WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 10 |

«А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко Вычислительные машины, сети и телекоммуникационные системы Учебно-методический комплекс под редакцией профессора Пятибратова А.П. Москва, 2009 УДК 004 ББК 32.973.202 П 994 ...»

-- [ Страница 5 ] --

Создание и внедрение компьютерной сети является сложной комплексной задачей, требующей согласованного решения ряда вопросов. К ним относятся: формирование рациональной структуры сети, соответствующей ее назначению и удовлетворяющей определенным требованиям; проектирование телекоммуникационной системы сети, выбор типа линий и каналов связи, оценка их пропускной способности и т. д.; обеспечение способности доступа пользователей к общесетевым ресурсам, в частности, за счет оптимального решения задач маршрутизации; распределение информационных, аппаратных и программных ресурсов по звеньям сети; разработка системы обеспечения безопасности информации в сети; разработка мероприятий по обеспечению требуемого уровня эргономичности сети и др. Все эти вопросы решаются с учетом требований, предъявляемых к сети по главным показателям:

• временным – для оценки оперативности и своевременности удовлетворения запросов пользователей;

• надежностным – для оценки надежности функционирования сети;

• экономическим – для оценки экономической эффективности капитальных вложений на создание и внедрение сети и текущих затрат при эксплуатации и использовании.

Оценивая процессы функционирования КС, следует учитывать, что это человекомашинная система (ЧМС). Это относится не только ко всей сети, но и к ее отдельным функциональным частям (ТКС, АС, центры обработки информации и т. д.). Следовательно, необходимо учитывать характеристики всех трех компонентов ЧМС: человекаоператора (обслуживающего персонала сети и пользователей), машины (программноаппаратных средств сети) и производственной среды. Степень влияния этих компонентов на эффективность функционирования сети определяется принадлежностью сети к тому или иному типу ЧМС.

Деление ЧМС на типы производится по трем признакам [45]:

• по виду эксплуатации (использования) системы они делятся на ЧМС регулярного (постоянного) применения в течение более или менее длительного времени, ЧМС многоразового применения (используются периодически, причем периодичность использования, т. е. включения системы в режим целевого применения, определяется ее назначением и требованиями по поддержанию системы в работоспособном состоянии) и ЧМС одноразового применения (используются однократно, причем длительность использования определяется назначением системы и зависит от сложившихся условий ее функционирования);

• по роли и месту человека-оператора в системе выделяются также три типа ЧМС: целеустремленные системы (тип С1), в которых процесс функционирования полностью определяется человеком; целенаправленные системы (тип С2), в которых человек и машина рассматриваются как равнозначные элементы; целесообразные системы (тип С3), в которых человек только обеспечивает процесс функционирования, но не управляет им. При исследовании эффективности функционирования этих систем необходим соответственно человеко-системный, равноэлементный или системотехнический подход;

• по степени влияния трудовой деятельности человека-оператора на эффективность функционирования ЧМС выделяются такие типы: системы типа А, в которых работа оператора выполняется по жесткому технологическому графику; системы типа В, в которых такой график отсутствует, поэтому оператор может изменять темп и ритм своей работы; системы типа С, для которых характерным является задание конечного результата (заданный объем продукции в любом случае должен быть обеспечен).

Вычислительные машины, сети и телекоммуникационные системы Для целей исследования эффективности функционирования конкретной ЧМС, назначение которой известно, деление ее на типы С1, С2, С3 является первичным, а деление на типы А, В, С – вторичным, т. е. сначала необходимо наметить подход к исследованию рассматриваемой системы в зависимости от роли и места в ней человека, а затем установить ее принадлежность к одному из типов: А, В или С.

В качестве примера отметим, что корпоративные компьютерные сети (ККС) можно отнести к таким видам ЧМС:

• по виду использования это ЧМС регулярного применения, в них профилактические работы проводятся без выключения сети, в оперативном режиме. Однако отдельные звенья сети могут относиться к ЧМС многоразового применения, если они периодически отключаются ввиду отсутствия необходимости в их постоянном использовании;

• по роли и месту человека-оператора сети являются целенаправленными ЧМС, в которых человек и материальные (неэргатические) объекты рассматриваются как равнозначные элементы. Соотношение значимости этих элементов быть различным, но не таким, чтобы сеть следовало относить уже к другому типу – целеустремленным или целесообразным;

• по степени влияния трудовой деятельности человека-оператора на эффективность функционирования системы сети относятся главным образом к типу В, в которых отсутствует жесткий технологический график работы операторов.

Степень детализации при учете характеристик трудовой деятельности эргатических элементов в ходе исследования эффективности функционирования сети определяется типом ККС и наличием достоверных данных по этим характеристикам.

Классификация компьютерных сетей осуществляется по наиболее характерным признакам – структурным, функциональным, информационным.

По степени территориальной рассредоточенности основных элементов сети (абонентских систем, узлов связи) различают глобальные, региональные и локальные компьютерные сети.



Глобальные компьютерные сети (ГКС) объединяют абонентские системы, рассредоточенные на большой территории, охватывающей различные страны и континенты. Они решают проблему объединения информационных ресурсов всего человечества и организации доступа к ним. Взаимодействие АС осуществляется на базе различных территориальных сетей связи (ТСС), в Определение которых используются телефонные линии связи, радиосвязь, системы спутниковой связи.

Региональные компьютерные сети (РКС) объединяют абонентские системы, расположенные в пределах отдельного региона – города, административного района; функционируют в интересах организаций и пользователей региона и, как правило, имеют выход в ГКС. Взаимодействие абонентских систем осуществляется также с помощью ТСС.

Локальные компьютерные сети (ЛКС) объединяют абонентские системы, расположенные в пределах небольшой территории (этаж здания, здание, несколько зданий одного и того же предприятия). К классу ЛКС относятся сети предприятий, фирм, банков, офисов, учебных заведений и т. д. Принципиальным отличием ЛКС от других классов сетей является наличие своей Отдельный класс представляют корпоративные компьютерные сети (ККС), которые являются технической базой компаний, корпораций, организаций и т. д. Такая сеть играет ведущую роль в реализации задач планирования, организации и осуществления производственно-хозяйственной деятельности корпорации.

Объединение ЛКС, РКС, ККС, ГКС позволяет создавать сложные многосетевые иерархии.

По способу управления различают сети с централизованным управлением, когда в сети имеется один или несколько управляющих органов, децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).

По организации передачи информации различают сети с селекцией информации и маршрутизацией информации. Первые строятся на основе моноканала, взаимодействие АС осуществляется выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. Вторые используют механизм маршрутизации для передачи кадров (пакетов) от отправителя к получателю по одному из альтернативных маршрутов. По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией каналов, коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.

По топологии, т. е. по конфигурации элементов в сети, различают широковещательные сети (рис. 26) и последовательные (рис. 27). Широковещательные сети и значительная часть последовательных конфигураций (кольцо, звезда с «интеллектуальным центром») характерны для ЛКС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая) топология.

В сетях с широковещательной конфигурацией характерен широковещательный режим работы, когда на передачу может работать только одна рабочая станция, а все остальные станции сети – на прием. Это локальные сети с селекцией информации: общая шина, «дерево», «звезда» с пассивным центром. Основные преимущества ЛКС с общей шиной – простота расширения сети путем подключения к шине новых рабочих станций, простота управления сетью, минимальный расход кабеля. ЛКС с топологией типа «дерево» – это более развитый вариант сети с шинной топологией. «Дерево» образуется путем соединения нескольких шин активными повторителями или пассивными размножителями («хабами»), Рис. 26. Широковещательные конфигурации сетей:

а – общая шина; б – «дерево»;

в – «звезда» с пассивным центром.

Вычислительные машины, сети и телекоммуникационные системы Рис. 27. Последовательные конфигурации сетей:

а – произвольная (ячеистая); б – иерархическая; в – «кольцо»;

г – «цепочка»; д – «звезда» с «интеллектуальным» центром;

е – «снежинка»

каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛКС с топологией типа «звезда» в центре находится пассивный соединитель или активный повторитель – достаточно простые и надежные устройства. Для защиты от нарушений в кабеле используется центральное реле, которое отключает вышедшие из строя кабельные лучи.

В сетях с последовательной конфигурацией, в которых осуществляется маршрутизация информации, передача данных производится последовательно от одной станции к соседней, причем на различных участках сети могут использоваться различные виды физической передающей среды.

В сетях с кольцевой топологией информация чаще передается только в одном направлении, обычно против часовой стрелки. Каждая рабочая станция имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая станция принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной станции, и ретранслирует кадр. Все это замедляет передачу кадра в кольце, причем длительность задержки определяется преимущественно числом РС. Удаление кадра из кольца производится обычно станцией-отправителем: кадр совершает по кольцу полный оборот (при этом станция-получатель снимает копию с кадра) и возвращается к станции-отправителю, которая воспринимает его как квитанциюподтверждение получения кадра адресатом.

Вычислительные машины, сети и телекоммуникационные системы В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи – использованием одного кабеля для поочередной передачи в двух направлениях, в дуплексных сетях – с помощью двух однонаправленных кабелей; в широкополосных системах – применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.

Компьютерные сети могут быть как однородными (гомогенными), в которых применяются программно-совместимые компьютеры, так и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Глобальные и региональные сети, учитывая их протяженность и большое количество используемых в них компьютеров, являются чаще всего неоднородными.

4.2. Эталонная модель взаимодействия открытых систем Существуют две концепции, на основе которых осуществляется реализация рассредоточенных и взаимодействующих процессов в компьютерных сетях. В соответствии с первой из них связь между процессами устанавливается без функциональной среды между ними. Правильность понимания действий, происходящих в рамках соединяемых процессов взаимодействующих АС, обеспечивается соответствующими средствами теледоступа в составе сетевых операционных систем (СОС). Однако предусмотреть такие средства на все случаи соединения процессов нереально. Поэтому в соответствии со второй концепцией взаимодействующие процессы в сетях соединяются с помощью функциональной среды, обеспечивающей выполнение определенного свода правил – протоколов связи процессов. Протоколы, регламентирующие передачу данных, очень сложны, так как для обеспечения эффективности интерфейса необходимо согласовать достаточно большой объем информации. Они охватывают практически все фазы обмена в сети, в том числе синхронизацию тактовых генераторов компьютера-получателя и компьютераотправителя, процедуру кодирования передаваемой информации, инструкции о том, как передать информацию по различным маршрутам с разными схемами адресации без потери ее целостности.

Обычно протоколы связи процессов реализуются с учетом принципа коммутации пакетов, когда перед передачей сообщение разбивается на блоки – пакеты определенной длины. Каждый пакет снабжается служебной информацией и превращается в независимую единицу передачи информации. На приемной стороне из поступающих пакетов формируется передаваемое сообщение.

