WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Международная Академия Информатизации

Цыганков В.Д., Соловьев С.В., Шарифов С.К.,

НАУЧНЫЕ ОСНОВЫ

ПРИБОРОВ «БИОМЕДИС»

 

Отличительные особенности 

научного подхода 

БИОМЕДИС

Москва 2013

УДК 615.844

С 14

 

 

Цыганков В.Д., Соловьев С.В., Шарифов С.К.

«Научные основы приборов «БИОМЕДИС» Отличительные особенности научного подхода». М. БИОМЕДИС. 2013. – 126 с.

Коллективная монография посвящена теоретическим аспектам и прикладным вопросам разработки и применения гаммы медицинских приборов биорезонансной тнерапии (БРТ) фирмы «БИОМЕДИС». Излагаются исторические истоки разработки российской нейрофизиологической школой Введенского - Ухтомского проблемы биорезонанса.

Рассматриваются пути повышения эффективности, универсальности, мобильности и интеллектуальности приборов БРТ путем совмещения в одном приборе процессов автоматической диагностики и терапии. Использование в приборе нейрокомпьютерного чипа для обработки информации и управления позволяет работать с мобильным прибором в реальном масштабе времени. В основу настоящего издания взят и дополнен последними данными материал презентации доклада, прочитанного на Международной конференции «Высокоинтенсивные физические факторы в биологии, медицине, сельском хозяйстве и экологии» в ФГУП РФЯЦ-ВНИИЭФ г.Саров в 2011. Издание рассчитано на всех заинтересованных в своем здоровье, в том числе и на медицинских работников.

УДК 615. С © ООО НПК БИОМЕДИС © ООО «Райт Принт» 2 

ОБ АВТОРАХ

Цыганков Владимир Дмитриевич – кандидат технических наук

, членкорреспондент Международной Академии Информатизации. Директор по науке НПК «БИОМЕДИС». Радиоинженер, нейрокибернетик, автор и руководитель разработки ряда роботов и моделей виртуального нейрокомпьютера «ЭМБРИОН», автор более 190 публикаций, 16 монографий и 5 патентов РФ и СССР.

«Медицинский прибор должен быть эстетически приятным дружелюбным человеку активным роботом. Образуя с человеком контактный или бесконтактный симбиоз, полезным результатом активности прибора-робота должно быть гармоничное приведение функционального состояния человека в физиологическую норму».

Соловьев Сергей Владимирович - Генеральный директор ООО НПК «БИОМЕДИС». Биофизик. Соавтор ряда патентов РФ на нейрокомпьютер и приборы. Топ-менеджер. Бизнесмен.

«Мы считаем своей миссией создание и распространение доступных абсолютно всем: медицинских приборов и продуктов, естественное воздействие которых направлено на восстановление, сохранение и поддержание гармоничного естественного здорового состояния человека».

3  Шарифов Сабухи Князь оглы – Радиоинженер. Главный конструктор гаммы приборов «БИОМЕДИС». Руководитель подразделения серийного производства приборов. Соавтор ряда статей по применению нейрокомпьютера «ЭМБРИОН» и патентов РФ на приборы.

«Замкнув выход прибора «УНИВЕРСАЛ ПРО» на вход организма, мы одновременно автоматически и диагностируем, и лечим нарушенную функцию организма пациента. Это прибор с обратной связью, работающий в реальном масштабе времени. Вся экспресс обработка информации в приборе возложена на встроенный нейрочип нейрокомпьютера «ЭМБРИОН», который представляет электронную модель мозговой деятельности динамической нейронной сети».

ПРЕДИСЛОВИЕ

В настоящее время произошел, по терминологии Роберта А.Уилсона, «Квантовый скачек» в сознании прогрессивной интеллигенции и в мировом научном сообществе. Скачек - это появление в России Международного Стратегического общественного движения «Россия-2045», в Манифесте которого провозглашена благородная задача – бесконечно продлить жизнь отдельного человека и всего Человечества.

Автор книги «Квантовая психология» или «Как работа нашего мозга программирует вас и ваш мир» является основателем Института по изучению будущего человечества. Он же директор общества «Прометей», лоббирующего научные исследования в области достижения бессмертия. Р.А.Уилсон считает, что жители нашей планеты Земля восходят в результате квантового скачка сознания на новый уровень эволюции и начинают осваивать новые миры, в которых Наблюдатель-субъект полностью осознает неразрывную связь «виртуальной» и «объективной» реальности. Миры, в которых то, что было непостижимой целью для людей предшествующих поколений или эпох (например, просветвление или бессмертие), становятся нормальным рабочим инструментом для достижения новых целей.

«Бессмертие» нам обещают идеологи Стратегического общественного движения не ранее 2045 года. Начальным этапом реализации данного глобального проекта, как нам представляется, может стать реализация предлагаемого в настоящем издании проекта «Активное долголетие». Эта программа всеобщего оздоровления населения является более реалистичной и достижимой в ближайшей перспективе задачей. Суть проекта кратко сводится к разработке, изготовлению и внедрению в медицинскую практику и в повседневный обиход любого человека новых мобильных активных адаптивных интеллектуальных биорезонансных медицинских нейрокибернетических приборов «БИОМЕДИС», совмещающих в себе как экспресс - диагностику, так и терапию в реальном времени. Данный проект – это способ постоянного активного поддержания и восстановления здоровья человека путем профилактического электромагнитного воздействия спектром оптимальных индивидуальных для организма частот. Человеческий организм и медицинский электронный кибернетический прибор или его электронный мозг в виде нейрочипа образуют между собой некий человеко – машинный комплекс или симбиоз, некий неоднородный по субстрату «надорганизм», который обеспечивает постоянно в реальном времени гармоничное состояние человека.



Кибернетический прибор БРТ – это постоянный спутник жизни здорового активного оптимистичного человека.

В предлагаемой книге изложены научные нейрофизиологические и биофизические основы реализуемой в настоящее время разработки, показаны возможности и описаны технические средства ряда уже созданных приборов, а также излагаются пути дальнейшего развития, расширения функциональной универсальности и технического совершенствования приборов БРТ «БИОМЕДИС» на базе встраивания в них основанных на виртуальной технологии нейрокомпьютерных чипов.

