WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 | 4 | 5 |   ...   | 6 |

«Уважаемый читатель! Вы, держите в руках один из учебников нового поколения по биологии для студентов высших учебных заведений, обучающихся по естественнонаучным направлениям и специальностям. Учебник написан известным ...»

-- [ Страница 1 ] --

Уважаемый читатель!

Вы, держите в руках один из учебников нового поколения по биологии

для студентов высших учебных заведений, обучающихся по естественнонаучным направлениям и специальностям. Учебник написан известным специалистом в области биологии и прошел сложный и длительный путь конкурсного

отбора на Всероссийском конкурсе учебников нового поколения по общим

фундаментальным естественнонаучным дисциплинам. Этот конкурс был инициирован. Госкомвузом (в дальнейшем — Минобразованием России) впервые в истории российской высшей школы в связи с реформированием структуры, и содержания программ высшего образования и проведен в 1995-1998 годах на базе Российского университета дружбы, народов.

В конкурсе по одиннадцати номинациям приняли участие свыше трехсот пятидесяти авторских коллективов, чьи разработки более всего соответствовали как новым учебным программам, так и государственным образовательным стандартам по каждой дисциплине.

Конкурсная комиссия выражает надежду, что данный учебник внесет вклад в дело дальнейшего совершенствования российского высшего профессионального образования, и желает всем читателям — студентам и преподавателям — больших творческих успехов.

Первый заместитель Министра общем и профессиональном образования России, академик российской академии, образования, председатель конкурсной комиссии профессор В. Д. ШАДРИКОВ

ПОСВЯЩАЕТСЯ

ПАМЯТИ МАТЕРИ

ПЕХОВОЙ АННЫ ИЛЬИНИЧНЫ.

ПАРТИЗАНКИ

ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЫ.

ОТДАВШЕЙ ЖИЗНЬ ЗА НАШУ СОВЕТСКУЮ РОДИНУ

В 1942 ГОДУ А. П. ПЕХОВ

БИОЛОГИЯ

С ОСНОВАМИ

ЭКОЛОГИИ

Рекомендовано Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по естественнонаучным специальностям и направлениям Санкт-Петербург« ББК П Пехов А. П.

П 31 Биология с основами экологии. Серия «Учебники для вузов. Специальная литература» — СПб.: Издательство «Лань», 2000. — 672 с.

ISBN 5-8114-0219- В учебнике освещены основные разделы современной биологии с основами экологии. Он состоит из шести разделов. В разделе I приведены сведения о биоразнообразии, в разделе II — о сущности жизни, свойствах и организации живого, о структуре и свойствах клеток, о росте индивидуальном развитии организмов, в разделе III — о наследственности и изменчивости организмов, о генетическом материале, о действии генов, и о генетике человека, в разделе IV — об эволюции органического мира, включая происхождение человека, в разделе V — об основах экологии, включая экологию человека, в разделе VI — о генетической инженерии, биотехнологии, и об их экологических проблемах, а также о методологических проблемах биологии и экологии. В заключении к учебнику даны краткие обобщения рассмотренных современных данных биологии и экологии.

Учебник предназначен для студентов естественнонаучных, сельскохозяйственных, физкультурных и других направлений бакалавриата. Он также полезен для студентов-медиков, а также студентов, изучающих ветеринарную медицину.

Рисунков — 231. Таблиц — 45.

ББК Рецензенты:

проф. В. А. Голиченков, проф. Ю. Л. Гужов Оформление обложки С. Л. Шапиро, А. А. Олексенко Охраняется законом РФ об авторском праве.

Воспроизведение всей книги или любой ее части запрещается без письменного разрешения издателя.

Любые попытки нарушения закона будут преследоваться в судебном порядке.

© Издательство «Лань», © А. П. Пехов, © Издательство «Лань», художественное оформление,

ОТ АВТОРА

БИОЛОГИЯ — это наука о живом. Долгое время она развивалась как наука описательная, — сейчас ее называют традиционной биологией.

Но с тех пор как в биологию вошли методы физики и химии, ее стали называть новой биологией, или ^'изико-химическои, т. е. молекулярной биологией. В последние десятилетия в этой науке произошли поистине революционные изменения, благодаря чему она выдвинулась на передний план естествознания, начала активно способствовать и, частично, задавать направление научнотехническому прогрессу, идущему вперед семимильными шагами.

