WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Научно-исследовательский институт ядерной физики

имени Д.В.Скобельцына

На правах рукописи

Бадаев Олег Павлович

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭНЕРГИЙ СВЯЗИ

АТОМНЫХ ЯДЕР

Специальность – 01.04.16 Физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Москва 2007 0

Работа выполнена на Физическом факультете Московского государственного университета им. М.В.Ломоносова.

Научный руководитель доктор физико-математических наук Юрий Михайлович Чувильский (ОФАЯ НИИЯФ МГУ)

Официальные оппоненты: доктор физико-математических наук, профессор Владимир Васильевич Варламов (ОЭПВАЯ НИИЯФ МГУ) кандидат физико-математических наук, старший научный сотрудник Виктор Михайлович Шилов (Лаборатория Теоретической Физики ОИЯИ г. Дубна Московской области)

Ведущая организация: Санкт-Петербургский Институт ядерной физики Российской академии наук (г.

Гатчина Ленинградской области)

Защита состоится “ 24 ” мая 2007 года в 14 час. на заседании Диссертационного совета К 501.001.06 в Московском Государственном университете им. М.В.Ломоносова.

Адрес: 119992, Москва, Ленинские горы, НИИЯФ МГУ, 19-й корпус, аудитория 2-15.

С диссертацией можно ознакомиться в библиотеке НИИЯФ МГУ.

Автореферат разослан “ 19 ” апреля 2007 года.

Ученый секретарь Диссертационного совета К 501.001. кандидат физико-математических наук О.В.Чуманова.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации.

Энергия связи атомного ядра является одной из важнейших его характеристик. Зная ее величину можно определить возможность и вероятность ядерных превращений. Для стабильных и долгоживущих ядер энергию связи можно надежно измерить, но при исследовании ядер, далеких от области стабильности, их получение и измерение их масс становятся все более затруднительными (бывает, что ошибки измерений превосходят 1 МэВ, или последующие измерения опровергают предыдущие) и даже невозможными из-за малого времени жизни таких изотопов. Здесь важную роль приобретают способы ее прогнозирования.

Проблема теоретического описания энергии связи и прогнозирования неизвестных масс (энергии связи) ядер была поставлена еще на этапе зарождения ядерной физики как науки. В настоящее время, эта проблема не только не потеряла актуальность, но и наоборот переживает период острого интереса к ней. Это связано с тем, что каждый год появляются сообщения о массах более чем 100 новых изотопов, далеких от области стабильности.

Строятся установки для исследования ядер вблизи границ их существования.

Эти исследования мотивируются, главным образом, проблемами нуклеосинтеза в звездах. Регулярно проводятся большие международные конференции, посвященные обсуждаемой проблеме, в частности ENAM (Exotic Nuclei and Atomic Masses).

Задача высокоточного описания энергий ядер оказалась весьма сложной.

Причиной этого является невозможность прямого вычисления энергий ядер из-за чрезвычайной сложности решения многочастичной задачи. Найти эффективную упрощенную схему для достаточно точного решения этой задачи оказалось не просто – характерная величина среднеквадратичного отклонения в подходах такого рода, например метод Хартри-Фока, составляет ~800 кэВ. Существенно более точными оказываются чисто феноменологические схемы, в которых таблица энергий связи ядер аппроксимируется поверхностью, описываемой многопараметрической функцией чисел протонов Z и нейтронов N, называемой поверхностью энергии связи ядер. Однако и для этих подходов задачи повышения точности аппроксимации масс в области измеренных масс и, особенно, надежности предсказания неизвестных (экстраполяции) являются весьма актуальными.

Поэтому, поиск новых путей решения проблемы вычисления энергии связи атомных ядер и усовершенствования уже известных остается остро актуальным и по сей день.

Цель работы Целью работы является построение математической модели поверхности энергий связи ядер (ММПЭСЯ), описывающей с точностью приближающейся к точности эксперимента энергии всех известных нуклидов и энергетические характеристики ядерных превращений, и пригодной для прогнозирования неизмеренных ядерных масс; анализ на этой основе современных экспериментов, посвященных изучению изотопов, далеких от области стабильных ядер, и предсказание свойств различных процессов в неизученных областях.

Научная новизна работы.

I.Методика интерполяции масс ядер (здесь и в дальнейшем под этим термином понимается описание известных и вычисление неизвестных масс в областях {k,l} (ZkZZk+1, NlNNl+1), где массы некоторой части ядер измерены) непрерывной во всей плоскости Z N функцией B(Z,N), построенной из кусочно-гладких и квадратичных по Z и N в прямоугольных областях ядер {k,l} функций – параболоидов (энергии присоединения нуклонов описываются при этом линейными функциями), развита за счет:

1. Введения в качестве исходного положения модели требования математически точного выполнения условий замкнутости циклов т. е равенства нулю суммы энергий связи нуклонов (ЭСН) по любому расположенному на поверхности замкнутому контуру. Для выполнения этого условия параметры =42B/ZN введены как «внутренние» для каждой области {k,l}, зависимые одновременно от N и Z. Доказано, что из данного условия и условия непрерывности поверхности следует, что вторые производные энергии связи =42B/Z2 и =42B/N2 не зависят от N и Z, т.