Реализация данного проекта, кроме актуального чисто медицинского и психологического назначения, поможет нам лучше понять принципы работы функциональных систем головного мозга и нейрофизиологические механизмы компенсации нарушенных функций в процессе БРТ.

Медицина в настоящее время находится на пороге внедрения в лечебную практику новых, бурно развивающихся информационных полевых или лучевых биотехнологий и новых современных наноэлектронных технических средств диагностики и терапии. И мы являемся активными участниками этого прогрессивного процесса.

В основу настоящего издания взят и дополнен последними данными материал презентации доклада, прочитанного в 2011 на Международной конференции «Высокоинтенсивные физические факторы в биологии, медицине, сельском хозяйстве и экологии» в ФГУП РФЯЦ-ВНИИЭФ г.Саров.

НАУЧНЫЕ ОСНОВЫ

Мы с Российским Федеральным Ядерным Центром (РФЯЦ-ВНИИЭФ) г.Саров объединены общей благородной задачей – разрабатывать современные интеллектуальные медицинские приборы, серийно их производить, распространять среди населения и оказывать лечебное терапевтическое действие пользователям, страдающим тем или иным недугом, помогать им вернуться к нормальной, здоровой деятельности.

О биорезонансной терапии (БРТ) уже достаточно много известно, убедительно написано, рассказано в видеосюжетах и на различных встречах. Хорошо известна, например, такая книга - Ю.В.Готовский, Л.Б.Косарева, И.Л.Блинков, ФИКСИРОВАННЫМИ ЧАСТОТАМИ. Методические рекомендации. Центр интеллектуальных медицинских систем "ИМЕДИС" NJ YF KBWTDFQ J,KJ;RT 2010. В Интернете также имеется много статей на данную тему.

Пожалуй, никто уже не сомневается в полезности и эффективности терапии с помощью приборов БРТ. Однако, общепринятой теории БРТ до сих пор нет. Есть гипотеза Ф.Морелля, предложенная в 1977 г., которая положена в основу объяснения всех феноменов реакций организма на воздействия биорезонансных частоты. Даже, что такое биорезонанс, нет установившегося общепринятого определения.

Мы хотим познакомить читателей с отличительными особенностями нашего научного подхода или с особенностями и основами научного базиса, используемого при разработке и производстве любых приборов типа «БИОМЕДИС».

Человеческий организм – это очень чувствительный, сложнейший комплекс или, по образному выражению академика Н.Е.Введенского, «многоголосый орг’ан», множество ритмирующих, колеблющихся и звучащих с различными нотами и оптимальными частотами молекул, клеток, органов и целых систем организма.

Воздействуя прибором, в терапевтических целях мы перестраиваем, корректируем эти собственные ритмы организма.

И только, если ритмы подсистем организма отличаются от нормы, от оптимума, их целесообразно осторожно корректировать, используя нейрофизиологические эффекты «усвоения ритма» и «физиологический парабиоз».

Мы обязаны производить и применять только разрешенные Минздравом приборы.

Но, вначале, что такое БИОРЕЗОНАНС?

ЛАБИЛЬНОСТЬ И ПАРАБИОЗ

Истоки БРТ. Мы в своих работах (Цыганков, 1973) ориентируемся, начиная еще с 1965 года, на основополагающую мысль, высказанную И.М.Сеченовым в 1861 г. в его знаменитой работе «Рефлексы головного мозга», которая звучит так: «…все бесконечное разнообразие внешних проявлений мозговой деятельности (психическая деятельность) сводится окончательно к одному лишь явлению – МЫШЕЧНОМУ ДВИЖЕНИЮ». Тогда наши работы были направлены на изучение мозговой координации и управления мышечной активностью. Всеми осознано, что жизнь – это движение. Но, движение непрерывное, оптимальное и ритмическое. Нервная система и мышцы (мышечные клетки и белки) – вот основа любой функциональной деятельности нашего организма.

Все живые системы, и только живые, находятся согласно «теории живой материи» Э.С.Бауэра, в динамически устойчивом неравновесном состоянии.

Для всех живых систем характерны три основных свойства их структуры, функционирования и поведения:

а) «Всем живым существам свойственно, прежде всего, самопроизвольное изменение своего состояния, т. е. изменение состояния, которое не вызвано внешними причинами, лежащими вне живого существа» (стр. 22 Э.С.Бауэр).

б) «Если система живая, то в ней с неизбежностью должна происходить работа, изменяющая первоначальное состояние системы, а значит, и эффект действия на нее факторов окружающей среды».

в) «

Работа живых систем при всякой окружающей среде направлена против равновесия, которое должно было бы наступить при данной окружающей среде, при данном первоначальном состоянии системы» (там же стр. 36).

Эти три свойства живой материи, наличие которых убедительно доказано экспериментально, позволили Э.С.Бауэру в 1935 г. сформулировать в виде математического выражения общебиологический динамический «ПРИНЦИП УСТОЙЧИВОГО НЕРАВНОВЕСИЯ» живых систем, который гласит:

«Все и только живые системы никогда не бывают в равновесии, и используют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии при существующих внешних условиях».

Все нативные (живые) белковые молекулы, все клетки, включая мышечные клетки, в фазе своего конформационного сокращения или мышечного движения производят работу, теряя нативность или частично денатурируя. Следующая фаза – восстановление неравновесия или растяжение молекулы, мышцы. Мы имеем один период высокочастотного колебания или конформационного изменения структуры живого субстрата. В этом биофизическая сущность возникновения ритмики всех систем на всех уровнях живого организма или множества колебаний, ритмов, т. е. биорезонансных частот. Так как большинство молекул имеют вытянутую в пространстве форму и представляют собой электрические диполи, то и конформационные колебания молекул и клеток имеют электромагнитную природу, а поэтому, порождают и излучают электромагнитные поля (ЭМП) или волны различной частоты.

