WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 |

«АНАЛИЗ И ОЦЕНКА АГРОЛАНДШАФТОВ СТАВРОПОЛЬСКОГО КРАЯ С ИСПОЛЬЗОВАНИЕМ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ...»

-- [ Страница 1 ] --

Министерство образования и наук

и Российской Федерации

Ставропольский государственный университет

На правах рукописи

Каторгин Игорь Юрьевич

АНАЛИЗ И ОЦЕНКА АГРОЛАНДШАФТОВ СТАВРОПОЛЬСКОГО

КРАЯ С ИСПОЛЬЗОВАНИЕМ ГЕОИНФОРМАЦИОННЫХ

ТЕХНОЛОГИЙ

25.00.26 – землеустройство, кадастр и мониторинг земель

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата географических наук

Научный руководитель:

кандидат географических наук, профессор Шальнев Виктор Александрович

Научный консультант:

кандидат сельскохозяйственных наук Желнакова Людмила Ивановна Ставрополь –

ОГЛАВЛЕНИЕ

Введение Глава 1. Теоретические и методические основы изучения агроландшафтов 1.1. История изучения агроландшафтов 1.2. Ландшафтный подход в изучении агроландшафтов 1.3. Развитие и использование ГИС-технологий для анализа агроландшафтов Глава 2. Методика использования ГИС-технологий при анализе агроландшафтов и проектировании районных систем земледелия 2.1. Программное обеспечение диссертационного исследования 2.2. Методика создания цифровых картографических основ 2.3. Построение электронного банка данных 2.4. Методика построения тематических карт Глава 3. Концепция адаптивно-ландшафтного земледелия 3.1. Методология перехода к адаптивно-ландшафтному земледелию в Ставропольском крае на разных уровнях административного и ландшафтного районирования 3.2. Ретроспективные ландшафты Ставропольского края и их структурные единицы 3.3. Типология ландшафтных морфологических единиц на уровне местностей 3.4. Агроэкологические группы земель, их связь со структурой ландшафтов Глава 4. Использование ГИС-технологий при анализе и оценке агроландшафтов Ставропольского края 4.1. Оценка почвенно-климатических ресурсов ландшафтов края 4.2. Анализ сельскохозяйственной нагрузки на ландшафты края 4.3. Обобщенная оценка степени деградации почвенного покрова агроландшафтов края 4.4. Пути оптимизации соотношения угодий в агроландшафтах 4.5. Оценка экологического состояния агроландшафтов через КЭСЛ (коэффициент экологической стабилизации ландшафтов) 4.6. Использование ГИС-технологий при анализе и оценке агроландшафтов Изобильненского района и разработке районных систем земледелия на адаптивно-ландшафтных принципах 4.6.1. Методология построения адаптивно-ландшафтных систем земледелия на уровне района 4.6.2. Ландшафтное и агроландшафтное зонирование территории района 4.6.3. Анализ и оценка земельных ресурсов агроландшафтных зон района 4.6.4. Оценка экологической опасности использования земель Выводы Литература Приложения

ВВЕДЕНИЕ

Актуальность. На современном этапе на первый план выступает проблема оптимизации землепользования и сохранения экологического каркаса природных комплексов. Решить эту проблему должно адаптивноландшафтное землеустройство, являющееся основой систем земледелия нового поколения. Оно предусматривает, с одной стороны, максимальный учет и сохранение природных ресурсов, с другой – ограничение антропогенного воздействия, негативно влияющего на состояние окружающей среды.

При переходе к адаптивно-ландшафтному земледелию необходимо в первую очередь хорошее знание специфики местных природных ландшафтов, а потому требуется создания обширной пространственной и тематической информационной базы. Такая база есть в организациях занимающихся исследованиями и проектными работами в области сельского хозяйства, но обширные банки ценной информации, представленные преимущественно на бумажных носителях, громоздки. Традиционная технология анализа этих материалов ведет к значительным затратам сил, времени, выпадению части информации из научного оборота, а также может вызывать ошибки, снижающие ценность окончательных выводов. Оптимизировать процесс анализа могут информационные технологии. Особенно значимую роль при сборе, хранении и анализе пространственной информации играют геоинформационные системы и ГИС-технологии, позволяющие значительно повысить качество проводимых исследований. Вместе с тем, эти технологии в области планирования адаптивно-ландшафтных систем земледелия применяются в России в единичных случаях и требуют разработки новых подходов их использования.

Объектом исследования являются территориальные природносельскохозяйственные геосистемы ранга агроландшафтов и агроландшафтных зон.

Предметом исследования является анализ и оценка пространственной структуры агроландшафтов, их природно-ресурсного потенциала, сельскохозяйственной нагрузки, деградационных процессов с использованием ГИСтехнологий.

Цель: анализ и оценка агроландшафтов Ставропольского края с применением ГИС-технологий для систем адаптивно-ландшафтного земледелия.

В соответствии с целью были поставлены следующие задачи:

1. создать банк географической (электронные карты) и атрибутивной информации по агроландшафтам края;

2. оценить природно-ресурсный потенциал агроландшафтов и степень его соответствия сельскохозяйственной деятельности на основе картографических моделей;

3. определить уровень сельскохозяйственных нагрузок на агроландшафты с использованием электронных баз данных;

4. выявить экологическое состояние, в частности интенсивность проявления и развития различных видов деградационных процессов в агроландшафтах, их связь с морфологической структурой ландшафтов;

5. оценить с использованием ГИС-технологий земельные ресурсы и экологическую опасность использования земель по агроландшафтным зонам административного района.

Теоретико-методологическую основу исследования составляют общенаучные методы – описательный, сравнительный, статистический, системного анализа, моделирования, картографический. Методология исследования базируется на системе общих принципов и подходов. Общенаучных:

комплексного, интегрального, системного и экологического, а также ландшафтного, как части географического.

Информационной базой являются материалы: ландшафтного картирования территории Ставропольского края проф. Шальневым В.А.; Ставропольского НИИСХа; СтавропольНИИгипрозема; Комитета по земельным ресурсам Ставропольского края, Агрохимического центра «Ставропольский».

Научная новизна работы. Впервые осуществлен комплексный анализ агроландшафтов Ставропольского края с применением методов и технологий геоинформационных систем (ГИС):

- созданы разномасштабные электронные карты ретроспективных ландшафтов и их морфологических единиц на уровне местностей;

- разработана структура и собран банк данных, содержащий информацию для анализа агроландшафтов;

- проведен анализ природно-ресурсного потенциала ландшафтов и связанных с ним сельскохозяйственных нагрузок;

- предложена методика комплексной оценки деградационных процессов, базирующаяся на учете площади и интенсивности поражения;

- для территории Ставропольского края апробирована и рекомендована для широкого использования оценка экологического состояния территорий по коэффициенту экологической стабилизации ландшафтов (КЭСЛ).

Практическое значение. Полученные материалы и рекомендации могут быть использованы при организации агроландшафтов на уровнях ландшафтов и агроландшафтных зон. Составленные мелко- и среднемасштабные электронные карты используются Ставропольским научноисследовательским институтом сельского хозяйства для разработки мероприятий по рациональному использованию земельных угодий.

На защиту выносятся следующие материалы и положения:

агроландшафтам края;

2. оценка природно-ресурсного потенциала агроландшафтов и сельскохозяйственной нагрузки на них;

3. количественные характеристики деградационных процессов в агроландшафтах Ставропольского края;

4. картографические модели экологического состояния агроландшафтов Ставропольского края на основе коэффициента экологической стабилизации ландшафтов (КЭСЛ);

5. результаты оценки экологической опасности использования земель по агроландшафтным зонам на уровне административного района края на основе ГИС-технологий.

Апробация работы и публикации. Материалы диссертации докладывались на научно-практических конференциях «Природные ресурсы и экологическое образование на Северном Кавказе» (Ставрополь, 2002), «Университетская наука – региону» (Ставрополь 2003), Международной научнопрактической конференции «Проблемы земледелия» (Ставрополь, 2003), Второй Всероссийской научной телеконференции «Современная биогеография» (2003). Часть материалов диссертации включена в отчет по заданию МСХ Ставропольского края: «Разработать структуры ГИС (геоинформационных систем) ландшафтов Ставропольского края для мониторинга состояния и принятия практических решений при сельхозиспользовании» (соисполнители: зав. группы моделирования к.б.н. П.П.Гончар-Зайкин, ведущий научный сотрудник СНИИСХ, к.с-х.н. Л.И.Желнакова) (Михайловск, 2002) и в отчет по договору № 16 от 10.04.03 с ОАО «СтавропольНИИгипрозем»

«Оценка видов деградаций, их вредоносности и составление карты экологической напряженности ландшафтов края по факторам-предикторам» (соисполнитель – заведующая лабораторией агроландшафтов СНИИСХ, к.с.-х.н., Л.И.Желнакова) (Михайловск, 2003). По теме диссертации опубликовано работ.

Структура и объем диссертации.

Работа состоит из введения, четырех глав, выводов и приложения, содержит 25 таблиц и 28 рисунков. Общий объем диссертации 153 страницы машинописного текста. Список литературы включает 183 наименования, из них 15 на иностранных языках.

Автор выражает искреннюю благодарность за помощь в подготовке работы научному руководителю – к.г.н., профессору Шальневу В.А., научному консультанту – к.с.-х.н., заведующей лабораторией агроландшафтов СНИИСХ Желнаковой Л.И., заведующей отделом ландшафтного земледелия СНИИСХ д.с.-х.н., профессору Годуновой Е.И., заведующему кафедрой геоинформатики и картографии доценту Найденко В.Н., директору ОАО «СтавропольНИИгипрозем» Чернышеву В.Н., начальнику техотдела Лопатину С.И. и всему коллективу, коллективу сотрудников Агрохимического центра «Ставропольский», начальнику отдела кадастра Комитета по земельным ресурсам Ставропольского края Березуцкому А.Ю., доцентам Диденко П.А., Лысенко А.В., Петину О.В., Скрипчинскому А.В.

ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ И МЕТОДИЧЕСКИЕ ОСНОВЫ

ИЗУЧЕНИЯ АГРОЛАНДШАФТОВ

Возникновение агроландшафтных исследований обусловлено необходимостью изучения природно-сельскохозяйственных геосистем. Начало формирования ландшафтного подхода в сельскохозяйственной деятельности связывают с В.В. Докучаевым и его учениками, доказавшими, что плодородие сельскохозяйственных земель и условия их обработки зависят не только от свойств почв.

Они являются производными природного комплекса и составляющих его компонентов, таких как рельеф, грунты, климат и другие. Необходимость изучения исторического процесса формирования культурного ландшафта, исторического анализа взаимодействия и противоречий между сложившимся методом использования природной среды и новыми производственными силами и производственными отношениями определил Ю.Г. Саушкин (1946, 1951, 1973).

Л.Г. Раменский, один из основателей агроландшафтных исследований, дал определение типа земель с двух взаимосвязанных сторон: природной и производственной. «Тип - это, прежде всего потенция определенных видов использования территории: ее пахотно-сенокосно-пастбище-лесоспособность, пригодность для разведения определенных культур (пшеницы, риса, кендыря и т.д.), потенция их урожайности, увеличения плодородия под влиянием осушки, от внесения каких-то удобрений и т.п. » (1971, с. 177).

Со второй половины XX столетия в связи с ростом населения стран, научно-техническим прогрессом, возрастающей интенсификацией сельского хозяйства и соответственно усилением нагрузки на природную среду изучению агроландшафтов начинают уделять особенно пристальное внимание.

Так, в США почвенную съемку уже многие годы проводят с ландшафтных позиций, т.е. классифицируют и оценивают для сельскохозяйственных целей не почву, а весь комплекс природных условий (Kellog, 1951, Stallings, 1957).

