WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 | 2 || 4 | 5 |   ...   | 17 |

«Физиология человека Под редакцией чл.-кор. АМН СССР Г. И. КОСИЦКОГО ИЗДАНИЕ ТРЕТЬЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ Допущено Главным управлением учебных заведений Министерства здравоохранения СССР в качестве учебника для ...»

-- [ Страница 3 ] --

Анатомическая и физиологическая непрерывность волокна. Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводимость. Непроводимость наблюдается также при нарушении физиологической целостности волокна (блокада натриевых каналов возбудимой мембраны тетродотоксином или местными анестетиками, резкое охлаждение и т. п. ). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна ионами К, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспалительном отеке тканей могут сопровождаться частичным или полным нарушением функции проведения.

Двустороннее проведение. При раздражении нервного волокна возбуждение распространяется по нему и в центробежном, и в центростремительном направлениях. Это доказывается следующим опытом.

К нервному волокну, двигательному или чувствительному, прикладывают две пары электродов, связанных с двумя электроизмерительными приборами А и Б (рис. 45).

Раздражение наносят между этими электродами. В результате двустороннего проведения возбуждения приборы зарегистрируют прохождение импульса как под электродом А, так и под электродом Б.

Двустороннее проведение не является только лабораторным феноменом. В естественных условиях потенциал действия нервной клетки возникает в той ее части, где тело переходит в ее отросток — аксон (так называемый начальный сегмент). Из начального сегмента потенциал действия распространяется двусторонне: в аксоне по направлению к нервным окончаниям и в тело клетки по направлению к ее дендритам.

Изолированное проведение. В периферическом нерве импульсы распространяются по каждому волокну изолированно, т. е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Это имеет очень важное значение в связи с тем, что всякий периферический нервный ствол содержит большое число нервных волокон — двигательных, чувствительных и вегетативных, которые иннервируют разные, иногда далеко отстоящие друг от друга и разнородные по структуре и функциям клетки и ткани. Например, блуждающий нерв иннервирует все органы грудной полости и значительную часть органов брюшной полости, седалищный нерв — всю мускулатуру, костный аппарат, сосуды и кожу нижней конечности. Если бы возбуждение переходило внутри нервного ствола с одного волокна на другое, то в этом случае нормальное функционирование периферических органов и тканей было бы невозможно.

Изолированное проведение в отдельных волокнах смешанного нерва может быть доказано простым опытом на скелетной мышце, иннервированной смешанным нервом, в образовании которого участвует несколько спинномозговых корешков. Если раздражать один из этих корешков, сокращается не вся мышца, как это было бы в случае перехода возбуждения с одних нервных волокон на другие, а только те группы мышечных волокон, которые иннервированы раздражаемым корешком. Еще более строгое доказательство изолированного проведения возбуждения может быть получено при отведении потенциалов действия от различных нервных волокон нервного ствола.

Изолированное проведение нервного импульса обусловлено тем, что сопротивление жидкости, заполняющей межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным (деполяризованным) и покоящимися участками возбудимой мембраны, проходит по межклеточным щелям, не заходя в соседние волокна.

Проведение возбуждения в немиелинизированных и миелинизированных нервных волокнах В безмякотных нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны, от одного возбужденного участка к другому, расположенному рядом.

В отличие от этого в миелинизированных волокнах потенциал действия может распространяться только скачкообразно, «перепрыгивая» через участки волокна, покрытые изолирующей миелиновой оболочкой. Такое проведение называется сальтаторным.

Прямые электрофизиологические исследования, проведенные Като (1924), а затем Тасаки (1953) на одиночных миелинизированных нервных волокнах лягушки, показали, что потенциалы действия в этих волокнах возникают только в перехватах, а участки между, перехватами, покрытые миелином, являются практически невозбудимыми.

Плотность натриевых каналов в перехватах очень велика: на 1 мкм2 мембраны насчитывается около 10 000 натриевых каналов, что в 200 раз превышает плотность их в мембране гигантского аксона кальмара. Высокая плотность натриевых каналов является важнейшим условием сальтаторного проведения возбуждения. Схема на рис. позволяет понять, каким образом происходит «перепрыгивание» нервного импульса с одного перехвата на другой.

В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов (перехватов Ранвье) заряжена положительно. Разности потенциалов между со седними перехватами не существует. В момент возбуждения поверхность мембраны перехвата А становится заряженной электроотрицательно по отношению к поверхности мембраны соседнего перехвата Б. Это приводит к возникновению местного (локального) электрического тока, который идет через окружающую волокно межтканевую жидкость, мембрану и аксоплазму в направлении, показанном на рис. 46 стрелкой. Выходящий через перехват Б ток возбуждает его, вызывая перезарядку мембраны. В перехвате А возбуждение еще продолжается, и он на время становится рефрактерным. Поэтому перехват Б способен привести в состояние возбуждения только следующий пере хват В и т. д.



«Перепрыгивание» потенциала действия через межперехватный участок оказывается возможным только потому, что амплитуда потенциала действия в каждом перехвате в 5—6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. При определенных условиях потенциал действия может «перепрыгнуть»

не только через один, но и через два межперехватных участка. Такое наблюдается, в частности,'в том случае, если возбудимость соседнего перехвата снижена каким-либо фармакологическим агентом, например новокаином, кокаином и др.

Время, необходимое для передачи возбуждения от одного перехвата другому, примерно одинаковое у волокон различного диаметра (при температуре 24 °С оно составляет около 0,07 мс). Длина межперехватных участков, как отмечалось, пропорциональна диаметру нераного волокна. Отсюда следует, что в миелинизированных пропорциональна их диаметру. В этом отношении миелинизированные волокна отличаются от безмякотных, у которых волокну часто сравнивают с передачей сигналов по электрическому кабелю с ретранслирующими генераторами (например, трансатлантическому кабелю). Действительно, участки нервного волокна между перехватами по своим электрическим свойствам подобны кабелю, погруженному в жидкость, обладающую высокой электропроводностью.

Внутренним проводником является аксоплазма, внешним — межклеточная жидкость, а изолятором — жировая миелиновая оболочка. Импульс, проходящий между перехватами, представляет собой импульс электрического тока. Перехваты Ранвье играют роль ретранслирующих генераторов, т. е. промежуточных усилительных станций линии связи. При передаче сигнала каждый следующий перехват возбуждается импульсом, генерируемым предыдущим, вырабатывает новый импульс и передает его по волокну. Поскольку сопротивление внутреннего проводника на единицу длины очень велико (в 106 раз больше, чем медной проволоки того же диаметра), ретранслирующие генераторы должны быть расположены'близко друг к другу, иначе импульс Предположение о скачкообразном распространении возбуждения в нервных волокнах впервые было высказано преимуществ по сравнению с непрерывным проведением в безмякотных волокнах: во-первых, «перепрыгивая» через сравнительно большие участки волокна, возбуждение может распространяться со значительно большой скоростью, чем при непрерывном проведении: по безмякотному волокну того же диаметра; во-вторых скачкообразное распространение является энергетически более экономным, поскольку в состояние Потери ионов (в расчете на единицу длины волокна), сопровождающие возникновение потенциала действия в таких ограниченных участках мембраны, очень невелики, а следовательно, малы и энергетические затраты на работу натрий-калиевого насоса, необходимые для восстановления измененных ионных соотношений между внутренним содержимым нервного волокна и тканевой жидкостью.

СОСТАВНОЙ ХАРАКТЕР ПОТЕНЦИАЛА ДЕЙСТВИЯ НЕРВНОГО СТВОЛА И

КЛАССИФИ КАЦИИ Н ЕРВН ЫХ ВОЛОКОН

Амплитуда электрических импульсов, отводимых от целого нервного ствола, зависит от силы приложенного раздражителя. Раздражителю слабой силы соответствует небольшой ответ; по мере усиления раздражения амплитуда потенциала возрастает, достигая максимальной величины, и затем остается постоянной, несмотря на дальнейшее увеличение силы раздражителя (рис. 47). Объясняется это тем, что электрический ответ целого нервного ствола является алгебраической суммой потенциалов действия отдельных его волокон. В каждом волокне амплитуда потенциала действия не зависит of силы раздражения в соответствии с законом «все или ничего». Пороги раздражения отдельных волокон отличаются друг от друга. При слабой силе стимула возбуждение возникает в наиболее возбудимых поверхностно расположенных нервных 'волокнах. Усиление стимула приводит к увеличению числа возбужденных волокон, поэтому суммарный ответ на раздражение увеличивается до тех пор, пока все волокна не вовлекаются в реакцию.

Такую картину можно наблюдать, если отводящие электроды расположить на нерве вблизи раздражающих электродов. При увеличении расстояния между этими двумя парами электродов суммарный потенциал действия начинает расчленяться на несколько отдельных колебаний, которые становятся наиболее отчетливо выраженными при удалении отводящих электродов на 10—15 см от места раздражения (рис. 48). Впервые это явление было подробно изучено Эрлангером и Гассером (1937). Они показали, что причиной расчленения суммарного потенциала действия на компоненты является неодинаковая скорость проведения возбуждения по разным волокнам, вследствие чего к отводящим электродам нервные импульсы поступают по этим волокнам неодновременно.

В настоящее время нервные, волокна по скорости проведения возбуждения, длительности различных фаз потенциала действия и строению принято подразделять на три основных типа, обозначаемых буквами А, В и С (рис. 49).

Волокна типа А делятся на четыре подгруппы: ос, (5, у, б. Они покрыты миелиновой оболочкой. Наиболее толстые их них -волокна (А), у теплокровных животных и человека они имеют диаметр 12—22 мкм и характеризуются значительной скоростью проведения возбуждения — 70—120 м/с. Такие волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от определенных рецепторов мышц к соответствующим нервным центрам.

Пик потенциала действия волокна А у теплокровных длится 0,4—0,5 мс. После его окончания развивается следовая деполяризация, которая продолжается 15—20 мс и переходит в следовую гиперполяризацию длительностью около 40—60 мс.

Три другие группы волокон типа А: Ар, А и А — имеют меньший диаметр, меньшую скорость проведения и более длительный потенциал действия. Это преимущественно чувствительные волокна, проводящие возбуждение от различных рецепторов (тактильных, некоторых болевых, температурных и рецепторов внутренних органов) в ЦНС.

Исключение составляют лишь -волокна, значительная часть которых проводит возбуждение в центробежном направлении от клеток спинного мозга к так называемым интрафузальным мышечным волокнам, входящим в состав рецепторов мышц — мышечных веретен (см. рис. 51, А).

К волокнам типа В относятся миелинизированные, преимущественно преганглионарные, волокна вегетативной нервной системы. Скорость проведения возбуждения в этих волокнах у теплокровных животных составляет 3—18 м/с. Продолжительность потенциала действия волокон типа В (1—2 мс) примерно в 3 раза превышает длительность потенциала действия волокон типа А. Отличительной особенностью этих волокон является то, что в них не обнаруживается фаза следовой деполяризации: нисходящее колено пика непосредственно переходит в следовую гиперполяризацию, которая в ряде случаев продолжается более 100 мс.

К волокнам типа С относят безмякотные нервные волокна очень малого диаметра (примерно 1 мкм). Скорость проведения возбуждения в этих волокнах не более 3 м/с.

Большинство волокон типа С — это постганглионарные волокна симпатической нервной системы.

К волокнам типа С относят также те нервные волокна, которые участвуют в проведении возбуждения от болевых рецепторов и некоторых рецепторов холода, тепла и давления.

Потенциалы действия волокон этого типа характеризуются наибольшей продолжительностью (2 мс у теплокровных животных)., Они имеют длительную фазу следовой деполяризации (50—80 мс), сопровождающуюся еще более продолжительной (300 — 1000 мс) следовой гиперполяризацией. Все эти данные суммированы в табл. 3.

