до потомков.

Каковы же основные факторы, способствовавшие вызреванию инженерного труда?

1. Технологическая революция.

2. Развитие общественно-экономических отношений - «Машинная революция».

3. Переворот в мировоззрении, становление личности - п осягательство на творческую функцию бога.

4. Перемены в науке. ХVI-XVII вв. – это время, когда свежий ветер естественнонаучного познания врывается в затхлую атмосферу умозрительной науки. Изобретательская деятельность Леонардо да Винчи, открытия Ф.Бэкона и Галилея.

5. Создание средств инженерного труда.

Следует заметить, что историческая логика развертывания общественного разделения труда вкупе с целым набором технических, экономических, социальных и психологических факторов привели к обособлению инженерной деятельности от прочих видов умственного труда. Возникла новая профессия, смысл которой заключался (и заключается по сей день) в применении научных знаний при решении технических проблем производства.

Первым внутривидовым разделением функций инженерного труда стало обособление друг от друга тех, кто придумывал и конструировал технику, и тех, кто налаживал ее выпуск на заводах. Но на этом процесс специализации в среде инженерно-технических работников не остановился, и два первоначальных крупных блока внешних и внутренних функций раздробились к настоящему времени на ряд более мелких.

К внутренним или техническим функциям относятся такие, как функции анализа и технического прогнозирования, исследовательских разработок, конструирования, проектирования, технологического обеспечения, регулирования производства, эксплуатации и ремонта оборудования, т.е. группа функций, обеспечивающих развитие производства и его функционирование.

Функция анализа и технического прогнозирования. Ее выполнение связано с выяснением технических противоречий и потребностей производства.

Здесь определяются тенденции и перспективы технического развития, курс технической политики и соответственно намечаются основные параметры инженерной задачи. Короче говоря, формулируется в первом приближении ответ на вопрос, что нужно производству завтра.

Исследовательская функция инженерной деятельности состоит в поиске принципиальной схемы технического устройства или технологического процесса.

Конструкторская функция дополняет и развивает исследовательскую, а порой и сливается с ней. Особенное ее содержание заключается в том, что голый скелет принципиальной схемы прибора, механизма обрастает мышцами технических средств, технический замысел получает определенную форму.

Функция проектирования – родная сестра двух предыдущих функций.

Специфика ее содержания заключается, во-первых, в том, что инженерпроектировщик конструирует не отдельное устройство или прибор, а целую техническую систему; во-вторых, в том, что при разработке проекта часто приходится учитывать не только технические, но и социальные, эргономические и другие параметры объекта, т.е. выходить за рамки сугубо инженерных проблем.

Технологическая функция связана с выполнением второй части инженерной задачи: как изготовить то, что изобретено? Инженер-технолог должен соединить технические процессы с трудовыми и сделать это таким образом, чтобы в результате взаимодействия людей и техники затраты времени и материалов были минимальны, а техническая система работала продуктивно.

Успех или неуспех технолога определяет ценность всего инженерного труда, затраченного перед этим на создание технического объекта и идеальной форме.

Функция регулирования производства. Проектировщик, конструктор и технолог совместными усилиями определили, что и как делать, осталось самое простое и одновременно самое сложное – сделать.

Функция эксплуатации и ремонта оборудования. Здесь название говорит само за себя.

Функция системного проектирования сравнительно нова для инженерной деятельности, но по значимости превосходит многие другие функции.

Смысл ее в том, чтобы всему циклу инженерных действий придать единую направленность, комплексный характер. «На основе возникает новая профессия инженера-системотехника (или инженера-универсалиста), призванного давать экспертные оценки в процессе создания сложных технических и особенно «человеко-машинных» систем, где необходим их постоянный диагностический анализ, направленный на раскрытие резервных и узких мест, выработку решений с целью устранения обнаруженных недостатков.

Развитие инженерной деятельности после появления инженера протекало необычно стремительно. Союз науки и техники породил лавину технических и общественных перемен, которая по мере движения вперед захватывала все более широкие пласты жизни общества. В отношении инженерной профессии действие научно-технической революции оказалось воистину всеобъемлющим. Прогресс инженерии в ХIХ и особенно в ХХ столетии стал подобен разливу полноводной могучей реки, разветвляющейся к тому же на десятки и сотни новых потоков.

Раздел ІІ. ПОЯВЛЕНИЕ ЗНАНИЙ В ОБЛАСТИ МЕХАНИКИ И ИХ РОЛЬ

КАК ТЕОРЕТИЧЕСКОЙ И МЕТОДОЛОГИЧЕСКОЙ ОСНОВЫ

ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ

Еще на начальном этапе предыстории человечества, который назывался палеолитом (древним каменным веком) первобытный человек робко начинает проникать в тайны природы, вначале бессознательно, а затем все осознаннее и осознаннее воспринимает явления и условия окружающей среды.

Применение первых орудий – камня и палки – заставили первобытного человека инстинктивно оценивать траекторию движения, чтобы нанести жертве смертельный удар. Это вызывает необходимость непрерывного улучшения и изобретения новых орудий.

В неолите (новом каменном веке) каменные орудия подвергаются все более тщательной и разнообразной обработке в зависимости от их назначения. Человек переходит от собирания растений и охоты к культивированию растений и выращиванию домашнего скота: начинается оседлая жизнь. Идет постепенный процесс накапливания знаний, необходимых для осознанной плодотворной практической деятельности по преобразованию производительных сил.

1. Зарождение знаний в области механики.

2. Становление и развитие разделов механики как основ инженерной деятельности.

С далеких времен, еще в дописьменные времена, человек мог пользоваться рычагом и клином, приспособлениями, без помощи которых нельзя было изготовить никакие орудия.

В процессе обработки каменного орудия люди пользовались скалыванием и трением, а позже, уже после освоения бронзы (с V тыс. до н.э.), познакомились с результатами операции сплющивания и узнали, что под влиянием удара можно изменить форму орудия и придать ему желательный вид.

Наблюдения за полетом камня или палки, брошенных в нужном направлении, приводят к осознанию зависимости дальности полета от силы броска: с этим связаны изобретения пращи и лука со стрелами.

В конструкции стрелы и метательного копья (дротика) уже заложено неявное понятие об устойчивости движения, а в булаве и боевом топоре – оценка значения силы удара.

Очень древними являются зернотерки – возвратно-поступательное движение одного камня относительно другого. Значительно позже появляется зерновая мельница, в которой используется вращательное движение камня.

Явление природы – движение светил и их действительное или кажущее влияние на судьбы людей, течение воды в реке и его использование для движения плота, прилив и отлив на море, ветер и буря, гром и молния, дождь и засуха – заставляли древнего человека задумываться об их первопричине, чтобы избежать беды или заставить помогать себе. Стремление осознать явления природы и чувство собственного бессилия перед ними привели соответственно к становлению науки и к мифотворчеству.

С появлением государств начинается государственно-культовое строительство. Древние строители, по-видимому, были знакомы лишь с рычагом, клином и наклонной плоскостью, но пользовались этими приспособлениями сознательно: можно предполагать, что они уже владели зачатками механики.

К этому же времени относится появление первых водоподъемных приспособлений: ворота, на барабан которого был намотан канат, несущий сосуд для воды, а также журавля – древнейшего предка кранов и большинства подъемных приспособлений и машин. Ворот представляет собой дальнейшее развитие блока.

Итак, к началу последнего тысячелетия до нашей эры народам, населявшим страны средиземноморского бассейна, были достаточно хорошо знакомы те пять простейших подъемных приспособлений, которые впоследствии получили название простых машин.

Как известно, основы современной науки или точнее по своим признакам, приближающиеся к современной науке, заложили греки (VІ в. до н.э.).

Но осуществили это они не на пустом месте.

Наука в древнейших рабовладельческих государствах зародилась сначала как система сокровенных и таинственных сведений, доступных лишь посвященным, а затем и как профессиональное занятие, как средство зарабатывать себе на жизнь. Первыми учеными-профессионалами были философы, и под философией понималась сперва вся совокупность знаний о человеке, о вещах, его окружающих, о природе и космосе. Первые познания греки заимствовали от египтян и из Мессопотамии: недаром первые греческие философы происходили из Малой Азии.