Большой опыт в изучении агроландшафтов накопили и отечественные географы (Раменский, 1938, Глазовская, 1958, Зворыкин, 1965, Геренчук, 1965, Николаев, 1979 и др.). Особый интерес представляет школа Ф.Н. Милькова (Каменная степь…, 1971, Мильков, 1972, 1973, 1978, 1986, 1990).

Но в подходах разных научных направлений и взглядов отдельных ученых существует достаточно сильный разброс мнений об объекте исследования. У Раменского - это тип земель. Немецкие географы называют их ландескультурными типами, или типами культурных ландшафтов, которые выделяются на основе сочетания природного районирования и видов современного использования (Рихтер, 1983). Л.И. Мухина и В.С. Преображенский употребляют термин «геотехнические системы». А.М. Рябчиков пишет о преобразованных или культурных ландшафтах, к которым он относит поля, сады, плантации, сеяные луга, лесонасаждения, пригородные лесопарки и «в которых природные связи в той или иной степени целенаправленно изменены и постоянно поддерживаются человеком путем культивации, мелиорации, химизации почвы, разведения полезных человеку растений и животных, создания полезащитных лесокультурных полос и т.д.» (1972, с. 184). В.А. Николаев употребляет термин агроландшафт, под которым понимает «не только природные, но и природно-производственные типы земель — агроландшафтные системы» (1979, с. 114). По его мнению, агроландшафт – это система, включающая в себя природный территориальный комплекс и сельскохозяйственное производство. Целью их функционирования является производство сельскохозяйственной продукции.

Интерес к ландшафтному подходу в изучении агросистем в последнее время стали проявлять специалисты сельскохозяйственных наук (Володин, Здоровцов, 1999; Кирюшин, 1996, 1996а; Котлярова, 1999; Постолов, 1999; Сатаров, Карпович, 1998; Семендяева, Дробышева, 1999 и др.). Сделаны первые шаги в направлении интеграции между географами и учеными-сельхозниками.

Так, коллективом ученых была разработана концепция ландшафтноэкологического земледелия (Концепция формирования …, 1992).

А.Н. Каштанов определяет агроландшафт как «сложную территориальную экологическую и биоэнергетическую систему, где все взаимосвязано и сбалансировано. Одновременно же это и база для сельскохозяйственного производства» (1992). А.П. Щербаков и Г.И. Швебс употребляют термин культурный агроландшафт, под которым подразумевается «обоснованное сочетание пашни, лугов, леса и лесных полос, водоемов, резерватов, естественных ландшафтов, мест отдыха, дорог и другой хозяйственной инфраструктуры» (1992). М.И. Лопырев под агроландшафтом понимает «участок земной поверхности, обычно ограниченный естественными рубежами, состоящий из комплекса взаимодействующих природных компонентов и элементов системы земледелия с признаками единой экологической системы» (1995).

В работах других авторов, которые говорят об оптимальном соотношении различных угодий и соответствии их естественным морфологическим границам, присутствует покомпонентный подход, рассматриваются лишь принципы почвенно-мелиоративного устройства агроландшафта, конструирования его с учетом неоднородности почвенных ресурсов. В то же время не учитываются другие компоненты ландшафта, их взаимосвязи между собой (Бураков, 1990; Морозов, 1992; Белолипский, 1992).

А.Н.Ракитников (1970) дал глубокий анализ географии сельскохозяйственного производства, и доказал тесную связь способов ведения сельского хозяйства с природными условиями территорий. С возникновением учения о геотехнических системах (Преображенский, 1966; Ретеюм и др., 1972) и агроценозах, открылась возможность понимать и исследовать земли, используемые в сельском хозяйстве как природно-производственные объекты, состоящие из двух взаимодействующих блоков: природного и сельскохозяйственного. Они представляют собой агроландшафтные (природносельскохозяйственные) системы, агроландшафты. Природно-территориальные комплексы различного таксономического ранга рассматриваются как объекты территориальной организации сельскохозяйственного производства или как объекты изменения природы под влиянием сельского хозяйства.

Современное понимание агроландшафта базируется на системном подходе. В ландшафтоведении понятие системного подхода связано с именами В.Б.

Сочавы (1978), В.С. Преображенского (1986), Э. Неефа, П. Хаггета (1979). В настоящее время существует много понятий «система». Наиболее краткое и емкое принадлежит Л. Берталанфи (1968), где «система есть комплекс элементов, находящихся во взаимодействии». По мнению А.Н. Аверьянова (1985), любая система обладает способностью делиться на подсистемы и входить в системы высшего порядка, обладающие большим содержанием, чем сумма, содержащая подсистему. Понятие «система» теснейшим образом связано с понятием «структура». Под структурой одни авторы понимают закон связи между элементами (Свидерский,1962), другие - инвариант системы (Овчинников, 1966). Мы придерживаемся того мнения, что понятие «структура» отражает состав и форму расположения элементов системы, а также характер их взаимодействия, взаимосвязей. Вместе с тем структура есть итог организации элементов системы, их упорядочение во времени и пространстве.

В географии такими природными и природно-антропогенными системами являются геосистемы (Сочава, 1963). Если определение геосистемы по В.Б. Сочаве тесно связано с конкретными географическими реалиями, то В.М. Гохман, А.А. Минц, В.С. Преображенский (1971) расширяют понятие геосистемы. Оно охватывает весь спектр от систем, включающих в качестве подсистем только природные компоненты, до систем, образованных человеческой деятельностью, включая различные сочетания и взаимодействия этих компонентов.

Следуя понятию геосистемы можно дать следующее определение природно-сельскохозяйственным комплексам (агроландшафтам). Агроландшафт — это интегральная территориальная геосистема культивационного (сельскохозяйственного) типа, состоящая из двух взаимодействующих подсистем — природной (ландшафтной) и антропогенной, а также набора более мелких природно-сельскохозяйственных геосистем, в совокупности решающих проблемы продовольственного обеспечения (Шальнев, Диденко, 1997; Диденко, 2001а).

В отличие от природного комплекса агроландшафт формируется в результате взаимодействия косной и биокосной естественной основы и антропогенного использования с искусственно налагаемыми на эту основу и поддерживаемыми агроценозами (Зворыкин, 1984). Взаимодействие ПТК и сельскохозяйственного производства - необходимое условие функционирования агроландшафтных систем.

Ландшафты, испытывая влияние сельскохозяйственного производства, претерпевают существенные изменения, выражающиеся в трансформации природной геосистемы в территориальную природно-сельскохозяйственную геосистему (ТПСГ).

С одной стороны в таких ландшафтах сохраняются природные свойства, подчиняющиеся природным закономерностям (главным образом, законам саморегуляции), с другой стороны, включается «антропогенное содержание», связанное с законами управления в хозяйственной деятельности. К природным круговоротам вещества и энергии добавляются антропогенные. Поэтому агроландшафт имеет сложную структуру, представленную большим числом составляющих (рис. 1).

Рис. 1. Структура агроландшафта (Диденко, 2001).

В соответствии с представленными В.А.Николаевым (1979, 1987) сельскохозяйственными системами, рассматриваются такие территориальные природно-сельскохозяйственные геосистемы, которые формируются и функционируют в результате постоянного взаимодействия сельскохозяйственного производства и природной среды. Производственная и природная подсистема - важнейшие структурные составляющие агроландшафта, обладающие определенной взаимосвязью и выполняющие единую функцию - производство сельскохозяйственной продукции.

Природная ландшафтная подсистема – это территориальная система, состоящая из взаимосвязанных природных компонентов и комплексов более низкого таксономического ранга, и формирующаяся под влиянием природных процессов. Функционирование данной подсистемы обусловлено многочисленными связями, существующими как внутри нее, так и с производственной подсистемой. Изучается она с помощью ландшафтных моделей: структурнокомпонентной и структурно-морфологической (Преображенский, 1972).

Компонентная составляющая состоит из набора всех природных компонентов и связей между ними, что формирует коллективное свойство (эмерджентность) ландшафта – природные условия конкретной территории. Каждый из компонентов уже давно используется человеком как природный ресурс в хозяйственной деятельности. Чаще всего именно компонентноресурсная функция природного ландшафта используется в работах по конструированию агроландшафта.

Структурно-морфологическая (территориальная) модель представлена мелкими территориальными комплексами - местностями, урочищами, фациями.

Природная подсистема в результате хозяйственной деятельности в большей или в меньшей мере антропогенезирована, что проявляется в изменении структуры природно-территориального комплекса, возникновению ответных реакций на хозяйственное воздействие, часто негативных - деградация земель, замена видового состава растительности и т.д. Хозяйственная оптимизация природной среды приводит к созданию гармоничной природносельскохозяйственной среды, которая становится высокопродуктивной, динамически устойчивой и благоприятной.

Структура и динамика природной подсистемы агроландшафтов в известной степени изменена длительным антропогенным воздействием, что проявляется в усилении зависимости природной подсистемы от постоянно увеличивающейся антропогенной энергии (Pimentel D., Pimentel S, 1980; Pimentel, Behardi, Fast, 1983; Шальнев, Диденко, 1998). В географической литературе существует ряд классификаций комплексов по степени их антропогенной измененности (Ахтырцева, 1977; Исаков и др., 1980; Исаченко, 1991, 1993; Методическое руководство… 1991; Мильков, 1977; Федотов, 1985; Westhoff, Leewen, 1966; Code pour …, 1968; Long, 1974), под которой понимается мера антропогенно-техногенного воздействия, привнесения или перемещения вещества и энергии, изменения пространственной структуры. Однако, как правило, они относятся к геокомплексам ранга ландшафта. Выявление антропогенно-измененных комплексов в ранге урочищ отличается от выявления таких же модификаций в ранге ландшафта (Мамай, 1992). Для характеристики антропогенно-модифицированных территориальных единиц ранга урочищ П.А.Диденко предлагает использовать следующие характеристики (1999):

- условно ненарушенные – имеют растительный и почвенный покров, наиболее соответствующий условиям местообитания. Обязательное условие – сохранение почвенного покрова в нетронутом виде. К таким комплексам относятся леса, луга и сенокосы;

- слабонарушенные – растительность находится на различных стадиях сукцессионного процесса. Обязательное условие – ненарушенность почвенного покрова. К слабонарушенным относятся пастбища;

- собственно антропогенные комплексы. К ним относятся комплексы, в которых биота настолько изменена, что они могут существовать только при условии регуляции со стороны человека (пашня, сады, виноградники);

- техногенные комплексы. Развитие данных комплексов определяется постоянным воздействием технических систем. Техногенными комплексами являются дороги, водохранилища, каналы и т.д.

Антропогенная подсистема агроландшафта представлена компонентной составляющей, а также набором типов землепользования и их технологий. В компонентную составляющую включаются культурные и синантропные растения и животные, различные строения, дороги и каналы, удобрения и т.д., т.е. все, что создано или привнесено человеком. Антропогенные компоненты без участия человека устойчиво функционировать в пределах агроландшафта не могут, и будут разрушаться природными процессами.

Система землепользования, сложившаяся в том или ином регионе, определяет соответствующий набор типов землепользования: богарное и орошаемое земледелие, садово-огородничество, виноградарство, пастбищное животноводство и т.д. Каждый из названных типов землепользования имеет свои технологии ведения хозяйства: паровая, пропашная, плодосеменная, почвозащитная, мелиоративная с различными технологиями обработок почвы.

Ключевое место в антропогенной подсистеме агроландшафта занимает блок управления, задача которого состоит в обеспечении регулирования всей системы в целях повышения ее биологической продуктивности и поддержания экологического равновесия. Для нормального функционирования антропогенной подсистемы необходим постоянный контроль за состоянием сельскохозяйственных земель. Для решения производственных задач требуется создание агроландшафтного мониторинга, обеспечивающего информацией блок управления.