ИССЛЕДОВАНИЕ СКОРОСТИ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ

ПО НЕРВНЫМ ВОЛОКНАМ У ЧЕЛОВЕКА

Скорость проведения возбуждения по нервным волокнам может быть определена у человека сравнительно несложным путем. Для определения скорости проведения по двигательным волокнам используется электрическая стимуляция нерва через кожу в тех местах, где он расположен неглубоко. Используя электромиографическую методику, записывают электрический ответ мышцы на это раздражение. Латентный период ответа в основном зависит от скорости проведения по нерву.

Измерив его, а также расстояние между стимулирующими и отводящими электродами, можно рассчитать скорость проведения. Более точно ее можно определить по разности латентного ответа при раздражении нерва в двух точках. Для определения скорости проведения по чувствительным волокнам наносят кожное электрическое раздражение, а ответ отводится от нерва.

В связи с тем что высокая скорость проведения по нервным волокнам обусловлена миелиновой оболочкой, нарушения ее, наблюдающиеся при ряде заболеваний нервной системы, сопровождаются снижением скорости проведения возбуждения. Поэтому методика определения скорости проведения по нервным волокнам широко используется в неврологических клиниках для диагностических

ХИМИЧЕСКИЕ ИЗМЕН ЕНИЯ В НЕРВЕ В ПО КОЕ

И П РИ П РО ВЕДЕНИ И ВО ЗБУЖДЕНИ Я

Нерв в состоянии покоя потребляет' кислород и выделяет углекислоту. Если один участок нерва поместить в атмосферу азота, а другой оставить в воздухе, то уже через несколько минут можно обнаружить, что поверхность нерва, лишенная кислорода, приобретает электроотрицательный заряд. Объясняется это тем, что в бескислородной среде вследствие изменения обменных процессов нарушается работа натрий-калиевого насоса, в результате чего происходит прогрессирующая деполяризация мембраны нервных волокон. Примерно через l ' / 2 ч потенциал покоя падает настолько, что проведение нервных импульсов на этом участке нерва полностью прекращается. При возвращении нерва в атмосферу кислорода потенциал покоя быстро восстанавливается и даже на некоторое время становится больше исходной величины. Одновременно восстанавливается и проведение возбуждения.

Возбуждение нерва сопровождается повышением потребления кислорода, причем по мере увеличения частоты раздражения поглощение кислорода возрастает (рис. 50). Вместе с тем отмечаются увеличение распада богатых энергией фосфорных соединений — аденозиктрифосфата и креатинфосфата и повышенное образование молочной кислоты (за счет анаэробного расщепления глюкозы и гликогена).

При возбуждении усиливается также белковый обмен в нервных волокнах, о чем свидетельствует, в частности, выделение значительных количеств аммиака. Предполагают, что аммиак образуется в результате расщепления глутамина. Интенсивное раздражение нерва вызывает, кроме того, усиление обмена нуклеиновых кислот и фосфолипидов.

При раздражении большинства мякотных нервных волокон из них высвобождается ацетилхолин, из безмякотных симпатических нервных волокон — норадреналин.

Наличие ацетилхолина в одних нервных волокнах и норадреналина в других свидетельствует о химической-гетерогенности разных типов нервных волокон.

В нервных окончаниях ацетилхолин и норадреналин являются химическими передатчиками нервного импульса — медиаторами.

Синтезируемые в соме нервных клеток медиаторы диффундируют вдоль этих волокон к нервным окончаниям, из которых они и" выделяются при возбуждении.

ТЕПЛОПРОДУКЦИЯ НЕРВА

О динамике обмена веществ нерва в покое и при возбуждении можно судить по его теплопродукции, которую впервые удалось зарегистрировать Хиллу в 1926 г. при помощи специально сконструированных высокочувствительных термоэлементов.

Теплообразование седалищного нерва лягушки, измеренное в покое, составляет 4,14*10-3 кал на 1 г нерва в минуту при 20 С. Теплообразование безмякотного нерва краба несколько выше:

1 • 10-2 кал на 1 г в минуту при 20 °С. Это согласуется с данными о значительно большем потреблении кислорода безмякотными нервами в покое. Если поместить нерв в атмосферу азота, теплообразование покоя резко снижается.

При раздражении нерва теплообразование значительно возрастает. Так же как и в мышце, тепло выделяется в две фазы, которые обозначаются как начальное и запаздывающее теплообразование.

Новейшие исследования, проведенные при помощи высокочувствительной и малоинерционной аппаратуры, показали, что начальное теплообразование непосредственно связано с процессом генерации потенциала действия. Так установлено, что подъем потенциала действия сопровождается выделением небольшой порции тепла, а окончание пика — его поглощением. Запаздывающее теплообразование после ритмического раздражения нерва продолжается десятки минут.

УТОМЛЕНИЕ НЕРВА

Впервые Н. Е. Введенский установил, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом (около 8 ч) непрерывном раздражении. Это свидетельствует о том, что нерв в атмосфере воздуха практически не утомляем или малоутомляем.

Относительная неутомляемость нерва отчасти зависит от того, что он тратит при своем возбуждении сравнительно мало энергии. Так, 1 г нерва лягушки выделяет при максимальном раздражении только на 20—100 % больше тепла, чем в покое. Такой прирост очень незначителен по сравнению с наблюдаемым при возбуждении мышцы.

Благодаря этому процессы ресинтеза в нерве в состоянии покрывать его относительно малые расходы энергии при возбуждении даже в том случае, если оно длится много часов.

Энергетические траты при возбуждении нервных волокон связаны главным образом с работой натрий-калиевого насоса, который активируется поступлением внутрь цитоплазмы Na+. В условиях нормального кровоснабжения нерва натрий-калиевый насос обеспечивает устойчивое поддержание ионного состава цитоплазмы, так как число ионов Na+, поступающих внутрь волокна, и К+, покидающих волокно при каждом импульсе, очень мало по сравнению с общим их содержанием в цитоплазме и межклеточной жидкости. Если принять, что число ионов, пересекающих единицу площади мембраны, в различных волокнах одинаково, то в этом случае изменение концентрации этих ионов в цитоплазме должне быть обратно пропорционально диаметру волокна.

Поэтому волокно диаметром 0,5 мкм при каждом импульсе должно терять '/1000содержания К + вместо ' / 1 0 0 0 0 0 0, как это наблюдается в гигантских аксонах кальмара.

Этим, по-видимому, и объясняется тот факт, что тонкие нервные волокна утомляются значительно быстрее, чем толстые.

НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА

В предыдущих разделах было показано, что проведение возбуждения в нервных и мышечных волокнах осуществляется при помощи электрических импульсов, распространяющихся по поверхностной мембране. Передача возбуждения с нервного волокна на мышечное основана на совершенно ином механизме. Она происходит в результате выделения нервными окончаниями химических соединений — медиаторов (передатчиков) нервного импульса. У человека, как и у всех позвоночных, роль медиатора в скелетных мышцах играет ацетилхолйн.

Предположение, что в передаче возбуждения в нервно-мышечном соединении принимают участие какие-то химические агенты, впервые было высказано А. Ф. Самойловым в 1924 г. Позднее Дейл (1936) показал, что при раздражении двигательного нерва в его окончаниях в скелетной мышце происходит выделение ацетилхолина. Наконец, было установлено, что ацетилхолйн, подведенный к области нервно-мышечного соединения, деполяризует мембрану мышечного волокна и при достаточно высокой концентрации вызывает распространяющееся возбуждение и сокращение мышцы.

НЕРВНО-МЫШЕЧНОЕ СОЕДИНЕНИЕ (СИНАПС)

Структурное образование, обеспечивающее переход возбуждения с нервного волокна на иннервируемую им клетку — мышечную, нервную или железистую, получило название синапса.

Электронно-микроскопические исследования выявили, что так же как в ЦНС, на периферии синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 52).

Пресинаптической называется мембрана, покрывающая нервное окончание, которое представляет собой своеобразный нейросекреторный аппарат. Здесь содержится и выделяется медиатор, оказывающий возбуждающее или тормозящее действие на иннервируемую клетку.

В скелетной мышце позвоночных двигательное миелиновое нервное волокно разветвляется веерообразно на концевые безмякотные волокна диаметром около 1,5 мкм.

На всем этом концевом участке нервное волокно (пресинаптическое окончание) образует синаптическое соединение с мышечным волокном. Вся область мышечного волокна, в которой расположены синапсы, образованные двигательным нервным волокном, называют концевой пластинкой (бляшкой; пуговкой).

В пресинаптических окончаниях медиатор ацетилхолин содержится в «пузырьках»

диаметром около 50 нм. При достижении распространяющегося потенциала действия области пресинаптичёского окончания ацетилхолин освобождается из «пузырьков» и выходит в синаптическую щель. В механизме этого нейросекреторного процесса важную роль играют ионы Са2+: они поступают внутрь окончания из внеклеточной жидкости по электровозбудимым кальциевым каналам, активируемым при деполяризации пресинаптической мембраны приходящим потенциалом действия. При этом наблюдается следующая цепь процессов: деполяризация пресинаптической мембраны при проведении нервного импульса открывание кальциевых каналов вхождение ионов Са2+ внутрь окончания выделение медиатора в синаптическую щель. Ширина последней примерно 50 нм; она заполнена межклеточной жидкостью, которая по составу приближается к плазме крови. Медиатор быстро диффундирует через щель, воздействуя на мембрану иннервируемого мышечного волокна. Та часть мембраны этого волокна, которая непосредственно граничит с нервным окончанием, называется постсинаптической. От мембраны, покрывающей остальную часть мышечного волокна, постсинаптическая мембрана отличается тем, что не содержит электрически возбудимых ионных каналов и потому не способна к генерации потенциала действия. Постсинаптическая мембрана обладает, однако, химической возбудимостью: на действие ацетилхолина она отвечает местным изменением проницаемости для ионов Na+ и К+, что приводит к развитию так называемого потенциала концевой пластинки (ПКП). По своей природе он аналогичен возбуждающим постсинаптическим потенциалам, возникающим при передаче возбуждения с одной нервной клетки на другую. ПКП порождает генерацию потенциала действия в мышечном волокне. Наличие химического звена в механизме нервно-мышечной передачи делает понятным два общих свойства синапсов: 1) возбуждение проводится через синапс только в одном направлении — с нерва на мышцу; 2) возбуждение проводится через синапс значительно медленнее, чем по нервному волокну.

Односторонность проведения обусловлена наличием относительно широкой синаптической щели, препятствующей проведению импульса с помощью локальных токов с мышцы на нерв. Замедление проведения через синапс объясняется тем, что это проведение является многоэтапным процессом: время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, активацию последней, рост ПКП до пороговой величины.

Механизмы возникновения ПКП и ПД в мышечном волокне. Хемовозбудимые каналы. ПКП обусловлен активацией ацетилхолином хемовозбудимых ионных каналов, имеющихся в постсинаптической мембране скелетного мышечного волокна. Так же как электровозбудимые, хемовозбудимые каналы образованы макромолекулами белка, пронизывающими липидный бислой мембраны. Функциональная структура хемовозбудимого канала схематически показана на рис. 53. Канал состоит из транспортной системы, воротного механизма и участка связывания — «холинорецептора», обладающего высоким сродством к медиатору ацетилхолину. В отсутствие ацетилхолина канал закрыт.

Взаимодействие медиатора с рецептором приводит к активации канала. В открытом состоянии канал имеет проводимость порядка 30 пк Смс, что примерно в 4 раза превышает проводимость одиночного электровозбудимого натриевого канала. Судя по величине наибольшего катиона, проникающего через рассматриваемые хемовозбудимые каналы, размер их «пор» составляет примерно 0,65 нм, т. е. существенно превышает размер «пор»

в электровозбудимых натриевых и калиевых каналах. Соответственно ионная селективность хемовозбудимых каналов значительно ниже, они хорошо проницаемы и для ионов Na+ и для ионов Са2+, К+. Эти ионы движутся через открытые каналы по концентрационному и электрическому градиентам, и, поскольку внутреннее содержимое мышечного волокна заряжено электроотрицательно по отношению к наружному раствору, поток положительно, заряженных ионов Na+ внутрь клетки превышает противоположно направленный поток ионов К+- В результате мембрана деполяризуется. Эта деполяри-зация постсинаптической мембраны имеет, однако, нерегенеративный характер, поскольку хемовозбудимые каналы не обладают электровозбудимостью: порция ацетилхолина, поступившая к постсинаптической мембране, активирует определенное число хемовозбудимых каналов. Это вызывает деполяризацию мембраны, но такая деполяризация не способствует дальнейшему увеличению числа активируемых каналов. Поэтому значение ПКП зависит от концентрации ацетилхолина, действующего на мембрану:

чем больше эта концентрация, тем выше до определенного предела ПКП. Таким образом, ПКП в отличие от потенциала действия градуален. В этом отношении он сходен с локальным ответом, хотя имеет иной механизм.