е. являются инвариантами в рядах областей ZkZZk+1 и NlNNl+ соответственно. Это следствие демонстрирует органическую связь развиваемой математической модели с физическими свойствами реальных ядерных систем (относительной независимостью в них протонной и нейтронной составляющих). Оно используется в дальнейшем для решения задач экстраполяции, поскольку резко повышает ее точность и надежность в областях экспериментально неизученных ядер.

2. Развития итеративного метода поиска чисел протонов и нейтронов, определяющих границы гладких областей (субмагических чисел) Zk и Nl, и построения полностью адекватной особенностям реальной ПЭСН системы субмагических областей. Каждый шаг итерации включает в себя: а) определение системы субмагических областей, б) подгонку «внешних» и параметров, в) подгонку «внутренних» параметров. Величина отклонения вычисленных значений от исходных служит показателем того, какой из двух первых шагов итерации оказался недостаточно точным, поскольку выбор субмагических чисел влияет на результат значительно сильнее. После введения соответствующей коррекции процесс повторяется.

3. Расширения массива аппроксимируемых масс ядер за счет создания метода интерполяции для областей, где известны лишь энергии альфа-переходов.

4. Разработки подхода, позволяющего корректировать энергии присоединения нуклонов, вычисляемые в обсуждаемой схеме, за счет устранения систематической ошибки в значениях полной энергии связи ядер, накапливающейся в процессе расчетов.

II. В «больших» областях между общепринятыми главными магическими числами развиты методы построения гладких поверхностей, с хорошей точностью аппроксимирующих обсуждавшуюся выше кусочно-гладкую ПЭСЯ. Показано, что наиболее устойчивым (слабо и закономерно меняющимся или даже стабильным при переходе от одной малой субмагической области к другой) является параметр, характеризующий ориентацию осей симметрии параболоида в системе координат ZON.

Установлены аналитические связи как между усредненными параметрами, и, так и между этими параметрами и параметрами линии -стабильных ядер. Они соединили в единое целое локальные (относящиеся к отдельным субмагическим областям) и глобальные (постоянные в «больших» областях) характеристики ММПЭСЯ. В результате параметры, и сами стали явными функциями Z и N. Для близких к линии -стабильности тяжелых и сверхтяжелых ядер точность такой гладкой аппроксимации вполне удовлетворительна. Зависимость параметров от чисел Z и N можно экстраполировать на область сверхтяжелых ядер с очень большими массовыми числами.

В комплексе эти два подхода и составили новую, завершенную, логически согласованную и удобную для применения модель поверхности энергий связи ядер.

III. На основе описанной модели разработаны способы экстраполяции ПЭСЯ:

1. На области нейтронодефицитных и нейтроноизбыточных ядер, расположенные вблизи от линий нуклонной стабильности, включая и область протонно-нестабильных.

2. На область сверхтяжелых ядер, активно изучаемую в современных экспериментах, для которой характерен большой дефицит экспериментальных данных - известны лишь энергии альфа-распада некоторых ядер.

IV. Обнаружена новая, ранее неизвестная, закономерность в энергиях ядер – показано что кривизна изобарных сечений ПЭСЯ с увеличением избытка нейтронов увеличивается. Все существующие массовые формулы соответствуют в общих чертах формуле Бора-Уилера, являющейся полиномом второго порядка от проекции изоспина. Наличие асимметрии изобарных сечений доказывает существование в формуле Бора-Уилера компоненты, имеющей вид f(A)(N-Z)3, или содержащей более высокие нечетные степени проекции изоспина. Такое поведение изобарных сечений не сводится к эффектам, порождаемым кулоновским полем, его можно объяснить лишь нарушением изотопической инвариантности и/или наличием трёхнуклонного сильного взаимодействия.

V. Представленным методом рассчитаны энергии связи всех ядер, для которых проведены эксперименты (их около 2000), а также множество неизмеренных энергий связи. Для ядер массы которых надежно измерены (т.

е. стабильных и имеющих времена жизни больше 1 часа) достигнута точность описания масс 160 кэВ. Для всех (в том числе и короткоживущих) ядер из области 126N156, 82Z104 среднеквадратичное отклонение составляет 66 кэВ.

VI. Для исследования характеристик протонного и альфа-распада средних нейторонодефицитных ядер, расположенных за границей области протонной стабильности, предложено использовать ММПЭСЯ вместе с полуэмпирическим методом расчета времен жизни (при заданной энергии распада) по отношению к этим распадным модам. Для этих ядер, а также тяжелых нейтронодефицитных ядер предсказаны периоды полураспада.

Таким образом получены ограничения на возможность эксперимента, накладываемые малыми временами жизни ядер.

VII. Рассчитаны массы и энергии альфа-распада сверхтяжелых ядер в области156N178, 104Z116, эксперименты по синтезу которых проводятся в настоящее время, а также их времен жизни. Показано, что все имеющиеся на этот счет экспериментальные данные внутренне согласованы.

Этим самым подтверждена корректность идентификации полученных изотопов авторами экспериментов. Предсказаны энергии альфа-распада и времена жизни множества неизученных экспериментально изотопов в этой области.

Практическая ценность работы.

Представленные в настоящей диссертации значения неизвестных ядерных масс могут быть использованы для расчетов сечений различных ядерных реакций и вероятностей распадов ядер, играющих роль в кинетике самых разнообразных макропроцессов, в том числе процессов, происходящих в ядерных реакторах, процессов звездного нуклеосинтеза и других.