Современные географические исследования включают широкий круг вопросов о взаимодействии производства и природной среды (Мильков, 1973, 1978; Рябчиков, 1972; Николаев, 1987). Л.Г. Раменский (1938), В.А.

Николаев (1979, 1987) считают ландшафтно-региональные исследования основой агрогеографических исследований.

Анализ подсистем агроландшафта и его составляющих - традиционная часть всех схем научных исследований. Однако предметом изучения агроландшафтов должны быть не только его подсистемы и их составляющие, но и закономерности их взаимодействия, так как в процессе взаимодействия формируются и обнаруживаются не только новые свойства подсистем, но и принципиально новые свойства всей системы. В.И. Булатов, считает, что это «связано:

а) с появлением взаимодействующих систем связей между создающими антропогенный ландшафт подсистемами, б) с утратой части свойств подсистем при их вхождении в состав интегральной системы;

в) с возникновением новой целостности и новых свойств;

г) с упорядоченностью подсистем, детерминированностью подсистем, детерминированностью их пространственного и функционального взаимоотношения» (1973, с. 18).

Примером новой целостности и новых свойств агроландшафта служат такие интегральные структуры, как территориальные природносельскохозяйственные геосистемы (ТПСГ), которые формируются в пределах природных морфологических единиц природного ландшафта (главным образом урочищ) с использованием различных технологий определенного типа землепользования агрофитосистем. Их главная функция – средоформирующая и ресурсная по производству сельскохозяйственной продукции (Диденко, 2001).

1.2. Ландшафтный подход в изучении агроландшафтов Анализ достижений географической и сельскохозяйственных наук показал, что накопленный ими опыт позволяет вывести сельскохозяйственное землепользование на качественно новые уровни, названные ландшафтными (Каштанов, 1992; Щербаков, Швебс, 1992; Храмцов, 1996), ландшафтноэкологическими (Егоренков, 1995; Теплицын, 1995; Шальнев, Диденко, 1998), системно-экологическими (Годзевич, 1993, 1995, 1997, 1998).

Ландшафтное природопользование базируется на учении о системах природы и общества и образующихся в процессе их взаимодействия природно-антропогенных системах. В сельскохозяйственном природопользовании к таким системам относятся агроландшафты. А.Г. Исаченко (1980), отмечая, что назрела необходимость в научной теории оптимизации антропогенного воздействия на природу, выдвинул концепцию ландшафтного подхода к ее построению и ввел термин «оптимизация природной среды». Ландшафтный подход является ветвью общего системного подхода, в основе которого лежит идея целостности исследуемых объектов и единства их внутренней динамики (Преображенский и др., 1988; Демек, 1977).

Суть ландшафтного подхода состоит в системном анализе взаимодействия природной и антропогенной составляющих в современных ландшафтах и оценке результатов изменений и последствий в окружающей среде.

Ландшафтный подход позволяет рассматривать ТПСГ с позиций моносистемной (компонентной) и полисистемной (пространственной) моделей.

До последнего времени в сельском хозяйстве преобладал покомпонентный подход, не учитывающий связей между компонентами. Такой подход предопределил конкурентный характер использования одного ресурса относительно других. Результатом явилось нарушение установившихся связей и, как следствие, разрушение компонентной структуры агроландшафта.

С позиций моносистемной модели агроландшафт рассматривается как система, состоящая из взаимосвязанных природных и антропогенных компонентов.

Полисистемная модель позволяет подходить к рассмотрению агроландшафта с позиций его пространственной структуры, состоящей из взаимосвязанных территориальных компонентов различного иерархического уровня.

Территориальная модель представлена мелкими территориальными комплексами (местностями, урочищами, фациями) и набором типов землепользования со своей технологией ведения хозяйства. Морфологическое разнообразие зависит от вертикального расчленения и обилия мезоформ рельефа, что формирует территориально-ресурсный потенциал агроландшафта. Границы морфологических единиц обычно определяют границы той или иной сельскохозяйственной деятельности. Территориальная локализация такой деятельности отражается в законе функционального соответствия, когда каждому типу природных территориальных комплексов присущ определенный набор фактических, возможных и желательных видов использования и мелиорации. Из него вытекают два принципа: 1) функционального тождества (участки одного ландшафтного вида могут и должны использоваться одинаково); 2) функциональной однородности (использование одного ландшафтного вида должно быть одинаковым на всем протяжении) (Родоман, 1993). Первым шагом в этом направлении должна быть типизация ландшафтных таксонов.

С позиций ландшафтного подхода в сельскохозяйственной деятельности наиболее интересны местности и урочища. На их территории возможна реализация той или иной специализации с учетом максимальной адаптивности к природным условиям. Принцип функционального тождества позволяет объединять местности и урочища с учетом их пространственных отношений в ландшафтнотерриториальные структуры по принципу таксономических рядов.

Ландшафтному подходу присущи все черты системы:

1. целостность изучаемого объекта, обусловленная взаимоотношениями его элементов и связями со средой;

2. наличие иерархически соподчиненных систем, которые выступают как совокупность других систем и входят в системы более высокого ранга;

3. открытость систем, проявляющаяся в саморегулировании и в устойчивости к внешним воздействиям.

Целостность проявляется в устойчивости к внешним воздействиям, в наличии границ, упорядоченности структуры, большей тесноте внутренних связей в сравнении с внешними.

Одна из важных особенностей ландшафтного подхода - рассмотрение не только объекта изучения, но и его среды как иерархически сложно сформированного целого. Формирование систем земледелия, адаптированных в соответствии с природными факторами территории, должно происходить в соответствии со структурно-функциональной иерархией ландшафта. А.Н. Каштанов, А.П. Щербаков, И.Г. Швебс делают вывод, что «тип ландшафта обусловливает специализацию сельского хозяйства, вид ландшафта - преобладающий вид сельскохозяйственных угодий и т.д.» (О концепции …, 1992).

До недавнего времени эта проблема оставалась слабо разработанной и ограничивалась лишь выделением агропроизводственных групп почв (Фридланд, 1966). Их недостатком при формировании систем земледелия является ограниченная оценка и учет геоморфологических, литологических, гидрологических и микроклиматических условий.

Основой систем земледелия нового поколения является адаптивноландшафтное землеустройство. Концептуально-методические основы и нормативная база для развития и проектирования новых систем земледелия на ландшафтной основе были разработаны в последние годы большой группой авторов из головных институтов Российской академии сельскохозяйственных наук и целого ряда сельскохозяйственных вузов России (Концепция…, 1992;

Ландшафтное земледелие, 1993; Кирюшин, 1996, 2000; Методика…, 1996;

Модели управления…, 1998; Проектирование…, 1999; Адаптивноландшафтная система…, 2001; Лопырев, Макаренко, 2001; Методическое пособие…, 2001).

Адаптивно-ландшафтное землеустройство предусматривает:

- агроэкологическую типизацию земель по ресурсам и лимитирующим факторам почвенного плодородия, тепла, влаги и потенциала развития деградационных процессов;

- функционально-целевую типизацию земель с оптимизацией соотношения угодий и структуры посевных площадей;

- формирование природоохранной инфраструктуры агроландшафта;

- уточнение специализации хозяйства и схемы размещения севооборотов по территории на базе комплексного анализа природно-хозяйственных ресурсов и эффективности их использования.

Важнейшими технологическими элементами адаптивно-ландшафтных систем земледелия являются:

- адаптированное к местным условиям ландшафта и дифференцированное по территории хозяйства агроэкологическое регламентирование агротехногенных нагрузок на почвенный покров;

- адаптивный подбор культур, сортов и севооборотов, технологий возделывания культур с учетом агроэкологических особенностей земель;

- рациональные с точки зрения экологии и экономики землепользования биологизации земледелия и гибкие агротехнологии;

- консервация и мелиорация деградированных земель, повышение устойчивости продуктивности проблемных агроландшафтов.

В формировании агроландшафтов Центрального Предкавказья выделяются семь периодов. На протяжении первых четырех периодов антропогенное воздействие на природу было связано со скотоводством и было незначительным. С началом интенсивной колонизации Предкавказья русским населением происходит смена скотоводства земледелием. С этого момента ведется активная распашка территории, достигшая своего максимума в 60-е годы XX столетия. Травопольная система земледелия была заменена зернопропашной. Увеличение площадей пахотных земель происходило без учета природно-климатических условий территории, в связи с чем активизировались негативные процессы в агроландшафтах (эрозия, дефляция и т.д.).

В 70-х годах начались первые работы по научному обоснованию систем земледелия, под которыми понимаются интегральные территориальные геосистемы, состоящие из двух взаимодействующих подсистем – природной и антропогенной (сельскохозяйственной). Такое понимание агроландшафтов позволяет рассматривать их с позиций ландшафтного подхода: при формировании сельскохозяйственных ландшафтов должны учитываться их целостность, иерархичность и открытость.

На Ставрополье переход земледелия на адаптивно-ландшафтную основу закреплен постановлением Государственной Думы Ставропольского края «О порядке использования земельных ресурсов Ставропольского края на агроландшафтной основе» № 637-39 от 26.06.97г. (Схема использования…, 1997).

Сложность перевода земледелия Ставропольского края на агроландшафтную основу заключается в большом разнообразии и своеобразии почвенно-климатических и рельефных условий, различном уровне ведения сельскохозяйственного производства. Общим же для большинства агроландшафтов является аридность климата, морфологическая сложность ландшафтов, водная и ветровая эрозия почв и другие. Поэтому создание высокопродуктивных и экологически устойчивых агроландшафтов должно быть максимально приближено к природным аналогам. Это единственный путь сохранения плодородия почв, повышения эффективности сельскохозяйственного производства.

Переход к адаптивно-ландшафтному земледелию должен опираться на хорошее знание специфики местных природных ландшафтов, а потому требует создания обширной информационной базы, особенно значимую роль при сборе, хранении и анализе пространственной информации должны играть геоинформационные системы и ГИС-технологии.

1.3. Развитие и использование ГИС-технологий для анализа В последние 40 лет происходит активное и постоянно ускоряющееся развитие информационных технологий и их внедрение во все сферы человеческой деятельности. Информатизация затронула и науки о земле.

В науках о земле информационные технологии породили геоинформатику и географические информационные системы (ГИС), которые дали географии новый мощный инструмент анализа и применения пространственной географической информации (Берлянт,1996).

Потребность в ГИС связана:

- с ростом в последнее время потребностей у общества в географической информации;

- с быстрым старением информации и необходимостью накопления новых данных;

- с мощным поступлением данных дистанционного зондирования поверхности Земли;

- с отсутствием хорошо отработанных форм и методов сбора, хранения и передачи географической информации;

- с тенденцией развития географических наук в перспективе не только за счет увеличения объема информации, но, прежде всего в зависимости от роста «эффективности (с позиций каждой из групп потребителей) дифференциальной и универсальной информации» (Преображенский, 1972).

Первая ГИС была создана в начале 60-х годов в Канаде Отделением информационных систем регионального планирования по поручению федерального правительства. Его первоначальной задачей были классификация и нанесение земельных ресурсов Канады (Де Мерс, 1999).

В России проблема географических информационных систем в широком понимании этого термина начала разрабатываться лишь с начала 80-х годов, хотя в области развития отдельных компонентов ГИС (теория баз данных, автоматизация в картографии, обработка изображений, географическое моделирование) к тому времени имелись значительные достижения (Лурье, 1997). Так, В.Ф.Гракович (1978) показывает принципы построения банка географических данных для информационной системы прогноза снежных лавин.

В Москве был сформирован первый Российский научно-производственный центр геоинформации (Росгеоинформ). Одновременно развернуты региональные производственные центры еще в пяти городах страны: Санкт-Петербурге, Екатеринбурге, Новосибирске, Иркутске и Хабаровске. При создании разветвленной ГИС-инфраструктуры к этим центрам привязываются местные и отраслевые ГИС разной проблемной ориентации, а также центры сбора и обработки аэрокосмической информации. К сети ГИС России присоединяются научные и научно-производственные базы и банки тематических данных, существующие в институтах Академии наук, вузах, отраслевых учреждениях и ведомствах. Россия включается в международные сети, благодаря которым идет формирование информационного гиперпространства, значительную часть которого составляет геоинформационное пространство (Берлянт, 1996).

