WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |

«Конюхова Е. А. К 64 Электроснабжение объектов: Учеб. пособие для студ. учреждений сред. проф. образования. - М.: Издательство Мастерство, 2002.-320 с: ил. ISBN 5-294-00063-6 Рассмотрено электроснабжение промышленных и ...»

-- [ Страница 4 ] --

При расчетах электрических сетей во многих случаях бывает удобнее заменить проводимость на соответствующее этой проводимости значение потерь мощности при номинальном напряжении сети в той точке схемы замещения, в которой присоединена проводимость:

Во многих случаях схема замещения может быть дополнительно упрощена.

Практически в связи с малым значением ёмкостного тока можно не считаться с влиянием проводимости для воздушных линий при напряжениях до 35 кВ и для кабельных линий при напряжениях до 10 кВ включительно.

Рис. 12. 1. П-образная схема замещения линии Двухобмоточные трансформаторы. Двухобмоточные масляные трансформаторы выпускаются следующих типов: ТМ 25-6300/10-35; ТМН 1000-6300/35-110; ТДН-10 000ТРДН 25 000-40000/110; ТРДЦН 63000-80000/110; ТРДЦН 63000-160000/220.

Исходными для определения параметров трансформатора в схеме замещения являются следующие номинальные данные: номинальная мощность трансформатора S ном.т, номинальные напряжения обмоток U номI и U номII, схема и группа соединений обмоток. Кроме того, требуются следующие паспортные данные:

ток холостого хода в процентах от номинального тока, который практически является индуктивным;

потери активной мощности при холостом ходе Рх.х, которые практически относятся к стали трансформатора (гистерезис и токи Фуко); напряжение короткого замыкания U к. з в процентах от номинального, т. е. полное относительное сопротивление;

потери активной мощности Рк.з при коротком замыкании и нагрузке трансформатора номинальным током.

Полное сопротивление трансформатора, приведенное номинальному напряжению U ном обмотки, по отношению к которой определяется сопротивление:

активное сопротивление трансформатора:

реактивное сопротивление трансформатора:

Для трансформаторов большой мощности - выше 2500 кВ·А R т < X т и Z т X т - активным сопротивлением пренебрегают.

Активная и реактивная проводимости трансформатора в схеме замещения представляются обычно в виде потерь холостого хода (потери в стали), присоединенных на стороне высшего напряжения трансформатора:

где приближенно Реактивные сопротивления обмоток трансформаторов (ТРДН) с расщепленной обмоткой низшего напряжения определяются из соотношений где X BH HH = (uк.з BH HH / 100 )(U ном ) / (S ном.т ), uк.з BH HH - напряжение короткого замыкания трансформатора; Кр - коэффициент расщепления, для трехфазных трансформаторов Кр=3,5.

Трехобмоточные трансформаторы. Трехобмоточные масляные трансформаторы выпускаются следующих типов: ТМТН 6 300/35-110; ТДТН 10 000-80 000 /110. Исходными являются те же данные, что и для двухобмоточных, но некоторые номинальные данные должны указываться для всех трех обмоток. Так, трехобмоточные трансформаторы изготавливаются с различными соотношениями мощностей обмоток: если обмотка высшего напряжения (ВН) соответствует 100% номинальной мощности, то мощность обмотки среднего (СН) и низшего (НН) напряжений может составлять как 100%, так и 67%. Активное сопротивление обмоток, рассчитанных на полную мощность трансформатора:

Рис. 12. 2. Принципиальная схема замещения трехобмоточного трансформатора:

I- обмотка высшего напряжения - ВН; II - обмотка среднего напряжения — СН; III — обмотка низшего напряжения – НН и сопротивление обмотки, рассчитанной на 67% мощности трансформатора, будет в 1, раза больше:

Напряжения короткого замыкания указываются для всех трех возможных сочетаний: ВН - СН, ВН - НН и СН - НН. Относительные величины потерь напряжения в реактивных сопротивлениях каждой обмотки определяются по формулам:

Схема замещения трехобмоточного трансформатора составляется условно в виде трехлучевой (рис. 12.2). Сопротивления, приведенные к любому из трех напряжений, определяются по приведенным выше формулам.

Нагрузку S x. x, соответствующую потерям холостого хода, обычно присоединяют к обмотке высшего напряжения.

При анализе любого рабочего режима электрической сети потребители электроэнергии рассматриваются в качестве нагрузок с заданными значениями потребляемой мощности S (рис.

12. 3, а). В таком виде схема более приспособлена к оценке энергетической Рис. 12. 3. Нагрузка потребителей электрической сети, заданная в виде:

а - полной мощности S ; б-задающего тока I ; в - поперечной проводимости Y стороны задачи - для характеристики работы сети по условиям электроснабжения потребителей.

Недостатком такой схемы замещения является получаемая нелинейность цепи в целом, так как напряжения в узлах неизвестны. Для упрощенных расчетов рабочих режимов целесообразно пользоваться линейной схемой замещения.

Для этого, в частности, применяется схема замещения нагрузки в виде задающего тока (рис. 12.3, б). Поскольку задающий ток имеет положительное направление к узлу, то в данном случае где S, U - сопряженные комплексные значения мощности и напряжения в данном узле.

В распределительных сетях напряжения узлов сети мало отличаются от номинального U ном, поэтому для них В некоторых случаях используется схема замещения нагрузки, представляющая поперечную пассивную ветвь с постоянной проводимостью (рис. 12.3, в):

В действительности полная мощность, потребляемая электроприемниками, в любом режиме работы зависит от величины подведенного напряжения.

Зависимость потребляемой мощности (нагрузки) приемника электроэнергии от напряжения называется статической характеристикой (СХ) нагрузки по напряжению (рис. 12.4). Эта зависимость в общем случае нелинейная. При малых отклонениях напряжения от номинального ее часто представляют в виде линейной или квадратичной зависимости и характеризуют величиной регулирующего эффекта нагрузки.



Регулирующим эффектом нагрузки называют изменение потребляемой мощности приемника электроэнергии в процентах при изменении напряжения на 1 %.

Рис. 12.4. Статические характеристики нарузки: 1 - активной мощности; 2 - реактивной мощности Коэффициенты статических характеристик групповых нагрузок Например, регулирующий эффект, равный 2, означает, что при изменении напряжения на 1 % в ту же сторону изменяется потребляемая мощность приемника электроэнергии на 2%.

Регулирующий эффект, равный - 0,5, означает, что при повышении напряжения на 1 % потребляемая мощность приемника электроэнергии уменьшается на 0,5%.

где U - напряжение на шинах потребителя данного узла в отн. ед. к номинальномуU ном ;

Р (U ) ; Q (U ) – активная и реактивная мощности нагрузки потребителя при напряжении U, в отн. ед. к активной мощности нагрузки Рп.ном (или к реактивной мощности нагрузки Qп.ном) при номинальном напряжении на приемниках электроэнергии; А0; А1; В0; В1; В2 - коэффициенты групповых статических характеристик активной и реактивной нагрузки потребителей; А1 и В1л – регулирующие эффекты активной и реактивной нагрузок.

Статические характеристики узлов нагрузки делятся на пологие, средние и крутые виды в зависимости от величин регулирующих эффектов.

В табл. 12.2 приведены значения коэффициентов указанных видов статических характеристик и регулирующие эффекты для активных и реактивных мощностей.

Для статических характеристик активной нагрузки А2 = 0, следовательно, регулирующий эффект активной мощности равен А1. Графики статических характеристик реактивной нагрузки при изменении U п в пределах 0,95... 1,05 могут быть линеаризованы по условию:

Значения В0л и В1л приведены в табл. 12.2, регулирующий эффект неактивной мощности равен В1л.

12.8. Параметры элементов электрических сетей системы электроснабжения промышленных предприятий Целью данного раздела является определение пределов изменения основных параметров элементов электрической сети промышленных предприятий, а также характера зависимостей этих параметров от номинальной мощности понижающего цехового трансформатора S ном.т.

Рассмотрим типовой участок электрической сети промышленного предприятия напряжением 10/0,4 кВ, состоящий из кабельной линии напряжением 10 кВ, понижающего трансформатора напряжением 10/0,4 кВ и шинопровода напряжением 0,38 кВ.

Схема электроснабжения участка изображена на рис. 12.5, а схема замещения - на рис.

12.6.

Параметры схемы замещения исследуемого участка электрической сети, изображенной на рис. 12.5, определяются нагрузкой Рп.ном + jQп.ном по величине которой происходит выбор номинальной мощности понижающего трансформатора S ном.т при заданном коэффициенте загрузки Кз и соответствующий выбор сечения кабеля и марки шинопровода.

В табл. 12.3 представлены сечения кабелей напряжением 10 кВ с алюминиевыми жилами Fк, выбранные с учетом термической стойкости токам короткого замыкания, марки шинопроводов напряжением 0,38 кВ, соответствующие трансформаторам с номинальными мощностями S ном.т = 160...2500 кВ·А, а также активные и реактивные сопротивления трансформаторов, активные и реактивные удельные сопротивления кабелей и шинопроводов и другие параметры трансформаторов.

Рис. 12.5. Схема электроснабжения участка электрической сети Рис. 12.6. Схема замещения участка электрической сети:

U ном - номинальное напряжение участка сети; Рп.ном, Qп.ном - значения расчетной активной и реактивной нагрузки цеховой трансформаторной подстанции при номинальном напряжении U ном на зажимах приемников электроэнергии; Rк, R т,Rш; Хк, Хт, Хш - активные и реактивные сопротивления кабеля, трансформатора и эквивалентное сопротивление шинопровода; Кт номинальный коэффициент трансформации; Рст, Qст - потери холостого хода активной и реактивной мощности в стали трансформатора Характеристики элементов электрической сети промышленных предприятий (сопротивления приведены к напряжению 10 кВ) Параметр Номинальная мощность трансформатора, S ном.т, кВ·А вод r0ш, Ом/КМ Ом/км Характер зависимостей активного и реактивного сопротивления трансформатора от его номинальной мощности S ном.т дает возможность аппроксимировать их убывающей степенной функцией (табл. 12.4). Удельные реактивные сопротивления кабелей изменяются в пределах х0к = 0,088...0,076, т.е. очень слабо зависят от номинальной мощности трансформатора.

Удельные активное и реактивное сопротивления шинопровода зависят от номинальной мощности трансформатора и уменьшаются с ее увеличением.

Уравнения аппроксимации зависимостей параметров элементов электрической сети системы электроснабжения при изменении S ном.т от 160 до 2500 кВ·А Зависимости потерь КЗ Рк.з и активных и реактивных потерь холостого хода Рст, Qст в зависимости от S ном.т представляют собой прямые (см. табл. 12.4).

12.9. Общие понятия о расчете разомкнутой распределительной сети На рис. 12.7 приведена схема блочной электропередачи.

Рис. 12.7. Схема блочной электропередачи На этой схеме узел 0 - генераторные шины электростанции, ветвь 0 - 1 - повышающая трансформаторная подстанция, ветвь 1 - 2 - воздушная линия передачи на напряжение больше 35 кВ, ветвь 2 - 3 - понижающая трансформаторная подстанция, узел 3 -вторичные шины понижающей подстанции с нагрузкой 5.

Схема замещения передачи приведена на рис. 12.8.

Рис. 12.8. Схема замещения блочной электропередачи Здесь Z 01 - полное сопротивление обмоток трансформатора повышающей подстанции;

Z12 - то же линии передачи; Z 23 - то же трансформатора понижающей подстанции; S1 - сумма потерь мощности холостого хода трансформаторов повышающей подстанции и половины потерь мощности в линии; S 2 - сумма потерь мощности холостого хода трансформаторов понижающей подстанции и половины потерь мощности в линии; S 3 - полная мощность нагрузки шин вторичного напряжения понижающей подстанции.

Схема замещения состоит из трех похожих элементов: ветвь и узел нагрузки. Такой стандартный элемент представлен на рис. 12.9.

Очевидно, если в общем виде установить зависимости между электрическими величинами для одного такого стандартного элемента, эти зависимости останутся справедливыми для любого элемента сети.