В областях, где массы ядер измерены ненадежно, рассчитанные значения масс могут служить определенным подтверждением экспериментальных результатов или наоборот, основанием для того, чтобы перемерить эти массы.

Развитая в диссертации математическая модель поверхности энергий связи ядер может быть использована для оценки масс других ядер в любой интересующей пользователя области.

Рассчитанные значения ширин протонного и альфа-распада средних и тяжелых нейтронодефицитных ядер могут послужить удобным ориентиром для планируемых экспериментов.

Представленная в диссертации схема комплексного анализа полученных в эксперименте энергий альфа-распада сверхтяжелых ядер и времен их жизни является перспективной для идентификации сверхтяжелых изотопов, цепочки распада которых не заканчиваются известными до этого ядрами.

Результаты расчета в рамках этой схемы значений энергий распада и времен жизни неизвестных сверхтяжелых изотопов могут быть полезными при постановке новых экспериментов, а также для планируемого в настоящее время поиска сверхтяжелых изотопов в природе.

Достоверность полученных результатов Достоверность результатов диссертации обеспечивается корректной постановкой исследовательских задач; использованием ясного математического формализма и хорошо апробированных исходных положений; совпадением результатов, полученных различным путем;

хорошим согласием вычисленных результатов с экспериментом.

Основные положения, выносимые на защиту 1. Обладающий высокой внутренней согласованностью вариант математической модели поверхности энергии связи нуклонов (ЭСН), описывающей ее линейными функциями чисел протонов и нейтронов Z и N в прямоугольных областях ядер {k,l} плоскости ZN, граничащих между собой при целых значениях аргументов. Метод поиска оптимальных значений параметров модели.

2. Установление ряда аналитических связей параметров кусочно-линейных функций ММПЭСН между собой и параметрами линии -стабильных ядер.

Разработка на этой основе методов экстраполяции ММПЭСН на области:

а) где известны лишь энергии альфа-распадов;

б) средних и тяжелых ядер, расположенных между стабильными ядрами и линией нуклонной стабильности;

в) сверхтяжелых ядер, где известны лишь энергии альфа-распадов отдельных ядер;

г) сверхтяжелых ядер. где нет никаких экспериментальных данных об их энергиях.

3. Результаты аппроксимации энергий связи всех известных более чем ядер, а также расчетов неизвестных масс вплоть до линии протонной стабильности, масс и энергий альфа-распада сверхтяжелых ядер.

4. Обнаружение новой ранее неизвестной закономерности, проявляющейся в энергиях связи изобарных ядер, а именно увеличения кривизны изобарных сечений с увеличением избытка нейтронов.

5. Результаты расчета времен жизни средних ядер по отношению к протонному и альфа-распаду, а также времен жизни альфа-распадов тяжелых и сверхтяжелых ядер. Предсказание на этой основе распадных свойств нуклидов на границах нуклонной стабильности, идентификация элементов с помощью этих свойств.

Апробация работы Результаты работы доложены на 28, 30, 31, 32, 34, 49 совещаниях по ядерной спектроскопии и структуре атомного ядра; международном семинаре «Физико-математическое моделирование систем» (Воронеж, 5- октября 2004 г.); семинаре лаборатории теории атомного ядра НИИЯФ МГУ;

семинаре ЛЯР ОИЯИ.

Структура и объём работы. Диссертация состоит из введения, пяти глав, заключения и списка цитируемой литературы. Работа содержит 165 страниц, включая 29 рисунков, 20 таблиц в тексте работы и 18 – в Приложении, а также 132 библиографических ссылок.

Публикации и личный вклад автора По теме диссертации опубликовано 23 печатные работы [1 – 23]. Они приведены в конце автореферата. Среди них 4 статьи опубликованы в научных журналах, входящих в установленный ВАК перечень ведущих российских изданий, в которых должны быть опубликованы основные результаты диссертаций.

Основная часть задач, составляющих содержание этих работ, была поставлена и решена автором. Часть материала, вошедшего в первую главу диссертации, получена совместно с Н.Н. Колесниковым и его сотрудниками.

Программа расчета одночастичных ширин альфа-распада, использованная в работах, представленных в четвертой главе диссертации, создана С.Д.

Кургалиным.

СОДЕРЖАНИЕ ДИСССЕРТАЦИИ

Во Введении обоснована актуальность темы диссертации, сформулированы:

цель работы, научная новизна, практическая значимость, основные положения, выносимые на защиту. Там же дан ретроспективный (от классических работ до современных) обзор литературы, посвященной измерению и вычислению масс ядер, причем обсуждаются как феноменологические, так и микроскопические теоретические подходы.

Первая глава состоит из пяти разделов.