А.М. Берлянтом было сформулировано определение геоинформатики и ГИС, состоящее из трех подходов (Берлянт,1996):

1. Научно-познавательный подход. Геоинформатика - научная дисциплина, изучающая природные и социально-экономические геосистемы (их структуру, связи, динамику, функционирование в пространстве-времени) посредством компьютерного моделирования на основе баз данных и географических знаний. ГИС - средство моделирования и познания геосистем.

2. Технологический подход. Геоинформатика - технология (ГИСтехнология) сбора, хранения, преобразования, отображения и распространения пространственно-координированной информации, имеющая цель обеспечить решение задач инвентаризации, оптимизации, управления геосистемами. ГИС - техническое средство накопления и анализа информации в процессе принятия решений.

3. Производственный подход. Геоинформатика - производство (геоинформационная индустрия) имеющее целью изготовление аппаратных средств и программных продуктов, включая создание баз и банков данных, систем управления, стандартных (коммерческих) ГИС разного целевого назначения и проблемной ориентации. Сюда же относится формирование ГИСинфраструктуры и организация маркетинга. ГИС - программная оболочка, реализующая геоинформационные технологии.

Современная ГИС – это автоматизированная система, имеющая большое количество графических и тематических баз данных, соединенная с модельными и расчетными функциями для манипулирования ими и преобразования их в пространственную картографическую информацию для принятия на ее основе различных решений и осуществления контроля (Коновалова, Капралов, 1997).

В последние годы для анализа земельных ресурсов все более широко используются данные компьютерного моделирования и, в частности ГИСтехнологии (Рожков, 1995; Burrough, 1988; Chidly, 1993; GIS…, 1997; Le Bas, Jamagne, 1996; Савин и др., 1998; Рамазанов, 1999). Так, И.Ю.Савин и Е.Г.Федорова (2000) предлагают в качестве основы анализа ресурсного потенциала ГИС региона исследования, содержащую строго структурированные сведения о фактическом состоянии земель, алгоритмы анализа пригодности земель под основные типы землепользования, алгоритмы оценки деградационных рисков, а также технологии оптимизации результатов оценки в виде серии вероятностных сценариев размещения угодий и посевов отдельных культур. Это на взгляд авторов позволяет пользователю отбирать для анализа именно тот набор культур и типов землепользования, который потенциально экономически выгоден в быстро меняющихся социально-экономических условиях и максимально соответствует рыночной конъюнктуре.

Для решения практических задач по анализу земельных ресурсов во многих странах мира проводятся работы по созданию качественно новых типов почвенных компьютерных баз данных (Le Bas, Jamagne, 1996). В России начало исследований в этом направлении было положено в 1990 г. во время работ лаборатории почвенной информатики Почвенного института им. В.В.Докучаева над созданием «Электронного Атласа СССР» (ГИС-модели …, 1996). В результате исследований создана Геоинформационная система деградации почв России, в которой аккумулированы практически все доступные на время исследования сведения о специфике почвенного покрова страны на федеральном уровне обобщения с учетом его деградированности (Геоинформационная система …, 1999).

Интегральная природно-экономическая оценка территории и определение рационального типа и вида аграрного природопользования с использованием ГИС-технологий была сделана в Алтайском крае (Красноярова, 1999). С помощью программных средств ARC/INFO и FOX PRO создана интегральная база данных, отражающая аграрно-природный потенциал административных сельских районов Алтайского края, сложившиеся системы расселения и территориальной организации аграрного природопользования.

Определенные работы в сфере геоинформатики и моделирования представлены Институтом проблем использования природных ресурсов и экологии республики Беларусь. Здесь развивается несколько в значительной мере автономных направлений: разработка региональной системы оценки воздействий на окружающую среду (РС ОВОС), создание эколого-географической информационной системы (ЭГИС) «Природопользование», моделирование водных объектов и их водосборных бассейнов, моделирование атмосферных процессов в пограничном слое и др. (Сачок, Иконников, 1999).

Институт географии АН Молдовы разработал ГИС РМ (Республики Молдова). Она позволяет количественно оценить климатический и агроклиматический потенциалы территории республики, дать экспертную оценку размещению сельскохозяйственных культур, выявить эрозионно-опасные территории, определить склоновые земли, предрасположенные к оползням, а также антропогенную нагрузку на природную среду, изучить механизмы формирования геоэкологических ситуаций (Разработка и использование …, 1999).

Принципиальные вопросы информационно-методического обеспечения земледелия и землепользования в России, алгоритмы и программы для областных и локальных информационно-справочных систем по оптимизации землепользования в условиях Центрального Черноземья, основные принципы организации и ведения агроэкологического мониторинга земель рассмотрены Всероссийским научно-исследовательским институтом земледелия и защиты почв от эрозии (Информационно-справочные системы…, 2002).

В Ставропольском крае АО СтавропольНИИгипрозем в последние несколько лет внедряется информационные технологии и в том числе геоинформационная система MapInfo в научно-исследовательскую работу, работы по проектированию земель, идет перевод в электронную форму крупномасштабных карт и схем использования земельных ресурсов на уровне края, административных районов и хозяйств. Однако до настоящего времени в крае не создан банк данных по агроландшафтам, на основе которого осуществляется их анализ, и не был проведен сам анализ агроландшафтов. Восполнить этот пробел и должна наша работа.

ГЛАВА 2. МЕТОДИКА ИСПОЛЬЗОВАНИЯ ГИС-ТЕХНОЛОГИЙ ПРИ

АНАЛИЗЕ АГРОЛАНДШАФТОВ

2.1. Программное обеспечение диссертационного исследования Обоснование выбора программного обеспечения. Для перевода информации с твердых носителей (бумажных карт, таблиц тематической информации, аэрофото- и космоснимков) необходимо привлечение программных средств имеющих возможность работы с графическими и атрибутивными данными. Перечень таких программ весьма объемен и возможности различны; в чем-то программное средство может выигрывать, а в чем-то иметь недоработки. Немаловажную роль здесь играет и цена программного продукта. Так, использование ГИС профессионального уровня, имеющих огромные возможности для анализа информации, было бы оптимальным, но высокая цена зачастую делает неприемлемым их применение в такой дотационной и находящейся в кризисе отрасли, как сельское хозяйство. Поэтому для работы над диссертацией нами были выбраны в достаточной степени дешевые и довольно широко применяемые программные продукты, такие как ГИС настольного уровня MapInfo, Adobe Photoshop и 3D Field, позволяющие в необходимой нам степени охватить процесс обработки информации, ее анализ и визуализацию.

ГИС настольного уровня MapInfo. Пакет MapInfo (США, Mapping Information System Corporation) занимает одну из ведущих позиций среди геоинформационных систем для персональных компьютеров. Выбор данной программы объясняется оптимальным соотношение цены и качества, а также в том, что MapInfo отлично зарекомендовал себя практически на всех информационных сегментах рынков различных отраслей, где применимо планирование на основе цифровых технологий.

Несмотря на небольшой объем и малые потребляемые ресурсы программа обладает широкими возможностями, позволяющими на ее основе создавать как картографические произведения, так и геоинформационные системы. В ее состав входит специализированный язык программирования MapBasic, поставляемый в качестве расширения базовой системы.

В MapInfo можно совмещать растровую графику с векторной, что значительно облегчает создание и восприятие данных. Векторную графику можно конвертировать из AutoCad, ArcInfo, переносить через системный буфер Windows (Clipboard), а также создавать на месте, пользуясь собственным графическим редактором. Возможно использование практически всех распространенных растровых форматов.

Система представляет широкие возможности для управления базами данных, созданными как в самой программе, так и в других программах, работающих под управлением Windows. Эти возможности включают в себя сортировку, выборку, объединение объектов и т.д. В MapInfo сильно развита система запросов. Запросы бывают двух типов: простые и сложные. Первые включают в себя сортировку, выборку, объединение объектов, различные математические действия с частями базы данных, то есть имеют вид QBE – query by example – запрос по образцу. В простых запросах указываются части базы данных, над которыми необходимо произвести действия, и простые действия, которые следует произвести. Формирование сложных запросов происходит с использованием структурного языка запросов SQL (structured query language). Есть также третий специальный (статистический) тип запросов с расчетом максимальных, минимальных, средних значений, сумм, средних отклонений и т.д.

В системе поддерживается также множество проекций, которые можно использовать при создании карт. Так как проекции описаны в простом текстовом формате, имеется возможность создавать собственные проекции. В MapInfo предусмотрена возможность создания собственного эллипсоида и создания собственного типа линий.

Процедура редактирования очень удобна, так как при ручном редактировании можно использовать функцию Snap, которая позволяет точно привязывать координаты узлов одного объекта к другому. Есть встроенная функция сглаживания линейных и полигональных объектов с помощью кубических сплайнов. Есть возможность преобразования полигонов в полилинии и наоборот. Широко представлены возможности интерактивного нанесения объектов (точки, линии, полигоны, эллипсы, прямоугольники и др.). MapInfo дает богатые возможности зарамочного оформления карты.

Существует возможность создания тематических карт с использованием пяти способов изображений: качественный фон, картограммы, точечный способ, картодиаграммы и локализованные картодиаграммы. Карты создаются в автоматическом режиме по атрибутивным данным для полигональных или точечных объектов. Возможно совмещение нескольких способов. Удачно спроектированный интерфейс содержит команды и операции, представляющие в понятной и естественной форме концепцию геоинформатики. Преобразование координат, проекции и другие географические подробности удалены с переднего плана интерфейса, но легко доступны. Работая в графических средах, MapInfo широко использует их в оформительский арсенал. При работе можно пользоваться арсеналом деловой графики, вращать текстовые объекты и располагать их параллельно линиям, создавать тематические карты и выделять на них объекты по сложному критерию, а также совмещать все эти карты, графики, списки и украшающие элементы.

Программа для работы с растровой графикой Adobe Photoshop. Графический редактор Adobe Photoshop – профессиональная программа для редактирования растровых изображений. На сегодняшний день Photoshop фактически выполняет функции эталона, используемого для оценки качества и функциональных возможностей, родственных с ним программ. Программа обладает весьма развитым арсеналом инструментов для обработки растровых изображений и отличающими ее развитыми средствами для цветокоррекции сканированных изображений. В программе удобно производить устранение графических недостатков, точные повороты изображений, сшивку растров.

Поддержка подавляющего большинства растровых форматов позволяет выполнять конвертацию из одного формата файла в другой.

Программа для построения поверхностей 3D Field. Данная программа служит для построения статистических поверхностей, изолиний и визуализации полученных результатов. При создании поверхностей используются наиболее распространенные методы интерполяции: система линейных уравнений, обратных взвешенных расстояний и кригинг. Визуализация полученных результатов может происходить как в 2-х так и в 3-х мерном виде с помощью простых и цветных изолиний, цветных ячеек, значений в виде кругов, полигонов Вороного и сети треугольников. Возможность сохранения результатов в растровых форматах jpeg, bmp, gif и других позволяет их в дальнейшем отвекторизовать в MapInfo и получить карты в векторном формате.

2.2. Методика создания цифровых картографических основ Под цифровой картой обычно понимают цифровую запись в памяти ЭВМ картографической информации. Цифровая карта – это цифровая модель на соответствующей математической основе в выбранной проекции и номенклатурной разграфке, принятых для карт определенного назначения и тематического содержания, удовлетворяющая требованиям по содержанию, точности и надежности. Цифровая карта содержит дискретную, целенаправленно генерализованную цифровую запись содержания листа топографической карты (Новаковский, Прасолова, Прасолов, 2000).