Современные данные о живом имеют, прежде всего, гигантское познавательное значение, ибо вносят выдающийся вклад в создание научной картины мира. Однако, непрерывно осуществляя познавательную функцию, биология через генетическую инженерию стремительно вовлеклась в материальное производство, стала одной из производительных сил. С другой стороны, одна из биологических наук, а именно, экология вышла за рамки биологии, стала междисциплинарной наукой. Так произошло благодаря тому, что ученые предпринимали громадные усилия (и продолжают это делать), чтобы общество в целом глубоко осознало тот факт, что деятельность человека в окружающей среде влечет за собой не только положительные, но и отрицательные последствия;

последние же могут привести к катастрофе — как к локальной (на отдельно взятой территории), так и к глобальной, мировой. И в наше время невозможно изучать биологию, не уделяя внимания экологии и наоборот. Поэтому данный учебник является учебником по биологии с основами экологии. Можно сказать, что биология и экология — это современный комплекс наук о живом, о происхождении, росте, развитии, наследственности и изменчивости организмов, о взаимоотношениях организмов между собой и со средой, о результатах деятельности человека в окружающей среде и воздействии факторов, порожденных этой деятельностью, на организм человека, животных и растений. Следовательно, задача студентов, которые будут пользоваться этим учебником, заключается в усвоении базовых данных современной биологии и экологии, понимании их фундаментального значения и в использовании приобретенных знаний в практической работе.



Учебник написан на основе примерной программы по дисциплине «Биология с основами экологии» и предназначен для естественнонаучных, сельскохозяйственных, физкультурных и некоторых технических направлений бакалавриата.

Однако автору при этом хотелось бы отметить несколько очень важных моментов. Один из них сводится к тому, что, руководствуясь этой программой, мы все же стремились отразить в учебнике свое собственное видение биологии, ее основ и тенденций развития, которое складывалось в результате длительного периода научной и преподавательской деятельности в этой области и развивалось под благотворным влиянием непосредственного общения в те или иные годы с корифеями отечественной науки (такими как Н. П. Дубинин, А. А. Баев, мой учитель Н. Н. Жуков-Вережников, А. А. Им-шенецкий, В. М. Кланов, Ю.

А. Овчинников, М. А. Пешков, В. Д. Тимаков и др.). Невозможно не отметить и роль моих зарубежных учителей Г. Понтекорво и У. Хейза (Великобритания), под руководством которых автор изучал генетику и ряд проблем общей биологии, а также благотворность общения с другими выдающимися зарубежными учеными (Р. Картис, Д. Кларк Р. Клаус, США; Ш. Ауэрбах, Н. Датта и М. Ричмонд, Великобритания; Т. Митсухаши, Япония).

Учебник предназначен для студентов разных специальностей, и, учитывая это, автор счел необходимым шире представить не только экологическую проблематику, но и возможности, направления и достижения генетической инженерии, которая позволила получить данные, являющиеся критерием ценности наших представлений о живой материи, и, что не менее важно, подняла на новый уровень биотехнологию.

Наконец, еще один важный момент, которым руководствовался автор, связан с тем, что в свете исключительно быстрого и непрерывного прогресса биологических наук эффективность преподавания курса, изложенного в этом учебнике, полностью зависит не только от новизны и актуальности используемых материалов, но и от уровня методики их преподавания. По этой причине автор стремился подготовить учебник, который был бы насыщен новейшими данными и который оставался бы полезным для студентов как можно дольше.

Чтобы студенты могли более подробно познакомиться с интересующими их проблемами, в конце каждой главы приводится список дополнительной литературы, куда, помимо отечественных источников, вошли и новейшие издания на английском языке. Этот язык играет ведущую роль в общении ученых разных стран, и, не ознакомившись с работами зарубежных специалистов, весьма трудно получить полное представление о современном состоянии науки.

Наконец, в каком бы направлении ни развивалась биология, а вместе с ней и экология, научные открытия всегда используются во имя человека и для пользы человека. По этой основополагающей причине мы стремились в этом учебнике, по возможности, быть «близко» к человеку, к его биологии и здоровью.