В первом разделе формулируется задача описания энергий связи нуклонов в ядрах определенного типа четности непрерывной кусочно-гладкой функцией чисел Z и N, линейной в прямоугольных областях ядер плоскости Z N, граничащих между собой при целых значениях аргументов. За основу берется концепция работ [24,25], где предложено разделить всю область определения ядер на субмагические подобласти между выделенными числами протонов Zk, Zk+1 и нейтронов Nl, Nl+1, и для аппроксимирующих функций использовать линейную параметризацию энергий присоединения нуклонов к ядрам от Z и N. В настоящей работе, где на аппроксимирующие функции наложено условие непрерывности, выражающееся в равенстве нулю суммы энергий присоединения нуклонов по любому замкнутому контуру ядерных превращений, эта линейная параметризация приобрела вид:

Здесь pij0 и nij0 –значения энергий присоединения нуклонов к ядру (Zk,Nl); ij, ij, ijZ, ijN – параметры, на которые накладываются условия: I+ = I- = I, +j = -j = j, -jZ = +jZ = jZ, i-N = i+N = iN. Формализм строится так, чтобы для каждого из четырех типов четности (он характеризуется значениями индексов ij, принимающими значения + и –), описать энергии присоединения к ним протонов и нейтронов, учитывая связи, накладываемые требованием непрерывности ПЭСЯ.

В представленной параметризации из условия, что поверхность энергии связи ядер – непрерывная, и удовлетворяет условию замкнутости циклов вытекает ограничение на параметры Показано, что условию (1.3) можно удовлетворить, лишь считая параметры Z и N, двумерными функциями от Z, N т. е. внутренними параметрами каждой субмагической области. Это положение, введенное в модель, дает возможность рассматривать (1.3) в качестве ее исходного пункта, делая модель логически замкнутой и непротиворечивой.

Самыми важными следствиями (1.3) являются следующие:

1) параметры i функций (1) сохраняют свои значения во всех областях плоскости Z N, ограниченных условием ZkZZk+1 независимо от значения 2) параметры j функций (2) сохраняют свои значения во всех областях плоскости Z N, ограниченных условием NlNNl+1, независимо от значения Таким образом, требования инвариантности внешних параметров модели и возникают теперь как следствие ее исходных предпосылок. В предыдущих работах [24,25] они вводились как постулаты.

В этом разделе представлены также основные характеристики новой версии модели.

Минимальная область ядер {k,l}, для которой можно ставить задачу нахождения представленных параметров, имеет размер 5х5 ядер. Ее минимальный размер ограничивает количество субмагических чисел, которое не должно превышать Zmax/4 и Nmax/4 соответственно. По числу известных субмагических чисел можно оценить число параметров, необходимых для описания имеющегося массива ядерных данных:

Исходным является набор параметров, требующийся для описания отдельной области (их 12), затем групп областей, имеющих по 2 общих границы друг с другом (добавляется 8 параметров). В итоге, для точного решения и позволяет показать, что кривизна изобарных сечений ПЭСЯ с увеличением избытка нейтронов увеличивается. Феноменологическое рассмотрение отклонений от средних значений параметров в области нейтроноизбыточных и нейтронодефицитных ядер подтверждает эту закономерность.

Рис. 3. Рассчитанный и аппроксимированный формулой (2.7) параметр.

Все существующие массовые формулы соответствуют в общих чертах формуле Бора-Уилера (2.3), являющейся полиномом второго порядка от проекции изоспина. Наличие асимметрии изобарных сечений доказывает существование в формуле Бора-Уилера компоненты, зависящей от (N-Z)3, или более высоких нечетных степеней проекции изоспина. Кулоновское и тем более изотопически-инвариантное ядерное взаимодействие не приводит к таким компонентам. Поэтому такое поведение изобарных сечений можно объяснить лишь нарушением изотопической инвариантности и/или влиянием трехнуклонного взаимодействия.

Обнаружено локальное увеличение кривизны изобарных сечений в тяжелых ядрах 90Z104 и 126N50. Это можно наблюдать по увеличению и параметров по сравнению с гладкими аналитическими функциями для этих величин, описывающих их усредненные значения (см. рис. 2 и 3).

Целью третьей главы является построение c максимально достижимой точностью ММПЭСЯ в области тяжёлых 126N156, 82Z104 и сверхтяжелых (Z104) ядер. Верхние границы области Z=116 и N= определялись возможностями получить в рамках ММПЭСЯ надлежащую точность. Следует отметить, что ядра этой области имеют некоторый избыток протонов по сравнению с находящимися на линии -стабильности, хотя и недалеки от нее.

Задача построения ММПЭСЯ в условиях бедной экспериментальной информации по массам ядер требует для своего решения анализа всевозможных тенденций в поведении ПЭСЯ. Поэтому в первую очередь были изучены тяжелые ядра.

Эта задача решалась в разделе 1. Следует отметить, что первое такое исследование было проведено одновременно с исследованием среднетяжелых ядер [3] в работе [28]. Новизна представленного в диссертации материала, по сравнению с этой работой, состоит в том, что: а) использовались новые экспериментальные данные, объем которых за истекшие годы значительно вырос, б) в методику построения ПЭСЯ были внедрены подходы, использующие метод сглаживания, т. е. результаты второй главы в) проведенный анализ привел к существенной ревизии параметров модели, изменения пришлось внести даже в набор субмагических чисел, г) основное внимание уделялось задаче экстраполяции. В этом смысле результаты проведенного расчета энергий связи тяжелых ядер имеют самостоятельное значение.