Между деполяризованной ацетилхолином постсинаптической мембраной и соседними с ней участками электровозбудимой мембраны скелетного мышечного волокма возникают местные токи, вызывающие генерацию потенциала действия, распространяющегося по всему мышечному волокну. Условием возникновения этого потенциала действия является критическая деполяризация электровозбудимой мембраны, происходящая при достижении ПКП пороговой величины.

Процесс передачи возбуждения с нервного волокна на скелетное мышечное может быть схематически изображен в виде следующей цепи явлений: нервный импульс поступление ионов Са2+ внутрь нервного окончания освобождение из окончания ацетилхолина взаимодействие ацетилхолина с холинорецептором активация хемовозбудимых каналов постсинаптической мембраны в результате взаимодействия медиатора с холинорецепторами возникновение потенциала концевой пластинки критическая деполяризация околосинаптической электровозбудимой мембраны генерация потенциала действия.

Миниатюрные постсинаптические потенциалы Ацетилхолин секретируется двигательными нервными окончаниями не только при возбуждении, но и в покое. Различие состоит лишь в том, что влокое выделяются малые порции — «кванты» — ацетилхолина, а под влиянием нервного импульса в синаптическую щель одновременно выбрасывается значительное количество таких «квантов».

«Квант» представляет собой «пакет» молекул медиатора в единичном пузырьке нервного окончания, изливающем свое содержимое в синаптическую щель. В концевой пластинке различных животных в каждом «кванте» /содержится до 2000 молекул ацетилхолина.

Выделение отдельных квантов в синаптическую щель в состоянии покоя вызывает кратковременную слабую деполяризацию постсинаптической мембраны мышечнбго волокна.

Такая деполяризация получила название миниатюрного потенциала, поскольку она по своей амплитуде (0,5 мВ) в 50—80 раз меньше ПКП, вызываемого одиночным нервным импульсом. Миниатюрные потенциалы возникают обычно с частотой примерно один в секунду, они зарегистрированы не только в нервно-мышечных соединениях, но и в синапсах нервных клеток ЦНС.

Влияние кураре на нервно-мышечное соединение Существует ряд веществ, также обладающих сродством к холинорецептору, но образующих с ним более прочную связь, чем ацетилхолин. К числу таких веществ относятся кураре и некоторые другие соединения (д-тубокурарин, диплацин, флакседил).

После их воздействия на мышцу холинорецептор оказывается заблокированным и ни нервный импульс, ни искусственно введенный ацетилхолин не способны вызвать возбуждение мышечного волокна.

Многие годы изучение действия кураре на нервно-мышечную передачу представляло только теоретический интерес, и физиологи были очень далеки от мысли, что этот препарат может когдалибо найти применение в медицинской практике. Однако в связи с развитием хирургии возникла необходимость изыскания средств, которые позволили бы проводить оперативные вмешательства в условиях выключения естественного дыхания. И здесь кураре и его производные оказали большую помощь. В настоящее время многие полостные операции проводят в условиях искусственного дыхания на фоне нервно-мышечной блокады препаратами, действующими подобно кураре.

Исключительно прочную связь с холинорецептором образует токсин из яда змеи — а-бунгаротоксин. Этот токсин, снабженный радиоактивной меткой, позволил выделить холинорецептор из мембраны. Химический анализ холинорецептора показал, что холинорецептор является липопротеидом с молекулярной массой около 300 000.

Холинэстераза и ее роль в процессах нервно-мышечной передачи Установлено, что в области нервно-мышечного соединения в больших концентрациях присутствует фермент холинэстераза, способная быстро расщеплять ацетилхолин, выделяющийся в нервном окончании. Значение этого процесса становится ясным, если учесть, что в естественных условиях к мышце поступают быстро следующие друг за другом нервные импульсы и постсинаптическая мембрана, деполяризованная предшествующей порцией ацетилхолина, становится малочувствительной к действию следующей порции. Чтобы идущие друг за другом нервные импульсы могли осуществлять нормальное возбуждающее действие, необходимо к моменту прихода каждого из них «убрать»

предшествующую порцию медиатора. Эту функцию и выполняет холинэстераза. Холин, освобождающийся при расщеплении молекул ацетилхолина, переносится обратно в нервное окончание специальной транспортной системой, существующей впресинаатической мембране.

Существует ряд фармакологических агентов, обладающих способностью резко угнетать активность холинэстеразы. Их называют ингибиторами. К числу таких веществ относятся эзерин, простигмин, гулантамин. Если на нервно-мышечное соединение действует какое-либо из этих веществ, постсинаптический потенциал увеличивается по своей амплитуде и резко растягивается по времени.

Иллюстрацией этого является приведенная на рис. 54 запись ПКП, зарегистрированного в нервно-мышечном соединении лягушки до (а) и после (б) воздействия на мышцу вещества, угнетающего активность холинэстеразы.

При действии ингибитора холинэстеразы ритмическое раздражение нерва вызывает выраженную суммацию ПКП, что ведет к стойкой деполяризации постсинаптической мембраны и блоку проведения импульсов с нервного волокна на мышечное. При этом стойкая деполяризация постсинаптической мембраны приводит соседние участки мышечного волокна в состояние угнетения, обусловленное инактивацией натриевой и стойким повышением калиевой проводимости мембраны (состояние «катодической депрессии»).

Следует отметить, что и в отсутствие ингибиторов холинэстеразы при условии очень частого раздражения нерва постсинаптические потенциалы (ПКП), вызываемые каждым нервным импульсом, суммируются, поскольку в межимпульсный интервал холинэстераза не успевает полностью расщепить выделяющийся в нервном окончании ацетилхолин. В результате суммации потенциалов портсинаптическая мембрана все более и более деполяризуется.

ПЕССИМАЛЬНОЕ ТОРМОЖЕНИЕ

Деполяризация постсинаптической мембраны при очень частом следовании друг за другом нервных импульсов лежит в основе открытого Н. Е. Введенским пессимального торможения. Это явление часто называют торможением Введенского. Сущность его состоит в следующем. Величина тетанического сокращения скелетной мышцы в ответ на ритмические раздражения нерва возрастает с увеличением частоты стимуляции. При некоторой оптимальной частоте раздражения тетанус достигает наибольшей величины.

Если продолжать увеличивать частоту стимуляции нерва, то тетаническое сокращение мышцы начинает резко ослабевать и при некоторой большой пессимальной частоте раздражения нерва мышца, несмотря на продолжающееся раздражение, почти полностью расслабляется. Уменьшение частоты стимуляции тотчас приводит к восстановлению высокого уровня тетанического сокращения (рис. 55).

В нервно-мышечном препарате лягушки торможение Введенского возникает при частоте раздражения, близкой к 100 стимулам в секунду, т. е. при значительно меньших частотах, чем те, которые может воспроизводить нерв (порядка 500) или мышца (порядка 200).

На рис. 56 приведена запись изменения мембранного потенциала мышечного волокна в области концевой пластинки при раздражении нерва ритмическими импульсами оптимальной и пессимальной частот. При редком (оптимальном) ритме каждый импульс попадает в фазу убывания постсинаптического потенциала, вызванного предыдущим импульсом, и в мышечном волокне возникают полноценные потенциалы действия.

При частом раздражении постсинаптические потенциалы суммируются, что приводит к стойкой деполяризации постсинаптической мембраны и развитию блока проведения.

На важную роль ацетилхолина в развитии пессимума Введенского указывает тот факт, что яды, инактивирующие холинэстеразу и тем самым способствующие накоплению в области синапса ацетилхолина, способствуют возникновению пессимума.

Следует подчеркнуть, что рассмотренный механизм блокирования нервно-мышечного соединения при частом ритме раздражения нерва не является единственным. В тех случаях, когда частота стимулов очень высока, проведение возбуждения с нерва на мышцу может быть блокировано еще на пути к синапсу, в тонких пресинаптических разветвлениях нервных волокон — пресинаптических терминалях, обладающих более низкой лабильностью, чем толстые нервные волокна. Нарушение проведения в этих тонких нервных волокнах ведет к прекращению поступления нервных импульсов к нервному окончанию и тем самым к прекращению выделения ацетилхолина. В данном случае вместо стойкой деполяризации постсинаптической мембраны обнаруживается значительное ослабление или даже полное выпадение постсинаптнческих потенциалов при неизменном уровне потенциала покоя мышечного волокна.

Нарушение нервно-мышечной передачи при утомлении При длительном раздражении нерва нарушение нервно-мышечной передачи развивается задолго до того, как мышца, а тем более нерв в силу утомления утрачивают способность к проведению возбуждения. Объясняют это тем, что в нервных окончаниях при длительном раздражении уменьшается запас «заготовленного» медиатора. Поэтому порции ацетилхолина, выделяющиеся в синапсах в ответ на каждый импульс, уменьшаются и соответственно снижаются до подпороговых величин постсинаптические потенциалы. Наряду с этим при длительном раздражении нерва под влиянием продуктов обмена в мышце происходит постепенное понижение чувствительности постсинаптической мембраны к ацетилхолину. В результате величина потенциалов концевой пластинки уменьшается. Когда амплитуда ПКП падает ниже некоторого критического уровня, возникновение потенциалов действия в мышечном волокне прекращается. По этим причинам синапсы быстрее утомляются, чем нервные волокна и мышцы.

ТРОФИЧЕСКАЯ ФУНКЦИЯ ДВИГАТЕЛЬНЫХ НЕРВНЫХ

ВОЛОКОН И ИХ ОКОНЧАНИЙ

Наряду с функцией передачи импульсов, вызывающих мышечные сокращения, нервные волокна и их окончания оказывают также трофическое воздействие на мышцу, т. е. участвуют в регуляции ее обмена веществ. Хорошо известно, что денервация мышцы, развивающаяся при дегенерации двигательного нерва, приводит к атрофии мышечных волокон, которая проявлйется в том, что вначале уменьшается количество саркоплазмы, а затем и диаметр мышечных волокон; позднее происходит разрушение миофибрилл.

Специальные исследования показали, что эта атрофия не является результатом лишь бездеятельности мышцы, потерявшей двигательную активность. Бездеятельность мышцы может быть вызвана и путем тендотомии, т. е. перерезки сухожилия. Однако, если сравнить мышцу после тендотомии и после денервации, можно убедиться, что в последнем случае в мышце развиваются качественно иные изменения ее свойств, не обнаруживающиеся при тендотомии. Наиболее ярко это проявляется в изменениях чувствительности мышцы к ацетилхолину. В нормальной и тендотомированной мышце 'к ацетилхолину чувствительна только постсинаптическая мембрана, в которой сосредоточены хемовозбудимые ионные каналы, снабженные холинорецепторами. Денервация приводит к тому, что такие же каналы появляются и во внесинаптических областях мышечного волокна. В результате чувствительность денервированной мышцы к ацетилхолину резко возрастает. Указанная гиперчувствительность к ацетилхолину не формируется, если при помощи определенных химических реагентов затормозить белковый синтез в мышечных волокнах. Реиннервация мышцы вследствие регенерации нервных волокон приводит к исчезновению холинорецептивных каналов области внепостсинаптической мембраны. Эти данные свидетельствуют о том, что нервные волокна регулируют синтез белков, образующих хемовозбудимые холинорецепторные каналы.