Со времен Г. Гегеля (1770-1831) известно, что качество всех вещей и явлений определяется мерой. Непрестанно думая об этом, мы учитывали и то, в какой мере этот учебник будет доступен для тех, кому он может быть полезен. Надеемся, что в общем нам удалось изложить столь сложный материал в приемлемой форме. В этом нас убеждает наш опыт преподавания биологии в Российском университете дружбы народов, а также опыт чтения лекций по биологии в ряде зарубежных университетов, в частности, в университетах штатов Алабамы и Аризоны (США), в Хартумском университете (Судан) и университете г. Дакки (Бангладеш), где мы имели возможность работать некоторое время. Именно материалы прочитанных там лекций в значительной мере составили основу данного учебника.

Как всегда, благодарю своих сотрудников (особенно проф. В. П. Щипкову) за то, что они помогли мне найти время написать этот учебник. Я также очень признателен специалистам, ознакомившимся с учебником в рукописи и высказавшим свои замечания, которые оказались чрезвычайно полезными.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Независимо от специальности студентов, в учебном плане курс «Биология с основами экологии» должен быть представлен лекциями и лабораторными занятиями. При этом общие установочные вопросы должны быть вынесены на лекции, тогда как углубленное изучение этих вопросов и частных закономерностей должно проводиться на лабораторных занятиях (путем постановки соответствующих экспериментов) или на семинарских занятиях в процессе обсуждения. Желательно, чтобы изучение этого курса было согласовано по времени с изучением курсов физики и химии, поскольку многие современные биологические понятия сложились на основе идей, методов та. данных этих наук.

В любом вузе по любой научной дисциплине значительная часть времени в подготовке студентов уделяется их самостоятельной работе, основной формой которой является чтение учебника и дополнительной литературы, ее анализ, а также самоконтроль (поиск ответов на вопросы, возникающие в процессе самостоятельной подготовки, лекционных, лабораторных и семинарских занятий).

Учебник состоит из 5 разделов, которые отражают основную проблематику биологии и экологии, причем материалы по экологии излагаются с учетом того, что экология является, прежде всего, биологической наукой, которая в наше время стала наукой междисциплинарной. В свою очередь, каждый из разделов состоит из нескольких глав, которые разделены на параграфы. Как правило, в каждой главе излагаются данные по одной проблеме.

Крайне необходимо, чтобы студенты очень' хорошо усвоили определения биологических понятий. В тексте учебника, по мере введения новой терминологии, даются определения тех или иных явлений. Тем не менее, в Приложение включен словарь наиболее важных биологических терминов, которые должны быть усвоены студентами «окончательно и бесповоротно». Очень полезно знать, как развивались биологические понятия во времени. Поэтому в Приложении есть перечень наиболее важных дат в развитии биологии и приведены имена ученых, которые своими открытиями обеспечили это развитие.

Особое внимание уделяется углубленному изучению разделов биологии, пониманию перспектив их дальнейшего развития. По этой причине в конце каждой главы приводится список литературы, рекомендуемой для дополнительного чтения. Как говорилось выше, в перечень книг вошли не только отечественные учебные и научные издания, но и работы ученых (наиболее значительные монографии и фундаментальные обзорные статьи), опубликованные за рубежом на английском языке. Они будут полезны не только студентам, особенно на семинарских занятиях и в научных кружках, но и преподавателям в объяснениях студентам дальнейших перспектив биологического познания.

Вопросы, необходимые для самоконтроля, приведены в конце каждой главы. Эти вопросы — «авторские» и сформулированы так, чтобы они наиболее полно отражали материалы учебника и соответствовали учебной программе (какой она представляется автору). Если студент сумеет ответить на них, то это означает, что он усвоил материал главы. Но студенты, равно как и их преподаватели, могут поставить себе и «свои» вопросы.

Также в конце каждой главы, среди вопросов для самоконтроля, приведены задачи, имеющие аналогичное функциональное значение. Но успешное решение задач особо ценно в том плане, что оно позволяет практически использовать усвоенные фундаментальные данные и приблизиться к моделированию изучаемых процессов.