Длина экспериментально изученных отрезков изотопических сечений в области тяжелых ядер оказывается недостаточной для извлечения параметров ориентации параболоидов. Поэтому для решения задачи экстраполяции ММПЭСЯ в этом регионе ядер на параметры ориентации областей известных ядер было наложено дополнительное ограничение:

предполагалось, что параметры ориентации, как функции N, должны образовывать семейство параллельных линий. Все параметры ММПЭСЯ были скорректированы для выполнения этого условия. После этого ММПЭСЯ оказалась пригодной для экстраполяции ее в области неизученных ядер по методу, разработанному для среднелегких и среднетяжелых ядер. В итоге для всех известных ядер из области 126N156, 82Z среднеквадратичное отклонение расчетных масс от экспериментальных оказалось равным 66 кэВ. Отклонение вычисленных значений энергий связи ядер от их экспериментальных значений в 91% случаев не превышает кэВ. Лишь для трех случаев это отклонение превосходит 200 кэВ.

Во втором разделе главы описан процесс построения ММПЭСЯ сверхтяжелых ядер. В этой области известны несколько десятков значений энергий альфа-распадов, входящих в цепочки, которые не замыкаются на ядра с известной массой [29,30]. Поэтому основным методом, используемым для поставленной цели, является здесь подход, представленный в разделе главы 1. Дополнительно к этому использовались представленные в главе 2 и характерные для стабильных ядер соотношения = и (2.1), а также результаты вычисления параметра ориентации, представленные в предыдущем разделе. Значения параметров,, были получены из решения обратной задачи воспроизведения энергий -распадов с точностью 0,1 МэВ без нарушения структуры ММПЭСЯ.

Все это вместе взятое позволило построить ММПЭСЯ сверхтяжелых ядер.

Из 27 известных энергий альфа-переходов, изученных в работах ЛЯР ОИЯИ (наиболее детально описаны в [29,30]), 16 воспроизводятся с отклонением не выше 10 кэВ, лишь для 4 переходов эта разность превышает 50 кэВ.

Результаты настоящей работы существенно превосходят по точности результаты других работ, посвященных вычислению масс сверхтяжелых ядер, а в области экстраполяции предсказываются значения масс, заметно отличающиеся от полученных в этих работах.

В четвертой главе вычисленные в предыдущих главах значения энергий связи ядер используются для вычисления времен жизни изотопов, далеких от области стабильности.

В первом разделе главы кратко изложен полуэмпирический метод расчета ширин альфа-распада четно-четных ядер, развитый в [31,32]. Этот метод включает в себя: расчет проницаемости потенциального барьера, определяемого хорошо апробированным потенциалом МакФаддена-Сэчлера [33] для всех ядер время жизни и энергия альфа-распада которых известны.

Вычисление по измеренным временам жизни «экспериментального»

спектроскопического фактора (фактора формирования) альфа-частицы в каждом ядре. Статистическую обработку этих данных – вычисление среднего значения спектроскопического фактора отклонения W. Малость W позволяет использовать величину W в качестве спектроскопического фактора при расчетах неизмеренных ширин альфараспада при известной энергии, используя формулу:

где - частота колебаний нуклонов в ядре, а P – проницаемость барьера, определяемого тем же потенциалом.

Проведен анализ вероятностей альфа-распада тяжелых нейтронодефицитных ядер. Исследовались в основном изотопы, масса которых не измерена, ее величины были рассчитаны в главе 1.

Демонстрируется хорошее согласие расчетов с экспериментом в случаях, когда известны результаты измерения. В результате расчетов на плоскости N,Z установлены границы, определяемые временами жизни ядер 10-2, 10-1 и 101 сек., которые могут служить ориентирами для различных экспериментов.

Во втором разделе главы обсуждается возможность использования выражения (4.1) для расчета ширин протонного распада. Основным источником неточности здесь является сильное влияние ядерной деформации, которое не учитывается формулой (4.1). Показано, что неопределенности такого расчета не превосходят неопределенностей, вносимых в результат вычисления времени жизни tp за счет неточности оценки энергии протонного распада Qp в этой области ядер.

Проведены расчеты ширин альфа- и протонного распада и оценка ширин бета-распада для средних ядер в области линии протонной стабильности. Для первого использован полуэмпирический метод. Что касается протонного распада, то потенциал взаимодействия нуклонов с ядрами хорошо известен, спектроскопические факторы протонов близки к единице, поэтому непосредственный расчет по формуле (4.1) не представляет труда.

Установлены границы, определяемые временами жизни ядер по отношению к альфа-распаду t =10-7, 10-4, 10-2, 101, 103 и108 сек. Рассчитаны ширины протонного распада ядер из обсуждаемой области, изучены тенденции изменения tp при увеличении Qp. Эта зависимость – очень резкая, поэтому четно – нечетные эффекты в энергиях связи ядер чрезвычайно сильно сказываются на величинах времен. Их различие в нечетных по Z ядрах и соседних четных в обсуждаемой области составляет около двадцати порядков, а компенсирующее указанную четно-нечетную разность увеличение нейтронного дефицита составляет четыре-пять единиц. Этот результат представляется полезным при планировании поиска протонного распада четных по Z ядер. Для обсуждаемых ядер проанализированы доминирующие моды распада. Показано, что с ростом нейтронного дефицита протонный распад почти всегда начинает доминировать как над альфа-, так и над бета-распадом в одних и тех же изотопах, причем уже в этих пограничных изотопах величина tp оказывается много меньше t и t.

В третьем разделе представлены результаты анализа ширин альфа-распада сверхтяжелых ядер, массы которых определены в третьей главе. Для расчетов используется полуэмпирический метод. Исследована проблема идентификации ядра по соотношению времени жизни t. и энергии альфараспада Q. Показано, что с помощью полуэмпирического метода анализа альфа-распада можно надежно различать элементы, отличающиеся на две единицы заряда. Нечетный и четный элемент с большим на единицу зарядом можно отличить лишь для сильно запрещенного альфа-перехода в нечетном.