митогенетического УВЧ-излучения или поля делящейся зародышевой клетки и сформулировал свою теорию биологического поля. Это когерентное излучение или поле, источником или генератором которого являются молекулы хромосом генетического аппарата ядер клеток, очень малой интенсивности и трудно регистрируется обычными физическими приборами. Для его регистрации необходимы биодетекторы в виде живой ткани или мишени из множества микроорганизмов. Поле называется деградационным, т. к. возникает при конформационных сокращениях или при разрушениях живой материи, и используется внутри организма для восстановления неравновесия потерявших нативность своих же белковых структур. Следует, в связи с этим, упомянуть возникновение на молекулярном уровне колебательных гиперциклов М.Эйгена.

Научные основы БРТ заложены более 100 лет назад в России академиком Н.Е.ВВЕДЕНСКИМ. До появления гипотезы Ф.МОРЕЛЛЯ (1977 г.) и провозглашения им метода БРТ, наш российский ученый академик Н.Е.ВВЕДЕНСКИЙ ещё в 1879 проводил опыты (рис. 2.1) по электрическому ритмическому воздействию на живые системы организма и разработал с академиком А.А.УХТОМСКИМ теорию переменной лабильности, усвоения оптимального ритма, теорию фазного развития парабиоза и теорию доминанты. В тот же период академик Д.Н.НАСОНОВ разработал теорию паранекроза клетки. ПАРА – значит на границе, рядом, НЕКРОЗ – разрушение, гибель клетки, ткани или органа.

оптимального ритма (Fopt), что выражается в резком увеличении функции клетки, нерва, органа при ритмическом электрическом раздражении или воздействии определенной оптимальной частотой при минимальном пороге раздражения. А это и есть тот самый БИОРЕЗОНАНС, понятие которого никак не могут согласовать между собой ученые.

Рис. 2.1. Из статьи Н.Е. Введенского «О влиянии электрического раздражения блуждающего нерва на дыхательные движения у млекопитающих» (1881) Рис. 2.2. Основные показатели функционального состояния живой клетки На рис. 2.2. вверху приведена резонансная кривая изменения порога возбудимости клетки и виден явно выраженный минимум порога или биорезонанс возбудимости в норме (N). Ниже показан характерный вид кривой развития пяти фаз парабиоза или изменения лабильности как способности физиологического субстрата усваивать навязанный извне ритм при постоянно действующем раздражении. На IV стадии развития состояния усталости появляется ультрапарадоксальная фаза, когда сверхслабые раздражители более эффективны, чем сильные. Н.Е.Введенский ввел понятие «физиологический парабиоз», функциональное состояние, автоматически поддерживаемое и управляемое частотой самим организмом, его нервной системой.

2.1. ТРИ ПОСТУЛАТА О ПРИНЦИПАХ СИСТЕМНОСТИ РАБОТЫ МОЗГА

«Все болезни от нервов!» - гласит народная мудрость. Действительно, это так. Ниже сформулированы три постулата, экспериментальное обоснование которых дает ключ к пониманию роли ритмических явлений в целостной, системной деятельности мозга. Вводится понятие ЛАБИТРОНА как нейрофизиологического элемента функциональной системы.

Принципы целостности и системности в работе мозга – наименее разработанная часть в общей теории мозга. Необходимость формулировки «рабочего принципа, который мог бы перебросить «концептуальный мост»

между теми фактами, которые получаются при изучении явлений у целого животного, и теми, которые получаются при тонком аналитическом эксперименте» подчеркнута П.К.Анохиным. Таким рабочим принципом в физиологии является сегодня концепция «функциональной системы», сформулированная П.К.Анохиным в 1935 году. Эта концепция, несомненно, может и должна стать основой общей теории работы мозга.

Однако, в этом системном подходе, во-первых, не нашли отражения фундаментальные закономерности реагирования живого организма, а именно, ритмическая природа и фазный характер протекания реакций на всех уровнях его организации, экспериментально установленные школой Н.Е.Введенского – А.А.Ухтомского; во-вторых, «полезный результат» всякой функциональной системы представляет собой частный, локальный результат, и не основывается на собственном результате работы каждой соматической клетки или нейрона.

Это понятие также не базируется на фундаментальных закономерностях, открытых на молекулярном уровне по пластическому обеспечению функций (Меерсон), и на общебиологической реакции «нативного белка», напряженного, не денатурированного белка (Д.Н.Насонов, Э.С.Бауэр). Ранее, в 1973 г.

(Цыганков.) была предпринята попытка разработки этих вопросов, в том числе, проблемы «центр – периферия» в виде трех следующих постулатов.

ПОСТУЛАТ ПЕРВЫЙ

Центр допускает и обеспечивает Е такую двигательную (сократительную) активность F, которая дает работу, достаточную для почти полного восстановления разрушенных белковых структур и поддержания в неравновесном, нативном состоянии основной массы белка организма в течение максимально возможного времени при данных окружающих и внутренних условиях.

Постулат имеет отношение к проблеме взаимоотношения центра и периферии. Известно (Анохин, 1968), что «полезный результат» любой функциональной системы заканчивается действием или мышечным движением.

Почти повсюду в целом организме таким действием является мышечная сократительная деятельность фибриллярных белков (актомиозина и ему подобных). Механизм работы антенн и ресничек рецепторных клеток, изменение формы или конформация белков в пресинаптических мембранах при секреции медиатора, изменение форм нейронов при их активности, изменение формы белковых молекул аксона при продвижении по нему импульса - спайка, ритмические изменения формы фермента и, наконец, работа мышечного конформационные изменения белковых молекул.

Наиболее доступным для исследования и символического, формального представления и описания взаимоотношений между центром и периферией являются управление и координация движений.

Нами в упомянутой работе (Цыганков, 1973) был предложен вид уравнения движения, модифицирующий известное уравнение Н.А.Бернштейна (1946), учитывающий роль лабильности L во взаимоотношении центра и периферии, вид которого следующий Jd2/dt2 = F {E [t,, d/dt, LE (t,, d/dt)],, d/dt, LF (E,t)} + G(), где LE - лабильность центра, LF - лабильность периферии.

универсального описания работы любой функциональной системы, т. к.