Чтобы облегчить работу с учебником, в Приложение включены также предметный и именной (авторский) указатели. Предметный указатель содержит все основные термины, используемые в учебнике; авторский указатель содержит фамилии ученых, встречающиеся в тексте.

Наконец, в Приложении приведен перечень единиц измерений, используемых в биологических исследованиях, а также названия наиболее важных отечественных и зарубежных научных журналов и других периодических изданий, в которых публикуются экспериментальные и обзорные статьи по биологии и экологии.

Александр ПЕХОВ профессор, доктор биологических наук, заслуженный деятель науки Российской Федерации, Академик Международной Академии Наук Высшей Школы Российский университет.

дружбы народов

ВВЕДЕНИЕ

«Я расскажу вам откровенно, как было дело, не прибавив ничего от себя, что стоит историку немалого труда».

Ф.М.ВОЛЬТЕР. Биология (от греч. bios — жизнь, logos — наука) — наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии она относится к естественным наукам, предметом изучения которых является природа.

Биология — одна из старейших естественных наук, хотя термин «биология» для ее обозначения впервые был предложен лишь в 1797 г. немецким профессором анатомии Теодором Рузом (1771-1803), после чего этот термин использовали в 1800 г. профессор Дерптского университета (ныне г. Тарту) К.

Бурдах (1776-1847), а в 1802 г. Ж.-Б. Ламарк (1744-1829) и Л. Тревиранус (1779-1864).

Биология — естественная наука. Как и другие науки, она возникла и всегда развивалась в связи с желанием человека познать окружающий его мир, а также в связи с материальными условиями жизни общества, развитием общественного производства, медицины, практическими потребностями людей.

Этапы развития биологии. Самые первые сведения о живых существах человек стал собирать, вероятно, с тех пор, когда он осознал свое отличие от окружающего мира. Уже в литературных памятниках египтян, вавилонян, индийцев и др. содержатся сведения о строении многих растений и животных, о применении этих знаний в медицине и сельском хозяйстве. В XIV в. до н. э.

многие клинописные таблички, созданные в Месопотамии, содержали сведения о животных и растениях, о систематизации животных путем разделения их на плотоядных и травоядных, а растений на деревья, овощи, лекарственные травы и т. д. В медицинских сочинениях, созданных в VI—I вв. до н. э. в Индии, содержатся представления о наследственности как причине сходства родителей и детей, а в памятниках «Махабхарата» и «Рамаяна» дано довольно подробное описание ряда особенностей жизни многих животных и растений.

В период рабовладельческого строя возникают ионийская, афинская, александрийская и римская школы в изучении животных и растений.

Ионийская школа возникла в Ионии (VII-IV вв. до н. э.). Не веря в сверхъестественное происхождение жизни, философы этой школы признавали причинность явлений, движение жизни по определенному пути, доступность для изучения «естественного закона», который, по их утверждению, управляет миром. В частности, Алкмеон (конец VI—начало V в. до н. э.) описал зрительный нерв и развитие куриного эмбриона, признавал мозг в качестве центра ощущений и мышления, а Гиппократ (460-377 гг. до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней.

Афинская школа сложилась в Афинах. Наиболее выдающийся представитель этой школы Аристотель (384—322 гг. до н. э.) создал четыре биологических трактата, в которых содержались разносторонние сведения о животных.

Аристотель подразделял окружающий мир на четыре царства (неодушевленный мир земли, воды и воздуха, мир растений, мир животных и мир человека), между которыми устанавливалась последовательность. В дальнейшем эта последовательность превратилась в «лестницу существ» (XVIII в.). Аристотелю принадлежит, вероятно, и самая первая классификация животных, которых он классифицировал на четвероногих, летающих, пернатых и рыб. Китообразных он объединил с сухопутными животными, но не с рыбами, которых он классифицировал на костных и хрящевых.

Аристотелю были известны основные признаки млекопитающих. Он дал описание наружных и внутренних органов человека, половых различий у животных, способов размножения и образа жизни животных, происхождения пола, наследования отдельных признаков, уродств, многоплодия и т. д. Аристотеля считают основоположником зоологии. Другой представитель этой школы Те-офраст (372-287 гг. до н.э.) оставил сведения о строении и размножении многих растений, о различиях между однодольными и двудольными растениями, ввел в употребление термины — плод, околоплодник, сердцевина. Его считают основоположником ботаники.