Необходимым условием становления науки оказалось изобретение письменности. И теоретические «знания», и знания с практическим содержанием имеют чрезвычайно древнее происхождение. Только первые с изобретением письменности начали фиксироваться на свитках папируса, на камне или на глине, а прикладные - в большинстве случаев остались в устной традиции и записывались лишь изредка. И если теоретические знания, выражавшиеся сначала в рецептурной форме, мало-помалу вырабатывали свой собственный, «научный», способ изложения, то прикладные еще долгие столетия будут придерживаться «рецептуры».

Из области механики у древних народов до начала VІ в. до н.э. были известны элементы гидравлики, строительной механики, статики, динамики и небесной механики.

Практическая гидравлика – управление разливом рек, орошение полей при помощи каналов, учет распределяемой воды, первые водоподъемные приспособления – лежали в основе хозяйственной жизни древнейших культурных стран.

Древнейшие познания в области динамики связаны с практической механикой охоты и войн. Полет стрелы, полет камня, брошенного пращей, «артиллерийские» орудия – катапульты для метания камней большого веса, баллисты и т.п. побуждали древних механиков задумываться над полетом «снаряда»: он должен был попасть в цель.

Этим не исчерпывались познания древних. Уже египтяне умели управлять силой ветра: паруса их судов постепенно принимают наилучшую форму.

Все эти элементы практической механики послужили базой при становлении механики как науки. Первый из философов, о котором имеются исторические сведения, Фалес, живший в Милете (Малая Азия) в начале VI в.

до н.э, был, как сообщает историк Геродот, военным инженером и гидротехником.

Гераклит Эфесский жил в Малой Азии в начале V в. до н.э. Он утверждал, что в природе нет ничего постоянного и неизменного: все течет и нам только кажется, что всякий раз мы погружаемся в одну и ту же реку, а на самом деле вода, в которую мы раньше погружались, давно ушла. Нельзя дважды войти в одну и ту же реку. Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим, - считал он.

Значительно развил учение о движении величайший из греческих материалистов Демокрит ( ок. 470 г. – нач. IV в. до н.э.) уроженец малоазиатского города Абдер. Он учил, что материал состоит из атомов, неделимых мельчайших частиц, имеющих разную величину и форму. Атомы движутся в пустоте в различных направлениях и с различными скоростями, но не ускоряясь и не замедляясь, и следовательно, не останавливаясь. Движение атомов извечно, оно не имеет ни начала, ни конца. Таким образом, Демокрит предвосхитил закон инерции; различие было лишь в том, что он допускал не только прямолинейное, но и круговое движение атомов.

Значительно более полную концепцию механики мы находим в работах великого древнегреческого философа Аристотеля (384-322 гг до н.э.) – «Физика», «Трактат о небе». Аристотель, занимаясь проблемой движений, в это понятие включал собственно не только перемену места, но и качественные изменения.

У Аристотеля мы встречаемся не только с причинами и сущностью движения, но и с некоторыми кинематическими и динамическими характеристиками его.

На протяжении V-VI вв. механическая техника пополняется еще одним изобретением – возникают машины. Первые машины – простейшие водяные мукомольные мельницы – были построены на горных речках Закавказья и Малой Азии. Возникновение мельниц было обусловлено ростом населения и увеличением спроса на муку. Помол зерна, производившийся вручную на зернотерках и ручных жерновах, был одной из самых трудоемких и тяжелых операций того времени.

Водяная мельница (рассматриваемая как машина) имела в своем составе энергетический агрегат – водяное колесо, передачу – два цевочных колеса, жестко насаженные на валы, и рабочий орган – жернова. В таком виде, с незначительными улучшениями, водяная мельница дожила до ХVІІІ, а кое-где и до ХІХ века.

Второе поле деятельности, ставшее основой для возникновения машин, было обусловлено нуждами войны и обороны. Первоначально простейшие приспособления для метания стрел и камней с течением времени развиваются в довольно сложные военные машины. Древнейшая из них – баллиста.

Камень брошенный баллистой весом 30 кг, пролетал свыше 400 м.

Заметный след в механике оставил Архимед (287-212 гг. до н.э.). Не все его работы дошли до нас, но и то, что сохранилось, является громадным вкладом в сокровищницу человеческой культуры. Он занимался арифметикой и геометрией, вплотную подошел к созданию интегрального исчисления, чем опередил свой век на два тысячелетия, много сделал в механике. Он выяснил принцип центра тяжести, создал строгую систему статики, заложил основы гидростатики. В области практической механики он сделал много изобретений, в том числе планетарий – прибор, показывающий движение небесных светил, винт, усовершенствовал зубчатые колеса, на принципе винта построил водоподъемное приспособление («архимедов винт»), применив его впервые для осушки долины, залитой Нилом. Им было создано много машин, в том числе военных. Кстати, «сам Архимед, - пишет о нем Плутарх, - считал сооружение машин занятием, не заслуживающим ни трудов, ни внимания…»

Знаменитому и многими любимому искусству построения механических орудий положили начало Эвдокс и Архит, стремившиеся «…разрешить те вопросы, доказательство которых посредством одних лишь рассуждений и чертежей затруднительно…»

В результате завоеваний Александра Македонского (356-323 гг. до н.э.) образовалась огромная империя, где греческий язык стал государственным, возникает культура, получившая название эллинистической (от слова Ellas – Греция).

Механика эпохи эллинизма развивается в основном в прикладном направлении: бурное строительство потребовало создания новых, более мощных строительных машин и более пристального внимания к оценке прочности архитектурных конструкций. Развивается практическая гидравлика и пневматика, создаются новые механические приспособления, новые военные машины.

Возрастание роли механики заставило изменить отношение к этой профессии. Механикой «по совместительству» начинают заниматься архитекторы и военные инженеры.

В середине ІІІ в. до н.э. в Александрии учился Филон Византийский, который написал «Свод механики» – одно из первых сочинений по практической механике. Свод состоял из девяти книг (до нас дошли лишь четвертая и пятая): 1) Общие принципы механики; 2) Учение о рычагах; 3) О постройке гаваней; 4) О построении метательных машин; 5) Пневматика; 6) О построении автоматов; 7) Военное снаряжение; 8) О фортификации и осаде городов;

9) Тактика. Этот перечень свидетельствует о многообразии направлений в развитии механики, многообразии практических интересов.

Из александрийских механиков наибольшую известность получили Ктесибий и Герон. Ктесибий (ІІ-І вв. до н.э.) был по-видимому, самоучкой.

Основные интересы его лежали в области гидравлики и пневматики; он изобрел поршневой насос, счетчик оборотов, занимался устройствами с применением сжатого воздуха.

Герон Александрийский (около І в. до н.э.) написал едва ли не больше всех античных ученых по вопросам механики. Его перу принадлежали «Механика», «Книга о подъемных механизмах», «Пневматика», «Книга о военных машинах», «Театр автоматов» и ряд других. До нас дошли лишь немногие из его сочинений.

К наиболее известным изобретениям, описанным Героном, относится эолипил – прообраз паровой турбины, в котором впервые для вращения используется реактивное действие струи пара; «геронов шар» - пневмогидравлический прибор, основанный на действии сжатого воздуха на поверхность воды; еще один пневмогидравлический прибор – «геронов фонтан».

Однако, творчество великих александрийских механиков было в основном направлено на постройку военных машин, водоподъемную технику, на сооружение малых автоматов, где они достигли большого совершенства.

Последним известным механиком александрийской школы был Папп Александрийский (ІІІ в. н.э.). Он различает теоретическую и практическую механику. К первой он относит результаты, связанные с арифметикой, геометрией, физикой и астрономией; практическая же механика изучает обработку меди, железа, дерева, строительное дело, живопись и прочие ремесла.

Учение о центре тяжести Папп излагает по Архимеду и Герону, а также описывает собственные исследования. Особое внимание он уделяет подъему тел по наклонной плоскости и передаче движения зубчатыми колесами.