Рис. 12.9. Схема замещения стандартного элемента электропередачи Расчет режима имеет целью по заданным нагрузкам узлов и заданной величине напряжения в одной из точек сети определить нагрузки всех ее ветвей, напряжения всех узлов и величину потерь мощности во всех ее элементах.

12.10. Зависимости между электрическими величинами для элемента сети Формулы, устанавливающие зависимости между электрическими величинами для элемента сети, представленного на рис. 12.9, известны из курса электротехники.

Электрические величины для элемента сети, представленного на рис. 12.9, следующие:

Z nk - комплексное выражение полного сопротивления одной фазы ветви n-k ;

S k, I k - задающая нагрузка узла k, выраженная соответственно комплексным значением полной трехфазной мощности или тока в одной фазе;

S, I - нагрузка, поступающая из узла k в соседнюю ветвь (или в соседние ветви) сети;

S nkH - нагрузка, поступающая из узла n в начало ветви n-k ;

S nkK - нагрузка, поступающая из ветви n-k (конец ветви) в узел k ;

U k,U фk - комплексные выражения соответственно линейного и фазного напряжения в узле k ;

U п,U фп - комплексные выражения соответственно линейного и фазного напряжения в узле n ;

U nk, U фnk - падение соответственно линейного и фазного напряжения в ветви n-k ;

S nk - комплексное выражение потерь мощности в ветви n-k.

Между указанными величинами существуют следующие зависимости, известные из электротехники:

Штрих или скобка, поставленные над обозначением электрической величины, указывают, что величина представлена соответственно комплексным числом или сопряженным комплексным числом.

Реальный расчет всех указанных величин возможен с использованием метода последовательных приближений (метод итераций), так как определение падения напряжения и потерь мощности возможно лишь при условии, что задано напряжение в узле к. В действительности величина напряжения может быть задана совсем в другом узле сети, например на генераторных шинах. Решение задачи расчета режима сети не может быть начато с узла п, так как неизвестна величина нагрузки, поступающей из этого узла в сеть.

Метод последовательных приближений заключается в следующем. На основании приближенного расчета или опыта лица, выполняющего расчет, оценивается величина напряжения в узле к и выполняется расчет режима сети исходя из принятого приближенного значения напряжения. В результате расчета определяется величина напряжения в узле п и сравнивается с заданной величиной напряжения в этом узле. В соответствии с полученной ошибкой корректируется величина напряжения в узле k и расчет повторяется (выполняется следующая итерация расчета). Повторные расчеты выполняются до тех пор, пока ошибка в определении напряжения в узле п не станет меньше допустимой. Этот способ мало пригоден для так называемого ручного счета, в то же время он получил широкое применение при выполнении расчетов на ЭВМ.

12.11. Упрощенный метод расчета параметров режима При расчете распределительных сетей допускается ряд упрощений, позволяющих во многих случаях с достаточной для практических целей точностью получить необходимые результаты более простыми средствами.

Векторная диаграмма фазных напряжений и токов для схемы замещения элемента, изображенного на рис. 12.9, представлена на рис. 12.10.

Диаграмма токов соответствует формуле I nk = I k + I ; а диаграмма напряжений U фп = U фk + U фпk. Вектор напряжения U фk узла k совмещен с осью действительных величин (отрезок 0а), вектор «ас» представляет комплексную величину падения напряжения U фпk в сопротивлении ветви Z пk и вектор «0с» - напряжение U фп узла п.

Рис. 12.10. Векторная диаграмма фазных напряжений и токов для схемы замещения элемента Так как вектор напряжения в узле k совмещен с осью действительных величин, имеет место следующее равенство:

Комплексные выражения сопротивления, мощности и тока можно выразить через действительные и мнимые составляющие:

где Rпk, jX пk - активное и реактивное сопротивления ветви п - k; PпkK, jQпkK активная и реактивная мощности, поступающие из ветви п - k в узел k; I nk - модуль полного тока ветви;

nk - фазовый угол полного тока ветви.

Тогда напряжение узла п можно выразить через действительную и мнимую составляющие:

где U фпk - вектор падения напряжения; U фпk = I пk ( Rпk cos пk + X пk sin пk ) - действительная (продольная) составляющая падения напряжения; U фпk = I пk ( X пk cos пk Rпk sin пk ) мнимая (поперечная) составляющая падения напряжения.

Составляющие падения напряжения могут быть получены из определения длин катетов треугольника «аbс».

Подобным же образом составляющие падения линейного напряжения U пk могут быть выражены через составляющие мощности S пkK Треугольник падения напряжения «аbс» на рис. 12.10 для ясности значительно увеличен по сравнению с его действительными размерами. Обычно падение напряжения в ветви не превышает 10% величины напряжения в узле, то есть поперечная составляющая напряжения «сd»

относительно мала и величина модуля напряжения мало отличается от величины продольной составляющей этого напряжения (катет 0d).

При расчете распределительных сетей пренебрегают величиной поперечной составляющей и падение напряжения (векторную разность напряжений начала и конца ветви) представляют потерями напряжения (разностью модулей). Кроме того, реальное напряжение в узле заменяют номинальным напряжением Uном. Потери напряжения в ветви между узлами п и k:

При несовпадении направлений активной и реактивной мощности необходимо учитывать направление реактивной мощности в ветви Уровень напряжения в узле k при заданном напряжении Uп в узле п:

Уровень напряжения в узле п при заданном напряжении Uп в узле k:

Для оценки качества напряжения (см. гл. 20) определяют разности, между фактическим уровнем напряжения U в каком-либо узле и номинальным напряжением Uном, которая при установившихся режимах называется отклонением напряжения от номинального U = U U ном, Составляющие потерь полной мощности S пk = Pпk + jQпk.

12.12. Потери мощности и напряжения в элементах электрических сетей промышленных предприятий с учетом статических характеристик приемников электроэнергии и батарей конденсаторов Система электроснабжения промышленного предприятия состоит из подсистем. Подсистемой можно считать участок, включающим в себя цеховой трансформатор, питающий этот трансформатор кабель высокого напряжения, цеховую электросеть и приемники этой сети.

На рис. 12.11 показана схема замещения, на которой представлены эквивалентное сопротивление цеховой сети и обобщенный электропотребитель. Батарея конденсаторов (БК) может быть подключена пли к шинам низкого напряжения трансформатора БКт, или к какому-либо участку цеховой сети непосредственно у потребителей БКп.

Величины активных и реактивных нагрузок электропотребителей с учетом их статических характеристик по напряжению (см. разд. 12.7) определяются по следующим формулам:

Рис. 12.11. Схема замещения участка цеховой сети Выдаваемая БК реактивная мощность пропорциональна квадрату напряжения U б (в отн.ед. к номинальному) на зажимах:

где СQ - степень компенсации реактивной мощности, равная отношению реактивной мощности БК QБК ном при номинальном напряжении ( Qб = 1) к реактивной нагрузке электропотребителя Qп. ном при номинальном напряжении Мощность, поступающая от источника питания Ри + jQи (см. рис. 12.11), определяется мощностью потребления Рп + jQп, нагрузочными потерями на передачу с + jQс и потерями в стали трансформатора ст + jQст, а также величиной реактивной мощности, выдаваемой БК.

Все эти величины зависят от напряжения, т. е.

И П СТ БК

Или в отн. ед. к Рп. ном и Qп. ном:

И П C СТ БК

Отклонения напряжения от номинального значения влияют в соответствии со статическими характеристиками на потребление активной и реактивной мощности приемниками электроэнергии и выдачу реактивной мощности конденсаторами. Уровни напряжения в электросетях и компенсация реактивной мощности влияют на потери мощности при передаче электроэнергии. В свою очередь, установка в цеховых сетях конденсаторов влияет на уровни напряжения, т. е. эти факторы режима взаимосвязаны.

12.12.1. Влияние статических характеристик потребителей на нагрузочные потери мощности в элементе сети Исследуем влияние статических характеристик потребителей на нагрузочные потери мощности в пассивном элементе электрической сети промпредприятия, т. е. Sс = с + jQс для схемы рис. 12.11. При подключении конденсаторов к электропотребителю:

Преобразуем (12.42):

только активной мощности потребителя при номинальном напряжении U п.ном ;

I - полный ток в ветви в отн. ед. к I ном = Pп.ном /U ном, На характер изменения I 2 = f (U п ) оказывает влияние вид статических характеристик, особенно по реактивной мощности, так как регулирующий эффект реактивной мощности больше, чем активной.

Для крутых статических характеристик I 2 увеличивается, для средних статических характеристик I 2 слабо увеличивается, для пологих статических характеристик I 2 слабо уменьшается. Если статические характеристики не учитываются, то I 2 уменьшается.

При увеличении напряжения на 1 % для крутых статических характеристик I 2 увеличивается на 4,6%, для средних статических характеристик - на 1,5 %, для пологих статических характеристик уменьшается на 1,25%, без учета статических характеристик - на 4%.

Зависимости I 2 = f (U п ) практически линейны при изменении U п от 0,95 до 1,05, т.е.

Потери активной мощности в сети при протекании активной мощности нагрузки Рп.ном (в отн. ед. к Рп.ном ) могут быть представлены как где Кз.а = Кз соs - коэффициент загрузки трансформатора по активной мощности, Кз - по полной мощности; Vc - потери напряжения в активном сопротивлении сети (в отн. ед. к U ном ) при протекании мощности, равной номинальной мощности трансформатора S ном.т На рис. 12.12 приведены графики функции Pc = f (S ном.т ) при U п = 1 и для крутых статических характеристик, Кз = 0,9; tg = 1; длине кабеля напряжением 10 кВ Lк = 1 км, длине шинопровода напряжением 0,4 кВ L ш = 0,2 км, т.е. при возможных наибольших сопротивлениях сети.

Рис. 12.12. Зависимости нагрузочных потерь активной мощности (в отн. ед.) в сети Pc = f (S ном.т ) при U п =1 и 1, Из графиков видно, что при изменении S ном.т от 250 кВ·А до 2500 кВ·А нагрузочные потери активной мощности Pc при U п = 1 изменяются от 0,043 до 0,037, а при U п = 1,05 - от 0,048 до 0,041. Следовательно, влияние изменения напряжения на потери активной мощности находится в пределах долей процента от величины мощности, потребляемой от источника питания.

Если пренебречь изменением нагрузочных потерь мощности при изменении нагрузки в соответствии со статическими характеристиками, т.е. при А0= 1, В0л = 1, то в (12.42) следует принять U п = 1, тогда 12.12.2. Потери напряжения в элементах электрической сети предприятия с учетом статических характеристик нагрузки Потери напряжения (в отн. ед.) в электрической сети (см. рис. 12.6) определяются где U (и п ), U ( и т ), U ( т п ) - доля потерь напряжения, зависящая от вида статических характеристик, tg, CQj, U п :

где (i j ) - отношение суммарных реактивных и активных сопротивлений между узлами i и j сети.

Все зависимости могут быть аппроксимированы линейной функцией, т.е.

Или для линеаризованных статических характеристик:

Следовательно, регулирующие эффекты нагрузки оказывают существенное влияние на потери напряжения в сети и если их не учитывать, это может привести к значительным погрешностям при расчетах параметров режимов в промышленных электрических сетях. Однако при коэффициенте загрузки Кз < 0,5, степени компенсации реактивной мощности СQ > 0,5, коэффициенте реактивной мощности tg < 0,5 влияние статических характеристик нагрузки становится незначительным и при приближенных расчетах можно принять, что потери напряжения в сети не меняются при изменении напряжения.

КОМПЕНСАЦИЯ РЕАКТИВНЫХ МОЩНОСТЕЙ В СИСТЕМЕ ЭЛЕКТРОСНАБЖЕНИЯ

Режим работы электрической системы характеризуется значениями показателей ее состояния, называемых параметрами режимов. Все процессы в электрических системах можно охарактеризовать тремя: параметрами: напряжением, током и активной мощностью. Но для удобства расчетов режимов применяются и другие параметры, в частности, реактивная и полная мощность. Произведение показаний вольтметра и амперметра в цепи переменного тока называется полной мощностью. Для трехфазной цепи она выражается формулой:

где I - ток в одной фазе; U - линейное напряжение.

Активная мощность трехфазного переменного тока определяется по формуле Множитель сos называется коэффициентом мощности. Угол указывает сдвиг по фазе тока и напряжения.