отражает ряд специфических свойств функциональных систем, хорошо известных из нейрофизиологии, а именно:

1.Взаимоотношение центра и периферии организовано по нескольким кольцевым циклам, 2.Однозначной связи между командой E из центра и характером движения F нет.

3.Произвольное движение возможно лишь при условии лишь тончайшего, не предусмотренного заранее, согласования центральных импульсов (E) с локальными явлениями на периферии (, d/dt, LF ), а именно, возникновение цели или «полезного результата» и акцептора полезного результата действия (АД) по Анохину, обратная афферентация и ориентировочный рефлекс (ОР) и т. д.

4.Устойчивость результата (F=const) с неизбежностью из–за переменной лабильности требует постоянной коррекции, непостоянства команд (E) из центра и морфологической неустойчивости локализации в нейронных сетях результата. В этом заключается организующая роль «полезного результата».

5.Мозг, центр неотделим от периферии, от тела. Нельзя понять и описать работу мозга в отрыве от главного результата его деятельности – работы мышц.

Согласно современным данным, работающая белковая структура теряет свою неравновесную конформацию, форму, понижая во время своей работы степень своей работоспособности, нативности или неравновесного своего состояния.

Вспомним высказывание И.М.Сеченова о роли мышечного движения.

работоспособности белковой молекулы усиленно расходуются запасы АТФ, пищи и возникает потребность в их восполнении. Внешняя работа мышцы – это необходимое условие для работы функциональных систем, восстанавливающих ее.

Наиболее правдоподобными индикаторами возникающей потребности, внутренней причиной возникновения мотивации, могут быть изменения состава отходов, выводимых из клетки и из целого организма, изменение запасов буферных систем, поддерживающих постоянство щелочной среды рН. Эти показатели служат пусковым стимулом и связующим звеном между отдельной клеткой и целым организмом, активатором специфической деятельности подсистем клетки и всего организма.

ПОСТУЛАТ ВТОРОЙ

Единство механизмов, обеспечивающих процессы «пластичности» и «компенсации», основываются на существовании универсальной общебиологической закономерности, изменяющейся естественным образом и принудительно ЛАБИЛЬНОСТИ.

Ритмирующая природа возбудимых систем – это закономерное проявление их жизнедеятельности.

В основе ритмики лежит противоречие между внешней и внутренней работой живой системы, открытое нашим соотечественником Э.С.Бауэром (1935). Во время сокращения невозможно восстановление структуры миофибрилл, т.е. расслабление, а когда идет процесс восстановления (внутренняя работа по Бауэру), белок не производит никакой работы (не развивает напряжение и не укорачивается). Для сохранения возбудимости и работоспособности в течение продолжительного времени нужен непрерывный приток пищи и работа систем восстановления, либо нужен еще легко и оперативно доступный запас энергии в виде ее универсального эквивалента АТФ.

Падение лабильности может быть хорошим индикатором степени истощения запасов и ограниченности работы систем восстановления по сравнению с интенсивностью внешней работы, вызываемой внешним раздражителем.

Понижение лабильности, снижение частоты, проявляющееся при длительной гиперполяризационной адаптации (см. рис. 2.2. вверху), свидетельствует об увеличении интенсивности обменных восстановительных процессов, о росте запасов АТФ и питательных веществ в клетках. Оба механизма изменения лабильности организмом используются как механизмы «внезапной мобилизуемости» при образовании функциональных систем путем «усвоения ритмов» по Ухтомскому (вариант биорезонанса) и синхронизации ритмирующих образований (нейронов, синапсов, двигательных единиц) и является физиологической нормы.

Этот вопрос более подробно обсуждался и обосновывался в других наших более ранних работах (Цыганков, 1969, 1970).

ПОСТУЛАТ ТРЕТИЙ

Универсальным функциональным элементом нервной системы или материальным субстратом функциональной системы организма является не только клетка-нейрон, окруженная локализованный в пространстве орган, но и подвижное, часто не имеющее постоянных морфологических и мембранных границ, функционально определенное по «полезному эффекту»

надклеточное и внутриклеточное ритмирующее образование – Нами (Цыганков, 1970) было показано, что собственный полезный результат клетки – это поддержание работоспособного «устойчивого неравновесного состояния» или устойчивого динамического метаболического равновесия образующих клетку белковых структур.

Абсолютные величины степени неравновесности структур, которые стремятся поддержать системы восстановления, определяется активностью оперонов хромосомного набора.

воздействием раздражителя приводит к формированию одиночного цикла «системоквантом». Известно, что одиночный цикл, как правило, не является рабочим режимом, а может служить лишь целям изменения функционального состояния. Об его изменении наглядно свидетельствует кривая «функционального парабиоза» Н.Е.Введенского (см. рис. 2.2 внизу).

Рабочим режимом является ритмическая активность. Непрерывная ритмика менее выгодна энергетически, поэтому считается прерывная ритмика, режим пачек импульсов оптимальным и естественно необходимым режимом функционирования большинства физиологических приборов или систем.

На всех этажах биологической организации организма можно обнаружить ритмирующие образования: вибрирующие ферменты, медиаторные системы синапсов, мышечные волокна, последовательность спайков нейронов, органы (сердце, легкие, …), и даже мозг в целом с его –ритмом и другими ЭЭГ ритмами.

Эти ритмогенераторы имеют некоторый, каждый свой предельный ритм, который характеризует их функциональное состояние. В основе собственной ритмики каждого образования лежат молекулярные механизмы – конформационные обратимые, если не произошла полная денатурация белка, процессы или превращения.

Используя термин Н.Е.Введенского лабильность, такой активный биологический ритмогенератор нами был назван лабитроном (1970).

Потребность в новом термине продиктована необходимостью отличать биологический функционально перестраиваемый самим организмом от обычного физического и технического осциллятора.

Лабитрон имеет ряд чисто биологических отличающихся признаков и особенностей.

Он может находиться в различных функциональных состояниях, которые и определяют его роль и место в данной функциональной, лабитронной системе в данный момент.