Можно сказать, что механика в Древней Греции достигла высокого уровня развития. Так, в частности, гидравлика развивалась так успешно, что уже в ХІV в. до н.э. на территории Греции строились публичные бани с водопроводом, сложной системой канализации. К 600 г. до н.э. относится первая попытка прорыть канал на коринфском перешейке, в конце VI в. до н.э.

был построен водопровод в Афинах, в V в. до н.э. был сооружен канал, соединивший Нил с Красным морем, во ІІ в. до н.э. построен водопровод в Антиохии, Пергаме.

К механике эпохи эллинизма примыкает механика Рима и Карфагена.

Достаточно подробные сведения об уровне римской механики можно получить из сочинения «Об архитектуре» Марка Витрувия, архитектора эпохи Августа (І в. до н.э.).

Так, книга Х этого трактата посвящена описанию машин и механических приспособлений и их действию. Почти половина Х книги трактата (главы 10-16) посвящены описанию военных машин и прочей военной техники.

Баллисты, катапульты, палинтоны применялись для метания камней, бревен, стрел. Создавались эти машины в большом количестве, и конструкции их были разработаны весьма тщательно. Строили и иной конструкции машины – онагры, скорпионы (метали стрелы). Так, Дионисий Александрийский построил полибол, в котором к скорпиону было добавлено приспособление для быстрой подачи стрел – античный пулемет. Ктесибию принадлежало изобретение аэротона - военной машины, в которой роль упругого элемента играл сжатый воздух.

Значительные познания в механике, а именно в практической, имели также античные архитекторы. На основании длительного опыта, совершенствовавшегося на протяжении многих поколений, они выработали ряд эмпирических правил, которыми и пользовались в своей практической деятельности. Интересно, что индусские храмы, египетские пирамиды, вавилонский Сикуррат и греческие колонны всегда суживаются кверху, как это положено для сооружений, материал которых работает на сжатие.

Крупным ученым в области математики и механики был византийский ученый Лев Математик (ок.815 – ок. 870), армянин по происхождению. Ему принадлежат автоматическая система механизмов.

Техника Закавказья эпохи І тысячелетия была весьма высокой. Здесь были развиты обработка металлов, керамическое и ткацкое производства, обработка кож. По-видимому, первое железо было добыто в армянских горах, на горных речках Закавказья были построены водяные мельницы – первые машины в истории человечества. В Армении был разработан интересный вариант соединения купольных устоев со стенами, учитывавший сейсмические условия страны.

В Грузии особое развитие получило строительство крепостей и оборонных сооружений. Крепости строили с учетом рельефа местности. Сохранившийся от V-VI веков грузинские храмы и иные сооружения доказывают не только полную самостоятельность строителей и присущее им чувство красоты, но и большие познания в механике.

В начале VII века начались завоевательные войны арабов. Менее чем за 100 лет, к концу 30-х годов VIII в. в состав Арабского халифата вошли огромные страны и территории, ранее принадлежавшие Римской империи и Персидскому государству – образовалась колоссальная империя, которую населяло множество племен и народов, связыванных общей религией и языками. Ислам и арабский язык стали религией и языком государства, науки и культуры.

В халифате появились огромные библиотеки в которых находилось до 150-200 тыс. томов, в том числе частные, а также и публичные. В 994 г. везир Ардашир ибн-Сабур основал в Багдаде Дом мудрости с библиотекой в томов. В Египте в 983 г. при мечети Ал-Азхар был основан университет, существующий и поныне. В Х в. в Нишапуре было открыто медресе – училище нового типа.

Источниками развития культуры и науки народов стран ислама послужили как труды античных и византийских ученых, так и опыт, накопленный народами, входившими в халифат. Серьезное влияние на механиков оказали труды Иоанна Филопона, его учение развил, в частности, знаменитый Авиценна-Ибн-Сина (980-1037). Ибн-Сина считал, что сила, приданная движущему телу, не уничтожается и что если не было помех движению, то оно продолжалось бы бесконечно долго. Следует особо отметить вклад хорезмийцев в точное естествознание; даже слово «алгоритм» является лишь латинизированным вариантом имени математика, труды которого лежат в основе арифметики и алгебры Мухаммеда-Ибн-Мусы ал-Хорезми (780-847).

Самостоятельными трактатами являются «Книга о познании практической механики» Исмаила ал-Джазари (ХІІ- ХІІІ вв.) и «О водяных колесах и подъеме воды и о служащих для этого механических устройствах» Мухаммеда ал-Хорасани.

В VIII в. в Персии и Ираке появляются ветряные мельницы различной конструкции. Имеются сведения о мельницах с ветряным колесом, лежавшим в горизонтальной плоскости; вертикальный вал вращал подвижной жернов.

В ІХ ст. в Самарканде было изобретено производство бумаги из тряпья, и на длительное время этот город стал центром бумажных фабрик.

Прикладная механика в арабоязычных странах пополнилась новыми знаниями, так сказать, получила значительное приращение. Особенно увеличились познания в строительной механике и гидравлике; значительного развития достигла техника построения мельниц и военных машин.

Мировое значение науки арабоязычных стран состояло в том, что она сохранила и творчески развила науку, унаследованную от Греции и эллинистических стран, а также ввела в научный оборот результаты творчества индийских ученых. Это наследие в области математики и механики различными путями было передано в Западную Европу.

Одним из первых познакомил Западную Европу с арабской математикой бенедиктинский монах Герберт Ориллакский (ок. 938-1003), в последствии папа Сильвестр ІІ. Кстати, ему приписывают также изобретение механических часов. Но, возможно, это изобретение было сделано раньше, в халифате, поскольку арабоязычные ученые серьезно занимались изучением эллинистических и византийских трудов по автоматам.

Развитие механики в Западной Европе в течение 1000 лет происходит двумя различными путями.

Знания механически развивают практики, которым приходится сооружать здания и мосты, создавать военные орудия. Так, развивается практическая механика, которая только в конце рассматриваемого периода получает литературное оформление.

Механикой как наукой занимаются ученые, которые преподают в школах: этот путь теоретической механики подобен тому, как в Греции между философами-теоретиками и механиками-практиками не существовало взаимного доверия, так и здесь между учеными-схоластами и практикамиинженерами и архитекторами не заметно согласия. Каждый работает для себя и редко одни считаются с опытом или знаниями других.

Средневековая школа пришла на смену римской с кругом знаний, заимствованных от этой последней.

Делаются попытки как-то систематизировать их. Первой попыткой внести некоторый порядок в круг знаний, связанный с потребностями школы, была систематика позднеримского философа и математика Аниция Северина Боеция (ок. 470-525), который разделил науки на гуманитарные и математические, так называемые тривиум и квадривиум. В тривиум входили грамматика, риторика и диалектика, в квадривиум – арифметика, музыка, геометрия и астрономия (Грамматика – говорит, Диалектика – учит словом, Риторика – упрощает речь; Музыка – поет, Арифметика – считает, Геометрия – взвешивает и измеряет, Астрономия – считает звезды).

Несмотря на то, что механикой иногда занимались в школах, в список наук она не попала так как до ХVIII в. в системе школьных знаний механика относилась к математике.

Таким образом, еще в эпоху в эллинизма ученые начинают заниматься многими сторонами механики, в частности, статикой. Ученые же раннего средневековья уже не удовлетворяются изучением равновесия тел: их интересует также, а может быть, еще в большей степени - движение тел. При этом они различают геометрию движения, кинематику и движение под действием сил - динамику.

Раздел ІІІ. РАЗВИТИЕ МЕХАНИКИ КАК НАУКИ – УСЛОВИЕ

УСПЕШНОЙ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ

Развитие производительных сил в эпоху средневековья и позднее проходило несколько этапов.

В раннем средневековье (V – середина ХІ в.) – период становления феодального строя, некоторого развития науки, техники, а следовательно, и инженерной деятельности – они находились на низком уровне; во время классического средневековья (ХІ–ХV вв.) – период расцвета феодализма – производительные силы начинают всесторонне совершенствоваться, бурно идет накопление знаний в области механики как основы инженерной деятельности.

Особенно инженерная деятельность активизируется с ростом городов, появлением ремесленных цеховых производств.