Цифровая карта состоит из двух частей, которые различаются особенностями ввода, хранения, обработки и т.д.:

1. цифровой картографической основы (ЦКО);

2. тематического содержания.

Создание цифровой картографической основы является первым этапом составления любого картографического произведения (Новаковский, Прасолова, Прасолов, 2000). Для составления ЦКО мы провели отбор информации с топографических карт масштабов – 1:500000 (для создания ЦКО на уровне края) и 1:100000 (для создания ЦКО на уровне административного района), ландшафтной карты Ставропольского края масштаба 1:1500000 (Атлас земель…, 2000) и карты размещения метеостанций на территории Ставропольского края масштаба 1 : 1500000.

Содержание цифровой картографической основы, составленной по топографическим картам следующее:

границы края (района);

границы административных районов (на уровне края);

населенные пункты;

гидрография и гидротехнические сооружения;

дорожная сеть;

леса, сады, виноградники;

лесополосы;

границы землепользователей на 1978 г. (базовый слой для внесения тематического содержания).

Цифровая картографическая основа, составленная по ландшафтной карте, включает:

природные ландшафты (базовый слой для внесения тематического содержания);

местности и сложные урочища.

Цифровая картографическая основа, составленная по карте размещения метеостанций, включает:

метеостанции (базовый слой для внесения тематического содержания);

границы края;

границы административных районов.

Этапами создания цифровой картографической основы явились:

отбор и изучение картографических источников, приведение их к виду, пригодному для сканирования;

Сканирование, которое производилось с разрешением 300 dpi, размер ячейки растра 0,083 мм, что соответствует 42 м на местности, а это меньше предельно допустимой ошибки в 0,1 мм – 50 м;

редактирование и сшивка частей растров в Adobe Photoshop;

векторизация информации по растровой подложке в MapInfo;

редактирование отвекторизованной информации;

контроль полученной цифровой карты.

2.3. Построение электронного банка данных Понятийно-терминологический аппарат. Быстроту получения информации, ее актуальность в настоящее время может гарантировать только автоматизированная система. Первыми попытками применения автоматизации в географии стали банки географической информации, первые разработки которых относятся к концу 60-х и особенно к 70-м годам XX века. Так, В.Ф.Гракович (1978) показывает принципы построения банка географических данных для информационной системы прогноза снежных лавин, а Г.Айхорн (1979) предлагает создание многоцелевой автоматизированной ГИС, в которой накапливается информация по вопросам рационального использования ресурсов и охраны окружающей среды, в связи с прогнозами роста численности населения земного шара. С течением времени накапливался опыт сбора, хранения и управления данными, нарабатывались библиотеки программ, решающих стандартные задачи. Современная ГИС – это автоматизированная система, имеющая большое количество графических и тематических (атрибутивных) баз данных, соединенная с модельными и расчетными функциями для манипулирования ими и преобразования их в пространственную картографическую информацию для принятия на ее основе различных решений и осуществления контроля (Коновалова, Капралов, 1997).

Нами использованы определения терминов из «Геоинформатика. Толковый словарь основных терминов / под ред. А.М. Берлянта и А.В. Капралова»

(1999).

Банк данных – информационная система централизованного хранения и коллективного использования данных. Содержит совокупность баз данных, СУБД и комплекс прикладных программ.

База данных (БД) – совокупность данных, организованных по определенным правилам, устанавливающим общие принципы описания, хранения и манипулирование данными. Хранение данных в БД обеспечивает централизованное управление, соблюдение стандартов, безопасность и целостность данных, сокращает избыточность и устраняет противоречивость данных. БД не зависит от прикладных программ. Создание БД и обращение к ней (по запросам) осуществляется с помощью системы управления базами данных (СУБД). БД ГИС содержат наборы данных о пространственных объектах, образуя пространственные БД.

Атрибут – свойство, качественный или количественный признак, характеризующий пространственный объект (но не связанный с его местоуказанием) и ассоциированный с его уникальным номером, или идентификатором;

наборы значений атрибутов обычно представляются в форме таблиц средствами реляционных СУБД; классу атрибутов при этом соответствует имя колонки, или столбца, или поля таблицы. Для упорядочения, хранения и манипулирования атрибутивными данными используются средства систем управления базами данных, как правило, реляционного типа.

Содержание электронного банка данных (на уровне края). Электронный банк данных включает в себя следующие атрибутивные базы данных базовых слоев цифровой карты (Каторгин, 2003):

характеристика землепользователей (слой «землепользователи»);

агроклиматические ресурсы и потенциалы (слой «метеостанции»);

характеристика агроландшафтов (слой «природные ландшафты»).

База данных «Характеристика землепользователей» содержит информацию о 286 сельскохозяйственных предприятиях, входящих в так называемые ядра ландшафтов, составленных из хозяйств, большая часть которых находится в пределах определенного ландшафта. В качестве атрибутов по структуре землепользования были выбраны данные за 1984 и 1986 гг., так как это время относится к периоду наиболее интенсивного развития сельского хозяйства (Экономическая эффективность …, 1984; Экспликация земель …, 1986). По агрохимической характеристике почв пашни использованы данные за 1986, 1988 и 2003, для выявления изменения обеспеченности почв элементами питания за период с 1986, 1988 гг. по 2003г (Агрохимическая характеристика…, 1988; Группировки почв…, 2003). Данные по развитию деградационных процессов выбраны из технических отчетов по материалам почвенного обследования хозяйств края (Технические отчеты…, 1975-2002) Данные по почвенной бонитировке на 2002 г. предоставлены ФГУП СтавропольНИИгипрозем.

Структуру таблицы составляют следующие колонки:

1. номер ландшафта;

2. административный район;

3. индекс хозяйства;

4. название хозяйства до реформирования;

5. название хозяйства после реформирования;

6. площадь сельхозугодий (га) на 1984 г.;

7. площадь пашни (га) на 1984 г.;

8. площадь сенокосов (га) на 1984 г.;

9. площадь пастбищ (га) на 1984 г.;

10. площадь орошаемых земель (га) на 1984 г.;

11. площадь посевов (га) на 1984 г.;

12. поголовье коров на 1984 г.;

13. поголовье крупного рогатого скота на 1984 г.;

14. поголовье лошадей на 1984 г.;

15. поголовье молодняка лошадей на 1984 г.;

16. поголовье овец на 1984 г.;

17. общая площадь земель (га) на 1986 г.;

18. площадь пашни (га) на 1986 г.;

19. площадь сенокосов (га) на 1986 г.;

20. площадь пастбищ (га) на 1986 г.;

21. площадь орошаемых земель (га) на 1986 г.;

22. площадь залежей (га) на 1986 г.;

23. площадь многолетних насаждений (га) на 1986 г.;

24. общая площадь сельхозугодий (га) на 1986 г.;

25. площадь приусадебных земель (га) на 1986 г.;

26. площадь земель находящихся в стадии мелиоративного строительства 27. площадь лесов (га) на 1986 г.;

28. площадь земель находящихся под водохранилищами и прудами (га) на 29. площадь прочих земель (га) на 1986 г.;

30. содержание гумуса в пашне (%) на 1.01.1988 г.;

31. площадь обследованной пашни на содержание гумуса на 1.01.1988 г.;

32. содержание гумуса в пашне (%) на 1.01.2003 г.;

33. площадь обследованной пашни на содержание гумуса, подвижного фосфора и обменного калия (га) на 1.01.2003 г.;

34. содержание подвижного фосфора в пашне (мг/кг почвы) на 1.01.1986 г.;

35. содержание обменного калия в пашне (мг/кг почвы) на 1.01.1986 г.;

36. площадь обследованной пашни на содержание подвижного фосфора и обменного калия (га) на 1.01.1986 г.;

37. содержание подвижного фосфора в пашне (мг/кг почвы) на 1.01.2003 г.;

38. содержание обменного калия в пашне (мг/кг почвы) на 1.01.2003 г.;

39. уровень pH пашни на 1.01.2003 г.;

40. площадь обследованной пашни на выявление уровня pH (га) на 1.01.2003 г.;

41. площадь пашни I агроэкологической группы (га);

42. площадь пашни II агроэкологической группы (га);

43. площадь пашни III агроэкологической группы (га);

44. площадь пашни IV агроэкологической группы (га);

45. площадь пашни V агроэкологической группы (га);

46. площадь пашни VI агроэкологической группы (га);

47. площадь сельхозугодий обследованных на деградацию (га);

48. площадь пашни обследованной на деградацию (га);

49. площадь засоленных сельхозугодий (га);

50. площадь засоленной пашни (га);

51. площадь сельхозугодий засоленных в слабой степени (га);

52. площадь пашни засоленной в слабой степени (га);

53. площадь сельхозугодий засоленных в средней степени (га);

54. площадь пашни засоленной в средней степени (га);

55. площадь сельхозугодий засоленных в сильной степени (га);

56. площадь пашни засоленной в сильной степени (га);

57. площадь солончаков в сельхозугодиях (га);

58. площадь пашни на солончаках (га);

59. площадь солонцовых комплексов в сельхозугодиях (га);

60. площадь пашни на солонцовых комплексах (га);

61. площадь переувлажненных сельхозугодий (га);

62. площадь переувлажненной пашни (га);

63. площадь заболоченных сельхозугодий (га);

64. площадь пашни заболоченной пашни (га);

65. площадь сельхозугодий заболоченных в слабой степени (га);

66. площадь пашни заболоченной в слабой степени (га);

67. площадь сельхозугодий заболоченных в средней степени (га);

68. площадь пашни заболоченной в средней степени (га);

69. площадь сельхозугодий заболоченных в сильной степени (га);

70. площадь пашни заболоченной в сильной степени (га);

71. площадь каменистых сельхозугодий (га);

72. площадь каменистой пашни (га);

73. площадь сельхозугодий каменистых в слабой степени (га);

74. площадь пашни каменистой в слабой степени (га);

75. площадь сельхозугодий каменистых в средней степени (га);

76. площадь пашни каменистой в средней степени (га);

77. площадь сельхозугодий каменистых в сильной степени (га);

78. площадь пашни каменистой в сильной степени (га);

79. площадь сельхозугодий каменистых в очень сильной степени (га);

80. площадь пашни каменистой в очень сильной степени (га);

81. площадь дефляционно-опасных сельхозугодий (га);

82. площадь дефляционно-опасной пашни (га);

83. площадь сельхозугодий дефляционно-опасных в слабой степени (га);

84. площадь пашни дефляционно-опасной в слабой степени (га);

85. площадь сельхозугодий дефляционно-опасных в средней степени (га);

86. площадь пашни дефляционно-опасной в средней степени (га);

87. площадь сельхозугодий дефляционно-опасных в сильной степени (га);

88. площадь пашни дефляционно-опасной в сильной степени (га);

89. площадь сельхозугодий эродируемых ветром (га);

90. площадь пашни эродируемой ветром (га);

91. площадь сельхозугодий эродируемых ветром в слабой степени (га);

92. площадь пашни эродируемой ветром в слабой степени (га);

93. площадь сельхозугодий эродируемых ветром в средней степени (га);

94. площадь пашни эродируемой ветром в средней степени (га);

95. площадь сельхозугодий эродируемых ветром в сильной степени (га);

96. площадь пашни эродируемой ветром в сильной степени (га);

97. площадь сельхозугодий подверженных совместной водной и ветровой 98. площадь пашни подверженной совместной водной и ветровой эрозии;

99. площадь сельхозугодий подверженных совместной водной и ветровой эрозии в слабой степени (га);

100. площадь пашни подверженной совместной водной и ветровой эрозии в слабой степени (га);

101. площадь сельхозугодий подверженных совместной водной и ветровой эрозии в средней степени (га);

102. площадь пашни подверженной совместной водной и ветровой эрозии в средней степени (га);

103. площадь сельхозугодий подверженных совместной водной и ветровой эрозии в сильной степени (га);

104. площадь пашни подверженной совместной водной и ветровой эрозии в сильной степени (га);

105. площадь эрозионно-опасных сельхозугодий (не смытых) (га);

106. площадь эрозионно-опасной пашни (не смытой) (га);

107. площадь сельхозугодий подверженных водной эрозии (га);

108. площадь пашни подверженной водной эрозии (га);

109. площадь сельхозугодий подверженных эрозии в слабой степени (га);

110. площадь пашни подверженной водной эрозии в слабой степени (га);

111. площадь сельхозугодий подверженных водной эрозии в средней степени (га);

112. площадь пашни подверженной водной эрозии в средней степени (га);

113. площадь сельхозугодий подверженных водной эрозии в сильной степени (га);

114. площадь пашни подверженной водной эрозии в сильной степени (га);

115. балл почвенного бонитета сельскохозяйственных угодий (на 2002 г.);

116. балл почвенного бонитета пашни (на 2002 г.);

117. балл почвенного бонитета пастбищ (на 2002 г.).