Наиболее важные состояния лабитрона:

1.Спонтанная ритмическая активность или динамическое метаболическое равновесие.

2.Ждущий режим, т.е. накопленная энергия, высокий порог возбуждения, гиперполяризационное торможение.

3.Режим трансформации ритма с кратным понижением частоты или разрежение ритма при истощении запасов и полное прекращение пульсации.

4.Режим усвоения ритма с повышением частоты при мобилизации обменных метаболических процессов или с понижением собственной частоты, так называемый биорезонанс.

5.Прерывистая генерация пачек импульсов.

6.Режим длительного, так называемого оптимального, наиболее экономичного воспроизведения собственного ритма.

Другими словами, лабитрон может находиться в любой фазе (рис. 2. внизу) общебиологической парабиотической реакции, открытой Н.Е.Введенским. В отличие от физического осциллятора, лабитрон имеет непрерывно меняющийся по биологическим законам спектр, собственную ритмику, даже при неизменных внешних условиях. Это первое из условий быть системе живой, по определению Э.С.Бауэра (1935). Изменение лабильности может осуществляться принудительно со стороны сенсорных входов, со стороны гуморальных систем, а также механическим воздействием через рецепторы растяжения. Лабильность может изменяться самопроизвольно.

Видимо, все системы организма, компоненты клеток представляют собой множество различных лабитронов, объединенных в различные функциональные системы, образуемые по механизму биорезонанса путем усвоения ритма или по принципу доминанты А.А,Ухтомского. Лабитрон и есть материальный субстрат функциональной системы.

Особый интерес представляет попытка создания электронной модели лабитрона, предпринятая И.Н.Довгим (1970). Эта работа позволяет получить предварительный ответ на вопросы: Что будет представлять собой элементная база бионических устройств и систем? Верна ли выбранная теоретическая база как фундамент для моделирования и создания лабильных приборов? Первые эксперименты с моделью показали, что мы имеем функционально новый элемент сложной системы, принцип работы которого совсем не похож на алгоритмы работы известных формальных нейронов и искусственных нейронных сетей (ИНС). Он ближе к реальным биологически прототипам. Тем более, в отличие от жестко детерминированных принципов программного моделирования работы мозга и его элементов на ПК и суперЭВМ.

Радиоэлектронная модель лабитрона дает реальную возможность для конструирования систем управления и координации в сложных динамических системах с нежесткой локализацией функций.

Итак, 1. Сформулированные постулаты рассматриваются как основа механизмов целостности или системности в работе мозга.

2. Концепция лабитрона и лабитронных функциональных систем открывает новый аспект технического моделирования механизмов работы мозга и открывает путь для создания новых биоподобных 3. Разработка и экспериментальная проверка радиоэлектронной модели лабитрона является реальным подтверждением правильности исходных теоретических положений и высоких технических возможностей такого типа моделей, по сравнению их с существующими моделями формальных нейронов.

4. В настоящее время уже имеются многочисленные материалы, обосновывающие и подтверждающие правильность сформулированных

2.2. В ЧЕМ СЕКРЕТ ВЫСОКОЙ ЭФФЕКТИВНОСТИ ТЕРАПИИ 

нейрофизиологический комплекс периодически электрически и механически возбуждающихся и колеблющихся органов, нервных центров, мышц, желез и других ритмирующих образований и структур. Организм – это многоголосый электрический орг’ан, звучащий на различных частотах от долей, единиц герц до 40 -70 Ггц. Наши множественные ритмы в организме исключительно подвижны, вариабельны (Таблица 1). Они автоматически перестраиваются самим организмом как функционально, так и изменяются под воздействиями различных внешних влияний и раздражений.

соотечественников Н.Е.Введенского – А.А.Ухтомского, Д.Н.Насонова о так называемой физиологической лабильности и доминанте, об управляемой ритмической деятельности внутриклеточных, внутринейронных метаболических процессов, ритмов нервно-мышечной системы, вегетативной нервной системы, деятельности подкорковых структур и разных отделов коры головного мозга.

терапевтического воздействия особенностью каждого ритмирующего компонента этого орг’ана является его лабильность или индивидуальный оптимальный ритм. Оптимальность ритма понимается в смысле «нормы здоровья» этого органа или источника ритма. Всякая болезнь, стресс или чрезмерная нагрузка – это сдвиг оптимального ритма органа вниз или вверх от его оптимума в настоящий момент времени, от состояния «нормы», называемой «ЗДОРОВ». Каждая норма характеризуется для каждого источника ритма своим набором количественных значений функциональных и терапевтических параметров.

Поэтому, эффективная терапия в целом представляет собой двухэтапный процесс управления лабильностью:

а) определения величины отклонения текущей частоты колебаний больного образования или органа от «нормы» - от оптимальной частоты, б) компенсаторного воздействия с помощью различных приборов НКП «БИОМЕДИС» на данный орган, на вегетативную нервную систему или на высшую нервную деятельность (ВНД) с целью получения «полезного приспособительного результата» - адаптивному, компенсаторному восстановлению утраченного оптимального ритма. (П.К.Анохин, 1968).

«Полезный приспособительный результат» – это основной и важнейший блок и этап функционирования подвижного динамического нервного образования в головном мозгу, названного «функциональной системой», теорию которой разработал академик П.К.Анохин (1935, 1968) на основе экспериментально изучения множественных компенсаций нарушенных функций организма.

3. ФУНКЦИОНАЛЬНАЯ СИСТЕМА МОЗГА.

АППАРАТ ПРОГНОЗА, ЭКСТЕННАЯ

МОБИЛИЗУЕМОСТЬ И КОМПЕНСАЦИЯ

НАРУШЕННЫХ ФУНКЦИЙ

П.К.Анохин был одним из первых ученых, который еще в 1935 г. сформулировал принцип системности, разработал концепцию неразрывности нервного центра и периферии – эффекторных образований целостного организма. Он впервые, задолго до Н.Винера, ввел понятие «обратная связь».