Для позднего средневековья (XVI – первая половина XVII в.) характерны процессы разложения феодализма, зарождения мануфактурного производства и капиталистических отношений, становления науки, в том числе и механики.

1. Развитие научных знаний и создание условий для научной революции.

2. Развитие механики как науки.

Быстрое развитие феодальных отношений в эпоху средневековья, особенно начиная с ХІІ–ХІІІ вв. и позднее вызвало интерес к науке, технике, особенно к военной. Это объясняется ростом городов, замков, требующих мощной защиты, создания метательных машин (бриколь – для метания стрел;

франдибола – для метания камней), подвижных устройств (аркобаллисты, смонтированные на колесной раме). Подобные изобрения в определенной степени стали возможными благодаря активизации инженерной деятельности, увеличению количества людей, занимающихся этой деятельностью.

Огромное значение в ХIV в. имело использование пороха в Европе. С этого времени начинается эра огнестрельной артиллерии, развития металлургической промышленности и расширения знаний в области таких наук, как баллистика, динамика и др.

Уже в ХIII в. ученые начинают активно интересоваться вопросами динамики. Развивается идея Иоанна Филопона о том, что сила, бросившая тело, передается этому телу. Ученые-схоласты путем рассуждения, а иногда и наблюдения приблизились к пониманию множества механических явлений.

Учение об импетусе предложил французский ученый Жан Буридан, бывший одно время ректором Парижского университета. Оно заключалось в следующем: движущее тело получает от движителя импетус – определенную силу, которая может двигать его в том направлении, в каком его движет движитель. Чем большей будет скорость, с которой брошено тело, тем сильней будет приданный ему импетус. Именно импетус движет камень после того, как движение толчка прекратилось, но вследствие сопротивления воздуха и из-за тяжести, которая побуждает камень двигаться в сторону, противоположную импетусу, последний непрерывно ослабляется, иначе движение не прекратилось бы никогда. В конце концов импетус преодолевается, и тяжесть, воздействуя на камень, приводит его к «естественному местоположению». По Буридану, импетус пропорционален плотности и объему тела, к которому он приложен.

Важный след в истории механики оставили ученые Альберт Саксонский и Николай Орем середина ХIV в.. Так, Альберт Саксонский много и умно рассуждает о центре тяжести, критикует в этом отношении Аристотеля, доказывает, что каждое тело имеет точку, в которой как бы сосредоточен весь его вес.

Ученик Буридана Николай Орем (1323–1382), разрабатывая идею ортогональных координат, утверждал, что графически можно изображать любые измеримые количества. В динамике он придерживался теории импетуса, а в кинематике пользовался графическим изображением. Орем исследовал равномерное и неравномерное движение и был близок к правильной формулировке равномерно-ускоренного движения. В своем трактате о небе и мире он придерживался мысли, что Земля движется относительно неба, и таким образом предвосхитил идею Н. Коперника.

Развитие производительных сил, рост городов, укрепление церкви приводит к строительству храмов, монастырей, которые становятся сосредоточием не только веры, но и образования. Они оснащаются мощными оборонительными сооружениями. Бурно развивается цеховое производство. В частности, строительные цехи (каменщиков, отделочников) растут количественно и качественно, в них накапливаются практические познания из области строительной механики. Но многое делалось на ощупь и длительное время было результатом коллективных усилий.

Сохранился любопытный документ начала 1481 г., в котором тридцатилетний Леонардо да Винчи (1452–1519) предлагает свои услуги правителю Милана Лодовико Сфорцг и где он характеризует разнообразие знаний инженера.

Леонардо и мог все, и занимался всем. В этом была сильная сторона его гения, но здесь же была и его слабость: он не мог сосредоточиться, многое начал, но немногое закончил. После него осталось множество записок, схем и рисунков, которые он предполагал слить в трактаты. Этого он тоже не сделал. Многие из них относятся и к механике. Леонардо – практик, и его теоретические рассуждения играют лишь подсобную роль. В механике он занимался изучением движения тел по наклонной плоскости, законом рычага уяснил понятие момента, исследовал трение, падение тяжелых тел, законы гидростатики. В динамике он следовал учению Буридана. Он пробовал определить понятие силы, впрочем без особого успеха, он пытался складывать и разлагать силы.

Леонардо первым исследовал полет птиц и приблизился к созданию летательного аппарата, тяжелее воздуха. Он создал много различных схем машин и предвосхитил идею о составе машины из механизмов (а не из «простых машин»). Он изучил трение и понял невозможность вечного двигателя лет за 300 до того, как это было доказано.

Начавшийся со второй половины ХV в. Ренессанс явился величайшим переворотом в истории человечества, эпоха гигантов-ученых, величайших открытий, инженерных решений.

В годы деятельности Леонардо понятие «инженер» уже бытовало в Западной Европе. Появилось оно около ХII в. и обозначало строителя военных машин и фортификаций (т.е. специалиста, которого в эпоху эллинизма называли «механиком»), так как все технические средства по части ведения военных операций и обороны назывались «ihgenia». С ХV в. в Италии инженерами называлт также строителей каналов, хотя еще в Римское время уже есть такое упоминание.

Ф. Брунеллески сознательно пользовался расчетными методами и говорил о важности математики для всех искусств. Математические познания и изучение римских построек дали ему возможность установить пропорции здания, эстетические и одновременно оптимальные с точки зрения техники.

Таким образом, в строительство вводятся методы расчета, что явилось одним из первых шагов перехода строительной механики от практической науки к прикладной. Шедевром Ф. Брунеллески стал купол флорентийского собора Санта Мария дель Фьоре диаметром 42 м – на 10 м больше купола Софийского собора в Константинополе. Купол Брунеллески не имел правильной сферической формы, его внутренняя поверхность была описана радиусом, равным трем четвертям диаметра основания. Крепился он восемью ребрами, воспринимавшими вес фонаря и опиравшимися на углы барабана. Брунеллески возводил купол с 1419 по 1434 г. Для выполнения строительных работ он сконструировал и построил несколько кранов и иных подъемных машин.

Тем временем в Польше, в старинном поморском городе Торунь, сын краковского купца каноник Николай Коперник (1473–1543), астроном и математик, работал над гелиоцентрической моделью мира. Труд Коперника «Об обращениях небесных сфер» вышел из печати в год его смерти. Введя в теорию строения мира принцип относительности движения, Коперник не только значительно упростил очень сложную кинематику движения планет, разработанную в геоцентрической системе Птолемея, но и доказал, что Земля является одной из планет, вращающихся вокруг Солнца, и что, кроме того, она вращается и вокруг собственной оси. Революционное учение Коперника послужило основанием для развития науки о Вселенной. Впервые была поставлена задача о движении небесных тел не кажущемся, а естественном, чем подтверждена догадка древних астрономов и заложены основы новой науки – небесной механики.

Складывались условия для научной революции, формирования новой науки, основанной на эксперименте, опыте. Постепенно в недрах цехового производства развивается капиталистическая мануфактура, которая пока все еще основывается на ручном труде: машины продолжают заменять лишь физическую силу человека.

В период ХVI-XVII вв. появляется целый ряд сочинений инженеров, в частности, Агостино Рамелли (1530-1590), Генриха Цейзинга (ок. 1560-1613), Соломона де Ко (1576-1630), Каспара Шотта (1591-1670) и др. Теоретические сочинение по механике. Расширяются познания и в строительной механике.

Появляется много машин, оснащенных новыми механизмами. А. Рамелли в сочинении «Разнообразные и искусные машины» (1588 г.) привел изображения передаточных механизмов – зубчатых, винтовых, цепных - и дал описание различных, конструкций насосов.

Развитие инженерной деятельности, вызванное с усложнением машин, заставило обратиться к вопросам прав собственности по отношению к профессиональным секретам. Отдельные патенты выдавались и в середине века.

К концу ХV в. Венеция имела уже достаточно развитую патентную систему.

В ХVІ в. патенты и привилегии широко выдаются во Франции, Нидерландах, в империи Габсбургов.