Метод чувствителен к разнице в угловых моментах альфа-перехода в единицы ћ.

Проанализированы альфа-распады всех известных сверхтяжелых изотопов. Показано, что все имеющиеся на этот счет экспериментальные данные взаимно согласованы. Этим самым подтверждена корректность идентификации полученных изотопов авторами экспериментов (см. [29,30]).

Предсказаны и времена жизни множества неизученных экспериментально изотопов. Ядра на линии бета-стабильности (278106, 284108) обладают временем жизни, составляющим несколько лет. Значения времен жизни по отношению к альфа-распаду более тяжелых четно-четных изотопов, лежащих рядом с этими (280106, 286108), – от примерно 100 до нескольких десятков тысяч лет. Представленные методы анализа в рамках этой схемы и значения энергий распада и времен жизни неизвестных сверхтяжелых изотопов могут быть полезными при постановке новых экспериментов, анализе их результатов, а также для планируемого в настоящее время поиска сверхтяжелых изотопов в природе.

В заключении приведены основные результаты диссертации и сформулированы главные выводы.

В приложении содержатся таблицы энергий связи ядер.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработан обладающий высокой внутренней логической согласованностью вариант математической модели поверхности энергии связи нуклонов, описывающей ее линейными функциями чисел протонов и нейтронов Z и N в прямоугольных областях ядер {k,l} плоскости ZN, граничащих между собой при целых значениях аргументов. Развит итеративный метод поиска оптимальных значений параметров модели, опирающийся как на данные об энергиях связи нуклонов, так и на таблицы ядерных масс.

2. Показано, что из условия непрерывности ММПЭСЯ (замкнутости циклов энергий связи нуклонов) следует, что два из трех универсальных параметров ( и ) функций (1.1, 1.2) являются инвариантами, т. е. сохраняют свои значения в полосах ZkZZk+1 и NlNNl+1 независимо от N и Z соответственно. Это свойство резко усиливает прогностические возможности модели.

3. Установлен ряд аналитических связей параметров кусочно-линейных функций ММПЭСН между собой и параметрами линии -стабильных ядер.

Они соединили в одно целое локальные и глобальные характеристики ММПЭСН.

4. Разработаны методы экстраполяции ММПЭСН с использованием параметров-инвариантов на области:

а) где известны лишь энергии альфа-распадов;

б) средних, среднетяжелых, тяжелых ядер между стабильными ядрами и линией нуклонной стабильности;

в) сверхтяжелых ядер, где известны лишь энергии альфа-распадов отдельных ядер;

г) сверхтяжелых ядер, где нет никаких экспериментальных данных об их энергиях.

5. Выявлена и математически обоснована новая, ранее неизвестная, закономерность, проявляющаяся в энергиях связи изобарных ядер – увеличение кривизны изобарных сечений с увеличением избытка нейтронов.

Такое поведение изобарных сечений можно объяснить лишь нарушением изотопической инвариантности и/или наличием трёхнуклонного взаимодействия. Учет этой закономерности позволяет существенно повысить точность прогнозирования энергий связи ядер у границ нуклонной стабильности.

6. Рассчитаны значения масс более чем 2000 ядер. Для ядер, у которых они надежно измерены (т. е. стабильных и имеющих времена жизни больше одного часа), достигнута точность описания масс 160 кэВ. Для всех (в том числе и короткоживущих) ядер из области 126N156, 82Z среднеквадратичное отклонение составляет 66 кэВ. Предсказано множество неизвестных масс ядер вплоть до линии протонной стабильности, а также сверхтяжелых ядер.

7. Основываясь на измеренных и рассчитанных с помощью ММПЭСЯ значениях масс ядер, рассчитаны времена жизни средних нейтронодефицитных ядер по отношению к протонному и альфа-распаду, а также значения ширин альфа-распада в тяжелых и сверхтяжелых ядрах. С помощью анализа ширин и энергий в цепочках альфа-распада этих ядер подтверждена полученная авторами экспериментов идентификация сверхтяжелых элементов.

Основные результаты диссертации опубликованы в работах:

1. Н.Н. Колесников, О.П. Бадаев, В.М. Вымятнин. Энергии связи нуклонов в среднетяжелых ядрах. Тезисы докл. 28-го совещания по ядерной спектроскопии, «Наука», Л., 1978, с. 420.

2. Н.Н. Колесников, О.П. Бадаев. Энергии отрыва нуклонов и распада ядер в



Похожие работы:

«Вотинцева Ольга Николаевна СВАДЕБНЫЙ ФОЛЬКЛОР СРЕДНЕЙ И НИЖНЕЙ ВЫЧЕГДЫ (ФУНКЦИОНАЛЬНОЕ ОПРЕДЕЛЕНИЕ МУЗЫКАЛЬНОПОЭТИЧЕСКИХ ЖАНРОВ) Специальность 10.01.09. - фольклористика Автореферат диссертации на соискание ученой степени кандидата филологических наук Ижевск 2002 Работа выполнена на кафедре фольклора и истории книги Сыктывкарского государственного университета Научный...»