знаменитую, теорию функциональной системы мозга, экспериментально изучая процессы компенсации нарушенных функций, самотерапии и самолечения самим живым организмом без вмешательства человека – ассистента или врача. Им сформулирована архитектура системы (рис. 3.4) и алгоритм ее работы, четкая последовательность стадий, направленных на выздоровление, компенсацию, получение «полезного приспособительного результата» при взаимодействии блоков этой функциональной системы. Эта архитектура экстренно мобилизуется, т. е.

создается сеть взаимодействующих нейронов в мозге, которая после получения полезного результата, т. е. достижения ЦЕЛИ, распадается, и эти же нейроны вновь используются, но уже в составе другой функциональной системе с другими параметрами.

3.1. ЗАЧЕМ НУЖНА ФУНКЦИОНАЛЬНАЯ СИСТЕМА?

Чтобы понять и оценить гениальность нейрофизиологической концепции П.К.Анохина (1935,1968), его «Теорию функциональной системы», ее универсальность и применимость на всех уровнях сложной живой системы, от клеточного до поведенческого, психологического уровня, необходимо глубоко почувствовать, в чем смысл и идея распространенного, даже модного термина адаптация.

Всем понятно, что это приспособление организма к новой изменившейся ситуации или к новому состоянию внутренней и внешней среды. Оказывается, как это не звучит странно, можно адаптироваться даже к болезни! Например, можно приспособиться к новому виду походки при повреждении ноги, или к хроническим головным болям, т. е. выбрать положения, когда боль минимальна.

Так, все – таки, что же такое адаптация? Каковы ее нейрофизиологические и психологические аспекты и механизмы? Жанн Пиаже (1967) прекрасно объяснил, описал и экспериментально обосновал этот процесс путем систематического наблюдения и подробной регистрации всех моментов формирования и изменения поведения своих детей при их раннем развитии и воспитании (Дж.Х.Флейвелл Генетическая психология Ж.Пиаже.М.

Просвещение. 1967). А наш знаменитый академик П.К.Анохин, чьим именем нейрофизиологические механизмы адаптации или компенсации нарушенных функциональной системы» (П.К.Анохин «Биология и нейрофизиология условного рефлекса. М. Наука. 1968). Другими словами, он вскрыл внутренние механизмы самолечения организма и выхода его в состояние нормы или здоровья.

Итак, представьте себе две взаимодействующие системы: пусть слева на рисунке 3.1 будет система S - внешняя твердая по форме среда в состоянии S, а справа от нее О – организм, пусть в виде мягкого пластилинового шарика в состоянии Ро. Пусть под воздействием внутреннего мотива, желания организма или под вынуждающим воздействием внешней ситуации, «мягкий» организм приходит во взаимодействие с системой S и вдавливается в нее (рис.3.1 справа).

Организм переходит в новое состояние Ро’, т. е. адаптируется. Этот вид адаптации, когда изменяются внутренние структуры и функции организма и приспосабливаются к требованиям или условиям внешней среды, называется аккомодацией.

Рис.. 3.1. Аккомодация в результате взаимодействия систем S и O Новое состояние Po’ более приспособленное к взаимодействию со средой, к форме внешней среды, т. е. Ро’ S, Po Po’. Наглядным примером аккомодации может быть изменение формы хрусталика глаза для получения резкого изображения при отодвигании от глаза или при приближении книги, которую Вы читаете. Любая внутренняя система организма, если она способна, имеет резервы и механизмы для аккомодации, является адаптивной.

Вы обратили внимание на важность гибкости, вариабельности, лабильности, мобильности, в высшей степени подвижности систем организма для осуществления его адаптации к различным постоянно меняющимся внешним средам и внутренним состояниям.

А теперь давайте представим (рис. 3.2) себе вариант взаимодействия наших двух систем, обратный только что рассмотренному. Пусть среда теперь представляет собой пищу П, которую организм О должен при взаимодействии усвоить, включить в свои внутренние структуры, восстановить разрушенные работой или болезнью структуры, изменив таким образом свое исходное состояние Ро на Рo’.

В данном случае организм О является жесткой системой, а пища является тем «пластилином», который организм с помощью своих эффекторных систем (зубов, пищеварительной системы) перемалывает пищу П П’, ассимилирует ее, включает ее в свои обновленные структуры Ро’, оставляя во внешней среде лишь несъедобные отходы П’ (косточки от курочки или непонравившиеся ее части). Другими словами, внешняя среда П поглощается, ассимилируется организмом. Ро Po’ + П’‘; П П’, где П = П’ + П’‘. Пища П может быть информационной, символической в виде кубиков детского конструктора, букв алфавита, текстов прочитанных книг или рассматриваемых рисунков.

Согласно Ж.Пиаже (1967), адаптация представляет собой некоторое подобие весов двух процессов: ассимиляции (ас) и аккомодации (ak), причем всегда находящиеся в устойчивом динамическом неравновесном состоянии (рис. 3.3). Это состояние носит активный колебательный характер между процессами синтеза, роста, созидания (при ac>ak) и процессами деградации,



Похожие работы:

«Е.К. РУМЯНЦЕВ, А.В. ТЕН, Б.И. ГЕРАСИМОВ ЭКОНОМИЧЕСКИЙ АНАЛИЗ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА ПРЕДПРИЯТИЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ (НА ПРИМЕРЕ ОАО КОНДИТЕРСКАЯ ФИРМА ТАКФ) ИЗДАТЕЛЬСТВО ТГТУ УДК 664.6 ББК У305.73-823.2 Р865 Рецензенты: Доктор экономических наук, профессор, директор академии экономики и предпринимательства ГОУ ВПО Тамбовский государственный университет им. Г.Р. Державина В.И. Абдукаримов Доктор экономических наук, профессор, заведующий кафедрой Менеджмент организации ГОУ ВПО Тамбовский...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тамбовский государственный технический университет Я.Г. СОСЕДОВА, Б.И. ГЕРАСИМОВ, А.Ю. СИЗИКИН СТАНДАРТИЗАЦИЯ И УПРАВЛЕНИЕ КАЧЕСТВОМ ПРОДУКЦИИ: САМООЦЕНКА Рекомендовано экспертной комиссией по экономическим наукам при Научно-техническом совете университета в качестве монографии Тамбов Издательство ФГБОУ ВПО ТГТУ 2012 1 УДК 658.562 ББК...»