В конце ХVІ и на протяжении ХVII в. в теоретическом естествознании, математике и механике происходит длинная цепь открытий и разработка теорий. Результатом интенсивной деятельности ученых оказалась новая система миропознания. Этот период вошел в историю под названием научная революция: разрушались устоявшиеся представления о мире, природе, материи и движении, происходила крутая ломка уже сложившихся объяснений явлений природы, их использования, формировался новый метод мышления.

Революция в науке началась с открытий Н. Коперника. Затем И. Кеплер (1571-1630), «упорядочил» Солнечную систему.

Зачинателем и теоретиком экспериментального метода в естественных науках считается английский философ и государственный деятель Френсис Бэкон (1561-1626). Нельзя сказать, что его личный вклад в естествознание был значительным. Вместе с тем Бэкон обосновал экспериментальный метод исследования, объявил физику «матерью всех наук» и отделил науку от теологии. Для этого надо было иметь немалое мужество и смелость.

Этот период характеризуется широкой постановкой и решением задач механики. Ученые систематизировали познания по статике, а полученные законы применяли для решения проблем прочности материалов и гидравлики.

На основе динамических идей схоластов разрабатывается динамика, которая сразу, же распространяется на баллистику, решаются задачи геометрии движений, и, пожалуй, лишь учение о машинах остается на уровне чистого описания, так как рабочие скорости были ничтожны и для расчета действия машин достаточно было элементарных законов статики.

Значительна роль в становлении механики как науки выдающегося ученого Галилео Галилея (1564-1642). Он изучал медицину, а затем математику, к которой тогда относилась механика, оптика, гидравлика, астрономия и часть технических знаний. Физикой же тогда назывались и элементы знаний из биологии, физиологии, геологии и т.п., т.е. то, что можно было бы назвать естественной историей.

Продвижению механики вперед способствовали работы в области теории удара чешского ученого профессора Карлова университета в Праге Иоганна Маркуса Марци (1595-1667). Он рассматривает соударение сферических твердых тел, движущихся по прямой друг против друга, и формулирует четыре закона, очень важных для дальнейшего развития механики.

Значительную работу в области механики проделал ученик Галилея Эванджелиста Торричелли (1608-1647). Продолжая исследования своего учителя, он обобщил знания о брошенном теле, рассмотрев случай, когда тело брошено под углом к горизонту. Успешно занимался он и механикой жидкости – изучал течения жидкостей через узкое отверстие, находящееся в нижней части сосуда.

В ХVI-XVII вв., когда набирала силу научная революция, в некоторых странах делались попытки объединить усилия ученых, обменяться определенной информацией. Так, важнейшую роль в объединении ученых сыграл Марен Марсенн (1588–1648), школьный товарищ Декарта, крупный математик, естествоиспытатель и философ. Он был знаком едва ли не со всеми выдающимися учеными того времени - Декартом, Кавальери, Ферма, Паскалем, Робервалем, Торричелли. Именно благодаря Марсенн в 1634 г. на французском языке была издана «Механика» Галилея. Сам Марсенн много занимался этой наукой: исследовал колебания, ставил опыты по гидравлике и гидродинамике, писал о судах, плавающих под водой и многое другое. Владея ценнейшей информацией того времени, Марсенн оказался в центре обмена научными новостями и создал кружок ученых, который уже после его смерти получил правительственный статут (1666 г.) и был преобразован в Парижскую академию наук.

Эпоха научной революции богата на имена мыслителей, философов, ученых чей вклад в механику не только значителен, но и поучителен. Одним из самых крупных в этой плеяде был Рене Декарт (1596-1650) – философ, физик, математик, физиолог, создатель учения «О картезианстве», которое в значительной степени определило дальнейшее развитие естественных наук.

Нельзя не назвать и великого ученого из Голландии Християна Гюйгенса (1629-1695), прозванного «гениальным часовщиком всех времен». Особое значение для развития механики имел его трактат «Колебания в часах, или Геометрическое доказательство движения маятников в их применении к часам», опубликованный в Париже в 1673 г.

Вместе с Дени Папеном (1647-1712) работал над сооружением пневматических и гидравлических машин, устройством фонтанов, насосов и многого другого.

Изучением кривых, в частности, циклоиды, занимался и профессор математики Роберваль (1602-1675). Одновременно с Торричелли ему удалось сформулировать кинематический метод проведения касательной к кривой. С помощью этого метода он построил касательные к большому числу кривых.

Одновременно с итальянским математиком Бонавентурой Кавальери (1598Роберваль разработал так называемый метод неделимых, развитие которого привело к созданию анализа бесконечно малых. Следует сказать, что именно ему принадлежит едва ли не первое в истории механики определение силы.

Значительный вклад в становление механики как науки – основы инженерной деятельности внес один из основателей Королевского общества Роберт Бойль (1627-1691), который был физиком, механиком и химиком.

Независимо от Мариотта он открыл закон изменения объема газа в зависимости от изменения давления. Все явления, включая и химические, Бойль объяснял с точки зрения механики.

Нельзя не упомянуть и о Роберте Гуке (1635-1703) – крупнейшем английском ученом конца ХVII в. С ним тесно сотрудничал Р. Бойль (усовершенствование воздушного насоса). Гук занимался физикой, механикой, биологией, геологией, физиологией, астрономией, был практикующим врачом и профессором геометрии. Среди его многочисленных изобретений немало относятся к механике: анкерный ход часов, пружина баланса, насосы, приборы для испытания материалов, часовой привод телескопа, «Шарнир Гука». Важнейшим его теоретическим достижением считается разработка доктрины всемирного тяготения. Впервые он высказал соображения относительно гравитации в очень коротком сообщении, прочитанном в королевском обществе весной 1666 г.

Бессомненно велик и неизмерим вклад в развитие механики английского ученого Исаака Ньютона (1642-1727), члена Королевского общества (с 1672 г.), долголетнего президента этого общества (с 1703 г.). Его труд «Математические основания натуральной философии» (1687 г.) стал основой для создания не только ньютоновской механики, но и нового миропонимания.

Его работа как бы завершила научную революцию. Вплоть до разработки теории относительности А. Ейнштейном ньютоновская механика была единственной теорией всех земных и небесных движений; ее значение для техники остается непоколебимым.

Готфрид Вильгельм Лейбниц (1646-1716) был ученым-универсалом математик, механик, физик, философ, занимался логикой, юриспруденцией, историей и богословием, а также психологией, геологией и языкознанием.

Он изобрел счетную машину, причем такую, от которой ведут свой род прочие аналогичные изобретения ХVIII-XIX вв., Лейбниц изучал химию, медицину и горное дело, был дипломатом и принимал активное участие в организации Берлинской академии наук. В 1700 г. академия была открыта и Лейбниц стал ее первым президентом. В 1673 г. он избран членом Лондонского королевского общества, в 1700 г. - иностранным членом Парижской академии наук. В 1711, 1712 и 1716 гг. Лейбниц встречался с российским царем Петром І и давал ему советы относительно организации Академии наук в России. Широко занимался методом дифференциального исчисления, создал теорию цепной линии. Разработал основы символического исчисления по геометрии, ему принадлежит первый опыт алгебраизации анализа.

Несмотря на революционные преобразования науки ХVII века, в технике не происходило коренных изменений, и она продолжает развиваться очень медленно. Впрочем каких-то радикальных изменений (особенно в области энергетики) и не требовалось, поскольку машины оставались такими же, как и в прошлом веке. Практическая же механика не стояла на месте.

Большие изменения наблюдались в строительстве, возник архитектурный стиль барокко, который получил широкое распространение в Европе и который требовал новых инженерных решений, создания механики материалов.

Практика и ее запросы явились, несомненно, одной из побудительных причин для теоретических и экспериментальных выводов. Факты свидетельствуют, что в эпоху научной революции были заложены основы различных направлений прикладной механики, но уровня науки она достигала лишь более чем через столетие.

В последней четверти ХVIII в. изучением трения занялся Шарль Кулон (1736–1806). В 1781 г. он опубликовал «Теорию простых машин с точки зрения их частей…», в которой развил теорию трения и вывел законы, которые стали носить его имя. В это время делаются попытки создания теории машин.