В денервированной мышце резко падает также активность ряда ферментов, в частности АТФ-азы, играющей важную роль в процессе освобождения энергии, заключенной в фосфатных связях АТФ. В то же время при денервации значительно усилены ' процессы распада белков. Это приводит к характерному для атрофии постепенному уменьшению массы мышечной ткани.

Все дегенеративные изменения в денервированной мышце начинаются тем раньше, чем на меньшем расстоянии от мышцы перерезают двигательный нерв. Это позволяет предположить, что определенные вещества («трофические агенты»), вырабатываемые в нервных клетках, продвигаются по нервным волокнам от проксимальных участков к дистальным и выделяются нервными окончаниями. Чем больший отрезок нерва оста ется соединенным с мышцей, тем дольше она получает важные для ее обмена вещества.

Перемещение этих веществ осуществляется благодаря движению нейроплазмы, скорость которого 1—2 мм/ч. Важную роль в осуществлении трофических влияний нерва играет ацетилхолин, секретируемый нервными окончаниями как в покое, так особенно при возбуждении. Имеются основания считать, что ацетилхолин и продукты его расщепления холинэстеразой — холин и уксусная кислота — участвуют в обмене веществ мышцы, оказывая активирующее влияние на определенные ферментные системы. Так, при введении ацетилхолина в денервированную мышцу кролика резко увеличивается распад аденозинтрифосфата, крсатиифосфата и гликогена вовремя тетануса, вызванного прямым электрическим раздражением этой мышцы.

Из нервных окончаний выделяются вещества, которые оказывают специфическое влияние на синтез белков мышечного волокна. Об этом свидетельствуют опыты с перекрестным сшиванием двигательных нервов, иннервирующих быстрые и медленные скелетные мышцы. При таком сшивании периферические отрезки нервов и их окончания в мышце дегенерируют, а по их путям в мышцу прорастают новые волокна из центральных отрезков нервов. Вскоре после того, как эти волокна образуют двигательные окончания, происходит отчетливая перестройка функциональных свойств мышц. Мышцы, которые ранее были быстрыми, теперь становятся медленными, а те, которые были медленными, становятся быстрыми. При такой перестройке изменяется активность АТФ-азы их сократительного белка миозина: в бывших быстрых мышцах она резко падает, а в медленных возрастает. Соответственно в первых скорость распада АТФ увеличивается, а во вторых — уменьшается. Изменяются также свойства ионных каналов клеточной мембраны.

Трофическое влияние на скелетную мышцу оказывают и волокна симпатической нервной системы, окончания которых высвобождают норадреналин.

ОСОБЕННОСТИ НЕРВНО-МЫШЕЧНОЙ ПЕРЕДАЧИ

ВОЗБУЖ ДЕНИЯ В ГЛАДК ИХ М ЫШЦАХ

Механизм передачи возбуждения с двигательного нервного волокна на волокна гладкой мышцы в принципе сходен с механизмом нервно-мышечной передачи в скелетной мускулатуре. Различия касаются лишь химической природы медиатора и особенностей суммации постсинаптических потенциалов.

Во всех скелетных мышцах возбуждающим медиатором является ацетилхолин.

В гладких мышцах передача возбуждения в нервных окончаниях осуществляется при помощи разных медиаторов. Так, для гладких мышц желудочно-кишечного тракта возбуждающим медиатором является ацетилхолин, а для гладких мышц кровеносных сосудов — норадреналин.

Порция медиатора, высвобождаемая нервным окончанием в ответ на одиночный нервный импульс, в большинстве случаев оказывается недостаточной для критической деполяризации мембраны гладкомышечной клетки. Критическая деполяризация происходит только при поступлении к нервному окончанию нескольких следующих друг за другом импульсов. Тогда одиночные возбуждающие постсинаптические потенциалы суммируются (рис. 57) и в момент, когда их сумма достигает пороговой величины, возникает потенциал действия.

В скелетном мышечном волокне частота следования потенциалов действия соответ-.

ствует частоте ритмического раздражения двигательного нерва. В отличие от этого в гладких мышцах такое соответствие нарушается уже при частотах 7—15 имп/с. Если же частота стимуляции превышает 50 имп/с, возникает торможение типа пессимального.

Тормозные синапсы в гладких мышцах. Раздражение некоторых нервных волокон, иннервирующих гладкие мышцы, может вызывать их торможение, а не возбуждение.

Нервные импульсы, приходящие в определенные нервные окончания, высвобождают тормозной медиатор.

Воздействуя на пс^стсинаптическую мембрану, тормозной медиатор взаимодействует с хемовозбудимыми каналами, обладающими преимущественной проницаемостью для ионов К+- Выходящий поток калия через эти каналы вызывает гиперполяризацию постсинаптической мембраны, проявляющуюся в форме «тормозного постсинаптического потенциала», подобного тому, который наблюдается в тормозных синапсах нейронов в ЦНС.

При ритмическом раздражении тормозных нервных волокон тормозные постсинаптические потенциалы суммируются друг с другом, причем эта суммация оказывается наиболее эффективной в диапазоне частот 5—25 имп/с (рис. 58).

Если раздражение тормозящего нерва несколько предшествует стимуляции активирующего нерва, то возбуждающий постсинаптический потенциал, вызываемый последним, ослабляется и может оказаться недостаточным для критической деполяризации мембраны. Раздражение тормозного нерва на фоне спонтанной активности мышцы угнетает генерацию потенциалов действия и, следовательно, приводит к прекращению ее сокращений.

Роль тормозного медиатора в гладких мышцах, возбуждаемых ацетилхолином (например, кишечника, бронхов), исполняет норадреналин. Наоборот, в мышечных клетках сфинктера мочевого пузыря и некоторых других гладких мышцах, для которых возбуждающим медиатором является норадреналин, тормозным медиатором служит ацетилхолин. Последний оказывает тормозящее действие и на клетки водителя ритма сердца.

В скелетных мышцах нервно-мышечная передача, осуществляемая при пёмощи ацетилхолина, блокируется препаратами кураре, обладающими большим сродством к холинорецепторам. В гладких мышцах хблинорецептор имеет иную химическую структуру, чем в скелетных, поэтому она блокируется не препаратами кураре, а атропином.

В тех гладких мышцах, в которых медиатором служит норадреналин, хемовозбудимые каналы снабжены адренорецепторами. Различают два основных вида адренорецепторов:

-адренорецепторы и -адренорецепторы, которые блокируются различными химическими соединениями — адреноблокаторами.

ЗАКЛЮЧЕНИЕ

К возбудимым тканям кроме нервной и мышечной относится и железистая ткань, но механизмы возбуждения клеток желез внешней секреции несколько отличны от таковых у нервных и мышечных.

Как показали микроэлектродные исследования мембрана секреторных клеток в состоянии покоя является поляризованной, причем наружная поверхность ее заряжена положительно, а внутренняя — отрицательно. Разность потенциалов составляет 30— 40 мв. При стимуляции секреторных нервов, иннервирующих железу, возникает не деполяризация, а гиперполяризация мембраны и разность потенциалов достигает 50—60 мв. Предполагают, что это происходит вследствие нагнетания С1 - и других- отрицательных ионов в клетку. Под влиянием электростатических сил в клетку вслед за этим начинают поступать положительные ионы, что приводит к повышению осмотического давления, поступлению в клетку воды, увеличению гидростатического давления и набуханию клетки. В результате возникает выброс секрета из клетки в просвет железы.

Выброс секрета может стимулироваться- не только нервными, но и химическими (гуморальными) влияниями. Здесь, как и везде в организме, регуляция функций осуществляется двумя способами — нервным и гуморальным.

Нервный импульс представляет собой наиболее быстрый способ передачи информации в организме. Поэтому в процессе эволюции в тех случаях, когда была необходима большая скорость реакций, когда от быстроты ответных реакций зависело само существование организма, этот способ передачи сигналов стал основным.

В области нервных окончаний — в синаптических щелях нервный импульс, как правило, вызывает выделение медиатора и, таким образом, взаимодействие между клетками остается по существу химическим. При этом вместо медленного распространения химического вещества с током жидкости (с движущейся кровью, лимфой, тканевой жидкостью и т. д.) в нервной системе с большой скоростью распространяется сигнал к выделению биологически активного вещества (медиатора) в области нервных окончаний (на месте). Все это резко повысило быстроту ответных реакций организма, сохранив по существу принцип химического взаимодействия между клетками. Вместе с тем в ряде случаев, когда при клеточном взаимодействии необходима еще более быстрая и притом всегда однозначная реакция, межклеточная передача сигнала обеспечивается прямым электрическим взаимодейстэием клеток. Такой тип связи наблюдается, например, при взаимодействии клеток миокарда, а также некоторых электрических синапсов ЦНС, получивших название эфапсов.

Межклеточные связи сводятся не только к электрическим взаимодействиям или влияниям медиаторов. Химическая взаимосвязь между клетками является более сложной. Клетки органов и тканей вырабатывают ряд специфических химических веществ, действующих на другие клетки и вызывающих не только включение и выключение (или усиление или ослабление) функции, но и изменение интенсивности обмена веществ и процессов синтеза клеткой специфических белков. Механизмы всех этих рефлекторных влияний и межклеточных взаимодействий подробно рассмотрены во втором разделе учебника.

Раздел II

МЕХАНИЗМЫ РЕГУЛЯЦИИ

ФИЗИОЛОГИЧЕСКИХ ПРОЦЕССОВ

ВВЕДЕНИЕ

Человеческий организм представляет собой систему (грубее говоря — машину) — единственную по высочайшему саморегулированию. С этой точки зрения, метод изучения системы человека тот же, как и всякой другой системы: разложение на части, изучение значения каждой части, связи частей, соотношений с окружающей средой, и, в конце концов, понимание на основе всего этого ее общей работы и управление ею (Й. П. Павлов).'В этих словах выражено содержание понятия системного подхода.

Системный подход представляет собой методологию научного познания, в основе которого лежит рассмотрение объектов как систем. Этот подход ориентирует исследователя на раскрытие целостности объекта, на выявление многообразных типов связей в нем и на создание общего представления о системе. Объекты высокой степени сложности, к которым относится организм человека, представляют собой многоуровневую организацию, в которой системы более высокого уровня и сложности включают в себя системы более низкого уровня, образуя иерархию подсистем. Связи элементов в системе любого уровня осуществляются путем передачи информации. В организме животных и человека информация закодирована в определенной структуре биологических молекул, а также в определенном «рисунке»нервных импульсов (частота, набор в пачки, интервалы между пачками, определенное соотношение во времени импульсов и их пачек в различных нервных волокнах и т. д.).

С помощью передачи этой информации осуществляются процессы регуляции, т. е.

управления физиологическими функциями, деятельностью клеток, тканей, органов, систем, поведением организма, осуществление взаимодействия организма и окружающей среды.

Главным регуляторным (управляющим) механизмом в организме высших животных и человека является нервная система. Основной механизм ее деятельности — рефлекс.

Рефлексом (от лат. reflecto — отражение) называют любую ответную реакцию организма, осуществляющуюся с участием центральной нервной системы. Морфологи ческой основой таких реакций является рефлекторная дуга, включающая 5 звеньев:

1) рецептор — специализированный прибор, воспринимающий определенный вид воз действий внешней или внутренней среды; 2) афферентный (чувствительный) нейрон (или нейроны), проводящий сигнал, возникающий в рецепторе, в нервный центр; 3) вста вочный нейрон (или нейроны), представляющий собой центральную часть рефлекторной дуги (или нервный центр), указанного рефлекса; 4) эфферентный (двигательный) нейрон, по аксону которого сигнал доходит до эффектора; 5) эффектор — поперечно полосатая или гладкая мышца либо железа, осуществляющие соответствующую дея Любой эффектор, таким образом, связан элементами рефлекторной дуги с соответствующим рецептором и запускается в действие при раздражении данного рецептора.

Ответная реакция организма возникает вследствие распространения по рефлекторной дуге возбуждения (сигнала), появляющегося при раздражении рецептора.