Для обеспечения обмена информацией между компьютерными сетями или между компьютерами данной КС в 1978 г. Международная организация по стандартизации (МОС) разработала многоуровневый комплект протоколов, известный как семиуровневая эталонная модель взаимодействия открытых систем (модель ВОС). Она получила широкое распространение и признание и является основой для анализа существующих сетей, создания новых сетей и стандартов. Одна из основных идей модели ВОС (OSI) – обеспечение относительно простого обмена информацией при использовании изготовленных разными фирмами аппаратных и программных средств, соответствующих стандартам ВОС. Конечные пользователи не должны заботиться о проблемах совместимости, которые все еще свойственны системам, включающим устройства различных производителей. Сеть, удовлетворяющая требованиям эталонной модели ВОС, называется открытой.

Многоуровневый подход, реализованный в модели ВОС, оказался очень эффективным. Каждый уровень протоколов включает определенный круг функций и сервиса.

Преимущество такого подхода заключается в возможности внесения изменений в один уровень без переработки всей модели в целом.

Абонентская система в соответствии с эталонной моделью ВОС представляется прикладными процессами и процессами взаимодействия АС (рис. 28). Последние разбиваются на семь функциональных уровней. Функции и процедуры, выполняемые в рамках одного функционального уровня, составляют соответствующий уровневый протокол. Отдельные уровни модели ВОС удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Нумерация уровневых протоколов идет снизу вверх, а их названия указаны на рис. 28. Функциональные уровни взаимодействуют на строго иерархической основе: каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая, в свою очередь, сервис у нижестоящего уровня.

При передаче информации по мере продвижения ее от верхнего (прикладного) уровня к нижнему (физическому) на каждом уровне, кроме физического, к ней добавляется заголовок, содержащий управляющую информацию для соответствующего уровня на принимающем компьютере. Управляющая информация в заголовках и концевиках содержит такие данные, как тип передаваемой информации, адреса станцииотправителя и станции-получателя, режим передачи (дуплексный, полудуплексный и т.

д.), метод кодирования информации, метод контроля ошибок. Приемный компьютер принимает информацию в виде потока битов и собирает ее в кадры. По мере продвижения кадров снизу вверх (от физического уровня к прикладному) протоколы соответствующих уровней удаляют предназначенную для них управляющую информацию, и, в конечном итоге, прикладная программа получит только исходные данные.

Стандартизация распространяется на протоколы связи одноименных уровней взаимодействующих АС. Связь между уровнями осуществляется в форме различных транзакций, известных как примитивы (primitives).

Рис. 28. Семиуровневая модель протоколов взаимодействия открытых систем Вычислительные машины, сети и телекоммуникационные системы Примитивы делятся на примитивы запроса, индикации, ответа и подтверждения.

Уровень, выступающий в роли пользователя сервиса, может активизировать функцию путем выдачи запроса на выполнение действия. Уровень, играющий роль поставщика сервиса, выдает подтверждение о выполнении функции. Иногда выдается запрос на действие, которое должен выполнять уровень на другом (взаимодействующим с первым) компьютере. Примитивы удобно рассматривать как управляющую информацию, которая представлена в кадрах, передаваемых в процессе обмена данными.

Функциональные уровни рассматриваются как составные независимые части процессов взаимодействия АС. Основные функции, реализуемые в рамках уровневых протоколов, заключаются в следующем.

Прикладной уровень – является границей между процессами сети и прикладными (пользовательскими) процессами. На этом уровне выполняются вычислительные, информационно-поисковые и справочные работы, осуществляется логическое преобразование данных пользователя. Прикладной уровень занимается непосредственно поддержкой прикладного процесса Определение пользователя и имеет дело с семантикой данных.

Прикладная программа, которой необходимо выполнить конкретную задачу, посылает конкретные данные на прикладной уровень, где определяется, как следует обрабатывать запрос прикладной программы. Важной функцией прикладного уровня является реализация протоколов электронной почты.

Прикладной уровень содержит несколько так называемых общих элементов прикладного сервиса (ACSE – Application Common Service Elements), представляемым прикладным процессам во всех системах, и специальных элементов прикладного сервиса (SASE – Specific Application Service Elements), которые обеспечивают сервис для конкретных прикладных программ, таких, как программы пересылки файлов и эмуляции терминалов.

На прикладном уровне реализуются функции управления сетями. По мере усложнения сетей вопрос административного управления ими приобретает все большее значение. Это касается прежде всего разработки, совершенствования и стандартизации информационно-управляющих протоколов.

Представительный уровень (уровень представления данных) – отвечает за физическое отображение (представление) информации, он преобразует информацию к виду, который необходим прикладным процессам пользователей, т. е. занимается синтаксисом данных.

Выше этого уровня поля данных имеют явную смысловую форму, а ниже его поля рассматриваются как передаточный груз, и их смысловое значение не влияет на обработку.

В основу работы представительного уровня положена единая для всех уровней модели ВОС система обозначений для описания абстрактного синтаксиса – ASCII. Эта система используется для описания структуры файлов, а на прикладном уровне применяется при выполнении операций пересылки файлов при работе с виртуальным терминалом. Одна из важнейших проблем, возникающих при управлении сетями – проблема шифрования данных, решается также с помощью ASCII.

Сеансовый уровень – предназначен для организации и управления сеансами взаимодействия прикладных процессов пользователей. Сеанс создается по запросу процесса пользователя, переданному через прикладной и представительный уровни, и включает: формирование сквозного канала связи между взаимодействующими прикладными процессами, управление обменом информацией между этими процессами, расторжение связи между указанными процессами по завершении обмена. Сеансовый уровень отвечает за режим передачи, т. е. на этом уровне определяется, какой будет передача между двумя прикладными процессами: полудуплексной (процессы будут передавать и принимать данные по очереди) или дуплексной (процессы будут передавать и принимать данные одновременно). На сеансовом уровне также осуществляется управление очередностью передачи данных и их приоритетом, синхронизация отдельных событий.

Транспортный уровень –занимает центральное место в иерархии уровней сети, обеспечивает связь между коммуникационной подсетью и верхними тремя уровнями, отделяет пользователя от физических и функциональных аспектов сети. Главная задача транспортного уровня – управление трафиком в сети. При этом выполняются такие функции, как деление длинных сообщений, поступающих от верхних уровней, на пакеты данных (при передаче информации) и формирование первоначальных сообщений из набора пакетов, полученных через канальный и сетевой уровни, исключая их потери или смещение (при приеме информации). Именно он определяет качество сервиса, которое требуется обеспечить посредством сетевого уровня, включая обнаружение и устранение ошибок.

Транспортный уровень есть граница, ниже которой пакет данных является единицей информации, управляемой сетью. Выше этой границы в качестве единицы информации рассматривается только сообщение. Этот уровень обеспечивает также сквозную отчетность в сети.

Сетевой уровень – главные его функции состоят в маршрутизации и буферизации, он прокладывает путь от отправителя к получателю через всю сеть. Протоколы верхних уровней выдают запросы на передачу пакетов из одной компьютерной системы в другую, а сетевой уровень обеспечивает практическую реализацию механизма этой передачи. Сетевой и транспортный уровни в некоторой степени дублируют друг друга, особенно в плане функций управления потоком данных и контроля ошибок. Главная причина такого дублирования заключается в существовании двух вариантов связи – с установлением соединения и без установления соединения. Эти варианты связи базируются на разных предположениях относительно надежности сети.

В сети с установлением соединения, работающей аналогично обычной телефонной системе, после установления соединения происходит обычный обмен информацией между взаимодействующими абонентами, причем абоненты не обязаны завершать каждое заявление своим именем, именем вызываемого партнера и его адресом, так как считается, что связь надежна и информация доставляется без искажений. В такой сети адрес Вычислительные машины, сети и телекоммуникационные системы получателя необходим лишь при установлении соединения, а в самих пакетах он не нужен. Сетевой уровень отвечает за контроль ошибок и управление потоком данных, в его функции входит также сборка пакетов на приемной стороне.

В сети без установления сетевой сервис, наоборот, предполагает, что контроль ошибок и управление потоком осуществляется на транспортном уровне. Поскольку пакеты, принадлежащие одному и тому же сообщению, могут передаваться по разным маршрутам и поступать к адресату в разное время, адрес получателя необходимо указывать в каждом пакете. Указывается также порядковый номер пакета в сообщении, так как соблюдение очередности приема пакетов не гарантируется.

Канальный уровень – определяет правила совместного использования физического уровня узлами связи. Его главные функции: управление доступом к передающей среде (т. е. реализация выбранного метода доступа к общесетевым ресурсам) и управление передачей данных по информационному каналу, включающее генерацию стартового сигнала и организацию начала передачи информации, передачу информации по каналу, проверку получаемой информации и исправление ошибок, отключение канала при его неисправности и восстановление передачи после ремонта, генерацию сигнала окончания передачи и перевод канала в пассивное состояние. В обязанности канального уровня входит также прием пакетов, поступающих с сетевого уровня, и подготовка пакетов к передаче, укладывая их в кадры, которые являются контейнерами для пакетов. Принимая информацию с физического уровня в виде потока битов, канальный уровень должен определять, где начинается и где заканчивается передаваемый блок, и обнаруживать ошибки передачи. В случае обнаружения ошибки осуществляется инициализация соответствующих действий по восстановлению потерянных, искаженных и даже дублированных действий (характер этих действий определяется реализуемым методом защиты от ошибок).

Канальный и физический уровни определяют характеристики физического канала и процедуру передачи по нему кадров.

Физический уровень – непосредственно связан с каналом передачи данных, обеспечивает физический путь для электрических сигналов, несущих информацию. На этом уровне осуществляется установление, поддержка и расторжение соединения с физическим каналом, определение электрических и функциональных параметров взаимодействия компьютера с коммуникационной подсетью.

Физический уровень наименее противоречивый, его функции реализованы только аппаратными средствами, причем на аппаратуру разработаны и вошли в обиход международные стандарты.

Для физического уровня определен подробный список рекомендованных к использованию соединений. Он может обеспечивать как асинхронный, так и синхронный режимы передачи информации. На физическом уровне определяются такие важнейшие компоненты сети, как тип коаксиального кабеля, витой пары, волоконнооптического кабеля. На этом же уровне определяется схема кодирования для представления двоичных значений при передаче по каналу связи и обеспечения синхронизации сигналов (синхронизации работы генераторов тактовых импульсов передающей и приемной стороны).

Совершенствование эталонной модели ВОС для ЛКС привело к декомпозиции канального и физического уровней. Канальный уровень разделен на два подуровня:

подуровень управления логическим каналом (передача кадров между рабочими станциями, включая исправление ошибок, диагностика работоспособности узлов сети) и подуровень управления доступом к передающей среде (реализация алгоритма доступа к среде и адресация станций сети). Физический уровень делится на три подуровня: передачи физических сигналов, интерфейса с устройством доступа и подключения к физической среде.

В ЛКС процедуры и протоколы управления на нижних уровнях модели ВОС не отличаются сложностью, поэтому эти уровни реализуются в основном техническими средствами, называемыми станциями локальной сети (СЛС) и адаптерами. По существу, адаптер вместе с физическим каналом образует информационный моноканал, к которому подключаются системы сети, выступающие в качестве абонентов моноканала.