Александрийская школа вошла в историю биологии благодаря ученым, занимавшимся в основном изучением анатомии. Герофил (расцвет творчества на 300 годы до н. э.) оставил сведения по сравнительной анатомии человека и животных, впервые указал на различия между артериями и венами, а Эразистрат (250 годы до н. э.) описал полушария головного мозга, мозжечок, извилины головного мозга.

Римская школа не дала самостоятельных разработок в изучении живых организмов, ограничившись коллекционированием сведений, добытых греками.

Гай Плиний старший (23-79 гг.) создал энциклопедию «Естественная история»

из 37 томов, в которой содержались также и сведения о животных и растениях.

Диоско-рид (I век н. э.) оставил описание 600 видов растений, обращая внимание на их целебные свойства. Клавдий Гален (130-200 гг.) широко проводил вскрытия млекопитающих (крупный и мелкий рогатый скот, свиньи, собаки, медведи и др.), первым дал сравнительно-анатомическое описание человека и обезьяны. Он был последним великим биологом древности, оказавшим исключительно большое влияние на дальнейшее развитие анатомии и физиологии.

В средние века господствующей идеологией была религия. Однако научные знания как-то все же продолжали развиваться. Можно сказать, что новых знаний почти не получали. Но биологические знания, основанные на описаниях Аристотеля, Плиния, Галена, поддерживались. В частности знания, добытые греками, были отражены в энциклопедии Альберта Великого (1206—1280).

На Руси сведения о животных и растениях были обобщены в том древнем произведении, которое известно под названием «Поучение Владимира Мономаха» (XI в.).

Выдающийся ученый и мыслитель средних веков Абу-Али ибн Сина (980-1037), известный в Европе под именем Авиценны, развивал взгляды о вечности и несотворенности мира, признавал причинные закономерности в природе. В этот период биология еще не выделилась в самостоятельную науку, не отделилась от искаженных религиозно-философских взглядов на окружающий мирКак считают историки науки, начала биологии, как и всего естествознания, связаны с эпохой Возрождения (Ренессанса). В эту эпоху происходит крушение феодального общества, разрушается диктатура церкви. Можно сказать, что естествознание более быстро начинает развиваться со второй половины XV в. С того времени успехи естествознания следуют один за другим. Например, выдающийся деятель эпохи Возрождения Леонардо да Винчи (1452-1519) в то время открыл гомологию органов, охарактеризовал многие растения, описал поведение птиц в полете, открыл щитовидную железу, описал способ соединения костей суставами, деятельность сердца и зрительной функции: глаза, отметил сходство костей человека и животных, Андреас Везалий (1514-1564) создал анатомический труд «Семь книг о строении человеческого тела», заложивший основы научной анатомии, В. Гарвей (1578—1657) открыл кровообращение, а Д. Борелли (1608—1679) описал механизмы движения животных, что заложило научные основы физиологии. С того времени анатомия и физиология развивались вместе в течение многих десятков лет, после чего они разделились на самостоятельные науки, в пределах которых возникли более узкие науки (анатомия животных, анатомия человека, физиология животных и т. д.).

Чрезвычайно быстрое накопление научных данных о живых организмах вело к дифференцировке биологических знаний, к разделению биологии на отдельные науки по объектам и задачам изучения. В XVI-XVII вв. стала стремительно развиваться ботаника. С изобретением микроскопа (начало XVII в.) в пределах ботаники возникла микроскопическая анатомия растений, закладываются основы физиологии растений. С XVI в. стала быстро развиваться и зоология.

Большое влияние на развитие зоологии в последующем оказала система классификации животных, созданная К. Линнеем (1707-1778). Введя четырехчленные таксономические подразделения (класс — отряд — род — вид), К.

Линней классифицировал животных на шесть классов (млекопитающие, птицы, амфибии, рыбы, насекомые, черви).