Понятие о рефлексе было введено в середине XVI века великим французским ученым Рене. Декартом. Введение этого понятия сыграло важнейшую роль в развитии физиологии, позволило объяснить причину ответных реакций организма, изучить их механизм и показать, что в основе таких реакций лежит принцип детерминизма (т. е. всеобщий как для неживой, так и для живой природы принцип причинно-следственных отношений).

Тем самым был сделан важный шаг в развитии материалистических представлений о механизме реакций организма.

Со времен Декарта подобные реакции считались машинообразными, обеспечивающими автоматизированный ответ организма на раздражение рецептора. Однако подобные автоматизированные реакции имеют место лишь при возникновении элементарных простых рефлексов, которые могут осуществляться с участием ограниченных звеньев ЦНС.

Как правило, рефлекторные реакции организма являются гораздо более сложными и происходят при участии многих звеньев (этажей) ЦНС. Рефлексы при этом не сводятся к простым, однозначным ответным реакциям, а представляют собой звенья сложного процесса управления двигательными функциями (поведением) или деятельностью внутренних органов.

Функциональная структура таких процессов управления (регуляции) намного сложнее, нежели структура отдельных машинообразных рефлекторных ответов. Процессам управления независимо от того, где бы они не осуществлялись в организме животного или человека, производственном процессе, социальном обществе и т. д., присущи некоторые общие черты и закономерности.

Эти общие черты исследуются наукой, получившей название кибернетика. Кибернетика изучает общие черты и законы управления, осуществляемого на основе получения, хранения, передачи и переработки информации, независимо от физической природы объекта или системы, в которых осуществляются эти процессы. Кибернетическими системами могут быть автоматические регуляторы в технике, ЭВМ, организм человека и животных, биологическая популяция, человеческое общество.

Изучение законов кибернетики, понимание их смысла весьма важно для познания сущности процессов регуляции физиологических функций, для моделирования (математического или экспериментального) этих функций, для автоматического контроля за осуществлением этих функций, для вмешательства в физиологические процессы с целью их нормализации в случаях расстройств и заболеваний.

Изучение механизмов регуляции физиологических процессов раскрывает общность принципов кибернетики для всех указанных объектов, единство принципов автоматического регулирования в организме, в машине и производственном процессе.

Известно, что сами процессы управления и автоматического регулирования были использованы в технике гораздо раньше, чем они были открыты в организме, и до того, как были сформулированы законы кибернетики.

В машинах существуют «регуляторы, которые заменяют руку машиниста, приходя в целесообразную деятельность, как говорится сами собой, но в сущности под влиянием изменяющихся условий в ходе машины. Таков, например, предохранительный клапан в паровиках (паровых машинах) Уатта. По мере того, как напряжение пара в котле возрастает за известный предел, клапан сам собой увеличивает отверстие для выхода пара и наоборот. Таких приспособлений известно множество и все они носят название автоматических регуляторов. В животном теле, как в самодействующей машине, регуляторы, очевидно, могут быть только автоматическими, т. е. приводится в действие измененными условиями в состоянии или ходе машины (организма) и развивать деятельности, которыми эти неправильности устраняются» — писал И. М. Сеченов еще в 1897 году, предвосхищая положения кибернетики о механизмах саморегуляции в организме.

Таким образом, И. М. Сеченовым был сформулирован принцип отрицательной обратной связи, лежащий в основе процессов автоматического регулирования в машине и живом организме.

По этому принципу регулируются многие физиологические процессы. На значение этого факта впервые обратил внимание Клод Бернар (французский физиолог и патолог), обнаруживший значение постоянства внутренней среды для жизни организма. На примере регуляции уровня сахара в крови он показал, что любые отклонения этого уровня от нормы включают процессы, выравнивающие эти отклонения, что обеспечивает поддержание постоянства этой величины в организме. По этому же принципу регулируется постоянство температуры тела гомоиотермных животных и другие параметры внутренней среды.

Немецкий ученый Карл Людвиг и русский физиолог Ф. И. Цион обнаружили подобный (работающий по принципу отрицательной обратной связи) механизм, регулирующий постоянство артериального Давления в организме. Окончания чувствительного (депрессорного) нерва, локализованные в дуге аорты, при повышении давления крови в этом сосуде посылают усиленные сигналы в ЦНС. Эти сигналы вызывают рефлекторное замедление сердцебиения и расширение артериол, что приводит к падению артериального давления (т. е. к восстановлению его исходного уровня). Затем в организме было открыто большое количество подобных регуляторных механизмов. Значение в регуляции движений обратных связей,, т. е. сигналов, поступающих из работающих мышц, подчеркнул И. М. Сеченов.

В ряде физиологических процессов был открыт механизм и положительной обратной связи, благодаря которой процесс, возникнув, усиливается и поддерживает сам себя.

Обратная связь — это связь на выходе системы. Она улавливает те или иные отклонения, уже возникшие в состоянии системы. Основанные на этом регуляторные механизмы работают по принципу «рассогласования». Деятельность их включается в тот момент, когда в состоянии системы уже наступают отклонения от заданной величины, т. е. когда возникает рассогласование между заданной (необходимой) и фактически возникшей величиной. Механизмы, работающие по этому принципу, широко распространены в организме. Общий принцип работы подобных механизмов представлен П. К. Анохиным в схеме «функциональной системы» (см. рис. 243). Подобная схема, однако, не является универсальной, т. к. в организме существуют регуляторные механизмы, работающие на основе иного принципа. Сигналом к их деятельности служит отклонение от заданной величины не на выходе, а на входе системы, т. е. действие на систему раздражителей, отличающихся от заданных параметров. В этом случае в основу регуляторных реакций положен иной принцип, т. е. работа регулятора «по возмущению».

На входе системы имеются приборы, улавливающие величину поступающего сигнала, нарушающего состояние системы. Если эта величина превышает допустимую и может вызвать нежелательные отклонения в состоянии системы, то в таком случае возникают команды, обеспечивающие нейтрализацию действия этих сигналов и сохранение стабильного состояния системы. Здесь происходит не восстановление уже нарушенного состояния системы, а предупреждение возможности таких нарушений. (Оба эти принципа сохранения стабильности системы отличаются друг от друга, как, скажем, средства тушения уже возникшего пожара отличаются от средств и мер предупреждения пожаров.) В любых физиологических регуляторных, защитных, компенсаторных реакциях имеет место взаимодействие обоих принципов и обоих механизмов регуляции, функционирующих как на выходе, так и на входе системы. Так, например, при воздействии на глаз струи пыльного воздуха, которая может вызвать засорение глаза, срабатывают (как почти и везде) оба механизма. Мигательный рефлекс, закрывая глаз, предупреждает попадание пыли (это механизм, работающий,на входе системы «по возмущению»), а рефлекторное увеличение слезоотделения и промывание склеры и роговицы слезами удаляет уже попавшую пыль (механизм, работающий на выходе системы — «по рассогласованию»). В любой гомеостатической реакции можно наблюдать сочетание действия двух указанных механизмов, работающих на этих двух различных принципах.

Для любой регуляторной реакции необходимо Получение информации о состоянии системы, о величине поступающих сигналов, о возникающих при этом сдвигах в ее состоянии. Необходим также аппарат сличения параметров этих сдвигов или параметров поступающих сигналов с величиной нормальных для данной системы параметров. Кроме того, необходим аппарат, формирующий команды, предотвращающие эти сдвиги.

Действие этих команд осуществляется двумя путями: а) нормализацией уже возникших отклонений (механизмы, работающие «по рассогласованию»); б) предупреждением нежелательных эффектов входного (возмущающего) сигнала путем уменьшения силы сигнала, предотвращения его действия или снижения чувствительности системы к данному возмущающему воздействию (механизм, работающий «по возмущению»). Регуляторные реакции осуществляются в организме нервной системой.

ОБЩАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ

НЕРВНОЙ СИСТЕМЫ

Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Эти сложнейшие и жизненно важные задачи решаются с помощью нервных клеток (нейронов), специализированных на восприятии, обработке, хранении и передаче информации и объединенных в специфически организованные нейронные цепи и центры, составляющие различные функциональные системы мозга.

Объединение нервных клеток осуществляется с помощью синаптических соединений, важнейшей функцией которых является обеспечение перехода электрических сигналов с одного нейрона на другой.

Число нервных элементов, будучи очень ограниченным у примитивных организмов, в процессе эволюционного развития нервной системы достигает многих миллиардов у приматов и человека. При этом количество синаптических контактов между нейронами приближается к астрономической цифре— 1015—1016. Сложность организации ЦНС проявляется также в том, что структура и функция нейронов различных отделов мозга значительно варьируют. Тем не менее результаты исследования различных отделов мозга или клеток нервной, системы животных, стоящих на разных уровнях эволюционного развития, позволяют выделить ряд общих закономерностей, определяющих течение основных нервных процессов: возбуждения и торможения в нейронах и синапсах ЦНС.

Необходимым условием анализа деятельности мозга является выделение общих фундаментальных принципов, лежащих в основе функционирования нейронов и синапсов.

НЕЙРОННАЯ ТЕОРИЯ

В основе современного представления о структуре и функции ЦНС лежит нейронная теория, которая представляет собой частный случай клеточной теории. Однако, если клеточная теория была сформулирована еще в первой половине XIX столетия, то нейронная теория, рассматривающая мозг как результат функционального объединения отдельных клеточных элементов — нейронов, получила признание только на рубеже нынешнего века. До этого существовала тенденция рассматривать ЦНС как непрерывный синцитий, все элементы которого соединены прямой цитоплазматической связью.

Большую роль в признании нейронной теории сыграли исследования испанского нейрогистолога Р. Кахала и английского физиолога Ч. Шеррингтона. Окончательные доказательства полной структурной обособленности нервных клеток были получены с помощью электронного микроскопа, высокая разрешающая способность которого позволила установить, что каждая нервная клетка на всем своем протяжении окружена пограничной мембраной и что между мембранами разных нейронов имеются свободные пространства.

Нервная система построена из двух типов клеток: нервных и глиальных, причем число последних в 8—9 раз превышает число нервных. Однако именно нейроны обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.

Основные структурно-функциональные элементы нервной клетки. В каждой нервной клетке можно выделить четыре основных элемента (рис. 59): тело, или сому, дендриты, аксон и пресинапт инее кое окончание аксона. Каждый из этих элементов выполняет определенную функцию. Тело нейрона содержит различные внутриклеточные органеллы, необходимые для обеспечения жизнедеятельности всей клетки: ядро, рибосомы, эндоплазмагический ретикулум, пластинчатый комплекс (аппарат Гольджи), митохондрии. Здесь происходит основной синтез макромолекул, которые затем могут транспортироваться в дендриты и аксон.

Мембрана тела большинства нейронов покрыта синапсами и, таким образом, играет важную роль в восприятии и интеграции сигналов, поступающих от других нейронов.

От тела клетки берут начало дендриты и аксон.

В большинстве случаев дендриты сильно разветвляются. Вследствие этого их суммарная поверхность значительно превосходит поверхность тела клетки. Это создает условия для размещения на дендритах большого числа синапсов. Таким образом, именно дендритам принадлежит ведущая роль в восприятии нейроном информации. Мембрана дендритов, как имембрана тела нейронов, содержит значительное число белковых, молекул, выполняющих функцию химических рецепторов, обладающих специфической чувствительностью к определенным химическим веществам. Эти вещества участвуют в передаче сигналов с клетки на клетки и являются медиаторами синаптического возбуждения и торможения.

Основной функцией аксона является проведение нервного импульса — потенциала действия.

Способность потенциала действия распространяться без ослабления обеспечивает эффективное проведение сигнала по всей длине аксона, которая у некоторых нервных клеток достигает многих десятков сантиметров. Таким образом, основная задача аксона — проводить сигналы на большие расстояния, связывая нервные клетки друг с другом и с исполнительными органами.