«Журавлева Валентина Александровна ЭКСПЕРТНОЕ ОЦЕНИВАНИЕ В РЕШЕНИИ КОГНИТИВНЫХ ЗАДАЧ ОБЩЕСТВ ЗНАНИЙ: ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ ПРИНЦИПЫ Специальность 22.00.01 – теория, методология и история социологии АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата социологических наук МОСКВА – 2013 Работа выполнена на кафедре социологии факультета гуманитарных и социальных наук ФГБОУ ВПО Российский университет дружбы народов. доктор социологических наук, Научный руководитель :...»

«БЕЗЛЕПКИН Максим Николаевич ВЛИЯНИЕ ОРГАНИЗАЦИОННОЙ КУЛЬТУРЫ НА ИННОВАЦИОННУЮ АКТИВНОСТЬ ПЕРСОНАЛА Специальность 22.00.08 – социология управления АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата социологических наук Санкт-Петербург 2008 2 Работа выполнена на кафедре социологии ГОУ ВПО СанктПетербургский государственный инженерно-экономический университет Научный руководитель : доктор философских наук, профессор Оганян Каджик Мартиросович Официальные оппоненты :...»

«МАЙОРОВ Александр Евгеньевич ОБОСНОВАНИЕ И РАЗРАБОТКА ТЕХНОЛОГИИ АНКЕР-ИНЪЕКЦИОННОГО КРЕПЛЕНИЯ КАПИТАЛЬНЫХ ВЫРАБОТОК С ИСПОЛЬЗОВАНИЕМ ЦЕМЕНТНЫХ РАСТВОРОВ И СЫПУЧЕГО ЗАПОЛНИТЕЛЯ Специальность 25.00.22 – Геотехнология (подземная, открытая и строительная) Автореферат диссертации на соискание ученой степени доктора технических наук Кемерово 2012 Работа выполнена в Федеральном государственном бюджетном учреждении науки Кемеровском научном центре Сибирского отделения Российской...»

«БЕЛЕНКОВА Наталия Марковна РЕАЛИЗАЦИЯ КОММУНИКАТИВНОГО ТРЕНИНГА КАК ЛИНГВОДИДАКТИЧЕСКОЙ ТЕХНОЛОГИИ ОБУЧЕНИЯ ИНОСТРАННОМУ ЯЗЫКУ В ПОЛИКУЛЬТУРНОЙ ОБРАЗОВАТЕЛЬНОЙ СРЕДЕ СОВРЕМЕННОГО УНИВЕРСИТЕТА (стартовые уровни владения языком A2-B1) Специальность: 13.00.02 – теория и методика обучения и воспитания (иностранный язык, уровень профессионального образования) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Москва 2010 Работа выполнена на кафедре...»

«Сазонова Валерия Владимировна ВЗАИМОДЕЙСТВИЕ ДОШКОЛЬНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ И СЕМЬИ В ФОРМИРОВАНИИ ЗДОРОВОГО ОБРАЗА ЖИЗНИ СЛАБОВИДЯЩИХ ДОШКОЛЬНИКОВ Специальность: 13.00.03 – коррекционная педагогика (тифлопедагогика) Автореферат диссертации на соискание ученой степени кандидата педагогических наук Москва 2011 1 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Тюменский государственный университет Научный руководитель...»

«КНЯЗЬКОВ Дмитрий Юрьевич МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ПРОЦЕССА ФОРМИРОВАНИЯ ГОЛОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ЭФФЕКТИВНЫХ МЕТОДОВ РАСЧЕТА ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ специальность 05.13.18 — Математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Москва — 2013 Работа выполнена в лаборатории механики управляемых систем Федерального государственного бюджетного учреждении науки...»

«Ким Игорь Ефимович СОПРИЧАСТНОСТЬ И КОНТРОЛЬ В ЛИЧНОЙ И СОЦИАЛЬНОЙ СЕМАНТИЧЕСКИХ СФЕРАХ СОВРЕМЕННОГО РУССКОГО ЯЗЫКА Специальность 10.02.01 – русский язык АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора филологических наук Красноярск 2011 Работа выполнена на кафедре русского языка и речевой коммуникации Института филологии и языковой коммуникации ФГАОУ ВПО Сибирский федеральный университет Научный консультант доктор филологических наук, профессор Шмелева Татьяна...»

«АЛЯЕВ Артемий Валерьевич ИНТЕРПРЕТАЦИОННЫЙ КОНТРОЛЬ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ: НАЦИОНАЛЬНЫЕ ПРОЕКТЫ РФ В ДИСКУРСИВНЫХ ТЕХНОЛОГИЯХ СМИ Специальность 22.00.08 – Социология управления Автореферат диссертации на соискание ученой степени кандидата социологических наук Казань – 2009 Диссертация выполнена на кафедре государственного, муниципального управления и социологии Государственного образовательного учреждения высшего профессионального образования Казанский государственный...»

«СОКОЛОВА ЕЛЕНА ЮРЬЕВНА ПОВЫШЕНИЕ КАЧЕСТВА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В МАШИНОСТРОЕНИИ НА ОСНОВЕ ЕГО КОЛИЧЕСТВЕННОЙ ОЦЕНКИ Специальность 05.02.23 – Стандартизация и управление качеством продукции АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Рыбинск – 2013 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Рыбинский государственный авиационный технический университет имени...»