База данных «Агроклиматические ресурсы и потенциалы» содержит данные по 32 метеостанциям края (Агроклиматические ресурсы Ставропольского края, 1971). Структуру таблицы составляют колонки:

1. название метеостанции;

2. годовая сумма осадков (мм);

3. сумма осадков вегетационного периода (мм);

4. весенние запасы продуктивной влаги в метровой толще (мм);

5. сумма средних суточных температур воздуха за период активной вегетации (C°);

6. сумма температур выше 5°С;

7. сумма температур выше 10°С;

8. сумма среднесуточных значений дефицита влажности воздуха (гПа);

9. сумма осадков за июль-август (мм);

10. сумма осадков за сентябрь-октябрь (мм);

11. сумма осадков за ноябрь-март (мм);

12. сумма осадков за апрель-июнь (мм);

13. сумма отрицательных температур за зиму (°С);

14. сумма активных температур за апрель-май (°С);

15. сумма активных температур за июнь (°С);

База данных «Характеристика агроландшафтов» содержит данные о ландшафтах края. Структуру таблицы составляют следующие колонки:

1. номер ландшафта;

2. название ландшафта;

3. агроклиматическая зона (в которую входит ландшафт или его большая В нее также были импортированы таблицы, полученные путем вычислений из баз данных «характеристика землепользователей» и «агроклиматические ресурсы и потенциалы», анализируемые в четвертой главе.

Содержание электронного банка данных (на уровне района). При анализе агроландшафтных зон на уровне административного района мы пользовались базой данных «Характеристика землепользователей». В результате запроса по образцу в поле «Административный район» выбирался Изобильненский район, и в дальнейшем необходимые вычисления проводились в результирующей таблице.

Для оценки экологической опасности использования земель была создана электронная карта Изобильненского района масштаба 1:100000, содержащая следующие слои:

1. рельеф;

2. гидросеть (включая балочное расчленение);

3. сельские населенные пункты (содержит поля реляционной таблицы:

название и численность населения);

4. агроландшафтные зоны;

5. экологически опасные объекты;

6. загрязнение почв химическими элементами.

Работа с атрибутивной базой данных в среде Mapinfo. Основной объем информации, используемый в нашем исследовании, хранился, обрабатывался и анализировался в ГИС MapInfo, так как данный продукт представляет достаточно широкие возможности для работы с базами данных, созданных как в самой программе, так и в таких программных продуктах как Microsoft Excel, Microsoft Access и других. Развитая система запросов позволяет делать три типа запросов (MapInfo, 2000):

1. выборку;

2. SQL-запросы;

3. статистический.

Предусмотрена возможность сохранения шаблона запросов.

Первый тип – выборка позволяет создать (подмножество записей) на основании информации из некоторой таблицы MapInfo. С ее помощью возможна выборка записей и сопоставленных им графических объектов по значениям их атрибутов. Таким образом, можно выделять в окне Карты или Списка объекты, удовлетворяющие некоторому критерию. Результаты запросов сохраняются в окнах Списков, Карт и Графиков. Чтобы выполнить поиск по запросу необходимо задать логическое выражение. Составление выражения производится в MapInfo двумя способами – напрямую (при задании простых выражений) и построение выражения с помощью диалога «Выражение» (при задании сложных выражений).

Второй тип – SQL-запросы сложнее по структуре, чем выборка с помощью обычных запросов. Команда SQL-запрос позволяет решать следующие задачи в MapInfo:

создавать вычисляемые колонки – колонки, значения в которых вычисляются на основании данных в уже существующих столбцах таблицы;

обобщить данные таким образом, чтобы вместо сумм просматривать суммарные данные по таблице;

скомбинировать несколько таблиц в одну новую таблицу;

показ только интересующих колонок и строк.

Третий тип запросов производится с помощью статистического окна, в котором показываются общая сумма и средняя величина для всех числовых полей, выбранных в данный момент объектов/записей. Также показывается число выбранных записей. При изменении выборки статистические данные автоматически пересчитываются.

2.4. Методика построения тематических карт Тематическая картография является мощным средством анализа и наглядного представления данных. Она сопоставляет атрибутивным данным графические образы на карте, что позволяет легко уловить те тенденции и взаимозависимости данных, которые порой очень трудно обнаружить с помощью табличного представления. Тематические карты строились нами в двух системах: MapInfo и 3D Field. Тематическими картами мы называем карты, объекты на которых выделены графическими средствами в зависимости от сопоставленных им значений.

В MapInfo тематические карты создаются путем присвоения графическим объектам на карте цветов, штриховок и размеров символов, согласно значению соответствующему им в таблице. Столбчатые и круговые диаграммы позволяют сравнивать несколько видов данных одновременно.

В нашей работе использовались тематические карты, построенные методом диапазонов значений, применение которого позволяет группировать записи с близкими значениями тематической переменной и присваивать созданным группам единые цвета, или штриховки.

Построение тематических карт по расчету средневзвешенных значений интерполированных показателей для ландшафтов происходило в несколько этапов:

1. вычисление значений показателей с помощью SQL-запросов;

2. растеризация векторной карты метеостанций с подписанными значениями по какому-либо из атрибутов в MapInfo;

3. построение интерполированной поверхности методом кригинга в 3D Field и экспорт цифровых моделей в растровый формат;

Использование метода кригинга в нашей работе объясняется рядом преимуществ, которые он имеет перед другими методами интерполяции, так как он оптимизирует процедуру интерполяции на основе статистической природы поверхности (Oliver and Oliver, 1990). Кригинг использует идею регионализованной переменной, которая изменяется от места к месту с некоторой видимой непрерывностью, но не может моделироваться только одним математическим уравнением. Кригинг обрабатывает эти поверхности, считая их образованными из трех независимых величин.

Дрейф или структура поверхности. Дрейф оценивается с использованием математического уравнения, которое наиболее близко представляет общее изменение поверхности, во многом подобно поверхности тренда.

Случайных отклонений от общей тенденции связанных друг с другом пространственно.

Случайный шум, который не связан с общей тенденцией и не имеет пространственной автокорреляции (Де Мерс, 1999).

4. регистрация растрового изображения, векторизация и построение тематических карт методом диапазонов в MapInfo.

5. использование технологии оверлея между слоями «природные ландшафты» и слоем с отвекторизованными интерполированными показателями, а также применение SQL-запросов по формуле Sum(показатель*area(«obj,sq km») где показатель – атрибут, по которому находят суммарное значение;

area(«obj,sq km») – автоматически вычисляемая площадь полигонов с одинаковыми показателями.

позволило рассчитать суммарные значения, которые были добавлены в атрибутивную базу данных и поделены на площадь ландшафтов. Так были вычислены средневзвешенные значения величин биоклиматического потенциала, коэффициента роста, индексированные показатели для оценки условий возделывания культур по ландшафтам края и другие средневзвешенные параметры агроландшафтов, а в дальнейшем методом «диапазонов значений»

построены тематические карты.

ГЛАВА 3. КОНЦЕПЦИЯ АДАПТИВНО-ЛАНДШАФТНОГО

ЗЕМЛЕДЕЛИЯ

3.1. Методология перехода к адаптивно-ландшафтному земледелию в Ставропольском крае на разных уровнях административного и В связи с ориентацией традиционного землеустройства на плановые задания по производству растениеводческой и животноводческой продукции, плановой урожайности и количеству поголовья скота площадь пашни не подлежала сокращению. Напротив, она должна была увеличиваться и быть достаточной для производства планируемого объема продукции различных культур и созданию кормовой базы для планируемого поголовья скота. Основой для землеустройства был покомпонентный учет природных условий и природных ресурсов (Методические подходы к …, 2002).

Ориентация сельского хозяйства края на широкую интенсификацию сельскохозяйственного производства вызвала негативные процессы, нашедшие отражение в широком развитии водной и ветровой эрозии, загрязнении вод и почв агрохимикатами и тяжелыми металлами, аридизации и деградации земельных массивов. Индикатором нерационального землепользования сельскохозяйственной отраслью явилось состояние земельного фонда края.

В качестве альтернативы традиционному земледелию возникла парадигма адаптивно-ландшафтного (ландшафтно-экологического) земледелия. Она была принята земледелием края как стратегическая задача, что было закреплено постановлением Государственной Думы Ставропольского края № 637от 26.06.1997 г. (Государственная Дума …, 1997).

Парадигма адаптивно-ландшафтного земледелия базируется на принципиально новых теоретических положениях, отражающих закономерности функционирования агроландшафтов, как единства природных и социальнохозяйственных компонентов.

Основным принципами, разработанной в Ставропольском научноисследовательском институте сельского хозяйства концепции развития адаптивно-ландшафтного земледелия в современных условиях хозяйствования в Ставропольском крае (Петрова, Желнакова, 1999), принято признание первичности природных ландшафтов, рассмотрение в их таксономических единицах антропогенных воздействий и выбор этих единиц как «адресов» разрабатываемых адаптивно-ландшафтных систем земледелия. Концепция предусматривает адаптацию систем земледелия к дифференциации природных условий, к разным уровням экономической и технической обеспеченности хозяйств, разному соотношению растениеводческой и животноводческой отраслей в них. В основу концепции положен принцип рационального природопользования. Ландшафтный подход рассматривается как ветвь общего системного подхода.

Отсюда комплексность и системность изучения как всех уровней ландшафтного устройства территории края (от ландшафтных провинций до фаций) и разрабатываемых адаптивно-ландшафтных подходов в агродеятельности всех административных уровней – от края до фермерского хозяйства, так и степень приближения к решению поставленных задач.

Согласно концепции при рассмотрении агродеятельности на всех уровнях принимается:

- широкое использование принципа построения естественных экосистем:

максимум разнообразия и экологическая адресность;

- одинаковая важность оценок как продукционных, так и средообразующих, энергетических, экологических;

- приоритет факторов биологизации (использование «даровых» сил природы);

- повышение плодородия и биогенности почв стратегической задачей адаптивно-ландшафтного земледелия (Петрова, Желнакова, 1999).

В зависимости от размерности административно-хозяйственных единиц и поставленных целей адаптации того или иного звена хозяйственной деятельности (вида специализации, структуры угодий и посевных площадей, зональных систем земледелия, севооборотов, технологий, систем удобрений и пр.) объектом анализа и дифференциации использования могут выступать природно-территориальные комплексы различных рангов.

При разработке адаптивно-ландшафтных систем земледелия объектом особого внимания являются природно-территориальные комплексы (ПТК) ранга ландшафта и его морфологических частей: местностей, урочищ, подурочищ, фаций (рис. 2).

Необходимым условием широкого внедрения и успешного использования систем земледелия на ландшафтной основе становится внедрения информационных технологий для поддержки принятия решений при проектировании, корректировке и реализации систем земледелия.