На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника, один катет которого представляет активную мощность Р = S сos, а другой - реактивную Q= S sin.

Реактивная мощность находится также из выражения где tg - коэффициент реактивной мощности.

Следует помнить об условности толкования Q как мощности. Только активная мощность и энергия могут совершать работу и преобразовываться в механическую, тепловую, световую и химическую энергию. Активная мощность обусловлена преобразованием энергии первичного двигателя, полученной от природного источника, в электроэнергию. Реактивная мощность не преобразуется в другие виды мощности, не совершает работу и поэтому называется мощностью условно. Реактивная мощность идет на создание магнитного и электрических полей. Для анализа режимов в цепях синусоидального тока реактивная мощность является очень удобной характеристикой, широко используемой на практике.

Особенностью производства и потребления электроэнергии является равенство выработанной и израсходованной в единицу времени электроэнергии (мощности). Следовательно, в электрической системе должно выполняться равенство (баланс) для активных мощностей где Рг - суммарная активная мощность, отдаваемая в сеть генераторами электростанций, входящих в систему; Рпотр - суммарная совмещенная активная нагрузка потребителей системы;

Рпер - суммарные потери активной мощности во всех элементах передачи электроэнергии (линиях, трансформаторах) по электрическим сетям; Рсн - суммарная активная нагрузка собственных нужд всех электростанций системы при наибольшей нагрузке потребителя.

Основная доля выработанной мощности идет на покрытие нагрузки потребителей. Суммарные потери на передачу зависят от протяженности линий электрических сетей, их сечений и числа трансформаций и находятся в пределах 5... 15% от суммарной нагрузки. Нагрузка собственных нужд электростанций зависит от их типа, рода топлива и типа оборудования; она составляет для тепловых электростанций 5... 12%, для гидростанций - 0,5... 1 % от мощности электростанции.

Равенство (13.4) позволяет определить рабочую активную мощность системы. Располагаемая мощность генераторов Рг.расп системы несколько больше, чем рабочая мощность в режиме максимальных нагрузок Рг.тах требуется учитывать необходимость резервирования при аварийных и плановых (ремонтных) отключениях части основного оборудования электроэнергетической системы:

где Рг рез - мощность резерва системы, который должен быть не меньше 10% ее рабочей мощности.

При нарушении баланса активных мощностей, например, если происходит снижение частоты в системе.

В электрической системе суммарная генерируемая реактивная мощность должна быть равна потребляемой реактивной мощности. В отличие от активной мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений Qл, а также установленные в сетях источники реактивной мощности (ИРМ) (компенсирующие устройства - КУ) мощностью QКУ Поэтому баланс реактивной мощности в электрической системе представляется уравнением Следует отметить, что уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как Генерация реактивной мощности на электростанциях зависит от числа и активной мощности работающих агрегатов, а потребление реактивной мощности - от состава электроприемников. При номинальном коэффициенте мощности генераторов сosг = 0,85 коэффициент реактивной мощности tg г = 0,6. Для потребителей коэффициент реактивной мощности tg потр = 0...3.

Потери реактивной мощности на передачу в основном определяются потерями реактивной мощности в трансформаторах, при Трех-четырех трансформациях суммарные потери мощности в Трансформаторах могут достигать 40% от передаваемой полной мощности.

В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их.

Таким образом, при выборе активной мощности генераторов энергосистемы по условию баланса активных мощностей и при работе генераторов с номинальным коэффициентом мощности генерируемая суммарная реактивная мощность без дополнительно используемых ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей:

В этом случае образуется дефицит реактивной мощности, который приводит к следующему:

большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов;

передача больших потоков реактивной мощности от генераторов по элементам сети приводит к повышенным токовым нагрузкам и, как следствие, к увеличению затрат на сооружение сети, повышенным потерям активной мощности;

недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей.

Для получения баланса реактивных мощностей вблизи основных потребителей реактивной мощности устанавливают дополнительные источники с выдаваемой реактивной мощностью QКУ При избытке реактивной мощности в системе, т.е. при В элементах электрической сети возникают перетоки реактивной мощности, встречные направлению потоков активной мощности, что приводит к повышению напряжений в узлах и увеличению потерь мощности. Данный режим характерен для периода минимальных нагрузок в системе.

Отсюда возникает задача оптимизации режима реактивной мощности в системе электроснабжения промышленного предприятия, выбора типа и мощности, а также места установки компенсирующих устройств. В системах электроснабжения городов с коммунально-бытовой нагрузкой компенсирующие устройства обычно не устанавливаются.

13.4. Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать две группы промышленных сетей в зависимости от состава их нагрузок:

сети общего назначения с режимом прямой последовательности основной частоты 50 Гц;

сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками.

В данном разделе рассматриваются вопросы компенсации реактивной мощности в промышленных сетях общего назначения.

На начальной стадии проектирования определяются наибольшие суммарные расчетные нагрузки предприятия при естественном (т. е. до установки КУ) коэффициенте реактивной мощности РрасчПП, QрасчПП.

Наибольшая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств, где L0 max - коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки системы и реактивной мощности промышленного предприятия. Значения для разных отраслей промышленности L0 max = 0,75...0,95.

Значения наибольших реактивной и активной нагрузок предприятия сообщаются в энергосистему для определения значения экономически оптимальной реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы, соответственно Qэ1 и Qэ 2.

По реактивной мощности Qэ1 определяется суммарная мощность компенсирующих устройств предприятия, а в соответствии с заданным значением Qэ 2 - регулируемая часть компенсирующих устройств.

Суммарная мощность компенсирующих устройств В период минимальных активных нагрузок системы входная реактивная мощность предприятия должна быть равна Qэ 2, Для чего требуется отключение части установленной на предприятии мощности КУ. В качестве средств компенсации реактивной мощности используются статические конденсаторы напряжением до и выше 1 кВ и синхронные двигатели.

13.5. Основные потребители реактивной мощности на промышленных предприятиях Рассмотрим основные виды электроприемников различного технологического назначения, электропотребителей разных отраслей промышленности, характер их нагрузок и особенности режимов работы.

Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Электропривод представляет собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели).

Нерегулируемые электродвигатели переменного тока - основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности. Доля электропотребления асинхронными двигателями напряжением 0,38 кВ составляет 52% в машиностроении. Характер потребления реактивной мощности асинхронными двигателями описан в следующем разделе.

Электротермия, электросварка, электролиз и прочие потребители составляют около 1/ суммарной промышленной нагрузки.

Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: дуговые электропечи для плавки черных и цветных металлов, установки индукционного нагрева для плавки и термообработки металлов и сплавов, электрические печи сопротивления, электросварочные установки, термические коммунально-бытовые приборы.

Наибольшее распространение в цеховых электрических сетях напряжением 0,38 кВ имеют печи сопротивления и установки индукционного нагрева. Печи сопротивления прямого и косвенного действия имеют мощность до 2000 кВт и подключаются к сети напряжением 0, кВ, коэффициент мощности близок к 1,0.

Индукционные плавильные печи промышленной и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением 0,4 кВ. Индукционные печи имеют низкий коэффициент мощности: от 0,1 до 0,5. Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 для дуговой сварки и 0,7 - для контактной.

Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток.

Коэффициент мощности установок 0,8...0,9.

Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновымм лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В.

Аварийное освещение, составляющее 10% общего, выполняется лампами накаливания. Коэффициент мощности светильников с индивидуальными конденсаторами 0,9...0,95, а без них - 0,6.

Лишь лампы накаливания имеют коэффициент мощности 1,0.

13.6. Потребление реактивной мощности асинхронными двигателями В настоящее время наиболее распространенное выражение реактивной нагрузки асинхронного двигателя имеет вид:

где qном - номинальная реактивная мощность АД, которая может быть определена по паспортным данным двигателя.

После некоторых преобразований получим выражение полной реактивной нагрузки где рном - номинальная полезная активная мощность на валу, указываемая на заводском щитке; Iном - номинальное фазное значение тока статора; Iх.х - ток холостого хода электродвигателя; ном - коэффициент полезного действия; Кз = р/рном - коэффициент загрузки АД по активной мощности; tg ном - коэффициент реактивной мощности, соответствующий номинальному коэффициенту мощности соном указанному на щитке.

Для удобства расчетов преобразуем формулу (13.15) в следующую:

Здесь U ном - номинальное напряжение двигателя, I x.x - относительный ток холостого хода АД.

На рис. 13.1 и 13.2 приведены зависимости коэффициентов 1 и 1 от активной номинальной мощности pном при числе пар полюсов п = 1, 2, 3, 4 для короткозамкнутых АД серии 4А.

Коэффициент реактивной мощности tg АД зависит от К3 АД и определяется следующим выражением:

Рис. 13.1. Графики зависимостей коэффициента 1 от активной номинальной Рис. 13.2. Графики зависимостей коэффициента 1 от активной номинальной мощности и числа пар полюсов п АД Рис. 13.3. Графики зависимостей коэффициента реактивной мощности от коэффициента загрузки для АД различных групп мощностей На рис. 13.3 представлены графики зависимостей tg АД = f (K З ) для АД различных групп мощностей.

13.7. Источники реактивной мощности (компенсирующие устройства) На промышленных предприятиях применяют следующие компенсирующие устройства:

для компенсации реактивной мощности - синхронные двигатели и параллельно включаемые батареи силовых конденсаторов;

для компенсации реактивных параметров передачи - батареи силовых конденсаторов последовательного включения.

13.7.1. Синхронные двигатели как источник реактивной мощности Основное назначение синхронных двигателей - выполнение механической работы, следовательно, он является потребителем активной мощности. При перевозбуждении СД его э.д.с.

больше напряжения сети, в результате вектор тока статора опережает вектор напряжения, т. е.

имеет емкостной характер, а СД выдают реактивную мощность. При недовозбуждении СД является потребителем реактивной мощности. При некотором режиме возбуждения СД его коэффициент мощности равен единице. Изменение тока возбуждения позволяет плавно регулировать генерируемую СД реактивную мощность. Затраты на генерацию двигателями реактивной мощности определяются в основном стоимостью связанных с этим потерь активной мощности в самом двигателе. Потери активной мощности в СД зависят от генерируемой ими реактивной мощности, причем чем меньше номинальная мощность СД и его частота вращения, тем больше эти потери. Для быстроходных СД удельный расход активной мощности составляет около Вт/квар; для СД с частотой вращения 300... 500 об/мин - около 20... 30 Вт/квар; для СД с частотой вращения 50... 100 об/мин - около 60...85 Вт/квар. Следовательно, маломощные двигатели с малой частотой вращения неэкономичны в качестве ИРМ. В качестве ИРМ обычно используют СД на номинальное напряжение 6 или 10 кВ, недогруженные по активной мощности.

Значения реактивной мощности, которую можно получить от СД, зависят от его загрузки активной мощностью и относительного напряжения на зажимах двигателя (см. разд. 9.7).

Силовые конденсаторы - специальные однофазные или трехфазные емкости, предназначенные для выработки реактивной мощности. Мощность конденсаторов в одном элементе составляет 5... 100 квар, номинальное напряжение - от 220 В до 10 кВ.

Реактивная мощность, вырабатываемая конденсатором, где U - напряжение на зажимах конденсатора; - угловая частота переменного тока; Ск - емкость конденсатора, которая определяется, в основном, площадью обкладок.

В установках с большей мощностью и на большее напряжение применяют батареи конденсаторов с параллельным и последовательно-параллельным включением элементов. Увеличение номинального напряжения конденсаторной батареи достигается последовательным включением элементов, а для увеличения мощности применяют параллельное соединение элементов.

Рис. 13.4. Схемы присоединения конденсаторных батарей:

а - через выключатель на напряжении 6... 10 кВ; б - через рубильник и предохранитель на напряжении до Обычно конденсаторы включаются в сеть по схеме треугольника (рис. 13.4). При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на постоянно включенное активное сопротивление (например, трансформатор напряжения).

Конденсаторы по сравнению с СД обладают следующими преимуществами: простотой эксплуатации вследствие отсутствия вращающихся частей; простотой монтажных работ вследствие малой массы; малыми потерями активной мощности на выработку реактивной (2,5... Вт/квар).