4.3. Управление доступом к передающей среде Метод доступа к предающей среде – это совокупность правил, по которым узлы сети получают доступ к ресурсу. Иначе: это способ «захвата» передающей среды, способ определения того, какая из рабочих станций сети может следующей использовать ресурсы сети. Так же называется набор правил (алгоритм), используемых сетевым оборудованием, чтобы направить поток сообщений через сеть, а также один из основных признаков, по которым различают сетевое оборудование.

Методы доступа к передающей среде реализуются протоколами передачи данных (ППД) нижнего уровня (протоколами управления каналом). ППД нижнего уровня – это совокупность процедур, выполняемых на нижних уровнях модели ВОС по управлению потоками данных между рабочими станциями сети на одном физическом канале связи.

Методы доступа к передающей среде и соответствующие ППД нижнего уровня, могут быть разделены на следующие классы [33]:

• методы, основанные на резервировании времени, принадлежат к числу наиболее ранних и простых. Любая РС осуществляет передачу только в течение временных интервалов (слотов, определяющих начало и продолжительность передачи), заранее для нее зарезервированных. В неприоритетных системах слоты распределяются между станциями поровну, в системе с учетом приоритетов некоторые станции за фиксированный интервал времени получают большее число слотов. Станция, владеющая слотом, получает канал в свое полное распоряжение. Такие методы целесообразно применять в сетях с малым числом РС, так как канал используется неэффективно;

• селективные методы, при реализации которых с помощью соответствующих ППД рабочая станция осуществляет передачу только после получения разрешения, направляемого каждой РС по очереди центральным управляющим органом сети (такой алгоритм называется циклическим опросом), или это разрешение передается от станции к станции (алгоритм передачи маркера);

• методы, основанные на соперничестве (методы случайного доступа, методы «состязаний» рабочих станций), когда каждая РС пытается «захватить» передающую среду;

• кольцевые методы, предназначенные только для ЛКС с кольцевой топологией. К ним относятся два метода – вставка регистров и сегментированная передача (метод временных сегментов).

Реализация метода вставки регистра связана с необходимостью наличия в РС регистра (буфера), подключаемого параллельно к кольцевому моноканалу. В регистр записывается кадр для передачи, и станция ожидает межкадрового промежутка в моноканале.

С его появлением регистр включается в моноканал и содержимое регистра передается в линию. Если во время передачи станция получает кадр, он записывается в буфер и передается вслед за кадром, передаваемым этой станцией. Допускается «подсадка» в моноканал нескольких кадров.

В случае использования сегментированной передачи временные сегменты одинаковой протяжности формируются управляющей станцией сети и циркулируют по кольцевому моноканалу. Каждая станция, периодически обращаясь в сеть, может дождаться Вычислительные машины, сети и телекоммуникационные системы временного сегмента, помеченного меткой «свободен». В этот сегмент станция помещает свой кадр, и при этом метка «свободен» заменяется меткой «занят». После доставки кадра адресату сегмент вновь освобождается. Важным преимуществом такого метода является возможность одновременной передачи кадров несколькими станциями, однако управление сетью, где этот метод используется, значительно сложнее.

Детализация такого деления методов доступа и ППД нижнего уровня приведена на рис. 29. Все ППД делятся на два класса [4]: ППД типа первичный/вторичные и одноранговые ППД. Первые из них предполагают наличие в сети первичного (главного) узла, который управляет всеми остальными (вторичными) узлами, подключенными к каналу, и определяет, когда и какие узлы могут производить обмен данными. В сетях, где реализуются одноранговые (одноуровневые, равноранговые) протоколы, все узлы имеют одинаковый статус. Однако, если предварительно узлам присвоить разные приоритеты, то для них устанавливается неравноправный доступ в сеть.

ППД типа первичный/вторичные могут быть реализованы на основе нескольких технологий, образующих две группы: с опросом и без опроса (рис. 29).

Наибольшее распространение в сетях с опросом получили протоколы «опрос с остановкой и ожиданием» и «непрерывный автоматический запрос на повторение». Оба протокола относятся к классу ППД, реализующих селективные методы доступа к передающей среде, хорошо известные по применению в многоточечных линиях глобальных сетей. Суть таких технологий доступа заключается в том, что первичный узел последовательно предлагает вторичным узлам подключиться к общему каналу передачи. В ответ на такой запрос вторичный узел, имея подготовленные данные, осуществляет передачу. В противном случае выдается короткий пакет данных типа «данных нет», хотя в современных системах, как правило, вместо этого пакета, реакцией является «молчание».

Рис. 29. Классификация ППД нижнего уровня Получил распространение способ организации запроса – циклический опрос, т. е.

последовательное обращение к каждому вторичному узлу в порядке очередности, определяемом списком опроса. Цикл завершается после опроса всех вторичных узлов из списка. Для сокращения потерь времени, связанных с опросом неактивных вторичных узлов, применяются специальные варианты процедуры опроса: наиболее активные узлы в течение одного цикла опрашиваются несколько раз; наименее активные узлы опрашиваются один раз в течение нескольких циклов; частота опроса отдельных узлов меняется динамически в соответствии с изменением их активности. В сетях с многоточечными линиями применяется также опрос по принципу «готов-вперед». В каждой многоточечной линии опрос начинается с самого удаленного вторичного узла к другому, пока не достигнет узла, ближайшего к опрашивающему органу. Реализация такого принципа позволяет сократить время на распространение сигнала опроса от первичного узла к вторичным.

Системы с опросом отличаются простотой реализации протокола и невысокой стоимостью используемого оборудования.

Недостатки таких систем:

• неэффективное использование дорогостоящих ресурсов канала, связанное с передачей служебной информации (сигналов опроса, сигналов ответной реакции);

• простаивание вторичного узла, имеющего готовые для передачи данные, в ожидании поступления сигнала «опрос» (этот недостаток особенно ощущается при большом количестве вторичных узлов);

• наличие узкого места по надежности (отказ первичного узла приводит к отказу всей сети) и по пропускной способности, так как обмен данными между вторичными узлами осуществляется только через первичный узел.

Простейшей модификацией ППД типа первичный/вторичные с опросом является протокол, называемый «опрос с остановкой и ожиданием». При его использовании узел после передачи кадра ожидает от адресата подтверждения в правильности его пересылки, что сопряжено с дополнительными затратами времени.

Определение Другой пример протоколов типа первичный/вторичные с опросом – «непрерывный автоматический запрос на повторение передачи данных».

Применяется в дуплексных системах (в системах передачи данных с решающей обратной связью), допускающих одновременную передачу данных в обоих направлениях между взаимодействующими узлами.

В системах с таким протоколом (он называется также протоколом ARQ) узел связи может автоматически запрашивать другой узел и повторно производить передачу данных. На передающей и принимающей станциях устанавливаются так называемые передающие и принимающие окна и выделяется время и необходимые ресурсы на непрерывную передачу (прием) фиксированного числа кадров. Кадры, принадлежащие данному окну, передаются без периодических подтверждений со стороны адресата о приеме очередного кадра. Подтверждение передается после получения всех кадров окна, что обеспечивает экономию времени на передачу фиксированного объема информации по сравнению с предыдущим протоколом. Однако приемник должен иметь достаточный объем зарезервированной памяти для обработки непрерывно поступающего трафика.

В системах ARQ важное значение имеет размер окна (количество кадров в окне).

Чем больше окно, тем большее число кадров может быть передано без ответной реакции Вычислительные машины, сети и телекоммуникационные системы со стороны приемника и, следовательно, тем большая экономия достигается за счет сокращения служебной информации. Но увеличение размера окна сопровождается выделением больших ресурсов и буферной памяти для обработки поступающих сообщений.

Кроме того, это негативно отражается на эффективности реализуемых способов защиты от ошибок. В настоящее время в сетях с протоколом ARQ предусматриваются семикадровые окна. Концепция скользящих окон, реализованная в этом протоколе, достаточно проста. Сложность заключается лишь в том, что первичный узел, связанный с десятками и даже сотнями вторичных узлов, должен поддерживать окно с каждым из них, обеспечивая управление потоками данных и эффективность их передачи.

Протоколы типа первичный/вторичные без опроса также получили определенное распространение. К ним относятся:

• запрос передачи/разрешение передачи;

• разрешить/запретить передачу;

• множественный доступ с временным разделением.

Общим для этих протоколов является то, что инициатива в подаче запроса на обслуживание принадлежит, как правило, вторичному органу, причем запрос подается первичному органу, если действительно имеется необходимость в передаче или в получении данных от другого органа. Эффективность протоколов по сравнению с ППД с опросом будет тем выше, чем в большей степени вторичные органы отличаются друг от друга по своей активности, т. е. по частоте подачи запросов на обслуживание. Первые два протокола без опроса реализуют селективные методы доступа к передающей среде, а третий – методы, основанные на резервировании времени.

Протокол типа запрос передачи/разрешение передачи применяется в полудуплексных каналах связи ЛКС, так как взаимосвязан с распространенным короткодистанционным физическим интерфейсом RS-232-C. Организация передачи данных между вторичным и первичным органами производится в такой последовательности: выдача вторичным органом запроса на передачу – выдача первичным органом сигнала разрешения на передачу вторичным органом – передача данных от вторичного органа к первичному сброс сигнала первичным органом по завершении передачи.

Протокол типа разрешить/запретить передачу часто используется периферийными устройствами (принтерами, графопостроителями) для управления входящим в них трафиком. Первичной орган (обычно компьютер) посылает данные в периферийный узел (вторичный орган), скорость работы которого существенно меньше скорости работы компьютера и скорости передачи данных каналом. В связи с этим возможно переполнение буферного ЗУ периферийного узла. Для предотвращения переполнения периферийный узел посылает к компьютеру сигнал «передача выключена», получив который компьютер прекращает передачу и сохраняет данные до тех пор, пока не получит сигнал «разрешить передачу», означающий, что буферное ЗУ освободилось и периферийный узел готов принять новые данные.

Множественный доступ с временным разделением используется в спутниковых сетях связи. Первичный орган (главная, эталонная станция сети) принимает запросы от вторичных (подчиненных) станций на предоставление канала связи и, реализуя ту или иную дисциплину обслуживания запросов, определяет, какие именно станции и когда могут использовать канал в течение заданного промежутка времени, т. е. предоставляет каждой станции слот. Получив слот, вторичная станция осуществляет временную подстройку, чтобы произвести передачу данных за заданный слот.

Одноранговые протоколы разделяются на две группы: без приоритетов (в неприоритетных системах) и с учетом приоритетов (в приоритетных системах).

Мультиплексная передача с временным разделением – наиболее простая равноранговая неприоритетная система, где реализуются методы доступа к передающей среде, основанные на резервировании времени. Используется жесткое расписание работы абонентов: каждой станции выделяется интервал времени (слот) использования канала связи, и все интервалы распределяются между станциями поровну.

Недостатки такого протокола:

• возможность неполного использования канала, когда станция, получив слот, не может полностью загрузить канал из-за отсутствия необходимого объема данных • нежелательные задержки в передаче данных, когда станция, имеющая важную и срочную информацию, вынуждена ждать своего слота или когда выделенного слота недостаточно для передачи подготовленных данных и необходимо ждать следующего слота.