Развитие адаптивных систем земледелия на ландшафтной основе подразумевает функционально-целевой анализ больших массивов разноплановой информации. Существенную помощь здесь могут оказать геоинформационные системы (ГИС), обеспечивающие систематизацию, обработку, отображение и распространение пространственно-координированных данных. ГИС выступают как мощные системы анализа и моделирования процессов и явлений, обработки статистической информации, что позволяет существенно сократить сроки обработки и анализа информации.

Переход к адаптивно-ландшафтному земледелию должен опираться на хорошее знание специфики местных ландшафтов, поэтому требуется создание хорошей информационной базы. По нашему мнению ГИС должны включать в себя как показатели, так и целевые блоки оценки различных потенциалов и рисков сельскохозяйственной деятельности в ландшафтах края с целью принятия решений в последовательности: анализ – диагноз – прогноз – планирование.

Рис. 2. Методология адаптивно-ландшафтного земледелия на основе ландшафтных таксономических уровней (Петрова, Желнакова, 1999).

3.2. Ретроспективные ландшафты Ставропольского края и их Вопросы изучения ландшафтов края рассматривались чаще всего при составлении схем физико-географического районирования и карт Северного Кавказа (Гвоздецкий, 1960; Чупахин, 1974; Беручашвили, 1979, 1980). Ландшафты Ставропольской возвышенности и ее отдельных частей изучались В.А.Шальневым, М.Д.Черноваловым, П.А.Диденко, А.В.Лысенко, А.В.Скрипчинским и другими авторами (Черновалов, 1963; Шальнев, 1965, 1965, 1974; Тертышников, Шальнев, 1990; Шальнев, Василенко, 1991;

Скрипчинский, 1999). В последнее десятилетие В.А.Шальневым и группой авторов проведено целостное описание ретроспективных и современных ландшафтов края, начатое составлением ландшафтной карты в масштабе 1:500000 в 1992 году и продолженное в учебном пособии и монографиях (Шальнев 1995; Современные ландшафты…, 2002). При выделении ландшафтов учитывались следующие принципы (Шальнев, 2002):

- генетический, отражающий историю формирования природных ландшафтов и его морфологических единиц;

- азональных и зонально-провинциальных особенностей, учитывающий ведущие закономерности территориальной дифференциации географической оболочки;

- бассейновый, определяющий выделение ландшафтов в пределах отдельных речных бассейнов и их частей, либо в пределах межбассейновых водоразделов;

- эволюционных изменений ландшафтов под влиянием факторов и процессов культурогенеза, которые связаны с количественными и качественными изменениями как в компонентной (замена природных видов биоты на виды агрофитоценозов, увеличение видового разнообразия лесной растительности за счет лесополос, изменениями типа влагооборота в связи с обводнением и орошением территории края и др.), так и морфологической (поселки и технические сооружения, лесополосы, аквальные комплексы – пруды и водохранилища и др.) структур. Этот принцип отражает также историю заселения и освоения природных ресурсов;

- геоэкологических аномалий, связанных с возникновением внутриландшафтных геополей антропогенного происхождения, которые изменяют динамику процессов как в компонентной и морфологической, так и биоценотической подсистемах, ускоряя эволюционные изменения ландшафтов края.

Ландшафтные провинции и ландшафты Ставропольского края показаны на рис. 3.

Рис. 3. Ландшафты Ставропольского края (Атлас …, 2000).

1 – номера ландшафтов; 2 – границы ландшафтов; 3 – границы ландшафтных провинций; 4 – границы физико-географических стран. Ландшафтные провинции: 5 – лесостепная провинция, ландшафты типичных лесостепей; 6 – лесостепная провинция, ландшафты байрачных лесостепей; 7 – степных ландшафтов; 8 – полупустынных ландшафтов;

9 – предгорных степных и лесостепных ландшафтов; 10 – среднегорных ландшафтов лесостепей и остепненных лугов.

В.А.Шальневым, на территории Ставропольского края выделяются следующие ландшафты (по номерам представленным на рис. 3) 1. Верхнеегорлыкский водораздельный ландшафт типичных лесостепей, структурно-денудационных плато и речных долин;

2. Прикалаусско-Саблинский водораздельный ландшафт типичных и байрачных лесостепей, структурно-денудационных плато и речных долин;

3. Ташлянский ландшафт байрачных лесостепей, структурноденудационных плато и речных долин;

4. Грачевско-Калаусский ландшафт байрачных лесостепей, высоких эрозионно-денудационных равнин, останцовых плато и речных долин;

5. Прикалаусско-Буйволинский ландшафт байрачных лесостепей, структурно-денудационных плато и речных долин;

6. Егорлыкско-Сенгилеевский ландшафт злаковых степей, эрозионноденудационных высоких равнин и депрессий обращенных форм рельефа и останцовых плато;

7. Расшеватско-Егорлыкский ландшафт злаково-разнотравных степей, эрозионно-аккумулятивных равнин с долинным расчленением;

8. Среднеегорлыкский ландшафт злаково-разнотравных степей, эрозионно-аккумулятивных равнин с долинно-балочным расчленением;

9. Бурукшунский ландшафт злаковых степей, эрозионноаккумулятивных и аллювиально-озерных равнин;

10. Нижнекалаусский ландшафт злаковых степей, структурноденудационных и эрозионно-аккумулятивных равнин;

11. Айгурский ландшафт злаковых и полынно-злаковых степей, эрозионно-аккумулятивных равнин с долинно-балочным расчленением;

12. Карамык-Томузловский ландшафт злаковых степей эрозионноаккумулятивных равнин с долинно-балочным расчленением;

13. Кубано-Янкульско-Суркульский ландшафт злаковых и злаковополынных степей, высоких эрозионно-денудационных равнин и речных долин депрессий обращенных форм рельефа;

14. Левокумский ландшафт полынно-злаковых степей и аллювиальных аккумулятивных четвертичных равнин;

15. Правокумско-Терский ландшафт злаковых степей и аллювиальных аккумулятивных четвертичных равнин;

16. Курско-Терский ландшафт полынно-злаковых степей и злаковополынных полупустынь и аллювиальных морских (дельтовых) аккумулятивных верхнечетвертичных низменностей;

17. Нижнекумско-Прикаспийский ландшафт злаково-полынных полупустынь и полынных пустынь и молодых морских аккумулятивных равнин;

18. Чограйско-Прикаспийский ландшафт злаково-полынных пустынь и аккумулятивно-морских равнин и террас;

19. Западно-Манычский ландшафт злаково-полынных полупустынь, террас и аллювиально-озерных равнин;

20. Прикубанский ландшафт злаково-разнотравных и луговидных степей предгорных террасированных наклонных равнин;

21. Воровсколесско-Кубанский ландшафт лесостепей, слабо расчлененных моноклинальных гряд палеогеновой куэсты и высоких эрозионноденудационных равнин;

22. Подкумско-Золкинский ландшафт лесостепей, предгорных наклонных аллювиальных террасированных равнин и останцовых магматических гор;

23. Малкинско-Терский ландшафт злаково-разнотравных степей и пойменных лугов и предгорных наклонных аллювиальных террасированных равнин;

24. Кубано-Малкинский ландшафт лесостепей среднегорий, структурно-денудационных моноклитных куэст, межкуэстовых эрозионнотектонических депрессий и речных долин.

Природный ландшафт состоит из взаимодействующих природных компонентов и формируется под влиянием природных процессов. Он является частью ландшафтной сферы, которая представляет производное прямого соприкосновения и связанного с ним активного взаимного обмена веществом и энергией четырех сфер: земной коры, тропосферы, гидросферы (Мильков, 1990), биосфера (четвертая среда) представляет собой совокупность экосистем. Поэтому природные ландшафты имеют сложную структуру, состоящую их следующих подсистем (Шальнев, 1995).

1. Компонентной, состоящий из всех природных компонентов (горные породы, воздух, поверхностные и подземные воды, почвы, растительность и животный мир) и связей между ними. Компоненты и связи определяют эмерджентные свойства ландшафта (природные условия), создающие однородную природную среду ландшафта.

2. Морфологической (территориальной), состоящей из более мелких территориальных комплексов (местностей, урочищ, фаций) и строится по принципу полисистемной или хорической модели ландшафта (Охрана ландшафтов…, 1982). Сочетание морфологических единиц (фаций, урочищ, местностей) по Н.А.Солнцеву, образует структурно-морфологическую особенность ландшафта, где взаимодействие осуществляется через горизонтальные связи. Морфологическое разнообразие ландшафта зависит от вертикального расчленения ландшафта и обилия мезоформ рельефа.

3. Экосистемной, отражающей функциональные особенности биосистем, активно участвующие в процессах саморегуляции ландшафта. Она включает в себя набор биоценозов, состоящих из продуцентов, консументов и редуцентов, их среды обитания и связей между ними.

3.3. Типология ландшафтных морфологических единиц на уровне В 24 ландшафтах края насчитывается 93 местности, которые по генезису, гипсометрии, геоморфологическому сходству, особенностям геологического строения, положению на геохимической катене могут быть объединены в 23 типа местностей. Именно тип местности определяет внутреннее содержание систем адаптивно-ландшафтного земледелия.

Рассчитанное нами с использованием ГИС-технологий процентное соотношение типов местностей в ландшафтах края приводится в приложении 1.

Распределение типов местностей по площади и процентному отношению к площади края приводится в таблице 1.

Площадь и процентное отношение типов местностей к площади края Структурно-денудационные плато с плакорами сарматской поверхности выравнивания Структурно-денудационные низкие плато с плакорами верхнесарматской поверхности выравнивания Эрозионно-денудационные высокие равнины акчагыльской поверхности выравнивания Эрозионно-денудационные равнины апшеронской поверхности выравнивания Аккумулятивные первичные четвертичные равнины 10431 15, Эрозионно-аккумулятивные вторичные равнины (верхнечетвертичного расчленения) Пойменные аллювиальные современные равнины 1404 2, Эоловые дефляционно-аккумулятивные и аллювиально-морские низменности Аллювиально-озерные аккумулятивные постхвалынские равнины Аллювиально-морские хвалынские аккумулятивные равнины Аллювиально-морские нижнехвалынские и хазарские равнины и террасы Междолинные равнины высоких верхнеплиоценовых (апшеронских) террас Равнины нижнее- и верхнечетвертичных террас 1907 2, Низко- и средневысотные останцовые магматиче- 72 0, ские горы Низкие горные моноклинальные гряды и останцовые плато Средневысотные моноклинальные структурноденудационные куэсты Эрозионно-тектонические межкуэстовые депрессии 48 0, Речные долины среднего и нижнего течения рек 2367 3, Верхнеплиоценовые и нижнечетвертичные террасы Кубани Средне- и верхнечетвертичные террасы Кубани и Терека 3.4. Агроэкологические группы земель, их связь со структурой С учетом многообразия природных и экономических условий в Ставропольском крае сложились региональные системы земледелия, отражающие особенности выделенных сельскохозяйственных зон. Зональные системы земледелия адаптированы к ландшафтным провинциям.

По почвенно-климатическим условиям, преобладающим типам сельскохозяйственных предприятий, специализации, набору возделываемых культур и отраслей выделяются следующие зоны (Системы …, 1983).

1. Овцеводческая (крайне засушливая). Включает Апанасенковский, Арзгирский, Левокумский, Нефтекумский районы, большинство хозяйств Туркменского и восточную часть Курского районов. Соответствует ландшафтам, относящимся к провинциям полупустынь и отчасти сухих степей.

2. Зерново-овцеводческая (засушливая) – наиболее крупная. Включает Александровский, Благодарненский, Буденовский, Ипатовский, Курский, Новоселицкий, Петровский, Советский и Степновский районы. Почти соответствует ландшафтам злаковых и полынно-злаковых степей.