К недостаткам конденсаторов относят зависимость генерируемой реактивной мощности от напряжения, недостаточную стойкость токам КЗ и перенапряжениям, чувствительность к искажениям формы кривой подводимого напряжения, невозможность плавного изменения мощности конденсаторной установки.

13.8. Размещение компенсирующих устройств в системах электроснабжения промышленных предприятий После определения суммарной мощности компенсирующих устройств QКУ требуемых к установке в системе электроснабжения промышленного предприятия по условиям питающей энергосистемы, необходимо решить задачу размещения и выбора типа КУ в сетях Промышленного предприятия.

Суммарная мощность КУ обеспечивается возможным использованием располагаемой реактивной мощности синхронных двигателей QСД и установкой в сетях батарей конденсаторов напряжением до и выше 1 кВ, т. е. соответственно Q БН и Q БВ :

КУ СД БН БВ

Реактивная мощность передаваемая со стороны высокого напряжения через цехоT вые трансформаторы (6... 10/0,4...0,6 кВ) по условию баланса мощностей на шинах напряжением до 1 кВ трансформаторов, выражается формулой Величина определяется номинальной мощностью цеховых трансформаторов S ном.т при их числе N T, коэффициенте загрузки трансформатора Кз.т и расчетной активной нагрузки до 1 кВ Ррасчн, :

Необходимо определить оптимальное соотношение мощности источников реактивной мощности, устанавливаемых на стороне ниже 1 кВ QБН, и передачи реактивной мощноNT сти QT. При этом следует учесть потери на генерацию реактивной мощности источниками напряжением до и выше 1 кВ, потери на передачу от QT сети напряжением выше 1 кВ в сеть напряжением ниже 1 кВ и, главное, увеличение мощности цеховых трансформаторов при увеNT Реактивная мощность QT, протекающая через один трансформатор цеховой ТП, определяется по условию минимума потерь активной мощности без учета активных сопротивлений кабельных линии сети напряжением 10 кВ для группы из N T трансформаторов с одинаковой номинальной мощностью:

Мощность батареи конденсаторов, устанавливаемых в сети напряжением до 1 кВ, питающейся от конкретного j-го трансформатора, определяется исходя из величины ( QT и реактивной нагрузки Qрасч j приемников электроэнергии этой сети:

По полученному значению QНБj следует определить стандартное значение мощности конденсаторной установки QКУj.

Расчеты показывали, что передача реактивной мощности в сеть напряжением до 1 кВ оказывается невыгодной, если это вызывает увеличение числа трансформаторов сверх необходимого числа вследствие большой стоимости комплектных трансформаторных подстанций.

Мощность компенсирующих устройств в сети напряжением выше 1 кВ определяется по условию баланса реактивной мощности на шинах вторичного напряжения главной понижающей подстанции. Если в системе электроснабжения имеются высоковольтные СД, которые могут быть использованы как ИРМ, то определяется их располагаемая реактивная мощность (см.

разд. 9.7), и если их мощность QCД недостаточна для соблюдения условий баланса, то определяется мощность батарей конденсаторов высокого напряжения:

БВ КУ СД БН

Если цеховые трансформаторы имеют низкий коэффициент загрузки и коэффициент реактивной мощности нагрузки сетей напряжением до 1 кВ не превышает единицы, то предпочтительнее установка батарей конденсаторов в сети напряжением выше 1 кВ вследствие их более низкой удельной стоимости 1 квар, чем у низковольтных конденсаторов.

Конденсаторные установки напряжением выше 1 кВ целесообразно устанавливать на вторичном напряжении главных понижающей подстанции или распределительной подстанции, и также на РП в системе электроснабжения предприятия. Не рекомендуется устанавливать конденсаторы напряжением выше 1 к И на бесшинных цеховых подстанциях, на которых трансформаторы присоединены наглухо или через разъединитель, выключатель нагрузки и предохранитель, так как присоединение конденсаторных установок к этим подстанциям вызовет их усложнение и удорожание.

Нерегулируемые конденсаторные установки на напряжение до 1 кВ обычно присоединяются к цеховым распределительным пунктам, магистральным шинопроводам, если этому не препятствуем окружающая среда. Место установки регулируемых конденсаторных установок напряжением до 1 кВ выбирается с учетом требований регулирования напряжения или реактивной мощности.

Точка присоединения БН одной батареи конденсаторов к магистральному шинопроводу ШМА определяется ориентировочно:

где L0 Б, L01 -длины магистрального шинопровода ШМА от начальной точки «0» до точек присоединения «Б» и «1» - первого распределительного ШРА, м, L1 K - длина распределительной части ШМА от точки «1» до конечной точки магистрального шинопровода «к», м; Qтах – максимальная реактивная нагрузка ветви «0-1» шинопровода ШМА.

Окончательно конденсаторы устанавливаются в точке присоединения ШРА, ближайшего к расчетной точке «к» в сторону цеховой трансформаторной подстанции.

Не рекомендуется чрезмерное дробление мощности конденсаторных установок в сетях напряжением до и выше 1 кВ, так как это приводит к значительному увеличению удельных затрат на отключающую аппаратуру, измерительные приборы, конструкции и прочее на 1 квар установленной мощности батареи. Единичная мощность БК на напряжении выше 1 кВ принимается не менее 400 квар, если присоединение выполняется с помощью отдельного выключателя. В сетях низшего напряжения не рекомендуется применять БК мощностью менее 30 квар.

Если расчетная мощность БК на отдельных участках получается менее указанных значений, то БК на них не устанавливается.

13.9. Регулирование мощности компенсирующих устройств Задание питающей энергосистемой двух значений входной реактивной мощности, которые могут быть переданы предприятию в режимах наибольшей и наименьшей активных нагрузок системы, Соответственно Qэ1 и Qэ 2, (причем Qэ 2 0 практически во всех случаях), предопределяет необходимость регулирования потребления реактивной мощности предприятием в течение суток. Для регулирования потребления реактивной мощности используется автоматическое регулирование возбуждения синхронных машин и регулирование батарей конденсаторов.

Регулирование конденсаторами реактивной мощности может вестись только ступенями путем деления батарей на части. Чем больше число таких ступеней, тем совершеннее регулирование, но тем больше затраты на установку переключателей и защитной аппаратуры. Обычно мощность батарей конденсаторов разделяется на две ступени:

базовую Qк.баз равную реактивной нагрузке предприятия в часы минимума активных нагрузок энергосистемы и включенную постоянно;

регулируемую Qк.рег = QКУ Qк.баз включаемую в часы максимальных активных нагрузок энергосистемы.

Ступенчатое регулирование батарей конденсаторов может производиться как вручную, так и автоматически. Автоматическое регулирование конденсаторных батарей может производиться в функции: напряжения, тока нагрузки, направления реактивной мощности относительно направления активной мощности, по времени суток.

При коммутировании БК возникают перенапряжения и броски тока. Поэтому на напряжении до 1 кВ для коммутации БК обычно применяют контакторы, на напряжении выше 1 кВ воздушные, элегазовые или вакуумные выключатели. Для устранения переходных процессов при коммутации БК вместо выключателей можно использовать тиристорные ключи, которые позволяют включать конденсаторы в тот момент, когда мгновенное напряжение на конденсаторах равно напряжению сети, и отключать их, когда мгновенное значение тока в конденсаторах равно нулю.

13.10. Влияние компенсирующих устройств на параметры режимов электрических Установка компенсирующих устройств влияет на параметры режимов электрической сети, изменяя токи в ветвях и напряжения в узлах.

Рис. 13.5. Схема влияния установки компенсирующих устройств на параметры режимов электрической сети Рассмотрим влияние компенсации реактивной мощности на примере одной ветви схемы (рис. 13.5).

Уменьшение полных мощностей и токов. При наличии в конце ветви КУ мощностью Qк полная мощность, протекающая в ветви при номинальном напряжении U ном где tg - коэффициент реактивной мощности нагрузки; СQ - степень компенсации реактивной мощности, равная отношению реактивной мощности КУ при номинальном напряжении к реактивной нагрузке электропотребителя ЭП Qп.ном при номинальном напряжении:

Поскольку площади сечений линий и мощности трансформаторов выбирают по полной мощности (или току), ее уменьшение при СQ < 1 позволяет в ряде случаев применять оборудование меньших номиналов, т. е. снизить капитальные затраты. Если же сеть уже эксплуатируется, то компенсация реактивной мощности позволяет повысить ее пропускную способность по активной мощности и, следовательно, при увеличении нагрузки потребителя не менять электрооборудование.

При полной компенсации реактивной нагрузки, т. е. при СQ = 1, мощность ветви имеет минимальное значение:

Отметим, что при СQ>1 т.е. при перекомпенсации, когда Qк > Qп.ном полная мощность становится больше минимальной S c = 1.

Снижение нагрузочных потерь мощности. Для каждой ветви с активным R и реактивным X сопротивлением потери полной мощности определяются как Потери полной мощности в сети при протекании только активной мощности потребителя при номинальном напряжении U ном, т. е. минимально возможные потери активной мощности при прочих равных условиях:

(см. разд. 12.12) позволяет проанализировать влияние степени компенсации реактивной мощности СQ при разных значениях коэффициента реактивной мощности нагрузки tg на нагрузочные потери мощности. Отметим, что d 0 = I 2 (см. разд. 12.12), если напряжение равно номинальному значению U ном.

На рис. 13.6 показаны зависимости I 2 = S / S p при разных значениях коэффициента реактивной мощности tg = 0,4; 1; 1,5 и номинальном напряжении U ном, из которых можно сделать вывод об эффективности степени компенсации реактивной мощности.

Как видно из этих зависимостей, уровень соотношения I 2 в первую очередь определяется степенью компенсации реактивной мощности и коэффициентом реактивной мощности.

Рис. 13.6. Зависимости I = S / S p = f CQ ; tg при номинальном напряжении Например, без компенсации при СQ = 0 и tg = 1: I 2 = 2, т. е. реальные потери мощности больше минимальных в два раза; а при полной компенсации СQ = 1 и любом значении коэффициента реактивной мощности I 2 = 1.

Отметим, что при перекомпенсации СQ > 1 и нагрузочные потери мощности становятся больше минимальных S p.

Снижение потерь напряжения. Потери напряжения при номинальном напряжении на потребителе где - отношение реактивных и активных сопротивлений элемента сети: = X / R. Очевидно, что компенсация реактивной мощности оказывает наибольшее влияние на потери напряжения в элементах с большим значением, т.е. в элементах с преобладанием реактивного сопротивления, каковыми являются трансформаторы и воздушные линии.

Напряжение на приемном конце линии U K равно разности напряжения начала U n и потерь напряжения U nk, т.е.

Следовательно, при установке КУ напряжение в конце линии повышается. При перекомпенсации (СQ > 1) потери напряжения могут принять отрицательное значение U nk < 0, напряжение в конце линии может стать больше напряжения в начале, т. е. U k > U n.

13.11. Батареи конденсаторов в сетях с резкопеременной и вентильной нагрузкой Характерными резкопеременными нагрузками являются сварочные нагрузки на машиностроительных предприятиях, дуговые печи, прокатные станы и др. Главные приводы прокатных станов оснащаются регулируемыми вентильными преобразователями.

Нагрузки с регулируемыми вентильными преобразователями характеризуются большим потреблением реактивной мощности. Резкопеременный характер потребления реактивной мощности вызывает колебания напряжения в сети. Управляемые вентильные преобразователи, кроме того, значительно искажают форму кривой питающего напряжения. Нагрузки дуговых печей ввиду неравномерности потребления тока по фазам могут вызывать значительную несимметрию напряжения.

Все изложенное обусловливает принципы компенсации реактивной мощности, существенно отличающиеся от общепринятых в сетях с так называемой спокойной нагрузкой.