Множественный доступ с прослушиванием несущей частоты и разрешением коллизий, английская аббревиатура которого CSMA/CD – Caner Sense Maltiple Access with Collection Detection. Это наиболее распространенный недерминированный метод случайного доступа к передающей среде.

Работа сети под управлением такого протокола осуществляется следующим образом. Все станции сети, будучи равноправными, перед началом передачи работают в режиме прослушивания канала. Если канал свободен, станция начинает передачу; если занят, станция ожидает завершения передачи. Сеть является равноранговой, поэтому в результате соперничества за канал могут возникнуть коллизии: станция В может передать свой кадр, не зная, что станция А уже захватила канал, поскольку от станции А к станции В сигнал распространяется за конечное время. В результате станция В, начав передачу, вошла в конфликт со станцией А.

Возникает коллизия, которая представляет собой явление взаимного искажения кадров, отправленных почти одновременно несколькими станциями сети. Результатом коллизии является «затор» или «пробка» – короткая последовательность бит с хаотическим распределением единиц и нулей.

Определение «Пробка» распространятся по всей сети, ее получают все станции, в том числе и те, которые только что отправили в канал свои кадры. Для них это сигнал («пробка» во много раз короче кадра), что отправленные кадры потеряны, и необходима их повторная передача.

Важным аспектом коллизии является «окно коллизии» – интервал времени, необходимый для распространения «пробки» по каналу и обнаружения ее любой станцией сети. В наихудших для одноканальной сети условиях время, необходимое для обнаружения коллизии, в два раза больше задержки распространения сигнала в канале, так как образовавшаяся «пробка» должна достигнуть всех станций сети. Чтобы окно коллизии было меньше, такой способ доступа целесообразно применять в сетях с небольшими расстояниями между станциями, т. е. в локальных сетях (вероятность появления коллизий возрастает с увеличением этого расстояния).

Коллизия – это нежелательное явление, приводящее к ошибкам в работе сети и поглощающее много времени для ее обнаружения и ликвидации последствий. Поэтому необходимо реализовать некоторый алгоритм, позволяющий либо избежать коллизий, либо минимизировать их последствия. В сети CSMA/CD эта проблема решается на уровне управления доступом к среде. При обработке коллизии компонент управления доступом к среде передающей станции выполняет две функции:

Вычислительные машины, сети и телекоммуникационные системы •усиливает эффект коллизии путем передачи специальной последовательности битов с целью удлинения «пробки» так, чтобы ее смогли заметить все другие передающие станции, вовлеченные в коллизию («пробка» должна быть по меньшей мере длиной в 32 бита, но не более 48 бит). Ограничение длины «пробки» сверху необходимо для того, чтобы станции ошибочно не приняли ее за действительный кадр. Любой кадр длиной менее 64 байт считается фрагментом испорченного сообщения и игнорируется принимающими станциями сети;

• после выполнения первой функции прекращает передачу и планирует ее на более позднее время, определяемое на основе случайного выбора интервала ожидания перед повторной выдачей испорченного кадра.

Сети CSMA/CD реализуются достаточно просто и при малой загрузке обеспечивают быстрый доступ к передающей среде, а также позволяют легко подключать и отключить станции. Они обладают высокой живучестью, поскольку большинство ошибочных и неблагоприятных условий приводит либо к молчанию, либо к конфликту (а обе эти ситуации поддаются обработке) и, кроме того, нет необходимости в центральном управляющем органе сети. Их основной недостаток: при больших нагрузках время ожидания доступа к передающей среде становится большим и меняется непредсказуемо, следовательно не гарантируется обеспечение предельно допустимого времени доставки кадра. Такие системы доступа применяются в незагруженных локальных сетях с небольшим числом абонентских станций (с увеличением числа станций увеличивается вероятность возникновения коллизий).

Метод передачи маркера широко используется в неприоритетных и приоритетных сетях с магистральной (шинной), звездообразной и кольцевой топологией. Он относится к классу селективных методов: право на передачу данных станции получают в определенном порядке, задаваемом с помощью маркера, который представляет собой уникальную последовательность бит информации (уникальный кадр). Магистральные сети, использующие этот метод, называются сетями типа «маркерная шина», а кольцевые сети – сетями типа «маркерное кольцо».

Протокол типа «маркерная шина» (рис. 30) применяется в локальных сетях с шинной или звездообразной топологией. Право пользования каналом передается организованным путем. Маркер содержит адресное поле, где записывается адрес станции, которой предоставляется право доступа в канал. Станция, получив маркер со своим адресом, имеет исключительное право на передачу данных (кадра) по физическому каналу. Вслед за своим кадром станция отправляет маркер другой станции, которая является очередной по установленному порядку владения правом на передачу (для этого в адресном поле маркера стирается свой адрес и вместо него записывается адрес очередной станции, так как каждой станции известен идентификатор очередной станции). Станции получают маркер в циклической последовательности, при этом в физическом канале формируется так называемое логическое кольцо. Все станции «слушают» канал, но захватить его для передачи данных может только та станция, которая указана в адресном поле маркера. Работая в режиме прослушивания канала, принять переданный кадр может станция, адрес которой указан в поле адреса получателя этого кадра.

Рис. 30. Протокол типа «маркерная шина»

S– адрес следующей станции.

В сетях типа «маркерная шина», помимо передачи маркера, решается проблема потери маркера из-за повреждения одного из узлов сети и реконфигурации логического кольца, когда в кольцо добавляется или из него удаляется один из узлов.

Преимущества таких сетей:

• не требуется физического упорядочения подключенных к шине станций, так как с помощью механизма логической конфигурации можно обеспечить любой порядок передачи маркера;

• имеется возможность использования в загруженных сетях;

• возможна передача кадров произвольной длины.

Протокол типа «маркерное кольцо» применяется в локальных сетях с кольцевой топологией, где сигналы распространяются через однонаправленные двухточечные пути между узлами. Узлы и однонаправленные звенья соединяются последовательно, образуя кольцо (рис. 31). В отличие от сетей с шинной типологией, где узлы действуют только как передатчики или приемники и отказ узла или удаление его из сети не влияет на передачу сигнала к другим узлам, здесь все узлы играют активную роль, участвуя в ретрансляции, усилении, анализе и модификации приходящих сигналов.

Вычислительные машины, сети и телекоммуникационные системы Рис. 31. Протокол типа «маркерное кольцо»:

а – маркер свободен; б – маркер занят

КИУ КИУ

КИУ – кольцевое интерфейсное устройство В качестве маркера также используется уникальная последовательность битов, но он не имеет адреса. Маркер снабжается полем занятости, в котором записывается один из кодов, обозначающих его состояние – свободное или занятое. Если ни один из узлов сети не имеет данных для передачи, свободный маркер циркулирует по кольцу, совершая однонаправленное (против часовой стрелки) перемещение. В каждом узле маркер задерживается на время, необходимое для его приема, анализа с целью установления занятости и ретрансляции. В выполнении этих функций задействованы кольцевые интерфейсные устройства (КИУ).

Свободный маркер означает, что кольцевой канал свободен и что любая станция, имеющая данные для передачи, может его использовать. Получив свободный маркер, станция с готовым для передачи кадром, меняет состояние маркера на «занятый», передает его дальше по кольцу и добавляет к нему кадр. Занятый маркер вместе с кадром совершает полный оборот по кольцу и возвращается к станции-отправителю. По пути станция-получатель, удостоверившись по адресной части кадра, что именно ей он адресован, снимает копию с кадра. Изменить состояние маркера снова на свободное может только тот узел, который изменил его на занятое. По возвращении занятого маркера с кадром данных к станции-отправителю кадр удаляется из кольца, а состояние маркера меняется на свободное, после чего любой узел может захватить маркер и начать передачу данных. С целью предотвращения монополизации канала станция-отправитель не может повторно использовать возвращенный к ней маркер для передачи другого кадра данных. Если после передачи свободного маркера в кольцо он, совершив полный оборот, возвращается к станции-отправителю в таком же состоянии (это означает, что все другие станции сети не нуждаются в передаче данных), станция может совершить передачу другого кадра.

В кольцевой сети с передачей маркера также решается проблема потери маркера в результате ошибок при передаче или при сбоях в узле. Отсутствие передач в сети означает потерю маркера. Функции восстановления работы сети в таких случаях выполняет сетевой мониторный узел.

Можно указать на следующие преимущества протокола типа «маркерное кольцо»:

• протокол может быть использован в загруженных сетях;

• имеется принципиальная возможность (и в некоторых сетях она реализована) осуществлять одновременную передачу несколькими станциями сети;

• имеется возможность проверки ошибок при передаче данных: станцияотправитель, получив свой кадр от станции-получателя, сверяет его с исходным вариантом кадра. В случае наличия ошибки, кадр передается повторно.

Недостатки такого протокола:

• протокол целесообразно использовать только в локальных сетях с относительно небольшим количеством станций, так как в противном случае время на передачу сообщения, состоящего из многих кадров, может оказаться неприемлемо большим;

• невозможность передачи кадров произвольной длины;

• в простейшем (описанном выше) исполнении не предусматривается использование приоритетов, вследствие чего станция, имеющая для передачи важную информацию, вынуждена ждать освобождения маркера, что сопряжено с опасностью несвоевременной доставки данных адресату.

Приоритетные системы однорангового типа представлены тремя подходами, реализованными в приоритетных слотовых системах (в системах с приоритетами и временным квантованием), в системах с контролем несущей частоты без коллизий и в системах с передачей маркера с приоритетами.

Приоритетные слотовые системы подобны бесприоритетным системам с мультиплексной передачей и временным разделением, однако использование канала производится на приоритетной основе. Критериями для установления приоритетов могут быть:

предшествующее владение слотом; объем передаваемых данных (чем он меньше, тем выше приоритет) и др. Здесь возможно децентрализованное обслуживание, но для этого необходима загрузка параметров приоритетов в память каждой станции. Недостатки системы:

длина данных строго ограничена (в течение заданного слота они должны быть переданы);

существует возможность простоя канала, присущая всем протоколам, которые реализуют методы доступа, основанные на резервировании времени.

В системах с контролем несущей частоты без коллизий используется специальная логика для предотвращения коллизий. Каждая станция сети имеет дополнительное устройство – таймер или арбитр. Оно определяет, когда станция может вести передачу без опасности появления коллизий. Главная станция для управления использованием канала не предусматривается. Установка времени на таймере, по истечении которого станция может вести передачу данных, осуществляется на приоритетной основе. Для станции с наивысшим приоритетом переполнение таймера наступает раньше, однако если она не намерена вести передачу, канал будет находиться в состоянии покоя, т. е. свободен, и тогда следующая по приоритету станция может захватить канал. Такие системы могут использоваться в более загруженных и протяженных сетях. Уменьшается также время простоя канала. Все это достигается за счет усложнения оборудования системы.

Приоритетные системы с передачей маркера применяются обычно в локальных сетях с кольцевой топологией.