Создание теории машин связано с именами Гаспара Монжа (1746– 1818) и его ученика Лазара Карно (1753-1823), который окончил ту же военно-инженерную школу, что и Монж. В 1783 г. Карно опубликовал «Опыт о машинах вообще», а в 1803 г. книга была переиздана под названием «Основные принципы равновесия и движения». Кстати, Карно считал, что механика по своей сущности является наукой экспериментальной и этим подтверждал ее право на самостоятельное существование вне границ математики. Свою систему он строил на основании изучения движения, отрицая возможность построения ее из «метафизического и темного понятия силы». Фундаментальным законом механики Карно считал закон количества движения. Все законы и теоремы механики он рассматривал применительно к машинам.

Книгу его уже можно отнести к прикладной механике.

Формирование механіки и как науки в XVIII в. завершил Лангранж.

Его классическая работа «Аналитическая механика» вышла в Париже в году, в которой он считал, что в общем-то, он обобщил и окончил труды своих предшественников. Динамика Лангранжа основана на законе, который носит название уравнения Д’Аламбера – Лангранжа. Из этого уравнения он выводит три закона: движения центра тяжести системы, моментов количества движения и живой силы.

Большой вклад в развитие механики сделал П. С. Лаплас (1749–1827).

Так 1799–1800 гг. он опубликовал два первых тома «Небесной механики». И, что самое существенное, в начале ХIХ в. начали весьма интенсивно развиваться именно те направления механики, которые основывались на экспериментальных законах и пользовались экспериментальными методами исследования.

Эксперимент еще в XVIII в. был характерен не только для науки, но и для техники, особенно для техники промышленного переворота. В принципе, все новые машины, заменившие руку человека, явились результатом глубокого и длительного экспериментирования. Так было и с паровой машиной Джеймса УАтта, который добился успеха в результате большой серии экспериментов. Следует сказать, что машина Уатта до конца ХVIII в., была государственным секретом Англии, и вывоз таких машин из страны был запрещен.

Паровые машины собственными усилиями стали строить во Франции, России, Германии, США и в других странах. Так, в США Оливер Ивэнс (1756–1819) сконструировал паровую машину высокого давления (1ОАТ), построил первый в США локомобиль и изобрел прямило («прямило Ивэнса»). Это была первая попытка после Уатта найти механизм, преобразующий поступательное движение во вращательное. Можно сказать, что к началу ХIХ в. время практический механики проходит и наступает эра прикладной науки. Кстати, в Англии – стране самой передовой техники того времени – развитие механики отстает. Но промышленный переворот, поднявший Англию на более высокую ступень экономического развития, не мог не повлиять на английскую науку. Быстро развивающаяся машинная промышленность (производство машин) требовала ответа на возникающие вопросы, и она не могла долго ждать. Поэтому с начала ХIХ в. наука в Англии приобретает практический характер. Запросы промышленности стимулируют появление новых наук – «технических», основанных на наблюдении и опыте и уже во вторую очередь пользующихся расчетно-математическими методами.

Что касается «старых» наук, то здесь в основном развиваются их прикладные направления. Очевидно, именно в связи с этим в Англии до середины ХІХ в.

не открываются технические школы. Англичане пользуются старыми, традиционными методами ученичества, но знания в области механики продолжают накапливать и совершенствовать.

В Англии зарождается и техническая пресса. В 1797 г. вышел первый номер «Журнала Никольсона», посвященного практическим вопросам технических знаний; в 1798 г. – «Философский журнал», также посвященный техническим наукам. В 1841 г. в Англии были опубликованы две книги по вопросам прикладной механики: «Механика инженерного дела» Уэвелла (1794–1866) и «Принципы механизмов» Роберта Виллиса (1800–1875). Уэвелл систематизировал практические задачи механики; Виллис занимался проблемами практической кинематики, в частности, ввел понятие механизма как элементарной составляющей машины. Он внес также большой вклад в создание теории зубчатых зацеплений.

К середине ХIХ в. начались поиски графических методов решения задач механики. Векторное исчисление находилось в процессе становления, но уже давно умели воспроизводить параметры статики графическими методами. В 1687 г. Ньютон и Вариньон установили закон параллелограммы сил, ставший основанием для создания графических методов. Позже Вариньон разработал метод веревочного многоугольника. Ряд графических построений предложили Клапейрон и Ламе.

К концу ХIХ в. развитие механической техники еще более ускорилось.

Были созданы новые машины – гидравлические и паровые турбины, электродвигатели, двигатели внутреннего сгорания. С появлением последних облегчилась работа над созданием самодвижущихся экипажей – автомобилей – и аппаратов тяжелее воздуха для воздушного пространства – самолетов.

60-е гг. ХIХ в. характеризуются активизацией интереса к теоретической кинематике. Среди работ на эту тему необходимо отметить «Трактат чистой кинематики» (1862 г.) профессора Политехнической школы Анри Резаля (1828–1896). Важнейший вклад в развитие данного направления внесли русский ученый П. Л. Чебышев, который ввел в теорию механизмов математические методы; англичанин Джеймс Джозеф Сильвестр и другие ученые, которые работали над воспроизведением математических зависимостей при помощи механических средств.

П. Л. Чебышев «разрабатывал» аналитическое направление в решении задач теории механизмов, Франц Рело рассмотрел эти задачи как машиновед, а затем геометры Амедье Маннгейм (1831–1905), Зигфрид Аронгольд (1819– 1884) и Людвиг Бурместер (1840–1927) создали новое направление – кинематическую геометрию, на базе которой Бурместер сформулировал геометрический метод синтеза механизмов.

Развитие машиностроения, строительство зданий и путей сообщения способствовало в конце ХIХ в. появлению интереса к задачам механики сложной среды: на основе применения математических методов были поставлены и решены новые задачи теории упругости, сопротивления материалов, гидродинамики; начиналась интенсивная исследовательская работа в области теории колебаний, теории устойчивости, аэродинамики.

Факты вполне достоверно свидетельствуют, что на протяжении ХIХ в.

как в теоретической, так и прикладной механике были достигнуты большие успехи. Математизация механики, которая началась в XVIII в. и оказалась чрезвычайно плодотворной и для развития самой математики, продолжается и в ХIХ в. Кстати, математизируются и многие направления физики. В течение ХІХ в. были созданы или заново прочитаны такие главы физики, как оптика, учения о теплоте, электричестве и магнетизме. Подобно механике, физика содействует развитию новых математических теорий и разработке нового математического аппарата.

В конце ХIХ и начале ХХ вв. в физике, механике, математике стали обнаруживаться факты, которые не укладывались в стройную систему классической науки. В первую очередь, это неевклидова геометрия Н. И. Лобачевского, которая была изложена в его труде «О началах геометрии» (1829 г.).

Вначале она не была понята даже некоторыми учеными, в том числе и М. В.

Остроградским. Общее признание геометрия Лобачевского получила лишь после его смерти, когда в 1868 г. итальянский геометр Эудженио Бельтрами (1835–1900) доказал ее непротиворечивость. Независимо от Лобачевского к его идеям пришел также венгерский геометр Янош Бояци (1802–1860). На рубеже ХIХ–ХХ вв. появляется новый подход к решению задач механики – с использующий аппарата теории вероятностей и математической статистики.

Как ни парадоксально, к концу ХIХ в. интенсивная работа над решением вопросов теоретического естествознания привела к тому, что количество накопленных фактов увеличилось; они появлялись и в физике, и в механике, и в математике. Кроме того, оказалось, что аппарат, который математики предоставляли в распоряжение физиков и механиков, не всегда удовлетворял последних, и им приходилось разрабатывать свой собственный. Так, во второй половине ХIХ в. совместными усилиями физиков, механиков, математиков было создано векторное исчисление, а физиком и инженером Хевисайдом – операционное исчисление. Нужно сказать, что операционное исчисление стало одним из первых направлений прикладной математики конца ХIХ Все эти поиски и открытия предопределили начало революции в естествознании, которая произошла на рубеже ХIХ–ХХ вв. В это время были обнаружены явления, объяснить которые тогдашняя наука не могла.