Особенности компенсации реактивной мощности в сетях с резкопеременной и вентильной нагрузкой заключаются в следующем:

ввиду низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществить компенсацию как постоянной и переменной составляющей реактивной мощности. Компенсация постоянной составляющей реактивной мощности необходима для уменьшения потребления реактивной мощности от энергосистемы. Компенсация переменной составляющей реактивной мощности преследует цель уменьшения колебаний напряжения в питающей сети;

ввиду быстрых изменений потребляемой реактивной мощности Необходимо применение быстродействующих компенсирующих устройств, способных изменять регулируемую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности;

ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе вентильных преобразователей, которые приводят к значительным перегрузкам батарей конденсаторов;

при наличии в сети высших гармоник тока и напряжения включение конденсаторов приводит к резонансным явлениям на частотах высших гармоник, что ведет к нарушению нормальной работы БК.

Сущность явлений резонанса удобно рассмотреть на примере простой схемы электроснабжения промышленного предприятия, показанной на рис. 13.7. На схеме показаны три основных элемента, участвующих в резонансном процессе:

питающая сеть, упрощенно представленная в схеме замещения индуктивным Хс и активным Rс сопротивлениями;

вентильный преобразователь как источник высших гармоник с сопротивлениями Хпр и Кпр - индуктивно-активная цепь в схеме замещения;

Рис. 13.7. Однолинейная схема питающей сети с конденсаторными батареями и фильтрами высших гармоник (а) и схема замещения (б) Рис. 13.8. Однолинейная схема защиты конденсаторной батареи от высших гармоник батарея конденсаторов С и Rк - емкостно-активная цепь в схеме замещения.

При отсутствии емкостных элементов (при отключении БК) частотные характеристики Хс линейны. Включение БК резко изменяет линейный характер частотной характеристики питающей сети, причем нелинейность частотной характеристики в значительной степени зависит от добротности контура, т. е. от соотношения X / R. Нелинейность частотной характеристики питающей сети объясняется тем, что при включении БК образуется параллельный LС-контур, состоящий из индуктивного сопротивления питающей сети и емкостного сопротивления конденсатора. Таким образом, изменяются частотные характеристики систем и возникают условия для возникновения резонанса на частотах, превышающих промышленную частоту 50 Гц. Вентильные преобразователи генерируют в сеть спектр гармоник, начиная с пятой, поэтому в каждом конкретном случае необходим расчет токовой нагрузки БК резонансной группой гармоник (вплоть до 59, 61, 71 гармоник).

Батареи конденсаторов, предназначенные для компенсации реактивной мощности в сетях, питающих нелинейную нагрузку, для их нормальной работы необходимо защищать реакторами, устанавливаемыми последовательно с конденсаторами (рис. 13.8)

КОРОТКИЕ ЗАМЫКАНИЯ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ

Коротким замыканием называется непосредственное соединение между любыми точками, разных фаз, фазы и нулевого провода и нулевого провода или фазы с землей, не предусмотренное нормальными условиями работы установки. Ниже перечислены основные виды коротких замыканий в электрических системах.

1. Трехфазное КЗ, при котором все три фазы замыкаются между собой в одной точке (рис. 14.1, а). Точка трехфазного КЗ обозначается K (3). Токи, напряжения, мощности и другие величины, относящиеся к трехфазному КЗ, обозначаются I (3),U (3 ), S (3 ) и т.д.

2. Двухфазное КЗ, при котором происходит замыкание двух фаз между собой (рис. 14.1, б). Точка двухфазного КЗ обозначается K ( 2 ) Рис. 14.1. Виды коротких замыканий Токи, напряжения, мощности и другие величины, относящиеся к двухфазному КЗ, обозначаются I (2 ),U ( 2 ), S (2 ) и т.д.

3. Двухфазное КЗ на землю (рис. 14.1, в), при котором замыкании двух фаз между собой сопровождается замыканием точки повреждения на землю (в системах с заземленными нейтралями). Точкой двухфазного КЗ на землю обозначается K (1.1). Токи, напряжения, мощности и другие величины, относящиеся к двухфазному КЗ на землю, обозначаются I (1.1),U (1.1), S (1.1) и т.д.

4. Однофазное КЗ, при котором происходит замыкание одной из фаз на нулевой провод или на землю (рис. 14.1, г). Точка однофазного КЗ обозначается K (1). Токи, напряжения, мощности и другие величины, относящиеся к однофазному КЗ, обозначаются I (1),U (1), S (1) и т.д.

Встречаются и другие виды КЗ, связанных с обрывом проводов и одновременными замыканиями проводов различных фаз. Различают КЗ на зажимах генераторов (точки K 1(3 ) и K 1( 2 ) ) и КЗ в сети, отделенные от генератора сопротивлениями сети (точки K 23 ) и K 22 ) ). Трехфазное КЗ является симметричным, поскольку при нем все три фазы оказываются в одинаковых условиях. Все остальные виды КЗ являются несимметричными, поскольку фазы не остаются в одинаковых условиях, а системы токов и напряжений получаются искаженными.

Наиболее часто встречаются однофазные замыкания. На их долю приходится до 65% от общего числа КЗ. Трехфазные КЗ возникают сравнительно редко - в 5% от общего числа КЗ.

14.2. Причины возникновения и последствия коротких замыканий В большинстве случаев причиной возникновения КЗ в системе является нарушение изоляции электрического оборудования вследствие износа изоляции, не выявленного своевременно при профилактических испытаниях, или из-за перенапряжений. КЗ могут быть вызваны ошибочными действиями обслуживающего персонала, механическими повреждениями кабельных линий, схлестыванием, набросом или перекрытием птицами проводов воздушных линий.

При возникновении КЗ общее сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

Элементы электрических систем обладают активными, индуктивными сопротивлениями и емкостными проводимостями. Поэтому при внезапном нарушении режима работы вследствие КЗ электрическая система представляет собой колебательный контур. Токи в ветвях и напряжения в узлах будут изменяться в течение некоторого времени после возникновения КЗ в соответствии с параметрами этого контура. За время КЗ с момента его возникновения до момента отключения поврежденного участка в цепи протекает переходный процесс с большими мгновенными токами, вызывающими электродинамическое воздействие на электрооборудование. При длительном, более 0,01 с, КЗ токи оказывают термическое действие, которое может привести к значительному повышению температуры нагревания электрооборудования.

Вычисление токов КЗ производится для определения условий работы потребителей при аварийных режимах; выбора электрических аппаратов, шин, изоляторов, силовых кабелей; проектирования и настройки устройств релейной защиты и автоматики; проектирования защитных заземлений; подбора характеристик разрядников для защиты от перенапряжений.

При расчете токов КЗ принимают, что источниками питания места КЗ являются: синхронные генераторы, синхронные компенсаторы и двигатели, асинхронные двигатели в начальный период времени.

В современных электрических системах точный расчет токов КЗ с учетом всех условий очень сложен и практически невозможен. С другой стороны, требуемая точность расчетов зависит от его назначения. Например, для выбора электрических аппаратов производят приближенное определение токов КЗ, так как интервалы между значениями параметров, характеризующих различные типы аппаратов, велики. Для выбора и настройки устройств релейной защиты и автоматики точность расчетов должна быть выше.

По этим причинам в расчетах токов КЗ принимаются следующие допущения:

в течение всего процесса КЗ э.д.с. генераторов системы считают совпадающими по фазе;

не учитывают насыщения магнитных систем, что позволяет считать все цепи линейными, следовательно, может быть применен принцип наложения;

пренебрегают намагничивающими токами силовых трансформаторов;

трехфазную систему считают симметричной;

пренебрегают емкостными проводимостями всех элементов короткозамкнутой сети за исключением линий большой протяженности и напряжения, например линий напряжением кВ;

электродвижущие силы всех источников питания, значительно удаленных от места КЗ (Храсч 3), считают неизменными;

активное сопротивление цепи КЗ учитывают только тогда, когда оно больше одной трети индуктивного сопротивления той же цепи.

14.4. Переходный процесс при коротком замыкании в простейшей трехфазной цепи при питании от источника неограниченной мощности Под понятием система неограниченной мощности понимают такой источник, у которого напряжение на его шинах практически остается постоянным при любых анормальных режимах в сети (сбросы и набросы нагрузок, перегрузки и короткие замыкания). Для такого источника принимается, что суммарная мощность источников в системе S ном =, Х сист = 0, Rсист = 0.

Конечно, в действительности любая электрическая система имеет определенную конечную величину мощности. Однако присоединенные к системе электрические сети часто потребляют настолько милую мощность и обладают настолько большим внутренним сопротивлением по сравнению с огромной мощностью и незначительным сопротивлением системы, что при коротких замыканиях в таких сетях напряжение на шинах такой системы практически не изменяется. Поэтому при расчетах токов КЗ напряжение источников принимается неизменным.

Рассмотрим процесс изменения параметров режима при трехфазном КЗ в системе с неограниченной мощностью. При замыкании всех трех фаз в одной точке в первый момент напряжение остается таким же, как и при нормальном режиме. Ток КЗ также не может мгновенно измениться, так как обмотки статоров синхронных генераторов и элементы короткозамкнутой сети обладают индуктивностью, задерживающей изменение и снижение напряжения в цепи последующие моменты, поскольку сопротивление в каждой фазе резко уменьшилось, в цепи резко возрастает ток по сравнению с режимом нормальной работы сети. При этом напряжение также быстро уменьшается вследствие увеличения потерь напряжения во всех элементах короткозамкнутой цепи. За время КЗ с момента его возникновения ток изменяется от максимального Рис. 14.2. Кривые изменения полного тока и его составляющих при КЗ в удаленных точках от системы неограниченной мощности значения до некоторого установившегося значения. Изменение тока за этот период носит название переходного процесса.

На рис. 14.2 изображены кривые изменения тока КЗ в цепи, питающейся от системы неограниченной мощности. Величину полного мгновенного тока КЗ iк. з в любое время переходного процесса можно представить состоящей из двух составляющих: периодического синусоидального тока с неизменной амплитудой iп и апериодического («свободного») затухающего тока iа. Таким образом, в течение переходного процесса величина полного мгновенного тока КЗ равна алгебраической сумме периодического и апериодического токов:

Величина тока КЗ зависит не только от сопротивлений элементов короткозамкнутой цепи, но и от момента возникновения аварийного режима. Наибольшего значения мгновенный ток КЗ iк. з в цепи с преобладанием реактивного сопротивления достигает в том случае, когда короткое замыкание возникает в момент прохождения э.д.с. е через нуль.

Следует учесть, что в трехфазной сети при прохождении тока нагрузки в одной фазе через нуль, в двух других нагрузочные токи имеют разные значения. Поэтому расчетное значение наибольшего тока определяется в той фазе, в которой э.д.с. в момент КЗ проходит через нуль.

На рис. 14.2 приведены кривые изменения мгновенных значений тока КЗ для наиболее опасного момента возникновения КЗ, когда э.д.с. в одной фазе проходит через нуль. Из рис. 14.2 видно, что в этом случае начальное значение апериодического тока iа 0 будет равно наибольшему значению периодического тока iп. max, но они противоположны по направлению.

14.5. Переходный процесс при трехфазном коротком замыкании на зажимах генератора Внезапное КЗ на зажимах генератора приводит к возникновению в нем переходного процесса, обусловленного уменьшением сопротивления внешней (короткозамкнутой) цепи по сравнению с ее сопротивлением в нормальном режиме.

Поскольку генератор является источником конечной мощности, напряжение на его зажимах, а следовательно, и периодическая составляющая тока КЗ с течением времени изменяются. Характер изменения периодической составляющей тока КЗ зависит от наличия или отсутствия автоматического регулирования возбуждения (АРВ) генератора. Назначение АРВ состоит в поддержании на зажимах генератора номинального напряжения при всех возможных режимах работы генератора.

Если генератор работает без АРВ, напряжение на его зажимах, а, следовательно, и периодическая составляющая тока КЗ с течением времени уменьшаются. Объясняется это тем, что по мере затухания свободных токов, наведенных в начальный момент КЗ в обмотке возбуждения, демпферных обмотках и в массиве ротора, поток реакции статора при неизменном токе возбуждения ослабляет результирующий магнитный поток в воздушном зазоре генератора. Последнее обстоятельство приводит к уменьшению э.д.с, наводимой в статоре, и уменьшению напряжения на зажимах генератора и изменению периодической составляющей тока КЗ.