Окончание аксона специализировано на передаче сигнала на другие нейроны (или клетки исполнительных органов). Поэтому в нем содержатся специальные органеллы:

синаптические пузырьки, или везикулы, содержащие химические медиаторы. Мембрана пресинаптических окончаний аксона в отличие от самого аксона снабжена специфическими рецепторами, способными реагировать на различные медиаторы или нейромодуляторы. Благодаря указанному взаимодействию процесс выделения медиатора пресинаптическим окончанием может эффективно регулироваться другими нейронами. Кроме того, в отличие от остальной части аксона мембрана окончаний содержит значительное число кальциевых каналов, активация которых обеспечивает поступление внутрь окончания Са2+.

Типы нейронов. Количество отростков, выходящих из тела нервной клетки, может значительно варьировать. В соответствии с этим различают уни-, би- и мультиполярные нейроны. Униполярные нейроны характерны главным образом для нервной системы беспозвоночных. В нервной системе позвоночных имеются преимущественно би- и мультиполярные нейроны. Последние особенно характерны для ЦНС. Тела биполярных нейронов обычно расположены на периферии, но их центральные отростки вступают в ЦНС (рис. 60). Это так называемые первичные афферентные нейроны.

Различают 3 основных типа нейронов: афферентные, вставочные и эфферентные.

Первичные афферентные нейроны воспринимают сигналы, возникающие в рецепторных образованиях органов чувств, и проводят их в ЦНС. Вступая в пределы ЦНС, окончания отростков первичных афферентных нейронов устанавливают синаптические контакты со вставочными, а иногда и непосредственно с эфферентными нейронами. Вставочные нейроны локализуются, как правило, в пределах ЦНС. Они обеспечивают связь между различными афферентными и эфферентными нейронами. Аксоны эфферентных нейронов, например мотонейронов, выходят за пределы ЦНС и иннервируют волокна скелетной мускулатуры. Многие нейроны, которые можно отнести к эфферентным, передают сигналы не прямо на периферию, а через посредство других нервных клеток. К таким эфферентным нейронам можно отнести нейроны различных отделов мозга, посылающие аксоны, идущие в составе длинных нисходящих трактов к спинному мозгу. Это пирамидные нейроны моторной зоны коры, руброспинальные, ретикулоспинальные и вестибулоспинальные нейроны, импульсы от которых поступают к двигательным клеткам спинальных моторных центров. Эфферентные нейроны вегетативной нервной системы расположены вне центральной нервной системы, в вегетативных ганглиях, находящихся на периферии. Их преганглионарные нейроны, локализованные в сером веществе мозгового ствола и спинного мозга, также относятся к эфферентным нейронам.

Кабельные свойства мембраны. Все многообразие электрических сигналов, генерируемых, перерабатываемых и посылаемых любой нервной клеткой, может быть сведено всего лишь к двум типам: локальным (градуальным) потенциалам и потенциалам действия (импульсным). Локальные потенциалы распространяются пассивно по кабельным структурам нейрона. Поэтому по мере удаления от места своего возникновения они затухают и могут служить только для проведения сигналов на сравнительно небольшие расстояния, например от тела или дендритов нервной клетки к области начального сегмента аксона, где обычно происходит процесс возникновения потенциала действия.

Будучи значительно менее эффективным, чем потенциал действия, средством для передачи сигнала на расстояние, локальные потенциалы способны к суммации, и именно это свойство обеспечивает нейрону способность интегрировать все многочисленные поступающие к нему сигналы. Ввиду того что основным участком возникновения локальных потенциалов в нейронах ЦНС являются синапсы, которые расположены на мембране нейрона достаточно близко друг от друга, пространственное взаимодействие создаваемых синаптическими влияниями локальных процессов является достаточно эффективным.

Потенциал действия, служащий для проведения сигналов на большие расстояния, благодаря наличию регенеративного механизма распространяется без ослабления. Здесь же следует подчеркнуть, что в целой нервной клетке благодаря ее сложному геометрическому строению и неодинаковым свойствам мембраны в различных участках процесс возникновения и распространения потенциала действия отличается рядом особенностей.

Особенности возникновения и проведения потенциалов действия и локальных потенциалов. В большинстве нервных клеток порог возбудимости разных ее участков неодинаков. Он ниже всего в области аксонного холмика и начального сегмента аксона и выше в области сомы. Дендриты, как правило, имеют еще более высокий порог. Поэтому потенциал действия обычно возникает в области начального сегмента аксона и уже оттуда распространяется по аксону (ортодромно) и на тело клетки (антидромно).

Если ввести в тело клетки микроэлектрод, позволяющий регистрировать потенциал действия, то можно видеть, что последний имеет характерную форму (рис. 61), демонстрирующую наличие двух основных компонентов. Первый компонент обусловлен активацией зоны начального сегмента и аксонного холмика, второй — тела и дендритов нейрона. Задержка между первым и вторым компонентами обусловлена тем, что более высокий порог возбудимости тела нейрона и значительное увеличение поверхности мембраны при переходе из аксонного холмика в тело нейрона затрудняют распространение потенциала действия на сомато-дендритическую мембрану.

После окончания потенциала действия во многих нейронах ЦНС наблюдается длительная следовая гиперполяризация. Она особенно хорошо выражена в мотонейронах спинного мозга.

Следовая гиперполяризация обусловлена тем, что соматическая мембрана в отличие от мембраны аксонов имеет значительное число кальциевых каналов. Деполяризация мембраны, развивающаяся во время потенциала действия, активирует кальциевые каналы соматической мембраны (II. Г. Костюк). Входящие внутрь клетки ионы кальция в свою очередь активируют калиевую проводимость мембраны.

Активация калиевой проводимости выражается в развитии следовой гиперполяризации, наблюдаемой после окончания потенциала действия. Если заменить ионы кальция в окружающей нейроны среде на ионы марганца, для чего необходимо осуществлять изоляцию и перфузию участка мозга, следовая гиперполяризация обратимо блокируется (рис. 61, б ).

Следовая гиперполяризация играет важную роль в регуляции частоты потенциалов действия, генерируемых нервной клеткой. Способность нейрона отвечать ритмическими разрядами импульсов на длительную деполяризацию, создаваемую потоком импульсов, поступающих на его синапсы, представляет собой одну из важнейших характеристик его активности. В тех нейронах, где следовая гиперполяризация выражена значительно, частота импульсации не может быть очень высокой, так как ее верхние пределы ограничиваются фактически рефрактерным периодом. Некоторые вставочные нейроны могут выдавать вспышки разрядов с частотой порядка 1000 в секунду. В мотонейронах спинного мозга длительность следовой гиперполяризации достигает 100—150 мс; что значительно увеличивает интервал между последующими потенциалами действия.

Поэтому в обычных условиях частота ритмики мотонейронов не превышает 40—50 в секунду. Большинство двигательных актов осуществляется при еще более низкой частоте разрядов мотонейронов. Тонические мотонейроны имеют более длительную следовую гиперполяризацию и разряжаются с более редкой частотой, чем фазические мотонейроны, у которых следовая гиперполяризация короче.

МЕХАНИЗМЫ СВЯЗИ МЕЖДУ НЕЙРОНАМИ

Каждый многоклеточный организм, каждая ткань, состоящая из отдельных клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Важное значение имеют процессы коммуникации клеток ЦНС. Главная задача их заключается в обработке и передаче информации, закодированной в виде электрических сигналов.

Хотя межнейронные взаимодействия могли бы осуществляться различными путями (например, с помощью влияния электрических полей, генерируемых близко расположенными нервными элементами, изменением ионного состава среды вследствие перераспределения ионов в результате предшествующей активности, выделением в окружающую среду различных продуктов обмена и т. д.), в основе деятельности мозга лежат в основном механизмы, обеспечивающие передачу электрических сигналов с нейрона на нейрон через межклеточные соединения — синапсы, специализированные на передаче этих сигналов. Являясь главным механизмом связи между нейронами, синапсы во многом обеспечивают все многообразие функций мозга,Понятие синапс было введено в физиологию английским физиологом Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Следует отметить, однако, что еще в 60-х годах прошлого столетия И. М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого элементарного нервного процесса. Чем сложнее устроена нервная системаи чем больше число составляющих мозг нервных элементов, тем более важное значение имеют синаптические контакты.

Структура и функция синапсов. Различные синаптические контакты отличаются друг от друга механизмом действия, локализацией на поверхности клетки, функциональной направленностью (возбуждающие или тормозящие), способностью к модуляции в результате предшествующей активности. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции.

Поэтому прежде чем рассматривать специфические особенности синапсов различных отделов ЦНС, необходимо описать общие принципы их функционирования.

Синапс представляет собой сложное структурное образование, в котором следует различать пресинаптическое звено или пресинапс (чаще всего это концевое разветвление аксона) и постсинаптическое звено или постсинапс(чаще всего участок.мембраны тела или дендрита другого нейрона). Кроме наиболее распространенных типов межнейронных контактов — аксосоматических и аксодендритических, существуют/также аксоаксонные, дендродендритические, сомато-дендритические и дендросоматические синапсы.

Пресинаптическое окончание либо образует у постсинаптической клетки так называемые концевые бляшки, или бутоны; либо формирует по своему ходу многочисленные последовательные зоны контакта с различными участками постсинаптического нейрона (так называемые проходящие синапсы).

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. В начале XX в. была четко сформулирована альтернатива: синаптическая передача осуществляется или электрическим, или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, хотя она и значительно сдала свои позиции после того, как химический механизм передачи был продемонстрирован в ряде периферических синапсов. Перфузия верхнего шейного симпатического ганглия (А. В. Кибяков), а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов нейронов ЦНС (Экклс) позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга. Эти факты послужили основанием для вывода об универсальности химического механизма передачи во всех синапсах ЦНС.

МикроэлектроДные исследования последних лет показали, однако, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы как с химическим, так и электрическим механизмом передачи. Более того, в некоторых синаптических структурах сочетанно функционируют и электрический и химический механизмы передачи (смешанные синапсы, или синапсы двоякого действия). Синапсы с электрическим механизмом передачи чаще;

встречаются у животных с более примитивной нервной системой, хотя они и обнаружены в мозге млекопитающих, включая приматов. Их число уменьшается в процессе эмбрионального развития. Синапсы с химическим механизмом передачи составляют большую часть синаптического аппарата ЦНС высших животных и человека.

Структурные и функциональные особенности электрических, химических и смешанных синапсов. Для того чтобы потенциал действия, приходящий в пресинаптическое окончание аксона, мог непосредственно возбудить постсинаптическую мембрану, т. е.

вызвать в ней изменение мембранного потенциала, необходимо, чтобы значительная часть тока, текущего через пресинаптическую мембрану, могла входить в постсинаптическую клетку. Условием для такого вхождения тока является низкое сопротивление участка, связывающего обе клетки (они должны быть электрически связаны), и отсутствие шунтов, по которым пресинаптический ток мог бы ответвиться и не попасть на постсинаптическую мембрану.

Если синаптическая щель, разделяющая пре- и постсинаптическую мембраны, широкая (как это имеет место в химических синапсах, где она составляет в среднем 10—20 нм), подавляющая часть пресинаптйческого тока шунтируется низким сопротивлением щели и лишь примерно 0,0001 часть его попадает на постсинаптическую мембрану. Эта величина слишком мала, чтобы вызвать ощутимый сдвиг мембранного потен^ циала постсинаптического нейрона. Поэтому в синапсах с широкой синаптической щелью необходим другой механизм, способный изменить мембранный потенциал постсинаптической клетки. Таким механизмом является выделение пресинапсом особых химических веществ — медиаторов, которые, воздействуя на специфические рецепторы постсинаптической мембраны, способны изменять состояние ионных каналов постсинаптической мембраны. Изменение ионной проницаемости постсинаптической мембраны, в свою очередь, приводит к возникновению постсинаптического ионного тока, вызывающего падение напряжения на постсинаптической мембране — постсинаптический потенциал. Работа химического синапса схематически изображена на рис. 62, а. Таким образом, генератор постсинаптического тока находится непосредственно в постсинаптической мембране и запускается химическим медиатором, выделяемым пресинаптическим окончанием.