Значительное влияние на биологию XVII-XVIII вв. оказал и немецкий ученый Г. Лейбниц (1646-1716) и швейцарский ученый Ш. Бонна, которые разработали учение о «лестнице существ», основные принципы которой были заимствованы из взглядов античного мира.

В XVIII-XIX вв. трудами К. Ф. Вольфа, К. М. Бэра и других закладываются основы эмбриологии. С этого времени эмбриология развивается в качестве самостоятельной науки. В 1839 г. Т. Шванн (1804-1881) и М. Шлейден (1810-1882) формулируют клеточную теорию, явившуюся важнейшим обобщением знаний о клетке, ставших известными к концу первой трети XIX в.

В 1859 г. Ч. Дарвин (1809-1882) публикует «Происхождение видов». В этом труде была сформулирована теория эволюции.

В первой половине XIX в. возникает бактериология, которая благодаря трудам Л. Пастера, Р. Коха, Д. Листера и И. И. Мечникова в последующем перерастает в микробиологию как самостоятельную науку. К концу XIX в. в качестве самостоятельных наук оформляются паразитология и экология.

В 1865 г. была опубликована работа Г. Менделя (1822-1884) «Опыт над растительными гибридами», в которой было обосновано существование генов и сформулированы закономерности, которые в настоящее время называют законами наследственности. После повторного открытия этих законов в XX в.

оформляется в качестве самостоятельной науки генетика.

Еще в первой половине XIX в. возникли идеи об использовании физики и химии для изучения явлений жизни (Г. Деви, Ю. Либих). Реализация этой идеи привела к тому, что в середине XIX в. физиология обособилась от анатомии, причем физико-химическое направление заняло в ней ведущее место. На рубеже XIX-XX вв. сформировалась современная биологическая химия. В первой половине XX в. оформляется в качестве самостоятельной науки биологическая физика.

Важнейшим рубежом в развитии биологии в XX в. стали 40-50-е годы, когда в биологию хлынули идеи и методы физики и химии, а в качестве объектов стали использовать микроорганизмы. В 1944 г. была открыта генетическая роль ДНК, в 1953 г. выяснена ее структура, а в 1961 г. был расшифрован генетический код. С открытием генетической роли ДНК и механизмов синтеза белков из генетики и биохимии произошло вычленение молекулярной биологии и молекулярной генетики, которые в совокупности часто называют физикохимической биологией. Основным предметом изучения молекулярной биологии и генетики стали структура и функции нуклеиновых кислот и белков. Возникновение этих наук означало гигантский шаг в изучении явлений жизни на молекулярном уровне живой материи.

12 апреля 1961 г. впервые в истории человек поднялся в космос. Этим первым космонавтом был гражданин СССР Юрий Алексеевич Гагарин. У нас этот день стал Днем космонавтики, а в мире — Всемирным днем авиации и космонавтики. Но можно сказать, что этот день является также и днем космической биологии, родиной которой по праву является наша страна.

В наше время биология характеризуется исключительно широким перечнем разрабатываемых фундаментальных проблем, начиная с исследований элементарных клеточных структур и реакций, протекающих в клетках, и заканчивая познанием процессов, развернутых и развивающихся на глобальном (биосферном) уровне. В относительно короткие исторические сроки были разработаны принципиально новые методы исследований, вскрыты молекулярные основы строения и активности клеток, установлена генетическая роль нуклеиновых кислот, расшифрован генетический код и сформулирована теория генетической информации, определены (секвеннированы) последовательности азотных оснований многих генов, появились новые обоснования теории эволюции, возникли новые биологические науки. Новейший революционный этап в развитии биологии — это создание методологии генетической инженерии, которая открыла принципиально новые возможности для проникновения в глубь биологических процессов с целью дальнейшей характеристики живой материи и создания научной картины мира. Генетическая инженерия подняла также на новый уровень биотехнологию, сделала ее более эффективной и привлекла к ней значительное общественное внимание, заставив людей более внимательно задуматься о своем бытие. Появление генетической инженерии привело к созданию ряда совершенно новых социальных и этических проблем естественных наук.

Классификация биологических наук. Биология — это комплексная наука, ставшая в наше время такой в результате дифференциации и интеграции разных биологических наук. Самыми старыми биологическими науками являются зоология и ботаника, изучающие животных и растения соответственно.