На рис. 14.3 периодическая составляющая тока КЗ iп в течение переходного процесса изображена в виде синусоиды с убывающей амплитудой. Заметим при этом, что длительность переходного процесса превышает время затухания апериодической составляющей тока КЗ и составляет несколько периодов Т =0,02 с. Кроме того, начальный ток КЗ больше установившегося значения тока iп. max > i.

Если генератор работает с АРВ, то в случае понижения напряжения, обусловленного КЗ, АРВ увеличивает ток возбуждения генератора, а следовательно, и напряжение на различных элементах сети.

В начальный момент КЗ ввиду инерции магнитных потоков, сцепленных с обмотками генератора, АРВ на переходный процесс практически не влияет. В дальнейшем действие АРВ сказывается на увеличении тока возбуждения и связанных с ним составляющих тока статора и демпферных обмоток. Однако этот процесс протекает сравнительно медленно, так что изменяются, в основном, только э.д.с. генератора и обусловленная ею периодическая составляющая тока статора.

Повышение напряжения генератора благодаря АРВ начинается не в момент возникновения КЗ, а через некоторое время, которое необходимо для срабатывания АРВ. Этот временной интервал определяется временем понижения напряжения до значения, при котором Рис. 14.3. Кривая изменения полного тока и его составляющих одной из фаз генератора без АРВ при внезапном КЗ на его зажимах Рис. 14.4. Кривые изменения полного тока и его составляющих одной из фаз генератора с АРВ при внезапном КЗ на его зажимах вступает в действие АРВ, и собственным временем срабатывания АРВ. Поэтому ток КЗ до вступления в действие АРВ уменьшается так же, как и при отсутствии АРВ, а затем начинает увеличиваться и достигает установившегося значения, соответствующего возросшему напряжению генератора за счет действия АРВ (рис. 14.4). В связи с тем, что действие АРВ проявляется через несколько периодов после появления КЗ, начальные значения полного тока КЗ и его составляющих, а также максимальный мгновенный ток iуд (ударный ток) остаются такими же, как и при отсутствии АРВ. Таким образом, при АРВ затухание свободных токов статора и обмотки возбуждения, возникающих при внезапном КЗ, в некоторой степени компенсируется увеличением тока КЗ за счет действия АРВ. Апериодическая составляющая ia остается практически такой же, как и при отсутствии АРВ.

Кривая полного тока КЗ при наличии АРВ приобретает разный вид. Периодическая составляющая iп в зависимости от соотношения между начальным и установившимся токами КЗ при предельном токе возбуждения может затухать, возрастать или оставаться неизменной.

14.6. Основные соотношения между токами при трехфазном КЗ Связь между значением ударного тока iуд) и начальным действующим значением периодической составляющей тока КЗ iп 0 устанавливается из следующих соотношений:

Апериодическая составляющая затухает по экспоненциальному закону:

где iа 0 - максимальное значение апериодической составляющей; Та -постоянная времени затухания апериодической составляющей, определяемая соотношением между индуктивностью Lк и активным сопротивлением Rк цепи КЗ:

Учитывая, что при Lк = Х к / (2f ) = Х к / 314 при частоте f = 50 Гц, получим Ударный ток, соответствующий времени t = 0,01 с, т. е. через полпериода после возникновения КЗ, где iп max = 2 I n 0 - максимальное значение; I n 0 - действующее значение периодической составляющей тока при трехфазном КЗ.

Ударные коэффициенты в зависимости от места КЗ Следовательно, ударный коэффициент k у учитывает соотношение между активным и реактивным сопротивлениями цепи КЗ, т. е. расстояние места КЗ от генератора. Значения ударного коэффициента в зависимости от места КЗ приведены в табл. 14.1.

Постоянная времени для установок напряжением выше 1 кВ Та = 0,05 с, при этом k у = 1,8.

При питании от источника бесконечной мощности э.д.с. его неизменна и периодическая слагающая тока КЗ будет неизменна:

При расчете токов КЗ все входящие в расчет величины можно выражать в именованных единицах (кВ·А, А, В, Ом) или относительных единицах (долях и процентах принятой базисной величины).

Для выражения всех величин в отн. ед. следует установить базисные величины или базисные условия.

Рассмотрим соотношения Из четырех записанных здесь величин только две являются независимыми. Поэтому при выражении величин в отн. ед. две величины могут быть выбраны произвольно и служить независимыми базисными условиями. Остальные же величины могут быть определены в соответствии с соотношениями, приведенными выше.

В качестве независимых базисных величин обычно выбирают базисную мощность S б и базисное напряжение U б.

Базисная мощность- эта мощность, величина которой принимается за единицу. Величина базисной мощности выбирается в каждом конкретном случае исходя из соображений возможного сокращения вычислительной работы. Для базисной мощности целесообразно принимать значения 100, 1000 MB·А и т.д. или полную номинальную мощность одного из источников питания (системы, электростанции или питающего трансформатора).

Базисное напряжение рекомендуется принимать равным его среднему номинальному значению на каждой ступени напряжения. При расчетах не принимают во внимание действительные коэффициенты трансформации трансформаторов; они заменяются отношениями средних номинальных напряжений. При этом пересчет относительных сопротивлений по напряжению не производится.

Шкала средних номинальных напряжений: 230; 115; 37; 10,5; 6,3; 0,69; 0,4; 0,23 кВ.

Базисный ток определяется по формуле В соответствии с изложенным выше э.д.с, напряжение, ток, мощность и сопротивление, выраженные в отн.ед. и приведенные к базисным условиям, будут определяться по следующим формулам:

где Z - сопротивление, Ом на фазу; I б - базисный ток, кА; U ср.б -базисное междуфазное (линейное) напряжение ступени, определенное по шкале средних номинальных напряжений, кВ; S б - базисная мощность, кВ·А.

Напряжение КЗ трансформатора uк. з,%, индуктивное сопротивление реактора хр,%, переходные сопротивления генераторов и двигателей задаются в отн. ед. или в процентах при номинальных условиях. Для перевода указанных величин к принятым при расчете базисным условиям следует использовать следующие формулы:

где U ср.ном - среднее номинальное напряжение ступени; S ном, I ном -номинальные мощность и ток элемента.

14.8. Расчетные схемы и определение результирующих сопротивлений цепи короткого замыкания Для расчета токов КЗ необходимо составить расчетную схему, соответствующую нормальному режиму работы системы электроснабжения при параллельном включении всех источников питания. По расчетной схеме составляют схему замещения, на которой все магнитосвязанные электрические сети заменяют эквивалентной электрически связанной цепью. В схему замещения вводятся все источники питания, участвующие в питании места КЗ, и все сопротивления, по которым проходит рассчитываемый ток КЗ. В схеме замещения намечают вероятные точки для расчета токов КЗ.

Выбор расчетных точек производится на основе анализа схемы электроснабжения с целью нахождения наиболее неблагоприятных условий повреждений, определяющих выбор аппаратов и проводников.

Как правило, расчетными точками являются выводы высшего напряжения понижающих трансформаторов, участки между выводами низшего напряжения трансформаторов и реакторами, сборные шины распределительных устройств, выводы выключателей отходящих линий, а также выводы электроприемных устройств (рис. 14.5).

Расчетная точка трехфазного КЗ в сети напряжением 6... 10 кВ - на шинах вторичного напряжения ГПП или ПГВ.

Расчетная точка трехфазного КЗ напряжением до 1 кВ - непосредственно за автоматическим выключателем трансформатора.

При наличии в схеме трансформаторов при составлении расчетной схемы замещения необходимо привести параметры элементов и э.д.с. различных ступеней трансформации к основной (базисной) ступени. Расчеты упрощаются, если за базисную принята ступень, для которой рассчитывается ток КЗ.

При расчете в отн.ед. нужно задаться базисными условиями Uср.б, Sб - базисными напряжением и мощностью.

Для генераторов, линий напряжением выше 1 кВ обычно учитывают только индуктивные сопротивления. В удаленных от генератора точках КЗ (преимущественно в сетях напряжением до 1 кВ) учитывают активные сопротивления.

Рис. 14.5. Пример выбора расчетных точек коротких замыканий (К1,2,…,8) Для отдельных элементов схемы принимаются следующие значения индуктивных сопротивлений:

для синхронных генераторов х выражается в отн. ед.; оно представляет собой сверхпеd реходное реактивное сопротивление по продольной оси полюсов. Для турбогенераторов х = d 0,125, для гидрогенераторов с успокоительной обмоткой х = 0,2;

для синхронных и асинхронных двигателей х = 0,2;

для трансформаторов, если пренебречь их активным сопротивлением, напряжение КЗ uк. з (%) численно равно их индуктивному сопротивлению хт = uк. з. ;

для воздушных линий напряжением выше 1 кВ удельное реактивное сопротивление х л = 0,4 Ом/км;

для кабельных линий напряжением 6... 10 кВ удельное реактивное сопротивление хк 0 = 0,08 Ом/км;

для реакторов сопротивление хреак приводится в процентах к номинальным параметрам и переводится в относительные или именованные единицы;

сопротивление энергосистемы Хс, приведенное к напряжению базовой ступени Uср.б, определяется по заданной мощности КЗ системы Sк.з.сист из соотношения Для определения трехфазного тока КЗ необходимо составить расчетную схему и преобразовать ее в следующем порядке:

1) составить полную расчетную схему, на которую нанести все элементы системы электроснабжения с их номинальными параметрами;

2) выбрать по схеме расчетные точки КЗ;

3) задаться базисными условиями - мощностью и напряжением;

4) сопротивления всех элементов схемы, выраженные или в относительных, или в именованных единицах, привести к базисным условиям;

5) произвести упрощение схемы;

6) определить результирующие сопротивления от каждого источника хрез до точки КЗ.

В расчетах токов КЗ широко пользуются так называемым расчетным сопротивлением цепи КЗ где S ном - суммарная мощность системы.

Основные способы, применяемые для упрощения схемы:

1. Замена параллельно, последовательно или смешанно включенных сопротивлений одним эквивалентным. Преобразование треугольника в эквивалентную звезду или наоборот.

2. Замена двух или нескольких источников питания одним эквивалентным, например объединение двух различных электростанций. Такая замена возможна лишь в тех случаях, когда источники питания находятся приблизительно в одинаковых условиях по отношению к месту КЗ.

Условия, при которых допустимо объединение источников питания. Для систем электроснабжения промышленных предприятий характерна схема совместного питания (рис. 14.6): от системы S1 и электростанции предприятия S2.

Объединение одноименных источников питания допустимо при условии где Х1, Х2 - сопротивления, приведенные к базисной мощности.

Если в каждой из объединяемых цепей расчетное сопротивление Х р > 3, то объединение цепей источников питания допускается во всех случаях.

Нельзя объединять ветвь источника питания с неизменной э.д.с. и ветвь источника питания с расчетным сопротивлением Х р < 3.

3. Пренебрежение маломощными удаленными источниками питания Рис. 14.6. Схема при двух источниках питания места КЗ При упрощении схемы источником питания меньшей мощности можно пренебречь, если одновременно где S2 - мощность источника питания, меньшего по мощности; Х2 -сопротивление от источника питания до места КЗ.

При 2 = 0,05... 1,0 пренебрегать источниками питания не следует, так как ошибка в расчетах может оказаться значительной.

14.9. Расчет токов КЗ от системы неограниченной мощности Электрической системой неограниченной (бесконечной) мощности условно можно считать такую систему, напряжение на шинах которой можно полагать практически неизменным при любых изменениях тока (в том числе и КЗ) в присоединенной к ней маломощной цепи. Такое допущение возможно в том случае, если сопротивление системы не превышает 10% от результирующего сопротивления цепи КЗ.

Схема замещения содержит один источник питания с э.д.с. Eрез.б = 1; одно результирующее сопротивление Z рез.б Начальный сверхпереходный ток в месте трехфазного КЗ (действующее значение первого полупериода периодической составляющей) исходя из этой схемы замещения будет равен в относительных единицах в именованных единицах Величина ударного тока КЗ определяется в соответствии с данными, приведенными в разд. 14.6.