Для каждой станции сети устанавливается свой уровень приоритета, причем чем выше уровень, тем меньше его номер. Назначение приоритетной схемы предусматривает Вычислительные машины, сети и телекоммуникационные системы цель: дать возможность каждой станции зарезервировать использование канала для следующей передачи. Каждая станция анализирует перемещающийся по кольцу маркер, который содержит поле резервирования (ПР). Если собственный приоритет выше, чем значение приоритета в ПР маркера, станция увеличивает значение приоритета в ПР до своего уровня, резервируя тем самым маркер на следующий цикл. Если в данном цикле какая-то другая станция не увеличит еще больше значение уровня приоритета в ПР, этой станции разрешается использовать маркер и канал во время следующего цикла передачи по кольцу (за время цикла маркер совершает полный оборот по кольцу). Для того чтобы запросы на обслуживание со стороны станций с низким приоритетом не были потеряны, станция, захватившая маркер, должна в своей памяти запомнить предыдущее значение уровня приоритета в поле резервирования. После «высвобождения» маркера, когда он завершит полный оборот по кольцу, станция восстанавливает в ПР предыдущий запрос к сети, имеющий более низкий приоритет.

Такой протокол более приемлем для обслуживания запросов, существенно отличающихся по степени их важности и срочности. Однако его применение требует значительного усложнения процедуры обслуживания запросов.

4.4. Информационная безопасность в компьютерных сетях Информационная безопасность компьютерной сети (КС) – это ее свойство противодействовать попыткам нанесения ущерба владельцам и пользователям сети при различных умышленных и неумышленных воздействиях на нее. Иначе говоря, это защищенность сети от случайного или преднамеренного вмешательства в нормальный процесс ее функционирования, а также от попыток хиОпределение щения, модификации или разрушения циркулирующей в сети информации.

Определены [16] три базовых принципа информационной безопасности, которая должна обеспечивать:

• конфиденциальность информации, т. е. ее свойство быть известной только допущенным (авторизованным) субъектам сети (пользователям, программам, процессам);

• целостность данных (ресурса) сети, т. е. свойство данных быть в семантическом смысле неизменными при функционировании сети, что достигается защитой данных от сбоев и несанкционированного доступа к ним;

• доступность информации в любое время для всех авторизованных пользователей.

Различают внешнюю и внутреннюю безопасность КС. Предметом внешней безопасности является обеспечение защиты КС от проникновения злоумышленников извне с целью хищения, доступа к носителям информации, вывода сети из строя, а также защиты от стихийных бедствий. Внутренняя безопасность включает обеспечение надежной работы сети, целостности ее программ и данных.

В рамках комплексного рассмотрения вопросов обеспечения информационной безопасности КС различают угрозы безопасности, службы безопасности и механизмы реализации функций служб безопасности.

Классификация угроз информационной безопасности КС. Ниже приводится классификация преднамеренных угроз безопасности КС, причем выделяются только основные типы угроз. Под угрозой безопасности понимается потенциально возможное воздействие на КС, прямо или косвенно наносящее урон владельцам или пользователям сети. Реализация угрозы называется атакой.

Угрозы можно классифицировать по следующим признакам [8]:

1. По цели реализации:

• нарушение целостности информации, что может привести к утрате или обесцениванию информации;

• нарушение конфиденциальности информации (использование ценной информации другими лицами наносит значительный ущерб интересам ее владельцев);

• частичное или полное нарушение работоспособности (доступности) КС.

2. По принципу воздействия на сеть:

• с использованием доступа субъекта КС (пользователя, процесса) к объекту (файлу данных, каналу связи). Доступ – это взаимодействие между субъектом и объектом (выполнение первым некоторой операции над вторым), приводящее к возникновению информационного потока от второго к первому;

• с использованием скрытых каналов, т. е. путей передачи информации, позволяющим взаимодействующим процессам (субъектам) обмениваться информацией таким способом, который нарушает системную политику безопасности.

3. По характеру воздействия на сеть:

• активное воздействие, связанное с выполнением нарушителем каких-либо действий: доступ к определенным наборам данных, программам, вскрытие пароля и т. д. Такое воздействие может осуществляться либо с использованием доступа, либо как с использованием доступа, так и с использованием скрытых каналов. Оно ведет к изменению состояния сети;

• пассивное воздействие, осуществляемое путем наблюдения каких-либо побочных эффектов (например, от работы программы) и их анализа. Пассивное воздействие всегда связано только с нарушением конфиденциальности информации в КС, так как при нем никаких действий с субъектами и объектами не производится. Оно не ведет к изменению состояния системы.

В свою очередь, активное преднамеренное воздействие может быть:

• кратковременным, свидетельствующим о случайности или нежелании злоумышленника привлечь к себе внимание (оно менее опасно, но зато имеет больше шансов остаться незамеченным), или долговременным, связанным с устойчивой заинтересованностью в чужом информационном пространстве с целью изучения его структуры и содержания;

• неразрушающим, когда сеть продолжает функционировать нормально, так как в результате такого воздействия не пострадали ни программы, ни данные, зато возможно хищение информации и нарушение ее конфиденциальности. Если оно не случайное, то является весьма опасным и свидетельствует о намерении злоумышленника использовать в дальнейшем найденный канал доступа к чужой информации;

• разрушающим, когда в результате воздействия на информационную среду внесены какие-либо изменения в программы и/или данные, что сказывается на работе сети. Его последствия при надлежащем ведении архивов могут быть сравнительно легко устранены;

• разовым или многократным, что свидетельствует о серьезности намерений злоумышленника и требует решительных ответных действий;

• зарегистрированным администратором сети при проведении периодического анализа регистрационных данных, свидетельствует о необходимости совершенствования или модификации системы защиты;

• незарегистрированным администратором сети.

Вычислительные машины, сети и телекоммуникационные системы 4. По способу активного воздействия на объект атаки:

• непосредственное воздействие, например, непосредственный доступ к файлам данных, программам, каналу связи и т. д. С помощью средств контроля доступа такое действие обычно легко предотвращается;

• воздействие на систему разрешений (в том числе захват привилегий). Здесь несанкционированные действия осуществляются относительно прав на объект атаки, а сам доступ к объекту выполняется потом законным образом;

• опосредованное воздействие (через других пользователей), например, когда злоумышленник каким-то образом присваивает себе полномочия авторизованного пользователя, выдавая себя за него, или путем использования вируса, когда вирус выполняет необходимые действия и сообщает о результате тому, кто его внедрил. Этот способ особенно опасен. Требуется постоянный контроль как со стороны администраторов и операторов за работой сети в целом, так и со стороны пользователей за своими наборами данных.

5. По используемым средствам атаки:

• с использованием злоумышленником стандартного программного обеспечения. В этом случае результаты воздействия обычно предсказуемы, так как большинство стандартных программ хорошо изучены;

• с использованием специально разработанных программ, что связано с большими трудностями, но может быть более опасным для сети.

6. По состоянию объекта атаки:

• воздействие на объект атаки, когда в момент атаки он находится в состоянии хранения информации (на диске, магнитной ленте, в оперативной памяти). В этом случае воздействие на объект обычно осуществляется с использованием несанкционированного доступа;

• воздействие на объект, когда осуществляется передача информации по линии связи между узлами сети или внутри узла. При таком состоянии объекта воздействие на него предполагает либо доступ к фрагментам передаваемой информации, либо прослушивание с использованием скрытых каналов;

• воздействие на объект, когда он находится в состоянии обработки информации. Здесь объектом атаки является процесс пользователя.

Приведенная классификация свидетельствует о сложности определения возможных угроз и способах их реализации. Отсюда вывод: не существует универсального способа защиты, который предотвратил бы любую угрозу. Необходимо объединение различных мер защиты для обеспечения информационной безопасности всей сети в целом.

Кроме перечисленных угроз информационной безопасности следует добавить следующие угрозы:

• несанкционированный обмен информацией между пользователями, что может привести к получению одним из них не предназначенных ему сведений;

• отказ от информации, т. е. непризнание получателем (отправителем) этой информации факта ее получения (отправления), что может привести к различным злоупотреблениям;

• отказ в обслуживании, который может сопровождаться тяжелыми последствиями для пользователя, обратившегося с запросом на предоставление сетевых услуг.

В случае преднамеренного проникновения в сеть различают следующие виды воздействия на информацию [7; 8]:

• уничтожение, т. е. физическое удаление информации с носителей информации (выявляется при первой же попытке обращения к этой информации, а все потери легко восстанавливаются при налаженной системе резервирования и архивации);

• искажение – нарушение логики работы программ или связей в структурированных данных, не вызывающих отказа в их работе или использовании (поэтому это один из опасных видов воздействия, так как его нельзя обнаружить);

• разрушение – нарушение целостности программ и структуры данных, вызывающих невозможность их использования: программы не запускаются, а при обращении к структурированным данным нередко происходит сбой;

• подмена, т. е. замена имеющихся программ или данных другими под тем же именем и так, что внешне это не проявляется. Это также опасный вид воздействия, надежным способом защиты от него является побитовое сравнение с эталонной версией программы;

• копирование, т. е. получение копии программ или данных на другом компьютере. Это воздействие наносит наибольший ущерб в случаях промышленного шпионажа, хотя и не угрожает нормальному функционированию сети;

• добавление новых компонентов, т. е. запись в память компьютера других данных или программ, ранее в ней отсутствовавших. Это опасно, так как функциональное назначение добавляемых компонентов неизвестно;

• заражение вирусом – это такое однократное воздействие на программы или данные, при котором они изменяются и, кроме того, при обращении к ним вызываются подобные изменения в других, как правило, аналогичных компонентах: происходит «цепная реакция», распространение вируса в компьютере или Величина наносимого ущерба определяется видом несанкционированного воздействия и тем, какой именно объект информационных ресурсов ему подвергся.

Возможными основными объектами воздействия могут быть:

• сетевые операционные системы (СОС) и ОС компьютеров конечных пользователей (в настоящее время они сертифицированы на определенный класс защиты, предусматривающий требование защиты самой себя от изменений);

• служебные, регистрационные таблицы и файлы обслуживания сети (это файлы паролей, прав доступа пользователей к ресурсам, ограничения во времени и функциям и и.д.), программы и таблицы шифровки информации;

• специальные таблицы и файлы доступа к данным на компьютерах конечных пользователей (пароли файлов, или архивов, индивидуальные таблицы шифровки/дешифровки данных, таблицы ключей и т. д.);

• прикладные программы на компьютерах сети и их настроечные таблицы;

• информационные файлы компьютеров сети, базы данных, базы знаний, текстовые документы, электронная почта и т. д.;

• параметры функционирования сети – ее производительность, пропускная способность, временные показатели обслуживания пользователей. Признаками возможного несанкционированного воздействия на сеть, сопровождаемого ухудшением этих параметров, являются: замедление обмена информацией в сети, возникновение необычно больших очередей обслуживания запросов пользователей, резкое увеличение трафика в сети или явно преобладающее время загрузки процессора сервера каким-либо отдельным процессором. Все эти признаки могут быть выявлены и обслужены только при четко отлаженном аудите и текущем мониторинге работы сети.