На 1895–1897 гг. пришлось крушение понятия об атоме как неизменной первичной и неделимой частице. Ряд открытий показал, что атом имеет сложное строение, а его структурным элементом является электрон, который был открыт в 1897 г. В 1895 г. Рентген выявил особого рода излучения, в 1896 г. Беккерель обнаружил явление радиоактивности урана. Попытки объяснить эти факты с помощью старых физических теорий не увенчались успехом. Вскоре ученые пришли к мысли: при объяснении новых явлений отказаться от общепринятых классических положений. Открытие радия, сделаное М. Склодовской и П. Кюри в 1898 г., не только констатировало научный факт, но и содержало в себе и частично его объясняло. В 1899 г. П. Н. Лебедев измерил давление света. В 1900 г. М. Планк (1879–1955) предложил квантовую теорию излучения. В 1909 г. Э.Резерфорд и Ф.Содди создали теорию радиоактивного распада – возникла новая идея о возможности превращения элементов. В 1905 г. А. Эйнштейн (1858–1947) выступил со специальной теорией относительности, а затем установил соотношение между массой и энергией, что было невозможно в системе «старой» классической механики Ньютона.

В результате открытий периода «новейшей революции» в физике проявляются определенные идеологические шатания, которые приводят к созданию новой картины мира в связи с появлением теории относительности.

В 1905 г. Альберт Эйнштейн публикует свой знаменитый труд «К электродинамике движущихся тел». Он порывает с ньютоновской концепцией абсолютного пространства и времени.

Следует заметить, что теория относительности не сразу получила признание. Уж слишком необычным было новое миропонимание: теория относительности заставила по-новому взглянуть на движение электронов, планет и галактик в космическом пространстве.

Начало ХХ в. характеризуется тем, что земная механика продолжает оставаться в рамках, предписанных ей Ньютоном. На протяжении всего 25летия (1890–1915 гг.) в технике решается ряд очень сложных задач эпохального значения.

Для механики первых двух десятилетий ХХ в. характерен повышенный интерес к сравнительно небольшому числу проблем: аэродинамике, гидродинамике, теории рабочих машин, неголономной механике. Объясняется это, особенно для России, тем, что было необходимо быстрое решение технических проблем, прикладная же наука требовала капиталовложений, которые были весьма ограничены, а вот теоретическая наука могла развиваться и при минимальных затратах. Между тем большинство направлений механики в первой половине ХХ в. уже достигло в своем развитии такого состояния, когда нужны были не только идеи, но и материальная база для их претворения.

В частности, так обстояло дело с авиацией, на которую не жалели средств, ибо польза от такого капиталовложения была очевидной.

Развитие в ХХ в. строительства в частности, железнодорожного, дорожного, стимулировало проведение исследований в области механики сыпучей среды и механики грунтов. Последняя возникла на базе теории упругости, теории сыпучих тел и гидромеханики, т.е. механика грунтов развивалась как наука на стыке ряда направлений механики и физических теорий. Несомненны научные заслуги в этой области Н. М. Герсеванова, который выяснил условия совместной работы деформируемых оснований и возводимых на них сооружений.

В 1930-е гг. началась разработка механики материалов и теории их прочности.

С началом научно-технической революции (50-е гг. ХХ в.) резко меняется и тематика научных исследований и их темпы. Одной из характерных особенностей НТР является то, что наука становится непосредственно производительной силой: она вызывает к жизни технические решения, определяет появление новых отраслей техники, новых видов производств.

Древнейшим из учений механики, как известно, являлось учение о покое – статика; учение о движении возникло значительно позже. Затем появилась теория колебаний, и уже в ХХ в. – теория устойчивости. С точки зрения объекта исследования можно различать механику микромира, механику среды, механику твердого тела и системы тел, небесную механику.

Современная НТР вызвала к жизни и множество новых технических проблем. Пути механики часто пересекаются с искусством. Много общих задач у механики с архитектурой и скульптурой. Живопись внесла важный вклад в создание начертательной и проективной геометрии, что оказало влияние на развитие едва ли не всех отраслей механики.

Сегодня механика, как и другие науки, все в большей степени становится делом не отдельных ученых, а целых научных коллективов, в отличие от ХVII–XVIII вв., когда достижения были индивидуальными, одиночными.

Раздел IV. РАЗВИТИЕ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ,

ПРОФЕССИИ ИНЖЕНЕРА И СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ

Профессия инженера прошла долгий путь становления и развития, имеет свои особенности на том или ином этапе истории. Длительное время на эту деятельность смотрели как на неблагородное дело, удел простолюдина, профессия не была популярной. Это особенно характерно для рабовладельческого общества. Хотя и здесь этой деятельностью занимались некоторые выходцы из высшего общества, но, пожалуй, это было исключением.

С переходом к феодализму возрастает количественно и качественно категория людей, занимающихся инженерной деятельностью. С развитием машинной индустрии она начинает быстро развиваться, появляется инженерпромышленник, который становится основной фигурой технического прогресса. Бурное развитие машинного производства вызвало к жизни необходимость подготовки кадров, способных решать инженерные проблемы.

1. Становление инженерной деятельности, особенности этого процесса и профессии инженера.

2. Развитие инженерной деятельности и специального образования.

Еще в античном обществе инженерное дело впервые приобрело признаки профессии: регулярное воспроизводство, доход от занятия, определенную систему получения знаний. Появляется некоторая специальная литература и учебные пособия. В дошедшем до нас трактате Марка Витрувия Поллиона “Десять книг об архитектуре” уже имеются ссылки на более ранние работы классического периода (например, Дилона “О пропорциях священных построек” и Силена “О пропорциях коринфских построек”), в которых описывались правила пропорций, производились расчеты и чертежи. Причем, под “архитектурой” понималась вся совокупность технических наук того времени: строительство, создание машин, конструирование часов, постройка кораблей. Чрезвычайно важное значение придавалось мастерству архитектора, которым в Риме называли руководителей строительства.

Считалось, что для получения этой профессии необходимы три вещи:

врожденные способности, знания и опыт. Причем, кроме знаний прикладных, практических, архитектор должен был обладать философским складом ума, быть философски образованным человеком.



Pages:     || 2 | 3 |


Похожие работы:

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Саратовский государственный аграрный университет имени Н.И. Вавилова СОГЛАСОВАНО УТВЕРЖДАЮ Заведующий кафедрой Декан факультета /Рыжкова И.В./ _ /Дудникова Е.Б./ _ _20 г. _ 20 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Дисциплина ПСИХОЛОГИЯ ЛИЧНОСТИ Направление 080200.62 Менеджмент Профиль подготовки Управленческий и финансовый учет...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Химико-технологический факультет УТВЕРЖДАЮ Ректор ФГБОУ ВПО СамГТУ _ Д.Е. Быков _ 2014 г. ПРОГРАММА вступительных испытаний в магистратуру по направлению 04.04.01 - Химия Самара, 2014 г. 2 Содержание 1. Нормативно-документальная основа программы 2. Требования к профессиональной...»

«1 ЭНЦИКЛОПЕДИЯ УЧИТЕЛЯ ИНФОРМАТИКИ II. Теоретические основы информатики Список статей 1. Измерение информации — алфавитный подход 2. Измерение информации — содержательный подход 3. Информационные процессы 4. Информация 5. Кибернетика 6. Кодирование информации 7. Обработка информации 8. Передача информации 9. Представление чисел 10. Системы счисления 11. Хранение информации 12. Языки Основными объектами изучения науки информатики являются информация и информационные процессы. Информатика как...»

«ЮГО - ЗАПАДНОЕ ОКРУЖНОЕ УПРАВЛЕНИЯ ОБРАЗОВАНИЯ ДЕПАРТАМЕНТА ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ города Москвы СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 536 РАБОЧАЯ ПРОГРАММА по литературе Класс _9 з Учитель _Абубекерова Г.Р. Количество часов: всего _102 часа; часов в неделю_3 часа Планирование составлено на основе программы: Федерального компонента государственного стандарта общего образования (2004 год) и Программы по литературе для 5-11 классов (авторы:...»