Мощность КЗ в именованных единицах При необходимости определить предельно возможные значения тока трехфазного КЗ за каким-либо элементом цепи: силовым трансформатором, реактором и т.д. - ток КЗ за трансформатором где Iном т - номинальный ток трансформатора при напряжении места КЗ;

где Iном р - номинальный ток реактора; для воздушных и кабельных линий При пренебрежении активным сопротивлением линии 14.10. Определение токов КЗ в произвольный момент времени по расчетным кривым Периодическая составляющая тока КЗ в любой момент времени после появления КЗ может быть рассчитана с использованием специально построенных кривых. Эти кривые являются графическим отображением функциональных зависимостей между периодической составляющей тока КЗ, временем переходного процесса и электрической удаленностью точки КЗ от источника питания.

Кривые обеспечивают быстрое и простое выполнение практических расчетов тока КЗ, охватывают широкий диапазон мощностей источников питания, генераторы различаются только по типу и наличию средств АРВ. Кривые получены для усредненных параметров реальных генераторов и приближенного учета влияния нагрузки в системах электроснабжения на ток КЗ, что сопряжено с определенной неточностью расчетов. При помощи расчетных кривых можно определить токи КЗ лишь в точке КЗ и невозможно определить токи КЗ в ветвях схемы.

Расчетные кривые - это графическое отображение зависимостей I nt3) = f (X расч ) при различных длительностях времени КЗ t, с.

Рис. 14.7. Расчетные кривые для типового турбогенератора с АРВ Построены они были в 1940 г. для типовых генераторов средней мощности (турбогенераторов до 150 МВт и гидрогенераторов до 50 МВт, оборудованных машинной системой возбуждения АРВ и релейной форсировкой) при следующих расчетных условиях: все источники питания имеют одинаковую электрическую удаленность относительно точки КЗ и заменяются расчетной схемой с типовым генератором;

типовой генератор до и в течение КЗ работает с номинальной нагрузкой, которая условно относится к его зажимам;

параметры типового генератора и результирующее сопротивление цепи КЗ представляются в отн. ед., т. е.

где I номг и S номг - номинальные ток и мощность типового генератора; Х рез.б - результирующее сопротивление цепи КЗ, приведенное к базисным условиям.

Расчетные кривые для типового турбогенератора с АРВ показаны на рис. 14.7.

Порядок определения периодической составляющей тока КЗ с помощью расчетных кривых (при Х расч 3) следующий:

1) схему замещения системы электроснабжения преобразуют к простейшему виду: между источником питания и точкой КЗ помещают результирующее сопротивление Х рез.б, которое приводят к номинальным условиям по (14.14);

2) по расчетным кривым для расчетного момента времени находят относительное значение периодической составляющей тока 3) вычисляют значение периодической составляющей тока КЗ в именованных единицах При Х расч > 3 периодическую составляющую тока КЗ можно считать неизменной и рассчитывать ее как для удаленного КЗ.

14.11. Расчет токов КЗ на понижающих подстанциях с вторичным напряжением 6...

Расчетная точка трехфазного КЗ на стороне высшего напряжения (35...220 кВ) - на соответствующих вводах в трансформаторы ГПП.

Расчетная точка трехфазного КЗ на стороне вторичного напряжения (6... 10 кВ) - на шинах вторичного напряжения ГПП.

В зависимости от условий задания возможны следующие варианты расчета токов КЗ в расчетной схеме рис. 14.8 при установке двухобмоточных трансформаторов.

Рис. 14.8. Расчетная схема (а) и схема замещения (б) для расчетов токов КЗ на понижающих подстанциях 1. Заданы мощность системы S ном, равная базисной мощности; сопротивление Х с системы до точки К1, приведенное к мощности системы; напряжения на понижающем трансформаторе U1 и U2; номинальная мощность трансформатора S ном.т и напряжение КЗ uк. з = хт трансформатора.

Токи КЗ для точки К1:

2. Заданы мощность КЗ системы в первый полупериод S к. з.сист, Х с до шин понижающей подстанции, а также паспортные данные трансформатора ( хт ).

при Х с < 3 мощность, ток системы и ток КЗ 3. Заданы мощность КЗ системы в первый полупериод времени S к. з.сист = S К 1 для точки К1, а также паспортные данные трансформатора ( S ном.т, хт ). Учитывая, что мощность системы не дана, за базисную принимают номинальную мощность трансформатора S ном.т.

Если мощность подключаемой подстанции значительно меньше мощности системы, то Х с = 0. В этом случае для точки К2:

4. Трансформатор на понижающей подстанции работает с расщепленной обмоткой.

Расчет токов КЗ в точке К1 аналогичен описанным выше случаям. Расчет токов КЗ в точке К2 ведется с учетом схемы замещения. Сопротивления трансформатора с расщепленной обмоткой определяются из соотношений где Кр - коэффициент расщепления, для трехфазных трансформаторов Кр=3,5.

Суммарное сопротивление цепи трансформатора при КЗ на шинах вторичного напряжения ГПП:

14.12. Расчет токов КЗ в сетях и установках напряжением 6... 10 кВ с учетом электродвигателей В системах электроснабжения на напряжениях 6 или 10 кВ имеются синхронные и асинхронные двигатели с номинальными напряжениями 6 и 10 кВ. Это двигатели насосных и компрессорных станций, двигатели-генераторы и др. При расчете токов КЗ токи подпитки от двигателей могут быть значительными. Двигатели, подключенные в непосредственной близости от места КЗ, являются Рис. 14.9. Расчетная схема и схема замещения к расчету токов трехфазного КЗ на подстанции напряжением 110/10 кВ:

а - расчетная схема; б - общая схема замещения; в - схема замещения для расчетов токов КЗ в точке К1, г – схема замещения для расчетов токов КЗ в точке К источниками питания тока КЗ. Это преобразование двигателей в генераторы происходит, во-первых, вследствие уменьшения напряжения в месте КЗ и на зажимах двигателей, вовторых, вследствие сохранения инерции вращения ротора в первые периоды существования режима КЗ.

При расчете токов КЗ в сетях и установках напряжением выше 1 кВ следует, как правило, учитывать те из них, которые связаны с местом КЗ непосредственно или через кабельные линии, или черед линейные реакторы, или через один двухобмоточный трансформатор. Так, например, при КЗ в точке К1 схемы подстанции, изображенной на рис. 14.9, следует учитывать токи только электродвигателей, присоединенных к секции 1. Электродвигатели секции 2, связанные с секцией 1 точкой КЗ К1 через обмотки трансформатора с расщепленной обмоткой напряжением 10 кВ или через обмотки сдвоенного реактора, включенного на стороне напряжением 6... 10 кВ трансформатора, можно не учитывать.

14.12.2. Расчет токов КЗ от синхронных двигателей на напряжении выше 1 кВ Для синхронного двигателя принимаются средние значения сверхпереходной э.д.с.

Е"=1,1 и сверхпереходного индуктивного сопротивления х = 0,2, отн. ед.

Суммарная мощность п двигателей, присоединенных к точке КЗ:

где Руст, cos - номинальные данные синхронного электродвигателя (исходные данные).

Сопротивление СД определяется из соотношения:

Начальное действующее значение периодической составляющей тока КЗ синхронного двигателя, когда за базисные величины приняты номинальный ток и напряжение СД:

С учетом внешнего сопротивления хВН, через которое электродвигатель присоединен к сборным шинам подстанции, 14.12.3. Расчет токов КЗ от асинхронных двигателей на напряжении выше 1 кВ Начальное действующее значение периодической составляющей тока КЗ асинхронного двигателя, когда за базисные величины приняты номинальный ток Iном АД и напряжение АД:

С учетом внешнего сопротивления хВН через которое электродвигатель присоединен к сборным шинам подстанции:

где Е" - сверхпереходная э.д.с. асинхронного двигателя. В приближенных расчетах при отсутствии исходных данных можно принимать Е" = 0,9; х - сверхпереходное индуктивное сопротивление АД, которое определяется по кратности пускового тока: х = I номАД / I пускАД при пуске от полного напряжения; I номАД - номинальный ток АД. Внешнее сопротивление можно не учитывать при хВН < (0,1...0,2) х.

14.12.4. Расчет ударного тока КЗ, генерируемого синхронными и асинхронными Ударный ток трехфазного КЗ от синхронного и асинхронного электродвигателя Если внешнее сопротивление не учитывается, то значения k уд для асинхронных двигателей берутся из табл. 14.2, а для синхронных - из табл. 14.3.

Периодическая и апериодическая составляющие в точке КЗ определяются суммированием периодических и апериодических составляющих токов всех источников радиальной схемыТаблица Значения ударных коэффициентов асинхронных двигателей при КЗ на их выводах Параметр Для асинхронных двигателей серий

А АО ДАЗО ВДД, ДВДА ДАМСО

Значения ударных коэффициентов синхронных двигателей при КЗ на их выводах двигателей и системы, т. е. периодическая составляющая в точке КЗ в любой момент времени Ударный ток в точке КЗ вычисляется суммированием ударных токов системы и двигателей:

14.13. Расчет токов трехфазного КЗ в сетях и установках напряжением до 1 кВ Электроустановки объектов электроснабжения напряжением до 1 кВ обычно получают питание от понижающих трансформаторов с номинальной мощностью S ном.т = 25... 2500 кВ·А.

Если мощность КЗ на стороне высшего напряжения трансформатора S к.з.сист 25 S ном.т, то периодическая составляющая тока КЗ будет неизменной. В большинстве случаев это соотношение выполняется. Если нет, то величина сопротивления системы находится по значению мощности КЗ на выводах обмотки высшего напряжения понижающего трансформатора:

где U ср.ном - среднее номинальное напряжение сети до 1 кВ.

При отсутствии данных о величине S к.з.сист значение Хс может быть определено по номинальной мощности отключения S ном.отк выключателя, установленного в питающей сети напряжением выше 1 кВ:

Можно считать, что КЗ в сетях до 1 кВ питается от системы с неограниченной мощностью, т. е. периодическая составляющая тока КЗ неизменна в течение всего времени существования режима КЗ:

При расчетах токов КЗ в установках напряжением до 1 кВ необходимо учитывать:

активные и индуктивные сопротивления проводов, кабелей и шин (длиной 10... 15 м и более); токовых катушек расцепителей автоматических выключателей; первичных обмоток многовитковых трансформаторов тока; переходных контактов аппаратов;

активные и индуктивные сопротивления всех элементов короткозамкнутой цепи;

переходные сопротивления в месте КЗ.

Расчетная точка трехфазного КЗ в установках напряжением до 1 кВ - непосредственно за автоматическим выключателем трансформатора.

Расчетная точка однофазного КЗ в установках напряжением до 1 кВ - конечная точка шинопровода, защищаемого выключателем трансформатора.

Расчет параметров цепи и токов КЗ в установках напряжением до 1 кВ ведется в именованных единицах.

14.13.2. Сопротивления элементов цепи трехфазного КЗ в установках напряжением Сопротивления в сети напряжением до 1 кВ удобно рассчитывать в мОм.

Силовые трансформаторы Сопротивления токопровода (шин) от трансформатора к автоматическому выключателю:

ориентировочно Rш =0,5 мОм; Хш=2,25 мОм.

В табл. 14.4... 14.6 приведены ориентировочные значения сопротивлений Ха, Ra катушек расцепителей максимального тока автоматических выключателей, активных переходных сопротивлений контактов Rк, первичных сопротивлений Хтт, Rтт обмоток трансформаторов тока класса точности 1.

Сопротивления шинопроводов и кабелей приведены в гл. 12.

Суммарные сопротивления цепи трехфазного КЗ за автоматическим выключателем трансформатора:

Если требуется определить ток КЗ в какой-либо другой точке сети напряжением до 1 кВ, то в суммарное сопротивление следует включить сопротивление кабелей и шинопроводов до данной точки КЗ.

Ориентировочные значения сопротивлений катушек расцепителей максимального тока автоматических выключателей напряжением до 1 кВ расцепителя, А Ориентировочные значения активных переходных сопротивлений контактов Rк аппаратов, мОм ток аппарата, А Сопротивления первичных обмоток трансформаторов тока (класса точности 1) 14.13.3. Расчет токов трехфазного КЗ в сетях и установках напряжением до 1 кВ Действующее значение периодической слагающей тока трехфазного КЗ без учета влияния непосредственно присоединенных асинхронных двигателей:

Токи трехфазного КЗ I к.з (кА) в цепях напряжением 0,38 кВ при КЗ за трансформатором (длина кабеля 0 м) и на расстоянии 50 м Ударный ток трехфазного КЗ от системы где k у.с - ударный коэффициент, определяемый из табл. 14.1.