Основными источниками преднамеренного проникновения в сеть являются [7; 8]:

• хакеры (взломщики сетей), в действиях которых почти всегда есть состав преступления. Наиболее опасны сформировавшиеся и хорошо организованные виртуальные группы хакеров;

Вычислительные машины, сети и телекоммуникационные системы • уволенные или обиженные сотрудники сети. Они представляют особую опасность и способны нанести существенный ущерб (особенно если речь идет об администраторах сети), так как обладают знаниями сети и принципами защиты информации и по долгу службы имеют доступ к программам сниффинга (перехвата паролей и имен пользователей в сети, ключей, пакетов и т. д.);

• профессионалы-специалисты по сетям, посвятившие себя промышленному • конкуренты, степень опасности которых зависит от ценности информации, к которой осуществляется несанкционированный доступ, и от уровня их профессионализма.

Нейтрализация угроз безопасности осуществляется службами безопасности (СБ) сети и механизмами реализации функций этих служб.

Документами Международной организации стандартизации (МОС) определены следующие службы безопасности.

1. Аутентификация (подтверждение подлинности) – обеспечивает подтверждение или опровержение того, что объект, предлагающий себя в качестве отправителя сообщения (источника данных), является именно таковым как на этапе установления связи между абонентами, так и на этапе передачи сообщения.

2. Обеспечение целостности передаваемых данных – осуществляет выявление искажений в передаваемых данных, вставок, повторов, уничтожение данных. Эта служба имеет модификации и отличия в зависимости от того, в каких сетях (виртуальных или дейтаграммных, об этих сетях см. п. 4.8) она применяется, какие действия выполняются при обнаружении аномальных ситуаций (с восстановлением данных или без восстановления), каков охват передаваемых данных (сообщение или дейтаграмма в целом либо их части, называемые выборочными полями).

3. Засекречивание данных – обеспечивает секретность передаваемых данных: в виртуальных сетях – всего передаваемого сообщения или только его выборочных полей, в дейтаграммных – каждой дейтаграммы или только отдельных ее элементов. Служба засекречивания потока данных (трафика), являющаяся общей для виртуальных и дейтаграммных сетей, предотвращает возможность получения сведений об абонентах сети и характере использования сети.

4. Контроль доступа – обеспечивает нейтрализацию попыток несанкционированного использования общесетевых ресурсов.

5. Защита от отказов – нейтрализует угрозы отказов от информации со стороны ее отправителя и/или получателя.

Первые три службы характеризуются различиями для виртуальных и дейтаграммных сетей, а последние две службы инвариантны по отношению к этим сетям.

Механизмы реализации функций указанных СБ представлены соответствующими, преимущественно программными средствами. Выделяются следующие механизмы:

шифрование, цифровая подпись, контроль доступа, обеспечение целостности данных, обеспечение аутентификации, подстановка трафика, управление маршрутизацией, арбитраж. Некоторые из них используются для реализации не одной, а нескольких СБ. Это относится к шифрованию, цифровой подписи, обеспечению целостности данных, управлению маршрутизацией.

Использование механизмов шифрования связано с необходимостью специальной службы генерации ключей и их распределения между абонентами сети.

Механизмы цифровой подписи основываются на алгоритмах асимметричного шифрования. Они включают процедуры формирования подписи отправителем и ее опознавание (верификацию) получателем.

Механизмы контроля доступа, реализующие функции одноименной СБ, отличаются многообразием. Они осуществляют проверку полномочий пользователей и программ на доступ к ресурсам сети.

Механизмы обеспечения целостности данных, реализуя функции одноименных служб, выполняют взаимосвязанные процедуры шифрования и дешифрования данных отправителя и получателя.

Механизмы обеспечения аутентификации, на практике обычно совмещаемые с шифрованием, цифровой подписью и арбитражем, реализуют одностороннюю или взаимную аутентификацию, когда проверка подписи осуществляется либо одним из взаимодействующих одноуровневых объектов, либо она является взаимной.

Механизмы подстановки трафика, используемые для реализации службы засекречивания потока данных, основываются на генерации фиктивных блоков, их шифрования и передаче по каналам связи. Этим затрудняется и даже нейтрализуется возможность получения информации об абонентах сети и характере потоков информации в ней.

Механизмы управления маршрутизацией обеспечивают выбор безопасных, физически надежных маршрутов для передачи секретных сведений.

Механизмы арбитража обеспечивают подтверждение третьей стороной (арбитром) характеристик данных, передаваемых между абонентами сети.

Службы безопасности и механизмы реализации их функций распределены по уровням эталонной модели ВОС [45].

4.5. Типы сетей связи и тенденции их развития Обеспечение взаимодействия пользователей глобальных, региональных и корпоративных компьютерных сетей осуществляется территориальными сетями связи (ТСС), которые будем называть также телекоммуникационными системами (ТКС). Понятие «территориальная» означает, что элементы сети связи распределены на значительной территории. Она создается в интересах всего государства, организации, фирмы, имеющей отделения по району, области или по всей стране.

Характерные особенности ТСС:

• разнотипность каналов связи – от проводных каналов тональной частоты до оптоволоконных и спутниковых;

• ограниченность числа каналов связи между удаленными абонентами, по которым необходимо обеспечить обмен данными, телефонную связь, видеосвязь, обмен факсимильными сообщениями;

• наличие такого критически важного ресурса как пропускная способность каналов связи.

Следовательно, ТСС – это географически распределенная сеть, объединяющая в себе функции традиционных сетей передачи данных и телефонных сетей и предназначенная для передачи трафика различной природы, с различными вероятностновременными характеристиками.

В Российской Федерации ТСС объединены во взаимосвязанную сеть связи.

В соответствии с Федеральным законом «О связи» «взаимосвязанная сеть связи РФ представляет собой комплекс технологически сопряженных сетей связи общего пользования и ведомственных сетей электросвязи на территории РФ, обеспеченный общим централизованным управлением, независимо от ведомственной принадлежности и форм собственности». Ее развитие и соОпределение Вычислительные машины, сети и телекоммуникационные системы вершенствование осуществляется с учетом технологического единства всех сетей и средств электросвязи в интересах их комплексного использования, повышения эффективности и устойчивости функционирования.

Сеть связи общего пользования (ССОП) как составная часть взаимосвяОпределение занной сети связи РФ включает в себя все сети электросвязи, находящиеся под юрисдикцией РФ (кроме выделенных и ведомственных сетей) и предназначена для предоставления услуг всем физическим и юридическим лицам на территории РФ. Ответственность за ее функционирование и развитие возлагается на федеральные органы исполнительной власти в Ведомственные сети связи (ВСС) создаются и функционируют для обеспечения производственных и социальных нужд федеральных органов исполнительной власти, находятся в их ведении и эксплуатируются ими. Они могут также использоваться для предоставления услуг связи населению и другим пользователям связи.

Выделенные сети связи на территории РФ могут создаваться любыми физическими и юридическими лицами, имеющими признанный правовой статус.

Корпоративные сети связи (КСС) предназначены для обеспечения производственно-хозяйственной деятельности (ПХД) корпораций (организаций, объединений). Появление корпораций по времени совпадает с распадом СССР, приватизацией государственных предприятий и целых отраслей. По своим функциям и статусу корпоративные сети связи могут быть приравнены к ведомственным сетям, поэтому имеют хождение оба термина. Можно согласиться с автором работы [20], где предлагается использовать термин «ведомственная сеть» к сетям преимущественно с коммутацией каналов, а термин «корпоративная сеть» – к интегрированным гибридным сетям.

Корпоративная сеть обеспечивает передачу информации между различными приложениями, используемыми в корпорации. Это инфраструктура корпорации, поддерживающая решение таких задач, как администрирование корпорации и передача управляющих воздействий между объектами управления, передача технологической и телеметрической информации вдоль линейно-протяженных коммуникаций и их техническое обслуживание, социально-культурное обеспечение сотрудников корпораций современными услугами связи и телерадиовещания. КСС, как правило, является территориально-распределенной, объединяющей офисы, подразделения и другие структуры, удаленные друг от друга на значительные расстояния. Она должна быть максимально универсальной, т. е. в ней должна быть заложена возможность интеграции уже существующих и будущих приложений. В настоящее время в КСС используются в основном достаточно медленные (десятки и сотни килобит в секунду, реже до 2 Мбит/с) арендованные линии связи, где существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных.

Естественным решением проблемы организации связи в территориальнораспределенных КСС является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить связь от офисов до ближайших узлов сети, а доставку информации между узлами берет на себя глобальная сеть. Обычно такой глобальной сетью является Internet.

Существующие аналоговые КСС построены главным образом на закрепленных и коммутируемых каналах и не отвечают возросшим требованиям потребителей к современным услугам передачи данных, речи, видеоизображений. Стратегическое направление развития КСС заключается в переходе к интегрированным цифровым линиям связи.

В основе развития современных сетей связи лежат процессы интеграции. Основные направления интеграционных процессов заключаются в следующем [20]:

• электронизация, т. е. переход всей техники и технологии электросвязи на электронную базу;

• компьютеризация – насыщение техники и технологии электросвязи компьютерами, что позволяет реализовать интеграцию на различных уровнях сетевого взаимодействия;

• цифровизация, которая благодаря своим преимуществам проникла во все структурные компоненты электросвязи: каналы, передающие и приемные устройства, оборудование коммутации и управления, в развитие и совершенствование элементной базы и технологий;

• интеллектуализация, которая, будучи естественным проявлением интеграционных процессов, способствует появлению и развитию новых услуг электросвязи;

• унификация, являющаяся важным фактором для развития систем электросвязи, удешевления оборудования и элементной базы, оптимизации взаимодействия сетей и служб электросвязи;

• персонализация, проявляющаяся, прежде всего, в переходе от адресации терминалов к единой системе адресации пользователей, когда каждый пользователь будет иметь единый адрес, независимо от того, в какую сеть он включен, какой вид связи использует и где находится в данный момент времени. Естественно, что для реализации этого направления интеграционных процессов необходима интеграция существующих систем адресации в сетях;

• глобализация, вытекающая из идеи создания глобальной информационной инфраструктуры (ГИИ) и вызванная необходимостью обмена информацией внутри постоянно расширяющегося пространства. Одно из направлений глобализации – интеграция российских сетей и систем электросвязи в глобальное информационное пространство;

• стандартизация, базовыми документами которой являются стандарты. Поскольку система электросвязи России должна гармонично объединиться с мировой, то и российские стандарты в области связи должны быть как можно ближе к мировым.

4.6. Линии связи и их характеристики В компьютерных сетях используются телефонные, телеграфные, телевизионные, спутниковые сети связи. В качестве линий связи применяются проводные (воздушные), кабельные, радиоканалы наземной и спутниковой связи. Различие между ними определяется средой передачи данных. Физическая среда передачи данных может представлять собой кабель, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

Проводные (воздушные) линии связи – это провода без изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе.