«Онегова Ольга Васильевна ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НАЧАЛЬНОЙ И КРАЕВОЙ ЗАДАЧ ДЛЯ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ 05.13.18 математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание ученой степени кандидата физико-математических наук ЕКАТЕРИНБУРГ -2002 Работа выполнена на кафедре вычислительной математики Уральского государственного университета им. A.M. Горького. Научный...»

«ПРИТЫКИН Алексей Игоревич РАЗРАБОТКА МЕТОДОВ РАСЧЕТА И КОНСТРУКТИВНЫХ РЕШЕНИЙ БАЛОК С ОДНОРЯДНОЙ И ДВУХРЯДНОЙ ПЕРФОРАЦИЕЙ СТЕНКИ Специальность 05.23.01 – Строительные конструкции, здания и сооружения Автореферат диссертации на соискание ученой степени доктора технических наук Калининград – 2011 Работа выполнена в Федеральном государственном образовательном учреждении высшего профессионального образования Калининградский государственный технический университет Научный...»

«ДЖАДЖАНИДЗЕ ИГОРЬ МАМИЕВИЧ МОТОРНО-ЭВАКУАТОРНАЯ ДИСФУНКЦИЯ ЖЕЛУДОЧНОКИШЕЧНОГО ТРАКТА ПРИ ОСТРОМ ДЕСТРУКТИВНОМ ПАНКРЕАТИТЕ 14.01.17. – хирургия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук Красноярск – 2013 Работа выполнена на кафедре хирургии ГБОУ ДПО Иркутская государственная медицинская академия последипломного образования Министерства здравоохранения Российской Федерации, на базе НУЗ Дорожная клиническая больница на ст....»

«Хоришко Елена Георгиевна Развитие интеграционных процессов в животноводческой отрасли региона Специальность 08.00.05– экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами - АПК и сельское хозяйство) Диссертация на соискание ученой степени кандидата экономических наук Москва 2009 Диссертационная работа выполнена на кафедре экономики сельского хозяйства Российского государственного аграрного университета – МСХА...»

«Травников Александр Иванович ВЗАИМОДЕЙСТВИЕ МЕЖДУНАРОДНО-ПРАВОВОГО И НАЦИОНАЛЬНО-ПРАВОВОГО РЕЖИМОВ ВОЗДУШНОГО ПРОСТРАНСТВА Специальность 12.00.10 Международное право. Европейское право АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Москва - 2011 Работа выполнена на кафедре международного права Российского университета дружбы народов Научный руководитель : Бордунов Виталий Дмитриевич кандидат юридических наук, профессор Официальные оппоненты :...»

«ЗОЛОТОВА Наталья Сергеевна МОДАЛЬНОСТЬ НАУЧНО-ПЕДАГОГИЧЕСКОГО ТЕКСТА (НА МАТЕРИАЛЕ АНГЛИЙСКОГО И РУССКОГО ЯЗЫКОВ) Специальность 10.02.19 – Теория языка Автореферат диссертации на соискание ученой степени кандидата филологических наук Нальчик – 2007 Работа выполнена на кафедре английского языка Педагогического института Южного Федерального Университета Научный руководитель - доктор филологических наук, профессор Тузлукова Виктория Игоревна Официальные оппоненты : - доктор...»

«Салум Хоссамеддин ( Сирия ) Иракский кризис: особенности и характер его влияния на современные международные отношения Специальность: 07.00.15 история международных отношений и внешней политики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата исторических наук МОСКВА - 2010 1 Работа выполнена на кафедре теории и истории международных отношений Российского университета дружбы народов доктор философских наук, профессор Научный руководитель : Кирабаев Нур Серикович...»

«ДМИТРИЕВА ОЛЬГА АЛЕКСАНДРОВНА МЕТОДИКА РАЗВИТИЯ ПРОФЕССИОНАЛЬНОПЕДАГОГИЧЕСКОЙ КОМПЕТЕНТНОСТИ В ОБЛАСТИ ПРОЕКТИРОВАНИЯ УЧЕБНЫХ МАТЕРИАЛОВ ПО ИНФОРМАТИКЕ У УЧИТЕЛЯ НАЧАЛЬНЫХ КЛАССОВ 13.00.02 – теория и методика обучения и воспитания (информатика) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Челябинск – 2009 Работа выполнена на кафедре информатики и методики преподавания информатики Государственного образовательного учреждения высшего...»

«ГРИГОРЬЕВ Вениамин Юрьевич КОЛИЧЕСТВЕННЫЕ МОДЕЛИ СТРУКТУРА–СВОЙСТВО ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 02.00.03 – органическая химия 02.00.04 – физическая химия Автореферат диссертации на соискание ученой степени доктора химических наук Черноголовка – 2013 2 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физиологически активных веществ РАН Официальные Балакин Константин Валерьевич, доктор оппоненты: химических наук, Федеральное государственное...»

«УДК 008.001. Дегтярёва Ольга Александровна ЗЕРКАЛО КАК ОБЩЕКУЛЬТУРНЫЙ ФЕНОМЕН Специальность: 24.00.01 - теория и история культуры АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата культурологии Санкт- Петербург 2002г. 2 Работа выполнена на кафедре философии и культурологии Республиканского Гуманитарного института при СанктПетербургском государственном университете Научный руководитель : кандидат философских наук, доцент Т.В.Холостова Официальные оппоненты :...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.