При КЗ на магистральных шинопроводах, удаленных более чем на 100 м от трансформатора, k у.с принимается равным единице.

Токи КЗ от асинхронных двигателей, присоединенных непосредственно к месту КЗ, учитываются только при определении ударного тока КЗ:

где I ном.д – суммарный номинальный ток одновременно работающих двигателей.

где рном.д,, cos - номинальные мощность, КПД, коэффициент мощности двигателя.

Суммарный ударный ток Для ориентирования правильности выполнения расчетов величин периодической составляющей тока трехфазного КЗ в табл. 14.7 приведены значения I к(3 ), при трехфазном КЗ непоз средственно за аппаратом напряжением 0,38 кВ трансформатора КТП и при трехфазном КЗ на расстоянии 50 м от КТП в кабельной линии с различными сечениями алюминиевых жил.

14.14. Расчет токов несимметричных КЗ в сетях и установках напряжением 110 и В системах напряжением 110, 220 кВ, имеющих глухозаземленные нейтрали или нейтрали, заземленные через сравнительно малые индуктивные сопротивления, могут иметь место несимметричные КЗ, основными видами которых являются однофазные КЗ на землю.

В симметричных трехфазных цепях при однофазном КЗ составляют схемы замещения прямой, обратной и нулевой последовательностей. Схема прямой последовательности составляется как для симметричного трехфазного КЗ, схема обратной последовательности аналогична схеме прямой последовательности.



Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |


Похожие работы:

«Министерство образования и науки Российской Федерации Санкт-Петербургский горный институт Хибинский технический колледж ОФОРМЛЕНИЕ ОБЯЗАТЕЛЬНЫХ УЧЕБНЫХ ДОКУМЕНТОВ Методические указания для студентов колледжа Кировск 2011 РАССМОТРЕНО на заседании УТВЕРЖДАЮ комиссии по стандартизации зам. директора по УМР Председатель _п/п_А.И. Назаров _п/п_В.А. Ганичева протокол № 5 от 21. 04. 04. протокол № 4 от 22. 05. 07 _14 марта 2011 г. протокол № 1 от 07. 11. 07 протокол № 4 от 25. 03. 10 протокол № 5 от...»

«О.Н. Журавлева Формирование антикоррупционного мировоззрения школьников на уроках истории и обществознания: методическое пособие М.: ИЦ Вентана-Граф, 2010. - 144 с. 20 10 1 Автор–составитель О.Н. Журавлева, кандидат педагогических наук, доцент СПб АППО Рецензенты Жолован С.В. – ректор Санкт-Петербугской академии постдипломного педагогического образования, к.пед.н. Соболева О.Б. – зам. декана факультета социальных наук Российского государственного педагогического университета им. А.И. Герцена,...»

«1 РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ: Проректор по учебной работе _ /Волосникова Л.М./ _ 2013 г. ТРЕНИНГ ЛИЧНОСТНОГО РОСТА СПОРТСМЕНА Учебно-методический комплекс. Рабочая учебная программа для магистрантов очной формы обучения направления 034300.68 Физическая культура, профиля Подготовка высококвалифицированных спортсменов в...»

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИЧЕРСИТЕТ ИНСТИТУТ РЕКЛАМЫ И СВЯЗЕЙ С ОБЩЕСТВЕННОСТЬЮ МАРКЕТИНГОВЫЕ КОММУНИКАЦИИ Методические указания и задания контрольных работ для студентов заочной формы обучения Новосибирск 2007 0 ВВЕДЕНИЕ Учебным планом для студентов заочной формы обучения специальностей Маркетинг, по дисциплине Маркетинговые коммуникации предусмотрено выполнение контрольной работы. Изучение дисциплины завершается сдачей экзамена. Контрольная работа состоит из пяти заданий:...»

«И. В. Абдрашитова Основы алгоритмизации и программирование на языке Pascal Учебное пособие Томск — 2011 УДК 004.43 (811.93) ББК 32.973.26-018.1я721.6 Абдрашитова И. В. Основы алгоритмизации и программирование на языке Pascal : Учеб. пособие / И. В. Абдрашитова. — Томск, 2011. — 144 с. Учебное пособие предназначено для учеников старших классов, изучающих предмет Основы алгоритмизации и программирование на языке Pascal. Учебное пособие является частью комплекта, дополняют и расширяют который...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования Витебский государственный технологический университет КОНСТРУИРОВАНИЕ ИЗДЕЛИЙ ИЗ КОЖИ. КОНСТРУИРОВАНИЕ ОБУВИ Методические указания и контрольные задания для студентов специальности 1-50 02 01 Конструирование и технология изделий из кожи специализации 1-50 02 01 01 Технология обуви заочной формы обучения Витебск 2011 УДК 685.31 Конструирование изделий из кожи. Конструирование обуви: методические указания и контрольные задания...»

«Клинические технологии блокирования кариеса: терапевтическая стоматология, ортопедическая стоматология, стоматология детского возраста, ортодонтия, 2005, В. В. Садовский, 5860931956, 9785860931954, Медицинская книга, 2005 Опубликовано: 2nd September 2009 Клинические технологии блокирования кариеса: терапевтическая стоматология, ортопедическая стоматология, стоматология детского возраста, ортодонтия СКАЧАТЬ http://bit.ly/1cfZw1V Applied dental materials, John Neil Anderson, 1967, Medical, 380...»

«Федеральное агентство по образованию Казанский государственный технологический университет Кафедра государственного, муниципального управления и социологии К.С. Идиатуллина Система государственного и муниципального управления Учебно-методическое пособие для студентов заочной формы обучения 2006 Федеральное агентство по образованию Казанский государственный технологический университет Кафедра государственного, муниципального управления и социологии К.С. Идиатуллина Система государственного и...»

«Министерство образования и науки Украины Севастопольский национальный технический университет МЕТОДИЧЕСКИЕ УКАЗАНИЯ к контрольной работе по дисциплине Основы технической диагностики автомобилей для студентов специальности 7.070106 – Автомобили и автомобильное хозяйство заочной формы обучения Севастополь 2010 2 УДК 629.3 Методические указания к контрольной работе по дисциплине Основы технической диагностики автомобилей / Сост. В. В. Мешков, С.В. Огрызков, Л.И.Соустова – Севастополь: Изд-во...»

«Негосударственное образовательное учреждение высшего профессионального образования Институт экономики и управления (г. Пятигорск) НОУ ВПО ИнЭУ УТВЕРЖДАЮ Председатель УМС Щеглов Н.Г. (Протокол № _ от 2011г.) РАБОЧАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ ЭКОНОМИЧЕСКАЯ ГЕОГРАФИЯ И РЕГИОНАЛИСТИКА (название курса, дисциплины) для студентов специальности 080102.65 Мировая экономика очной и заочной формы обучения Пятигорск, 2011 Составитель: Бурим С.М., к.и.н., доцент Рецензент: Крымская Т.Н., к.пед.н., доцент...»

«Утверждено: Согласовано: Учебно-методические комплексы МОУ СОШ №1 г.Карталы на 2012 -2013 учебный год Класс Учебный предмет Кол-во Учебная программа Учебники и учебные пособия Методические пособия для часов в учащихся учителя неделю Начальное общее образование Русский язык: Русский язык 1.Примерная программа по 1.Горецкий В.Г. Азбука: учебник для Жиренко О.Е. Поурочные обучению грамоте и письму. // учащихся 1 классов начальной школы. разработки по обучению Примерные программы – М.: Просвещение,...»

«МКОУ ДОД ДШИ и МКОУ СОШ с. Кленовское Нижнесергинский район Свердловской области Олимпиадные задания по предмету Мировая художественная культура для 10, 11 классов Составитель: Бажутина Людмила Васильевна преподаватель МХК, искусствовед, высшая квалификационная категория, руководитель РМО преподавателей ДШИ 2011 г. 2 Содержание Пояснительная записка и общие положения. 3 1. Олимпиадные задания для 10 класса. 5 2. Олимпиадные задания для 11 класса.. 3. Ответы к заданиям и критерии их...»

«Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ Кафедра экономики Афонасова М.А. ПЛАНИРОВАНИЕ НА ПРЕДПРИЯТИИ Методические рекомендации по проведению практических занятий и организации самостоятельной работы студентов Томск 2012 2 СОДЕРЖАНИЕ Введение 1 Особенности организации практических занятий и самостоятельной 2 работы студентов...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ) Историко-филологический институт Кафедра методики преподавания русского языка и литературы РАССМОТРЕНО И ОДОБРЕНО решением учебно-методического совета от 20 мая 2013 г., протокол № 8 МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению курсовой работы по методике преподавания русского языка Направления подготовки 050100.62...»

«МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Майкопский государственный технологический университет УТВЕРЖДАЮ Прореююр но^аучной работе А. Овсянникова Я/ 20_г. ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОСТИ основной образовательной программы послевузовского профессионального образования подготовки аспирантов (ООП ППО) по специальности научных работников 06.01.05 -СЕЛЕКЦИЯ И СЕМЕНОВОДСТВО СЕЛЬСКОХОЗЯЙСТВЕННЫХ...»

«Министерство образования и науки РФ ГОУ ВПО Сочинский государственный университет туризма и курортного дела Филиал ГОУ ВПО Сочинский государственный университет туризма и курортного дела в г. Нижний Новгород Нижегородской области С.А. Медведев, Е.В. Груздева СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ВОСТАНОВЛЕНИЯ ДВИГАТЕЛЬНЫХ НАРУШЕНИЙ УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ для студентов всех форм обучения специальности 032102 Физическая культура для лиц с отклонениями в состоянии здоровья (адаптивная физическая культура)...»

«Н.И. Загряцкий БУХГАЛТЕРСКИЙ ФИНАНСОВЫЙ УЧЕТ Учебное пособие 1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный архитектурно-строительный университет Институт открытого дистанционного образования Н.И. Загряцкий Бухгалтерский финансовый учет Рекомендовано редакционно-издательским советом университета в качестве учебного пособия Нижний Новгород - ББК 65. З Загряцкий Н.И. Бухгалтерский финансовый...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановская государственная текстильная академия (ИГТА) Кафедра проектирования текстильных машин РАСЧЕТ ВЫТЯЖНЫХ ЦИЛИНДРОВ ПРЯДИЛЬНЫХ МАШИН Методические указания к выполнению индивидуальных заданий для студентов специальностей 150406 (170700), 260704 (280300) Иваново 2007 Настоящие методические указания предназначены для студентов специальностей 150406 (170700) и 260704 (280300)...»

«БИБЛИОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ КНИГ, ПОСТУПИВШИХ В БИБЛИОТЕКУ (январь 2013 г.) БИОЛОГИЯ 1. 57(075) Б 63 Биология : руководство к практ. занятиям: учеб. пособие для студ. стоматологич. фак. / В. В. Маркина [и др.] ; под ред. В. В. Маркиной. - М. : ГЭОТАР- Медиа, 2010. - 448 с. : ил. Экземпляры: всего:30 - чз6(3), мед.аб(27) 2. 57(031) Б 63 Биология : справочник / Н. В. Чебышев [и др.]. - 2-е изд., испр. и доп. - М. : ГЭОТАР, 2011. - 608 с. : ил. Экземпляры: всего:10 - чз6(3), мед.аб(7) ОБЩАЯ...»

«АННОТАЦИЯ К РАБОЧЕЙ УЧЕБНОЙ ПРОГРАММЕ ПО ИНФОРМАТИКЕ И ИКТ 8-9 КЛАССЫ на 2013-2014 учебный год Рабочая учебная программа по информатике для 8 и 9 классов составлена к учебникам для 8 и 9 классов: Информатика и ИКТ (авторы: Босова Л.Л., Босова А.Ю.). Бином. Лаборатория знаний. Она создана в соответствии с действующим в настоящее время Базисным учебным планом (федеральным компонентом) (ФК БУП) для образовательных учреждений РФ, реализующих программы основного (общего) образования,...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.