Традиционно они служат для передачи телефонных и телеграфных сигналов, но при отсутствии других возможностей применяются для передачи компьютерных данных. Проводные линии связи отличаются небольшой Определение пропускной способностью и малой помехозащищенностью, поэтому они быстро вытесняются кабельными линиями.

Вычислительные машины, сети и телекоммуникационные системы Кабельные линии включают кабель, состоящий из проводников с изоляцией в несколько слоев – электрической, электромагнитной, механической, и разъемы для присоединения к нему различного оборудования. В КС применяются в основном три типа кабеля: кабель на основе скрученных пар медных проводов (это витая пара в экранированном варианте, когда пара медных Определение проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует), коаксиальный кабель (состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции) и волоконно-оптический кабель (состоит из тонких – в 5-60 микрон-волокон, по которым распространяются световые сигналы).

Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (до 10 Гбит/с и выше), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро-, взрыво– и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); широкие области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т. д.).

Недостатки ВОЛС: подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал, необходимые для световодов высокоскоростные модемы пока еще дороги, световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Различные типы радиоканалов отличаются используемым частотным диапазоном и дальностью передачи информации.

Радиоканалы, работающие в диапазонах коротких, средних и длинных волн (КВ, СВ, ДВ), обеспечивают дальнюю связь, но при невысокой скорости переОпределение дачи данных. Это радиоканалы, где используется амплитудная модуляция сигналов. Каналы, работающие на диапазонах ультракоротких волн (УКВ), являются более скоростными, для них характерна частотная модуляция сигналов. Сверхскоростными являются каналы, работающие на диапазонах сверхвысоких частот (СВЧ), т. е. свыше 4 ГГц. В диапазоне СВЧ сигналы не отражаются ионосферой Земли, поэтому для устойчивой связи требуется прямая видимость между передатчиком и приемником. По этой причине сигналы СВЧ используются либо в спутниковых каналах, либо в радиорелейных, где Характеристики линий связи. К основным характеристикам линий связи относятся следующие [20]: амплитудно-частотная характеристика, полоса пропускания, затухание, пропускная способность, помехоустойчивость, перекрестные наводки на ближнем конце линии, достоверность передачи данных, удельная стоимость.

Характеристики линии связи часто определяются путем анализа ее реакций на некоторые эталонные воздействия, в качестве которых используются синусоидальные колебания различных частот, поскольку они часто встречаются в технике и с их помощью можно представить любую функцию времени. Степень искажения синусоидальных сигналов линии связи оценивается с помощью амплитудно-частотной характеристики, полосы пропускания и затухания на определенной частоте.

Амплитудно-частотная характеристика (АЧХ) дает наиболее полное представление о линии связи, она показывает, как затухает амплитуда синусоиды на выходе линии по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала (вместо амплитуды сигнала часто используется его мощность). Следовательно, АЧХ позволяет определять форму выходного Определение сигнала для любого входного сигнала. Однако получить АЧХ реальной линии связи весьма трудно, поэтому на практике вместо нее используются другие, упрощенные характеристики – полоса пропускания и затухание.

Полоса пропускания линии связи представляет собой непрерывный диапазон частот, в котором отношение амплитуды выходного сигнала ко входному превышает заранее заданный предел (обычно 0,5). Следовательно, полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений.

Ширина полосы пропускания, в наибольшей степени влияющая на максимально возможную скорость передачи информации по линии связи, это разность между максимальной и минимальной частотами синусоидального сигнала в данной полосе пропускания. Полоса пропускания зависит от типа линии и ее протяженности.

Следует делать различия между шириной полосы пропускания и шириной спектра передаваемых информационных сигналов. Ширина спектра передаваемых сигналов это разность между максимальной и минимальной значимыми гармониками сигнала, т.

е. теми гармониками, которые вносят основной вклад в результирующий сигнал. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет передаваться и приниматься приемником без искажений. В противном случае сигнал будет искажаться, приемник – ошибаться при распознавании информации, и, следовательно, информация не сможет передаваться с заданной пропускной способностью.

Затухание – это относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты.

Определение Затухание А измеряется в децибелах (dB, дБ) и вычисляется по формуле:

где Рвых, Рвх – мощность сигнала соответственно на выходе и на входе линии.

Для приблизительной оценки искажения передаваемых по линии сигналов достаточно знать затухание сигналов основной частоты, т. е. частоты, гармоника которой имеет наибольшую амплитуду и мощность. Более точная оценка возможна при знании затухания на нескольких частотах, близких к основной.

Пропускная способность линии связи – это ее характеристика, определяющая (как и ширина полосы пропускания) максимально возможную скорость передачи данных по линии. Она измеряется в битах в секунду (бит/с), а также в производных единицах (Кбит/с, Мбит/с, Гбит/с).

Определение Вычислительные машины, сети и телекоммуникационные системы Пропускная способность линии связи зависит от ее характеристик (АЧХ, ширины полосы пропускания, затухания) и от спектра передаваемых сигналов, который, в свою очередь, зависит от выбранного способа физического или линейного кодирования (т. е. от способа представления дискретной информации в виде сигналов). Для одного способа кодирования линия может обладать одной пропускной способностью, а для другого – другой.

При кодировании обычно используется изменение какого-либо параметра периодического сигнала (например, синусоидальных колебаний) – частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, параметры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида. Если у принимаемой синусоиды не меняется ни один из ее параметров (амплитуда, частота или фаза), то она не несет никакой информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду (для синусоиды это количество изменений амплитуды, частоты или фазы) измеряется в бодах. Тактом работы передатчика называют период времени между соседними изменениями информационного сигнала.

В общем случае пропускная способность линии в битах в секунду не совпадает с числом бод. В зависимости от способа кодирования она может быть выше, равна или ниже числа бод. Если, например, при данном способе кодирования единичное значение бита представляется импульсом положительной полярности, а нулевое значение – импульсом отрицательной полярности, то при передаче поочередно изменяющихся битов (серии одноименных битов отсутствуют) физический сигнал за время передачи каждого бита дважды изменяет свое состояние. Следовательно, при таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии влияет не только физическое, но и так называемое логическое кодирование, которое выполняется до физического кодирования и состоит в замене исходной последовательности бит информации новой последовательностью бит, несущей ту же информацию, но обладающей дополнительными свойствами (например, возможностью для приемной стороны обнаруживать ошибки в принятых данных или обеспечивать конфиденциальность передаваемых данных путем их шифрования). Логическое кодирование, как правило, сопровождается заменой исходной последовательности бит более длинной последовательностью, что негативно сказывается на времени передачи полезной информации.

Существует определенная связь между пропускной способностью линии и ее полосой пропускания. При фиксированном способе физического кодирования пропускная способность линии увеличивается с повышением частоты несущего периодического сигнала, так как это повышение сопровождается ростом информации, передаваемой в единицу времени. Но с повышением частоты этого сигнала увеличивается и ширина его спектра, который передается с искажениями, определяемыми полосой пропускания линии. Чем больше несоответствие между полосой пропускания линии и шириной спектра передаваемых информационных сигналов, тем больше подвергаются сигналы искажению и тем вероятнее ошибки в распознавании информации приемником. В итоге скорость передачи информации оказывается меньше, чем можно было предположить.

Клод Шеннон установил связь между полосой пропускания линии и ее максимально возможной пропускной способностью независимо от принятого способа физического кодирования:

где С– максимальная пропускная способность линии (бит/с);

F – ширина полосы пропускания линии (Гц);

Рс – мощность полезного сигнала;

Рш – мощность шума (помехи).

Как следует из этого соотношения, не существует теоретического предела пропускной способности линии с фиксированной полосой пропускания. Однако на практике повысить пропускную способность линии за счет значительного увеличения мощности передатчика или уменьшения мощности шума на линии довольно трудно и дорого. К тому же влияние этих мощностей на пропускную способность ограничено не прямопропорциональной зависимостью, а логарифмической.

Большее практическое применение получило соотношение, найденное Найквистом:

где М – количество различных состояний информационного параметра передаваемого сигнала.

В соотношении Найквиста, используемом также для определения максимально возможной пропускной способности лини связи, в явном виде не учитывается наличие шума на линии. Однако его влияние косвенно отражается в выборе количества состояний информационного сигнала. Например, для повышения пропускной способности линии можно было при кодировании данных использовать не 2 или 4 уровня, а 16. Но если амплитуда шума превышает разницу между соседними 16-ю уровнями, то приемник не сможет устойчиво распознавать передаваемые данные. Поэтому количество возможных состояний сигнала фактически ограничивается соотношением мощности сигнала и шума.

По формуле Найквиста определяется предельное значение пропускной способности канала для случая, когда количество состояний информационного сигнала уже выбрано с учетом возможностей их устойчивого распознавания приемником.

Помехоустойчивость линии связи – это ее способность уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде. Она зависит от типа используемой физической среды, а также от средств линии, экранирующих и подавляющих помехи. Наиболее помехоустойчивыми, малочувствительными ко внешнему электромагнитному излучению, являются Определение волоконно-оптические линии, наименее помехоустойчивыми – радиолинии, промежуточное положение занимают кабельные линии. Уменьшение помех, обусловленных внешними электромагнитными излучениями, достигается экранизацией и скручиванием проводников.

Перекрестные наводки на ближнем конце линии – определяют помехоустойчивость кабеля к внутренним источникам помех. Обычно они оцениваются применительно к кабелю, состоящему из нескольких витых пар, когда взаимные наводки одной пары на другую могут достигать значительных величин и создавать внутренние помехи, соизмеримые с полезным сигналом.

Достоверность передачи данных (или интенсивность битовых ошибок) характеризует вероятность искажения для каждого передаваемого бита данных. Причинами искажения информационных сигналов являются помехи на линии, а также ограниченность полосы ее пропускания. Поэтому повышение достоверности передачи данных достигается повышением степени помехоОпределение защищенности линии, снижением уровня перекрестных наводок в кабеле, использованием более широкополосных линий связи.

Вычислительные машины, сети и телекоммуникационные системы Для обычных кабельных линий связи без дополнительных средств защиты от ошибок достоверность передачи данных составляет, как правило, 10-4-10-6. Это значит, что в среднем из 104 или 106 передаваемых бит будет искажено значение одного бита.

Аппаратура линий связи (аппаратура передачи данных – АПД) является пограничным оборудованием, непосредственно связывающим компьютеры с линией связи. Она входит в состав линии связи и обычно работает на физическом уровне, обеспечивая передачу и прием сигнала нужной формы и мощности. Примерами АПД являются модемы, адаптеры, аналого-цифровые Определение и цифро-аналоговые преобразователи.

В состав АПД не включается оконечное оборудование данных (ООД) пользователя, которое вырабатывает данные для передачи по линии связи и подключается непосредственно к АПД. К ООД относится, например, маршрутизатор локальных сетей. Заметим, что разделение оборудования на классы АПД и ООД является достаточно условным.