В электрических синапсах ширина синаптической щели составляет всего 2—4 им, что значительно меньше, чем в химических синапсах. Особенно важным является то, что в таких синапсах через синаптическую щель перекинуты мостики, образованные белковыми частицами. Они представляют собой своеобразные каналы шириной-1—2 нм, пронизывающие пре- и постсинаптическую мембраны синапса. Благодаря существованию таких каналов, размеры которых позволяют переходить из клетки в клетку неорганическим ионам и даже небольшим молекулам, электрическое сопротивление в области такого синапса (получившего название щелевого или высокопроницаемого контакта) оказывается очень низким. Это позволяет пресинаптическому току распространяться на постсинаптическую клетку без угасания. Поэтому механизм работы электрического синапса сходен в общих чертах с механизмом распространения волны деполяризации по нервному или мышечному волокну. Электрический ток течет от возбужденной области к невозбужденной и там вытекает наружу, вызывая ее деполяризацию (рис. 62, б).

В электрическом синапсе потенциал действия достигает пресинаптического окончания и далее течет через межклеточные каналы, вызывая деполяризацию постсинаптической мембраны, т. е. генерируя возбуждающий постсинаптический потенциал (ВПСП).

Важно подчеркнуть, что в электрическом синапсе генератор постсинаптического тока находится в пресинаптической мембране, где возникает активный процесс — потенциал действия. Из нее он пассивно (электротонически) распространяется на мембрану постсинаптической клетки. Поэтому синапсы с электрическим механизмом передачи часто обозначают как электротонические.

Структурная основа электрического синапса — высокопроницаемый щелевой контакт, обеспечивающий не только хорошую электрическую связь между нервными клетками, но и взаимный обмен различными органическими молекулами диаметром 1—2 нм.

Более крупные молекулы, например белки, ДНК и РНК через межклеточные каналы не проходят. Однако и ограниченный обмен молекулами и ионами способен обеспечить определенную «метаболическую кооперацию» между нейронами, соединенными электрическими синапсами. Хотя электрические синапсы немногочисленны в ЦНС высших животных, они широко распространены в других возбудимых и невозбудимых тканях:

в сердечной мышце, гладкой мускулатуре внутренних органов в печени, эпителиальной и железистых тканях, В некоторых межнейронных синапсах электрическая и химическая передача осуществляются параллельно благодаря тому, что щель между пре- и постсинаптической мембранами имеет участки со структурой химического и электрического синапсов. Все 3 типа синапсов: электрический, химический и смешанный — схематически показаны на рис. 63. Обычно чисто электрические синапсы имеются между однотипными, близко расположенными нейронами, например между дендритами мотонейронов. Аксодендритические или аксосоматические синапсы, последовательно соединающие разные по функции и локализации нейроны, например первичные афферентные нейроны и мотонейроны, имеют химическую или смешанную природу.

Электрические и химические синапсы значительно отличаются друг от друга не только механизмом передачи, но и многими функциональными свойствами:' 1. В синапсах с химическим механизмом передачи продолжительность синаптической задержки у теплокровных составляет 0,2—0,5 мс. В электрических синапсах синаптическая задержка, т. е. интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, отсутствует.

2. Химические синапсы отличаются односторонним проведением: медиатор, обеспе чивающий передачу сигналов, содержится только в пресинаптическом звене. В электри ческих синапсах 'проведение чаще двустороннее, хотя геометрические особенности синапса делают проведение в одном направлении более эффективным. Кроме того, одно сторонность проведения в электрических синапсах может быть обеспечена полупроводни ковыми свойствами мембраны.

3. Ввиду того что в химических синапсах возникновение постсинаптического потен циала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение постсинаптического нейрона. В электрических синапсах активный процесс развивается в пресинаптическом звене, и поскольку нервный импульс всегда представляет собой волну деполяризации, электрические синапсы могут обеспечить передачу только одного процесса — возбуждения.

4. Химические синапсы значительно лучше, чем электрические, сохраняют следы предшествующей активности. Поэтому химическая передача значительно более подвер жена модуляции под влиянием разных факторов.

5. Химические синапсы значительно более чувствительны к изменениям темпера туры, чем электрические, что имеет существенное значение для нервной системы пойкилотермных животных.

Поскольку химический механизм синаптической передачи имеет значительно более широкое распространение, чем электрический, детальный анализ факторов, определяющих передачу сигналов в химических синапсах, особенно важен для понимания различных аспектов деятельности ЦНС в норме и патологии (а также действия на мозгразличных фармакологических веществ и токсинов, пластических функций нервной системы и т.д.). Поэтому необходимо детально рассмотреть механизмы функционирования синапсов с химическим механизмом передачи, а именно высвобождение медиатора пресинаптическими окончаниями, химическую природу медиаторов, молекулярную и ионную структуру их действия на постсинаптическую мембрану нейронов, лежащую в основе синаптического возбуждения и торможения. '

ПРОЦЕСС ВЫСВОБОЖДЕНИЯ МЕДИАТОРА

Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона и оттуда транспортируется в окончания его аксона, где в основном происходит его депонирование. Содержащийся в пресинаптических окончаниях медиатор должен выделиться в синаптическую щель,чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов.

Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояние спонтанной секреторной активности. Выделяемые постоянно небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные миниатюрные постсинаптические потенциалы. Открытие спонтанного, т. е. не связанного с приходом нервного импульса, выделения медиатора помогло установить важнейшую особенность механизма его высвобождения — дискретный, квантовый характер.

Дискретность процесса высвобождения выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько тысяч молекул.

Постсинаптические эффекты, вызываемые в нервных клетках спонтанно выделяющимися квантами медиатора, наблюдаются особенно отчетливо в условиях, когда импульсная активность пресинаптических волокон искусственно подавлена, например, с помощью тетродотоксина — яда, избирательно блокирующего потенциалзависимые натриевые каналы мембраны, что устраняет возможность генерации потенциала действия. На рис. 64 показано, что после устранения импульсной активности спонтанные миниатюрные постсинаптические потенциалы продолжают возникать через нерегулярные интервалы времени.

Приходящий в пресинаптическое окончание нервный импульс резко увеличивает высвобождение квантов медиатора. Возникающий в результате одновременного высвобождения многих квантов постсинаптический ответ, таким образом, представляет собой вызванный постсинаптический потенциал. Деполяризация прёсинаптической мембраны является необходимым условием для высвобождения медиатора. Установлено, что такая деполяризация будет неэффективной, если в окружающей нейроны среде отсутствуют ионы кальция.

Действительно, если изолировать участок мозга и перфузировать его искусственным раствором, то,при сохранении обычного ионного состава перфузирующей жидкости синаптическая передача в изолированном мозге не будет отличаться от передачи в условиях целого мозга и нормального кровообращения. Удаление из перфузата ионов Са2+ и особенно замена этих ионов на ионы Mg2+ или Мп2+, не влияя на спонтанное высвобождение квантов медиатора, прекращает высвобождение квантов медиатора нервными импульсами. Это особенно наглядно демонстрируют опыты на изолированном спинном мозге лягушки, поскольку здесь первичные афферентные волокна образуют смешанные синапсы со спинальными мотонейронами и возбуждающие постсинаптические потенциалы, возникающие в мотонейроне при раздражении одного такого афферентного волокна, содержат электрический и химический компоненты (рис. 65). Электрический компонент, отражающий возникновение потенциала действия в пресинаптическом окончании, не изменяется после удаления кальция из раствора. Напротив, медиаторный компонент полностью утрачивается. Таким образом, Са 2+ является необходимым для процесса высвобождения медиатора нервным импульсом.

При отсутствии Са 2+ связь между деполяризацией пресинаптической мембраны и высвобождением медиатора (электросекреторная связь) нарушается. Роль кальция в этом процессе связана с тем, что деполяризация, создаваемая нервными импульсами, приводит к активации потенциалзависимых кальциевых каналов пресинаптической мембраны. Ионы Са, поступая внутрь пресинаптического окончания, обеспечивают выход квантов медиатора в синаптическую щель. Ионы Mg и Мп, блокируя потенциалзависимые кальциевые каналы мембраны, нарушают процесс высвобождения медиатора даже при наличии ионов Са в среде, окружающей клетки.

Ионы Са также участвуют и в спонтанном выбросе квантов медиатора, так как факторы, способствующие увеличению концентрации Са 2+ внутри нервных окончаний, например некоторые метаболические ингибиторы, вызывают повышение частоты спонтанных миниатюрных потенциалов.

Дискретный, квантовый характер высвобождения медиатора нервным импульсом в синапсах ЦНС подтверждается результатами статистического анализа распределения амплитуд постсинапти-ческих потенциалов, вызываемых раздражением одиночного пресинаптического волокна.

В разных синапсах ЦНС эффекты, вызываемые в постсинаптической мембране одиночным квантом медиатора, и средний квантовый состав, т. е. число квантов медиатора, освобождаемых в среднем нервным импульсом, значительно варьируют. Так, в синапсах между окончаниями первичных афферентных волокон и мотонейронами спинного мозга величина деполяризации, вызываемая одним квантом медиатора, обычно составляет 50—100 мкВ, а число квантов, высвобождаемых окончаниями одного волокна на данном мотонейроне, обычно не превышает 5—10, а часто бывает значительно меньше. В синапсах между некоторыми клетками коры мозжечка средний квантовый состав может достигать нескольких сотен.

Электросекреторная связь. Электронно-микроскопические исследования показали, что пресинаптические окончания всегда содержат синаптические пузырьки или везикулы, каждая из которых содержит один квант медиатора. Действительно, имеются убедительные биохимические данные, что вещества, рассматриваемые в качестве химических медиаторов, содержатся в синаптических пузырьках. Более того, расчеты количества медиатора, содержащегося в одном пузырьке, и количество молекул медиатора, необходимых для создания постсинаптического эффекта, аналогичного действию одного кванта, совпадают. Таким образом, совокупность имеющихся данных свидетельствует о том, что как спонтанные миниатюрные постсинаптические потенциалы, так и постсинаптические потенциалы обусловлены выходом в синаптическую щель медиатора, содержащегося в синаптических пузырьках. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии Са 2+, сливается с пресинаптической мембраной. В результате происходит опорожнение пузырька в синаптическую щель. После спадения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность.

В дальнейшем (в результате Процесса эндоцитоза) небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.

Участие Са 2+ в процессе высвобождения медиатора нервным импульсом определяет ряд важных специфических особенностей работы синапсов с химическим механизмом передачи. Такое характерное свойство химических синапсов, как синаптическая задержка, определяется главным образом временем, необходимым для вхождения Са 2+ внутрь пресинаптического окончания. Накопление Са 2+ внутри пресинаптического окончания в результате предшествующего поступления улучшает эффективность работы химического синапса. Если интервал между последовательным возникновением потенциалов действия в пресинапсе невелик, каждый последующий потенциал вызывает высвобождение большего числа квантов медиатора, что проявляется увеличением амплитуды постсинаптических потенциалов. Это явление временного облегчения или потенциации можно связать с накоплением Са 2+ в пресинаптическом окончании. Такую же природу имеет и посттетаншеская или постактивационная потенциация: увеличение числа квантов медиатора, высвобождаемых нервным импульсом, после предшествующего ритмического раздражения. Посттетаническая потенциация может длиться от нескольких минут до многих часов (в синапсах гиппокампа) и играть важную роль в пластических изменениях функции синапсов.

ХИМИЧЕСКИЕ МЕДИАТОРЫ

В ЦНС медиаторную функцию выполняет не одно, а большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется.

Чаще всего химическими медиаторами являются вещества с небольшой относительной молекулярной массой. Однако и высокомолекулярные соединения, такие, как полипептиды, также способны выполнять роль химических передатчиков в ряде центральных и периферических синапсов.