«УДК 323+327 (44) ББК 26.89 (4Фра) Ф 84 Руководитель научного проекта академик РАН Н.П. Шмелев Редакционная коллегия страновой серии Института Европы РАН: акад. РАН Н.П.Шмелев (председатель), к.э.н. В.П. Белов, д.полит.н. Ал.А. Громыко, Чрезвычайный и Полномочный посол РФ Ю.С. Дерябин, акад. РАН В.В. Журкин, член-корр. РАН М.Г. Носов, д.и.н. Ю.И. Рубинский, д.э.н. В.П. Фёдоров, д.и.н. В.Я. Швейцер, чл.-корр. РАН В.Н. Шенаев, д.и.н. А.А. Язькова Ответственный редактор монографии д.и.н. Ю.И....»

«Вестник СамГУ – Естественнонаучная серия. 2002. № 4(26). 59 К 75-ЛЕТИЮ ЕВГЕНИЯ МИХАЙЛОВИЧА МОРОЗОВА В.М. Пестриков, В.И. Астафьев2 1 c 2002 Известному российскому ученому-механику Евгению Михайловичу Морозову 10 декабря исполняется 75 лет. Большую часть своей жизни он отдал работе в Московском инженерно-физическом институте (государственный технический университет). В МИФИ он работает с 1951 года. Пройдя путь от ассистента, аспиранта, доцента и до профессора (1974 г.), он стал известным в нашей...»

«Николай Михайлов ИСТОРИЯ СОЗДАНИЯ И РАЗВИТИЯ ЧЕРНОМОРСКОЙ ГИДРОФИЗИЧЕСКОЙ СТАНЦИИ Часть первая Севастополь 2010 ББК 551 УДК В очерке рассказывается о главных исторических событиях, на фоне которых создавалась и развивалась новое научное направление – физика моря. Этот период времени для советского государства был насыщен такими глобальными историческими событиями, как Октябрьская революция, гражданская война, Великая Отечественная война, восстановление народного хозяйства и другие. В этих...»

«Барановский А.В. Механизмы экологической сегрегации домового и полевого воробьев Рязань, 2010 0 УДК 581.145:581.162 ББК Барановский А.В. Механизмы экологической сегрегации домового и полевого воробьев. Монография. – Рязань. 2010. - 192 с. ISBN - 978-5-904221-09-6 В монографии обобщены данные многолетних исследований автора, посвященных экологии и поведению домового и полевого воробьев рассмотрены актуальные вопросы питания, пространственного распределения, динамики численности, биоценотических...»

«Е. В. ИОДА Ю. В. ИОДА Л. Л. МЕШКОВА Е. Н. БОЛОТИНА УПРАВЛЕНИЕ ПРЕДПРИНИМАТЕЛЬСКИМИ РИСКАМИ • ИЗДАТЕЛЬСТВО ТГТУ • Министерство образования Российской Федерации Тамбовский государственный технический университет Тамбовский бизнес-колледж Е. В. Иода, Ю. В. Иода, Л. Л. Мешкова, Е. Н. Болотина УПРАВЛЕНИЕ ПРЕДПРИНИМАТЕЛЬСКИМИ РИСКАМИ Издание второе, исправленное и переработанное Тамбов • Издательство ТГТУ • ББК У9(2)-933я73- И Р е ц е н з е н т ы: Доктор экономических наук, профессор Б. И. Герасимов...»

«1 Качесов В. А. Основы интенсивной реабилитации. Травма ка и спинного мозга. Книга 1. М.: 2002. – 126 с. Автор - кандидат медицинских наук, научный сотрудник НИИ им. Н.В. Склифосовского, обобщает накопленный 18-летний опыт интенсивной реабилитации пострадавших с позвоночно - спинальной травмой. Издание в 1999 г. книги Основы интенсивной реабилитации, посвященной реабилитации пострадавших с позвоночно - спинальной травмой, вызвало огромный интерес в медицинском мире и у больных. Книга быртро...»

«САНКТ-ПЕТЕРБУРГСКОЕ ФИЛОСОФСКОЕ ОБЩЕСТВО САНКТ-ПЕТЕРБУРГСКОЕ ФИЛОСОФСКОЕ ОБЩЕСТВО ФИЛОСОФИЯ КОММУНИКАЦИИ ФИЛОСОФИЯ КОММУНИКАЦИИ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ 2013 Санкт-Петербург 2013 САНКТ-ПЕТЕРБУРГСКОЕ ФИЛОСОФСКОЕ ОБЩЕСТВО 1 САНКТ-ПЕТЕРБУРГ ИЗДАТЕЛЬСТВО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА УДК 1 (130.1) + (303.01) Ф54 Рецензенты: Доктор философских наук, профессор СПбГУ К.С. Пигров Доктор философских наук, профессор РГПУ им. А.И.Герцена И.Б. Романенко Авторы: И.Б. Антонова, И.П....»

«Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯНКИ КУПАЛЫ И.Э. МАРТЫНЕНКО ПРАВОВОЙ СТАТУС, ОХРАНА И ВОССТАНОВЛЕНИЕ ИСТОРИКО-КУЛЬТУРНОГО НАСЛЕДИЯ Монография Гродно 2005 УДК 719:349 ББК 79.0:67.4я7 М29 Рецензенты: доктор юридических наук, профессор В.Н. Бибило; доктор юридических наук, профессор В.М. Хомич. Рекомендовано Советом Гродненского государственного университета имени Янки Купалы. Мартыненко, И.Э. Правовой статус, охрана...»

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Н. А. ГОЛОВИН ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ПОЛИТИЧЕСКОЙ СОЦИАЛИЗАЦИИ ИЗДАТЕЛЬСТВО С.-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА 2004 ББК 60.5 Г61 Р е ц е н з е н т ы: д-р филос. наук проф., заслуженный деятель науки РФ, академик РАЕН А. О. Бороноев (С.-Петерб. гос. ун-т), д-р филос. наук проф., заслуженный деятель науки РФ О. И. Иванов (С.-Петерб. гос. ун-т), д-р историч. наук проф. О. Ю. Пленков (С.-Петерб. гос. ун-т) Печатается по...»