«Фонд имени Генриха БЁллЯ Гендер для чайников-2 Москва Звенья 2009 ББК 60.54:71.4 Г34 Научный редактор Ирина Тартаковская Иллюстрации Адгура Дзидзария ISBN 978–5–7870–0110–5 © Фонд имени Генриха Бёлля, состав, 2009 © Коллектив авторов, 2009 © А.Г.Дзидзария, рисунки, 2009 © А.А.Кулаков, оформление, 2009 аВТорЫ: Белянин алексей Владимирович доцент, координатор научных программ МИЭФ Государственного университета Высшая школа экономики, PhD Жидкова елена михайловна заместитель директора по научной...»

«Научные конференции Выходцы из Голландии и их российские потомки Одной из научно-исследовательских программ Института генеалогических исследований стала тема Иностранцы и их потомки в России, и, прежде всего, в Петербурге. Как известно, наш город с момента своего основания стал городом многонациональным и многоконфессиональным 1. Научные конференции, организуемые ИГИ РНБ совместно с РГО Генеральными консульствами разных стран в Петербурге вносят свою лепту в изучение генеалогии и истории...»

«970228414 УСТРОЙСТВО ПЛАВНОГО ПУСКА Руководство по эксплуатации СОФТ-СТАРТЕР SSW-06 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Серия: SSW-06 Программа: версия 1.0X 0899.4807 E/1 07/2004 ВНИМАНИЕ!  !                  . МОДИФИКАЦИИ Таблица ниже указывает на модификации, сделанные в этом руководстве. Модификация Описание Секция 1 Первое издание Содержание Быстрое обращение к параметрам, сообщения об ошибках и состоянии 1 Параметры 2 Сообщения об ошибках 3 Другие сообщения...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УТВЕРЖДАЮ Заместитель Министра образования Российской Федерации _В.Д.Шадриков “17”_03_2000г. Номер государственной регистрации 169ен/сп ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность 013900 Фундаментальная радиофизика и физическая электроника Квалификация - физик Вводится с момента утверждения МОСКВА 1.ОБЩАЯ ХАРАКТЕРИСТИКА СПЕЦИАЛЬНОСТИ 013900 ФУНДАМЕНТАЛЬНАЯ РАДИОФИЗИКА И ФИЗИЧЕСКАЯ ЭЛЕКТРОНИКА 1.1...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Декан экономического факультета, профессор В.И. Гайдук __2013г. РАБОЧАЯ ПРОГРАММА дисциплины Тайм-менеджмент Факультет, на котором проводится обучение Экономический Кафедра – разработчик Управления и маркетинга Дневная форма обучения Заочная форма обучения Вид учебной работы Курс,...»

«Дни наук и 2014 Департамент образования города Москвы Государственное бюджетное образовательное учреждение высшего профессионального образования города Москвы Московский городской педагогический университет Институт иностранных языков программа [VIII НАУЧНАЯ СЕССИЯ] Актуальные проблемы лингвистики, литературоведения, лингводидактики [Правилу следуй упорно: чтобы словам было тесно, мыслям – просторно] Н. А. Некрасов I день чтений - 17 марта II день чтений - 18 марта III день чтений - 19 марта IV...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Направление подготовки: 261400 - Технология художественной обработки материалов Профиль подготовки: Технология художественной обработки материалов Квалификация (степень): Бакалавр Форма обучения: очная Санкт-Петербург, 2013 1 АННОТАЦИЯ 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Основная образовательная программа (ООП) бакалавриата,...»

«SCREAM Стоп-сигнал детскому труду Программа в поддержку прав детей посредством образования, искусства и средств массовой информации Международная программа по искоренению детского труда ( ИПЕК) Группа технической поддержки по вопросам достойного труда и Бюро МОТ для стран Восточной Европы и Центральной Азии Бишкек - 2014 © Международная организация труда 2014 Первое издание, 2014 Публикации Международного бюро труда охраняются авторским правом в соответствии с Протоколом 2 Всемирной конвенции...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО Кемеровский государственный университет Новокузнецкий институт (филиал) Факультет гуманитарный РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ЕН.Ф.7 Физиология высшей нервной деятельности и сенсорных систем для специальности 030301.65 Психология специализации 020403 Социальная психология 020408 Психология труда и инженерная психология Новокузнецк 2013 Сведения о разработке и утверждении рабочей программы дисциплины Рабочая программа дисциплины...»

«РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОДБ.08 ФИЗИКА 2013 г Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее – ФГОС) по профессии начального профессионального образования (далее НПО) 260807.01 Повар, кондитер. Организация-разработчик: государственное бюджетное образовательное учреждение среднего профессионального образования Комаричский механикотехнологический техникум Разработчик: Коровина Анна Анатольевна, преподаватель...»

«Министерство образования и науки Российской Федерации ПРОГРАММА-МИНИМУМ кандидатского экзамена по специальности 01.01.01 Математический анализ по физико-математическим наукам Программа-минимум содержит 7 стр. 2007 2 Введение В основу настоящей программы положены следующие дисциплины: теория функций действительной переменной (действительный анализ), теория функций комплексной переменной (комплексный анализ), функциональный анализ, а также программы соответствующих курсов лекций, читаемых на...»

«УТВЕРЖДЕНО _ _2012 Г. ПРОТОКОЛ ПЕДСОВЕТА ОТ _№ ДИРЕКТОР МБОУ ГИМНАЗИЯ №8 _ Ф.Н.ЦАЙ ПРОГРАММНОЕ УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПЛАНА МУНИЦИПАЛЬНОГО БЮДЖЕТНОГО ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ГИМНАЗИЯ №8 Г. ХАБАРОВСКА 2012-2013 1 ОГЛАВЛЕНИЕ 1. Образовательная область Филология 1.1. Русский язык 1.2. Литература 1.3. Литература Дальнего Востока.. 1.4. Иностранные языки 2. Образовательная область Естествознание 2.1. Химия 2.2. Биология...»

«Генеральная конференция U 32 C 32-я сессия, Париж, 2003 г. 32 C/73 14 октября 2003 г. Оригинал: английский ДОКЛАД КОМИССИИ III (i) СОДЕРЖАНИЕ ВВЕДЕНИЕ ЧАСТЬ I ПОДГОТОВКА ПРОЕКТА ПРОГРАММЫ И БЮДЖЕТА НА 2006ГГ. Дискуссия 1 Пункт 3.1 Подготовка Проекта программы и бюджета на 2006-2007 гг. Проекты резолюций для принятия Генеральной конференцией in extenso ЧАСТЬ II КРУПНАЯ ПРОГРАММА II – ЕСТЕСТВЕННЫЕ НАУКИ Дискуссия Пункт 4.2 Рассмотрение и утверждение Проекта программы и бюджета на 2004-2005 гг....»

«СОГЛАСОВАНО УТВЕРЖДАЮ И.о. заместителя руководителя Северо- Заместитель Уральского Управления Федеральной генерального директора службы по экологическому, ООО Юграпрофбезопасность технологическому и атомному надзору _ В.П.Бакулин В.М.Аксенов _2010 г. __2010 г. И.о. заместителя руководителя Северо-Уральского Управления Федеральной службы по экологическому, технологическому и атомному надзору _ В.М.Аксенов __2010г. УЧЕБНЫЙ ПЛАН И ПРОГРАММА для профессиональной подготовки рабочих на производстве...»

«Производственный менеджмент: Учебник/Под ред. В. А. Козловского. М.:ИНФРА-М,2003.-574с.-(СерияВысшее образование). ISBN 5-16-001001-7 Учебник адресован тем, кто готовится к карьере менеджера, принимающего непосредственное участие в процессе производства продукции или предоставления услуг в широком межотраслевом разрезе. В учебнике отражен современный уровень знаний в области производственного менеджмента и организации производства. Рассматриваются проблемы прогнозирования, теории принятия...»

«Финансы Кеннет Дж. Будро FI-A2-RU 1/2010 (1503) Данный учебник входит в состав учебных материалов курса Эдинбургской Бизнес-Школы. Помимо данного учебника у вас также должен быть доступ к веб-сайту курса по этому предмету, где вы можете найти дополнительные учебные материалы, компьютерную программу Profiler, а также вопросы и ответы к прошлым экзаменам. Содержание этого курса периодически обновляется, и все изменения отображаются в редакции текста, появляющегося на соответствующем веб-сайте...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.