Основным критерием медиаторной функции веществ является его наличие в соответствующих пресинаптических окончаниях, способность высвобождаться под влиянием нервного импульса, а также идентичность молекулярных и ионных механизмов действия на постсинаптическую мембрану вещества, высвобождаемого нервным импульсом и прикладываемого искусственно к постсинаптической мембране.

В противоположность многим периферическим структурам, где процесс идентификации медиатора по указанным выше критериям может быть произведен сравнительно просто, ЦНС построена из негомогенных диффузно расположенных популяций нервных клеток и окончаний. Это вносит значительные трудности в обнаружение выделяемого медиатора, который, прежде чем появиться на поверхности мозга или в спинномозговой жидкости, должен диффундировать на большие расстояния. Помимо этого, в центральных структурах трудно добиться избирательной стимуляции определенной гомогенной группы нейронов или волокон, так же как трудно подводить предполагаемый медиатор к определенным нервным клеткам, не оказывая влияния на соседние нейроны. Именно поэтому природа химических медиаторов во многих синапсах ЦНС до сих пор окончательно не установлена. Тем не менее выявлен ряд веществ, играющих роль медиаторов синаптического возбуждения и торможения в ЦНС млекопитающих и человека.

К ним относятся: ацетилхолин; катехоламины: адреналин, норадреналин, дофамин;



Pages:     | 1 | 2 || 4 | 5 |   ...   | 17 |


Похожие работы:

«12.2. Подпрограмма Искусство государственной программы Российской Федерации Развитие культуры и туризма (2013-2020 годы) ПАСПОРТ подпрограммы государственной программы Российской Федерации Развитие культуры и туризма (2013-2020 годы) Искусство Ответственный Министерство культуры Российской Федерации исполнитель подпрограммы Участники реализации Минпромторг России; подпрограммы ФГУК Государственный фонд кинофильмов Российской Федерации; ФГБУК Государственный академический Большой театр России...»

«ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ О КАЧЕСТВЕ И ГАРАНТИЯХ КАЧЕСТВА ОБРАЗОВАНИЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ПО СПЕЦИАЛЬНОСТИ 270112.65 ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ ФГБОУ ВПО Кузбасский государственный технический университет имени Т.Ф.Горбачева РЕЗЮМЕ Реализация образовательной программы 270112.65 Водоснабжение и водоотведение осуществляется кафедрой Строительные конструкции, заведующий кафедрой к.т.н. А.В. Покатилов факультета Наземное и подземное строительство. Независимая внешняя оценка качества...»

«ПРОГРАММА вступительного испытания при поступлении в магистратуру по направлению 19.04.02 – Продукты питания из растительного сырья по дисциплине Общая технология пищевых производств 1. Основное сырье для производства пищевых продуктов 2. Хранение сырья и подготовка его к производству 3. Классификация и химический состав муки 4. Технология производства муки. Характеристика помола зерна в муку 5. Процессуальная схема получения муки 6. Виды продукции, вырабатываемые на крупяных заводах 7....»

«ПУБЛИКАЦИИ Монография главного экономиста Главного управления экономики – аспиранта кафедры международных отношений Академии управления при Президенте Республики Беларусь Савчук Э.А. Управление научнотехническими программами Союзного государства Беларуси и России Аннотация На современном этапе развития экономические системы Республики Беларусь и Российской Федерации испытывает острую потребность в восстановлении и обновлении парка основных производственных фондов и технологической...»

«УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ К КУРСУ ПОЛИТИЧЕСКИЙ АНАЛИЗ И ПРОГНОЗИРОВАНИЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Г.Р. ДЕРЖАВИНА УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ К КУРСУ ПОЛИТИЧЕСКИЙ АНАЛИЗ И ПРОГНОЗИРОВАНИЕ для студентов специальности Политология Тамбов 200 УДК 32. ББК 63.3(2)6- У Составитель: Д.С. Жуков, к.и.н., ст. преподаватель кафедры международных...»

«ПРОГРАММА ОФИЦИАЛЬНЫЙ СПОНСОР СПОНСОР КОФЕ-ПАУЗ СПОНСОР СПОНСОР СВЯЗИ 22 ОКТЯБРЯ 2008 09:00 – 10:00 РЕГИСТРАЦИЯ УЧАСТНИКОВ Москва, Центр Международной Торговли, ул. Краснопресненская наб., 12 10:30 – 11:00 Работа выставки. Место проведения: зал Ангара, ЦМТ-2, подъезд 7, 2 этаж 10:00 – 10:50 Презентации компаний. Место проведения: ЦМТ-1, подъезд 4, холл 2 этажа перед Конгресс залом ГЛАВНАЯ СЕССИЯ 11:00 – 14:00 МИРОВАЯ ЭНЕРГЕТИКА: ГОРИЗОНТЫ 2030 ГОДА Модераторы: Шматко Сергей Иванович, Министр...»

«МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РК АЛМАТИНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ УСОВЕРШЕНСТВОВАНИЯ ВРАЧЕЙ АССОЦИАЦИЯ МЕЖДУНАРОДНЫХ ФАРМАЦЕВТИЧЕСКИХ ПРОИЗВОДИТЕЛЕЙ В РК V МЕЖДУНАРОДНЫЙ КОНГРЕСС ЧЕЛОВЕК И ЛЕКАРСТВО – КАЗАХСТАН АКТУАЛЬНЫЕ ВОПРОСЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ В КЛИНИКЕ ВНУТРЕННИХ БОЛЕЗНЕЙ ПРОГРАММА 24–25 октября 2012 г. АЛМАТЫ 2 2 ПЛАН РАБОТЫ V МЕЖДУНАРОДНОГО КОНГРЕССА ЧЕЛОВЕК И ЛЕКАРСТВО – КАЗАХСТАН 24–25 октября 2012 г. г. Алматы, Дом приемов...»

«29 июля 2013 г. Ежедневный обзор Мировые рынки S&P500 Index Американский рынок 1695 В пятницу торги за океаном завершились в очередной раз в позитивной территории после негативного старта в начале 1690 торговой сессии. Индекс Dow Jones вырос на 0,02% до отметки в 1685 15 558,33 пунктов, технологический индекс NASDAQ прибавил 1680 0,22% и закрылся на уровне 3 613,16 пунктов, а индекс S&P прибавил символические 0,08% и закрылся на отметке 1 691, пунктов. Сезон финансовых отчетностей американских...»

«Russian Edition Grade 5 Mathematics Test, Book 2 March 2–6, 2009 Программа тестирования штата Нью-Йорк Тест по математике Книга 2 5 Класс Март 2–6, 2009 Фамилия и имя 21314-R Developed and published under contract with the New York State Education Department by CTB/McGraw-Hill LLC, a subsidiary of The McGraw-Hill Companies, Inc., 20 Ryan Ranch Road, Monterey, California 93940-5703. Copyright © 2009 by the New York State Education Department. Permission is hereby granted for school...»

«Junior Year Abroad (Одногодичная программа обучения для студентов младших курсов) Обучение за границей и, в частности, в Лондоне дает богатый впечатлениями опыт студентам второго и третьего курсов. Второй или третий год обучения Вы можете провести в London Metropolitan University, что даст Вам возможность объединить опыт проживания за границей с программой обучения, которая будет засчитана в Вашей стране для получения диплома о высшем образовании. В качестве студента London Metropolitan...»

«SWorld – 18-30 March 2014 http://www.sworld.com.ua/index.php/ru/conference/the-content-of-conferences/archives-of-individual-conferences/march-2014 MODERN DIRECTIONS OF THEORETICAL AND APPLIED RESEARCHES ‘2014 Доклад/ Педагогика, психология и социология / Интерактивные технологии обучения и инновации в области образования УДК 15830-92 Волосова Е.В., Безгина Ю.А., Пашкова Е.В., Шипуля А.Н. ИСПОЛЬЗОВАНИЕ ИКТ В ПРОЦЕССЕ ПРЕПОДАВАНИЯ ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН Ставропольский государственный...»

«РАБОЧАЯ ПРОГРАММА по географии в 5-6 классах для основной школы на основе ФГОС ООО на период с 01 сентября 2014 по 31 мая 2016 года Программа: примерная программа основного общего образования по географии География. Планета Земля (V-VI классы) Примерная программа УМК Сферы под редакцией В.П. Дронова.-М.:Просвещение Учебно-методический комплекс: Учебник: А.А. Лобжанидзе География. Планета Земля. 5-6 класс М.:Просвещение Тетрадь-практикум: О.Г. Котляр География. Планета Земля. 5-6 класс...»

«Муниципальное общеобразовательное учреждение – Молодовская основная общеобразовательная школа Шаблыкинского района Орловской области Основная образовательная программа начального общего образования на период 2011-2015 годы с. Молодовое 2011 год ПОЯСНИТЕЛЬНАЯ ЗАПИСКА I. Введение. Данная программа разработана педагогическим коллективом учителей начальных классов Муниципального общеобразовательного учреждения – Молодовская основная общеобразовательная школа Шаблыкинского района Орловской области....»

«Управление ТБО в г. Бишкек – Технико-экономическое обоснование План участия заинтересованных сторон Бишкек, 2012 г. Управление ТБО в г. Бишкек – Техникоэкономическое обоснование План участия заинтересованных сторон 1 Вступление 2 Правовая основа и требования 2.1 Требования национального законодательства к участию заинтересованных сторон в процессе принятия экологически и социально значимых решений. 3 2.2 Принципы участия заинтересованных сторон, принятые Проектом. 5 3 Заинтересованные стороны...»

«Записи выполняются и поступают из СО 1.014, СО 1.015, используются в СО 1.004, СО6.018 Предоставляется в СО 1.023 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Саратовский государственный аграрный университет имени Н.И. Вавилова Факультет природообустройства и лесного хозяйства СОГЛАСОВАНО УТВЕРЖДАЮ Декан факультета Проректор по учебной работе / Соловьёв Д.А./ / Ларионов С.В./ _ 2013 г. _ 2013 г. РАБОЧАЯ (МОДУЛЬНАЯ) ПРОГРАММА дисциплины...»

«Белорусский государственный университет УТВЕРЖДАЮ Декан филологического факультета профессор _ И.С. Ровдо (подпись) (дата утверждения) Регистрационный № УД-/р. Методика лингвистического исследования: функциональный подход к языковым явлениям (спецкурс для магистрантов) Учебная программа для специальности: 1 - 210502 русская филология Факультет филологический_ Кафедра прикладной лингвистики Курс (курсы) магистранты_ Семестр (семестры) 1_ Лекции 20 Экзамен (количество часов) (семестр)...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Адыгейский государственный университет Факультет естествознания ПРОГРАММА вступительного испытания ФИЗИОЛОГИЯ ЧЕЛОВЕКА И ЖИВОТНЫХ при приеме на обучение по программам подготовки научно-педагогических кадров в аспирантуре Начальник управления аспирантуры и диссертационных советов С.А. Ляушева Майкоп, 2014 Физиология человека и животных 1....»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ от 18 ноября 2009 года N 631 Об утверждении и введении в действие федерального государственного образовательного стандарта высшего профессионального образования по направлению подготовки 120700 Землеустройство и кадастры (квалификация (степень) магистр) В соответствии с пунктом 5.2.8 Положения о Министерстве образования и науки Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 15 июня 2004 года N...»

«Министерство образования и наук и Российской Федерации Ивановский государственный химико-технологический университет Российское химическое общество им. Д. И. Менделеева программа региональной студенческой научной конференции ДНИ Н А У К И – 2011 Фундаментальные науки – специалисту нового века 25 апреля - 27 мая Проводится в рамках VII Областного фестиваля Молодая наука - развитию Ивановской области Иваново 2011 Оргкомитет конференции: Шарнин В.А. первый проректор, проректор по научной работе –...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине С3.В.ДВ.2 Неврология Код и направление подготовки 111801 Ветеринария Профиль подготовки Ветеринарный врач Квалификация (степень) выпускника специалист Факультет ветеринарной медицины Ведущие преподаватели Забашта А.П. Козлов Ю.В. Кафедра-разработчик...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.