«Шинкарева Елена Юрьевна Право на образованиЕ рЕбЕнка с ограничЕнными возможностями в российской ФЕдЕрации и за рубЕжом Russia Пособие подготовлено по заказу Региональной благотворительной общественной организации Архангельский Центр социальных технологий Гарант Данная публикация стала возможной благодаря финансовой поддержке Агентства США по международному развитию (USAID) в рамках Программы поддержки гражданского общества Диалог (АЙРЕКС) архангельск 2009 УДК 342.733-053.2-056.3 ББК 67.400.32.1...»

«ЦОРИЕВА Е.С. ПРЕСТУПНОСТЬ ВЫНУЖДЕННЫХ МИГРАНТОВ (по материалам Республики Северная Осетия-Алания) П о д р е д а к ц и е й д о к т о р а ю р и д и ч е с к и х наук, п р о ф е с с о р а, З а с л у ж е н н о г о ю р и с т а Р р с с и и ЗлААова В.Е. Владикавказ - 2004 ББК Под редакцией заведующего кафедрой криминологии, психологии и уголовно-исполнительного права МГЮА, Заслуженного юриста России, доктора юридических наук, профессора Эминова В.Е. Рецензенты: Цалиев A.M., доктор юридических наук,...»

«УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МИРОВОЙ ЭКОНОМИКИ И МЕЖДУНАРОДНЫХ ОТНОШЕНИЙ РАН АРКТИКА: ЗОНА МИРА И СОТРУДНИЧЕСТВА Москва ИМЭМО РАН 2011 УДК 327 ББК 66.4(00) Аркт 826 Ответственный редактор – А.В. Загорский Аркт 826 Арктика: зона мира и сотрудничества / Отв. ред. – А.В. Загорский. – М.: ИМЭМО РАН, 2011. – 195 с. ISBN 978-5-9535-0284-9 Монография Арктика: Зона мира и сотрудничества подготовлена ИМЭМО РАН в рамках проекта Евроатлантическая инициатива в области безопасности (EASI). В...»

«КОНЦЕПЦИЯ обеспечения надежности в электроэнергетике Ответственные редакторы член-корреспондент РАН Н. И. Воропай доктор технических наук Г. Ф. Ковалёв 1 УДК 620.90-19 ББК-31 Концепция обеспечения надёжности в электроэнергетике. /Воропай Н. И., Ковалёв Г. Ф., Кучеров Ю. Н. и др. – М.: ООО ИД ЭНЕРГИЯ, 2013. 212 с. ISBN 978-5-98420-012-7 Монография посвящена основным положениям обеспечения и повышения надёжности в электроэнергетической отрасли Российской Федерации в современных условиях её...»

«Межрегиональные исследования в общественных науках Министерство образования и науки Росийской Федерации АНО ИНО-центр (Информация. Наука. Образование) Институт имени Кеннана Центра Вудро Вильсона (США) Корпорация Карнеги в Нью-Йорке (США) Фонд Джона Д. и Кэтрин Т. Мак-Артуров (США) Межрегиональный институт по общественным наукам при Иркутском государственном университете (МИОН при ИГУ) Амурский государственный университет Данное издание осуществлено в рамках программы Межрегиональные...»

«Муромский институт (филиал) Владимирского государственного университета Указатель литературы, поступившей в библиотеку Муромского института в 2009 году Библиотека МИ Муром 2010 г. УДК 019.911 У 42 Указатель литературы, поступившей в библиотеку Муромского института в 2009 г. – Муром: Библиотека МИ ВлГУ, 2010. – 74 с. Составители: Библиотека МИ ВлГУ © Муромский институт (филиал) Владимирского государственного университета, 2010 4 СОДЕРЖАНИЕ ОБРАЗОВАНИЕ. СОЦИАЛЬНАЯ РАБОТА ИСТОРИЯ. КУЛЬТУРОЛОГИЯ....»

«ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ В.П. ЗАКАРЮКИН, А.В. КРЮКОВ МЕТОДЫ СОВМЕСТНОГО МОДЕЛИРОВАНИЯ СИСТЕМ ТЯГОВОГО И ВНЕШНЕГО ЭЛЕКТРОСНАБЖЕНИЯ ЖЕЛЕЗНЫХ ДОРОГ ПЕРЕМЕННОГО ТОКА Иркутск 2011 УДК 621.311: 621.321 ББК 31.27-07 К 85 Представлено к изданию Иркутским государственным университетом путей сообщения Рецензенты: доктор технических наук, проф. Ю.М. Краковский кандидат...»

«ISSN 2072-1692. Гуманітарний вісник ЗДІА. 2013. № 52 УДК 37.013.73 МАРЕК ГРАМЛЕВИЧ (доктор социологических наук, научный сотрудник) Университет имени Яна Кохановского в Кельцах, Польша E-mail: [email protected] ТЕОРЕТИЧЕСКИЕ И ПРИКЛАДНЫЕ АСПЕКТЫ СОЦИАЛЬНОЙ РАБОТЫ Дается анализ особенностей современной социальной работы, рассматривается динамика и структура безработицы, факторы и последствия ее распространения, роль государства в поддержке безработных и их семей. Автор ссылается на...»

«В.И. НЕЧАЕВ, Е.И. АРТЕМОВА, И.А. БУРСА, А.К. КОЧИЕВА     НАПРАВЛЕНИЯ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГРЕССА В ЖИВОТНОВОДСТВЕ Краснодар, 2011 УДК 316.422.4:636 ББК 66.017.77 Н 27 Рецензенты: доктор экономических наук, профессор А. Б. Мельников; доктор технических наук, кандидат экономических наук, профессор Ю. И. Бершицкий Нечаев В. И., Артемова Е. И., Бурса И. А., Кочиева А. К. Н 27 Направления научно-технического прогресса в животноводстве: Монография / Под ред. д.э.н. профессора В.И. Нечаева. –...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.