На линиях связи большой протяженности используется промежуточная аппаратура, которая решает две основные задачи: повышение качества информационных сигналов (их формы, мощности, длительности) и создание постоянного составного канала (сквозного канала) связи между двумя абонентами сети. В ЛКС промежуточная аппаратура не используется, если протяженность физической среды (кабелей, радиоэфира) невысока, так что сигналы от одного сетевого адаптера к другому можно передавать без промежуточного восстановления их параметров.

В глобальных сетях обеспечивается качественная передача сигналов на сотни и тысячи километров. Поэтому через определенные расстояния устанавливаются усилители. Для создания между двумя абонентами сквозной линии используются мультиплексоры, демультиплексоры и коммутаторы.

Промежуточная аппаратура канала связи прозрачна для пользователя (он ее не замечает), хотя в действительности она образует сложную сеть, называемую первичной сетью и служащую основой для построения компьютерных, телефонных и других сетей.



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 10 |


Похожие работы:

«ЛИНИЯ УМК ПО МАТЕМАТИКЕ Г. К. МУРАВИНА, О. В. МУРАВИНОЙ В рамках Федеральных государственных образовательных стандартов перед всеми участниками образовательного процесса поставлены следующие задачи: формирование у учащихся представлений о математике как части мировой культуры, развитие креативности, самостоятельности мышления, интереса к предмету, самоконтроля и самооценки познавательной деятельности, способности к построению индивидуальных образовательных траекторий и др. Рассмотрим пути...»

«АНАЛИЗ ДЕЯТЕЛЬНОСТИ ТЕХНИКУМА ЗА 2012 – 2013 УЧЕБНЫЙ ГОД В 2012 - 20132 учебном году в деятельности ОГБОУ СПО Ульяновского техникума железнодорожного транспорта были выделены следующие направления: 1. Управление качеством подготовки конкурентоспособного специалиста в соответствии с требованиями рынка труда на основе федеральных государственных образовательных стандартов (ФГОС) нового поколения; 2. Совершенствование системы менеджмента качества образовательного процесса; 3. Доработка и внедрение...»

«Министерство образования и науки Украины НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАШИНОСТРОИТЕЛЬНЫЙ ФАКУЛЬТЕТ Кафедра основ конструирования машин и механизмов МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению курсового проекта по курсу “Детали машин” ЧАСТЬ ПЕРВАЯ Проектирование одноступенчатых редукторов с использованием КОМПАС для студентов направления Инженерная механика Днепропетровск НГУ 2008 2 Методические указания к выполнению курсового проекта по курсу “Детали машин” для студентов направления...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ С.А. Горячий ГОСУДАРСТВЕННОЕ И МУНИЦИПАЛЬНОЕ УПРАВЛЕНИЕ Учебно-методическое пособие Санкт-Петербург 2014 1 УДК 351/354 Горячий С.А. Государственное и муниципальное управление: Учеб.-метод. пособие. СПб.: НИУ ИТМО; ИХиБТ, 2014. 46 с. Приведены программа дисциплины Государственное и муниципальное...»

«МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ А.П. Дятлов СИСТЕМЫ СПУТНИКОВОЙ СВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ Таганрог 1997 УДК 621.396.931 Дятлов А.П. Системы спутниковой связи с подвижными объектами: Учебное пособие. Ч.1. Таганрог. ТРТУ. 1997. 95 с. Учебное пособие состоит из двух частей. В первой части рассмотрены классификация систем спутниковой связи с подвижными объектами (ССС ПО), принцип действия, состав и...»

«УДК 519.08+ч-48 УЧЕБНИК КАК ОБУЧАЮЩАЯ СИСТЕМА Ганичева Антонина Валериановна, заведующая кафедрой “Математики“, кандидат физико-математических наук, доцент Тверская государственная сельскохозяйственная академия, г. Тверь, Россия [email protected] В статье разработана модель учебника в виде обучающей системы. Проведена оценка основных характеристик этой системы. Логика работы модели рассмотрена на примере учебника по теории вероятностей и математической статистике. Ключевые слова:...»

«КАЛЬКУЛЯЦИЯ СЕБЕСТОИМОСТИ ПРОДУКЦИИ Учебно-методическое пособие для студентов специальности 1-25 01 08 Бухгалтерский учет, анализ и аудит специализации 1-25 01 08 15 Бухгалтерский учет, анализ и аудит в химической промышленности Минск БГТУ 2007 Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАЛЬКУЛЯЦИЯ СЕБЕСТОИМОСТИ ПРОДУКЦИИ Учебно-методическое пособие для студентов специальности 1-25 01 08 Бухгалтерский учет, анализ и аудит специализации 1-25 01 08 15...»

«ООО УралИнфоСервис Вестник нормативной документации рекламный 2013 В данный рекламный выпуск Вестника вошли нормативные документы межотраслевого применения, изданные в 2013 году Содержание Вышли из печати Организация и управление производством. Качество. 3 Строительство Эксплуатация опасных производственных объектов. 11 Эксплуатация электрических и тепловых установок и сетей Охрана труда и здоровья Пожарная безопасность Санитария Охрана окружающей среды Метрология и измерения Транспорт....»

«ГОУВПО Воронежский государственный технический университет Кафедра связи с общественностью и педагогика МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению и оформлению выпускных квалификационных работ для студентов специальности 030602 Связи с общественностью очной и заочной форм обучения Воронеж 2010 Составители: д-р техн. наук Л.В. Паринова, асс. И.А. Беляева УДК 659.4 Методические указания по выполнению и оформлению выпускных квалификационных работ для студентов специальности 030602 Связи с общественностью...»

«ИЗ ФОНДОВ ОТДЕЛА МЕДИЦИНСКОЙ ЛИТЕРАТУРЫ НАЦИОНАЛЬНОЙ БИБЛИОТЕКИ РЕСПУБЛИКИ КАРЕЛИЯ Новые поступления. 1 полугодие 2014 г. Национальные руководства по медицине Б 51.903.95 В 149 Вакцины и вакцинация : национальное ОТДЕЛ МЕДИЦИНСКОЙ ЛИТЕРАТУРЫ руководство / [Аксенова В. А. и др.] ; под ред. В. В. НАЦИОНАЛЬНОЙ БИБЛИОТЕКИ Зверева, Р. М. Хаитова ; АСМОК, [Всерос. науч.- РЕСПУБЛИКИ КАРЕЛИЯ практ. о-во эпидемиологов, микробиологов и Тел.: +7 (8142) 78-26-88 Е-mail: [email protected]...»

«МИНОБРНАУКИ РОССИИ Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования Самарский государственный технический университет в г. Сызрани (Филиал ФГБОУ ВПО СамГТУ в г. Сызрани) В.С. ТРЕТЬЯКОВ Анализ и диагностика финансово-хозяйственной деятельности Методические рекомендации к курсовой работе Сызрань 2011 1 Печатается по решению НМС инженерно-экономического факультета филиала Самарского государственного технического университета в г....»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Оренбургский государственный университет Кафедра истории и политологии Ю.А.ЛОМТЕВ, Д.Н. ДАНИЛОВ, О.Б.ГУРЕЕВА, Л.Н.БОЧАРОВА СОЦИОЛОГИЯ СБОРНИК МЕТОДИЧЕСКИХ МАТЕРИАЛОВ Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования Оренбургский государственный университет Оренбург 2004 ББК 60.5я73...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет Горный УТВЕРЖДАЮ Ректор профессор В.С. Литвиненко ПРОГРАММА вступительного испытания при поступлении в магистратуру по направлению подготовки 38.04.01 – ЭКОНОМИКА по магистерским программам Бухгалтерский учёт, анализ и аудит в горной промышленности и геологоразведке; Экономика и управление на...»

«Министерство сельского хозяйства Российской Федерации ФГОУ ВПО Воронежский государственный аграрный университет имени К.Д. Глинки Кафедра информационного обеспечения и моделирования агроэкономических систем Методические указания для выполнения контрольной работы по курсу ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В УПРАЛЕНИИ для студентов заочного отделения, обучающихся по направлению 081100 Государственное и муниципальное управление Воронеж 2012 В.П. Рябов. Методические указания для выполнения контрольной...»

«АМАНЖОЛОВ О.А., ВЛАСОВ А.И., ЕЛСУКОВ К.А. МЕТОДИЧЕСКИЕ УКАЗАНИЯ по формированию требований к материально-техническому оснащению учебного процесса бакалавров и магистров по профилю подготовки Наноинженерия Под редакцией заслуженного деятеля науки РФ, Член-корреспондента РАН, профессора, В.А.Шахнова Комплект учебно-методического обеспечения для подготовки бакалавров и магистров по программам высшего профессионального образования направления подготовки Нанотехнология с профилем подготовки...»

«4. пЛАНИРОВАНИЕ РАбОТы ИНфОРМАцИОННОкОНСУЛЬТАцИОННых цЕНТРОВ План совместной работы — основной организационный документ, обеспечивающий деятельность ИКЦ. Являясь механизмом реализации Соглашения о сотрудничестве, план утверждается заинтересованными участниками взаимодействия и имеет трехсторонний характер. Как правило, перед началом нового учебного года издательство Академкнига/Учебник готовит предложения в проект документа, которые дополняются и уточняются руководителем и сотрудниками ИКЦ,...»

«Учебно-методическое обеспечение Название реализуемой Предмет Класс Учебники и учебные пособия Колпрограммы во Специальность (Гитара). Доп. предпроф. общеобраз. программа в Инструментальный класс: Специальность 1–7 гитара области музыкального искусства Народные инструменты 1 (8-лет. срок обуч.) – Челябинск, 2013. Музыкальный инструмент - Гитара шестиструнная. Программа для ДМШ и ДШИ. - М. 1988 г. 2 гитара шестиструнная. Программа Министерства культуры СССР Специальный класс шестиструнной...»

«Рассмотрен и одобрен УТВЕРЖДАЮ Директор Волжского на заседании Ученого филиала МАДИ совета Волжского филиала п/п_Н.Ю. Савчук МАДИ (протокол № 11 от 15 мая 2013 г. 14 мая 2013г.) Волжский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования Московский автомобильно-дорожный государственный технический университет (МАДИ) ОТЧЕТ ПО САМООБСЛЕДОВАНИЮ (2008-2013 гг.) Чебоксары 2013 Содержание Введение I. Реализация основных профессиональных...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра менеджмента и информационных технологий ПРИКЛАДНАЯ ИНФОРМАТИКА В ЭКОНОМИКЕ Методические указания по выполнению и защите выпускной квалификационной работы Братск 2009 ББК 65.С Прикладная информатика в экономике: методические указания по выполнению и защите выпускной квалификационной работы / О.К. Слинкова, Н.Я. Боярчук, И.Г. Трофимова,...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет естественных наук ОСНОВНЫЕ ПОНЯТИЯ И ФОРМУЛЫ ХИМИЧЕСКОЙ КИНЕТИКИ Методическое пособие Новосибирск 2007 Методическое пособие содержит основные определения и формулы, вводимые в курсе химической кинетики, а также дополнительный материал. Предназначено для студентов 3-го курса факультета естественных наук Новосибирского государственного университета, а также аспирантов и научных работников. Составители: канд....»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.