3. Зерново-скотоводческая (неустойчивого увлажнения). Включает центральные и западные районы края: Грачевский, Изобильненский, Кочубеевский, Красногвардейский, Андроповский, Новоалександровский, Труновский и Шпаковский. Соответствует ландшафтам злаково-разнотравных и злаковых степей, лесостепей.

4. Прикурортная (достаточного увлажнения). Включает районы, примыкающие к курортам Кавказских Минеральных Вод – Георгиевский, Кировский, Минераловодский, Предгорный. Соответствует ландшафтам разнотравно-злаковых степей предгорий и лесостепей среднегорий.



Pages:     || 2 | 3 |
Похожие работы:

«БОНДАКОВА МАРИНА ВАЛЕРЬЕВНА РАЗРАБОТКА РЕЦЕПТУРЫ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА КОСМЕТИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭКСТРАКТА ВИНОГРАДА Специальность 05.18.06 – Технология жиров, эфирных масел и парфюмерно-косметических продуктов (технические наук и) Диссертация на соискание ученой степени кандидата технических наук...»

«Залюбовская Татьяна Алексеевна Крестьянское самоуправление в Забайкальской области (вторая половина XIX в. - 1917 г.) Специальность 07.00.02– Отечественная история Диссертация на соискание ученой степени кандидата исторических наук Научный руководитель : профессор, доктор исторических наук Зайцева Любовь Алексеевна Улан-Удэ – 2014 2 Оглавление Введение 1 Организация крестьянского самоуправления в Забайкальской области в конце...»

«Юмаев Егор Александрович АНТИКРИЗИСНЫЙ КОМПОНЕНТ РЕГИОНАЛЬНОЙ ЭКОНОМИЧЕСКОЙ ПОЛИТИКИ Специальность 08.00.05 – Экономика и управление народным хозяйством (региональная экономика) Диссертация на соискание ученой степени кандидата экономических наук Научный руководитель : доктор экономических наук, профессор О.П. Кузнецова Омск – СОДЕРЖАНИЕ ВВЕДЕНИЕ РЕГИОНАЛЬНАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА РОССИИ НА СОВРЕМЕННОМ ЭТАПЕ...»

«УДК 616-91; 614 (075.8) Мальков Павел Георгиевич ПРИЖИЗНЕННАЯ МОРФОЛОГИЧЕСКАЯ ДИАГНОСТИКА И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ РЕСУРСНОЙ БАЗЫ ПРАКТИЧЕСКОЙ ПАТОЛОГИЧЕСКОЙ АНАТОМИИ диссертация на соискание ученой степени доктора медицинских наук 14.03.02 – Патологическая анатомия 14.02.03 – Общественное здоровье и здравоохранение Научные консультанты: Франк Г.А., доктор медицинских наук,...»

«АБРОСИМОВА Светлана Борисовна СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ СЕЛЕКЦИИ КАРТОФЕЛЯ НА УСТОЙЧИВОСТЬ К ЗОЛОТИСТОЙ ЦИСТООБРАЗУЮЩЕЙ НЕМАТОДЕ (GLOBODERA ROSTOCHIENSIS) Специальность: 06.05.01. – селекция и семеноводство сельскохозяйственных растений ДИССЕРТАЦИЯ на соискание учёной степени кандидата сельскохозяйственных наук...»

«СОРОКИН АЛЕКСАНДР ВЛАДИМИРОВИЧ ВЛИЯНИЕ ОМЕГА-3 ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ И АЦЕТИЛСАЛИЦИЛОВОЙ КИСЛОТЫ НА ПОКАЗАТЕЛИ ВОСПАЛЕНИЯ И АТЕРОГЕНЕЗ (ЭКСПЕРИМЕНТАЛЬНО-КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ) 14.01.05 – кардиология Диссертация на соискание ученой степени кандидата медицинских наук Научные...»

«из ФОНДОВ РОССИЙСКОЙ ГОСУДАРСТВЕННОЙ БИБЛИОТЕКИ Зинченко, Ольга Петровна 1. ОсоБенности псикическозо развития младжик сиБсов в семь як наркотизирдютцикся подростков 1.1. Российская государственная Библиотека diss.rsl.ru 2003 Зинченко, Ольга Петровна ОсоБенности псикического развития младшик си5сов в семьях наркотизирующихся подростков [Электронный ресурс]: Дис.. канд. психол. наук : 19.00.13.-М.: РГБ, 2003 (Из фондов Российской Государственной Библиотеки) Психология — Социальная психология —...»

«Едранов Сергей Сергеевич АПОПТОЗ И ОКСИД АЗОТА В РЕГЕНЕРАЦИИ ТРАВМИРОВАИНОИ СЛИЗИСТОЙ ОБОЛОЧКИ ВЕРХНЕЧЕЛЮСТНОГО СИНУСА 03.03.04 - клеточная биология, цитология, гистология Диссертация на соискание ученой степени доктора медицинских наук Научный консультант доктор медицинских наук,...»

«Дьячкова Екатерина Юрьевна Устранение дефектов кости верхней и нижней челюсти с помощью материала Коллост Стоматология 14.01.14г. Диссертация на соискание ученой степени кандидата медицинских наук Научный руководитель : Д.м.н., профессор Медведев Ю.А. Москва 2014 Список сокращений НАН- нижний альвеолярный нерв ОАС- ороантральное соустье ТКФ- трикальций-фосфат ХОГ-...»

«Алехин Сергей Геннадиевич ТОЛЩИНОМЕТРИЯ МЕТАЛЛОКОНСТРУКЦИЙ НА ОСНОВЕ ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОГО ПРЕОБРАЗОВАНИЯ В ИМПУЛЬСНОМ МАГНИТНОМ ПОЛЕ Специальность 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий Диссертация на соискание учёной степени кандидата технических наук Научный руководитель –д.т.н. Самокрутов А.А. Москва – 2013 СОДЕРЖАНИЕ ВВЕДЕНИЕ.. 1. ГЛАВА 1 Анализ методов и средств ЭМА толщинометрии. 1.1....»

«Омельченко Галина Георгиевна ГИПЕРГРАФОВЫЕ МОДЕЛИ И МЕТОДЫ РЕШЕНИЯ ДИСКРЕТНЫХ ЗАДАЧ УПРАВЛЕНИЯ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ 05.13.18 - Математическое моделирование, численные методы и комплексы программ Диссертация на соискание ученой степени кандидата физико-математических наук Научный руководитель доктор физ.-мат.наук, профессор В.А. Перепелица Черкесск - Содержание ВВЕДЕНИЕ...»

«из ФОНДОВ РОССИЙСКОЙ ГОСУДАРСТВЕННОЙ БИБЛИОТЕКИ Саликсеа, Лейсян Багдатовна 1. Становление индивидуального опыта младжик жкольников в зависимости от стиля родительского отножения 1.1. Российская государственная Библиотека diss.rsl.ru 2003 Саликова, Лейсян Багдатовна Становление индивидуального опыта младшик школьников в зависимости от стиля родительского отношения [Электронный ресурс]: Дис.. канд. псикол. наук : 19.00.07.-М.: РГБ, 2003 (Из фондов Российской Государственной Библиотеки)...»

«ТУРКИНА ОЛЬГА ВАЛЕНТИНОВНА МЕТОДЫ ОЦЕНКИ И МЕХАНИЗМЫ СГЛАЖИВАНИЯ ПРОСТРАНСТВЕННЫХ ДИСПРОПОРЦИЙ В СОЦИАЛЬНОЭКОНОМИЧЕСКОМ РАЗВИТИИ РЕГИОНОВ (НА ПРИМЕРЕ РЕГИОНОВ ЮГА РОССИИ) Специальность 08.00.05 - Экономика и управление народным хозяйством (региональная экономика) ДИССЕРТАЦИЯ на соискание ученой степени кандидата экономических наук Научный...»

«Слободнюк Елена Сергеевна ХУДО ЖЕ СТВЕННАЯ ДЕЙ СТВИТЕЛЬНОСТЬ КНИГ ДЖУНГЛЕЙ Д. Р. КИПЛ ИНГА: двоемирие и мифология Закон а Специальность 10.01.03 — литература народов стран зарубежья (западноевропейская литература) Диссертация на соискание ученой степени кандидата филологических наук Научный руководитель : доктор филологических наук,...»

«Харин Егор Сергееевич Древнерусское монашество в XI – XIII вв: быт и нравы. Специальность 07.00.02 – отечественная история Диссертация на соискание ученой степени кандидата исторических наук Научный руководитель кандидат исторических наук, доцент В.В. Пузанов Ижевск 2007 Оглавление Введение..3 ГЛАВА I. ИНСТИТУТ МОНАШЕСТВА...»

«Нарыжная Наталья Владимировна РЕЦЕПТОР-ОПОСРЕДОВАННЫЕ МЕХАНИЗМЫ ВЛИЯНИЯ ОПИОИДНОЙ СИСТЕМЫ НА УСТОЙЧИВОСТЬ СЕРДЦА К СТРЕССОРНЫМ ПОВРЕЖДЕНИЯМ 14.00.16 - патологическая физиология Диссертация на соискание ученой степени кандидата медицинских наук Научный руководитель : член-корреспондент РАМН, доктор медицинских наук, профессор Ю.Б. Лишманов Научный...»

«Карпук Светлана Юрьевна ОРГАНИЗАЦИИЯ ОБРАЗОВАТЕЛЬНОЙ КОММУНИКАЦИИ СТАРШЕКЛАССНИКОВ СРЕДСТВАМИ МЕТАФОРИЧЕСКОГО ПРОЕКТИРОВАНИЯ Специальность 13.00.01 Общая педагогика, история педагогики и образования Диссертация на соискание ученой степени кандидата педагогических наук Научный руководитель : доктор педагогических наук, доцент, Даутова Ольга...»

«ХИСАМОВ РАИЛЬ ЗАГИТОВИЧ ПРОЯВЛЕНИЕ МЯСНОЙ ПРОДУКТИВНОСТИ И МОРФОБИОХИМИЧЕСКИЙ СТАТУС ЖЕРЕБЯТ ПРИ ИСПОЛЬЗОВАНИИ В РАЦИОНАХ АДАПТИРОВАННЫХ К УСЛОВИЯМ РЕСПУБЛИКИ ТАТАРСТАН МИКРОМИНЕРАЛЬНЫХ ПРЕМИКСОВ 06.02.08 – кормопроизводство, кормление сельскохозяйственных животных и технология кормов ДИССЕРТАЦИЯ на соискание ученой степени кандидата сельскохозяйственных наук Научный руководитель доктор биологических наук, профессор Якимов О.А....»

«ЛЕПЕШКИН Олег Михайлович СИНТЕЗ МОДЕЛИ ПРОЦЕССА УПРАВЛЕНИЯ СОЦИАЛЬНЫМИ И ЭКОНОМИЧЕСКИМИ СИСТЕМАМИ НА ОСНОВЕ ТЕОРИИ РАДИКАЛОВ 05.13.10 -Управление в социальных и экономических системах Диссертация на соискание ученой степени доктора технических наук Научный консультант : доктор технических наук, профессор Бурлов Вячеслав Георгиевич. Санкт-Петербург – 2014 ОГЛАВЛЕНИЕ СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ ВВЕДЕНИЕ...»

«Кудинов Павел Иванович УДК 532.529 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ГИДРОДИНАМИКИ И ТЕПЛООБМЕНА В ЗАДАЧАХ С КОНВЕКТИВНОЙ НЕУСТОЙЧИВОСТЬЮ И НЕЕДИНСТВЕННЫМ РЕШЕНИЕМ 01.02.05 – механика жидкости, газа и плазмы Диссертация на соискание научной степени кандидата физико-математических наук Научный руководитель Приходько Александр Анатольевич доктор физ.-мат. наук, проф. Днепропетровск – ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ...»




























 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.