Процесс дифференциации биологических наук возник давно и начался с разделения зоологии, ботаники и микробиологии на ряд самостоятельных наук.

В пределах зоологии в XVIII—XIX вв. в разное время возникли зоология позвоночных и беспозвоночных, а также паразитология, протозоология, гельминтология, энтомология, малакология, ихтиология, герпетология, орнитология, тери-ология, предметом изучения которых являются паразиты и паразитизм, простейшие, гельминты (черви), насекомые, моллюски, рыбы, земноводные и рептилии, птицы (соответственно) и другие науки. В ботанике в самостоятельные науки выделились дендрология (наука о деревьях и кустарниках), птеридология (наука о папоротниках), альгология (наука о водорослях), бриология (наука о мхах), биогеоботаника (наука о распространении растений) и другие науки.

Отдельные биологические науки имеют комплексное значение. Например, комплексной наукой стала генетика, предметом изучения которой являются наследственность и изменчивость организмов.

В наше время комплексной наукой стала экология, изучающая взаимоотношения организмов между собой и со средой.

Как в зоологии, так и в ботанике уже давно в самостоятельные науки выделились систематика, анатомия, физиология, цитология, гистология, эмбриология и другие дисциплины. Микробиология разделилась на бактериологию, вирусологию и иммунологию. Одновременно с дифференциацией шел процесс возникновения и оформления новых наук, которые расчленялись на более узкие науки. Например, генетика, возникнув в качестве самостоятельной науки, разделилась на общую и молекулярную, на генетику растений, животных и микроорганизмов. В то же время возникли генетика пола, генетика поведения, популяцион-ная генетика, эволюционная генетика и т. д. В недрах физиологии возникли сравнительная и эволюционная физиология, эндокринология и другие физиологические науки. В последние годы отмечается тенденция оформления узких наук, получающих название по проблеме (объекту) исследования. Такими науками являются энзимология, мембранология, кариология, плазмидология и другие.

В результате интеграции наук возникли биохимия, биофизика, радиобиология, цитогенетика, космическая биология и другие науки.

Ведущее положение в современном комплексе биологических наук занимает физико-химическая биология, новейшие данные которой вносят существенный вклад в представления о научной картине мира, в дальнейшее обоснование материального единства мира. Продолжая отражать живой мир и человека как часть этого мира, глубоко развивая познавательные идеи и совершенствуясь в качестве теоретической основы медицины и сельского хозяйства, биология приобрела исключительно большое значение в научно-техническом прогрессе, стала производительной силой.

Методы исследований. Как известно, новые теоретические представления и продвижение познания вперед в любой науке всегда определялись и определяются созданием и использованием новых методов исследования. Биология не является исключением из этого правила.

Основными методами, используемыми в биологических науках, являются описательный, сравнительный, исторический и экспериментальный.

Описательный метод является самым старым методом и основан на наблюдении организмов. Он заключается в сборе фактического материала и описании его. Возникнув в самом начале биологического познания, этот метод долгое время оставался единственным в изучении строения и свойств клеток, тканей и организмов. Поэтому старая (традиционная) биология была связана с простым отражением живого мира в виде описания растений и животных, т. е.

она являлась, по существу, описательной наукой. Использование этого метода позволило заложить основы биологических знаний. Достаточно вспомнить насколько успешным оказался этот метод в систематике и в создании науки о систематике организмов.

Описательный метод широко используется и в наше время, особенно в зоологии, ботанике, цитологии, экологии и других науках. Изучение клеток с помощью светового или электронного микроскопа и описание выявленных при этом микроскопических или субмикроскопических особенностей в их строении представляет собой один из теперешних примеров использования описательного метода.

Сравнительный метод заключается в сравнении изучаемых организмов, их структур и функций между собой с целью выявления сходств и различий.

Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. Заложить основы систематики растений и животных (К. Линней), а также сформулировать клеточную теорию (М. Шлейден и Т. Шванн) и учение об основных типах развития (К. Бэр). Метод широко был использован в XIX в. в обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки.

Сравнительный метод широко используют в разных биологических науках и в наше время.

Сравнение приобретает особую ценность тогда, когда невозможно дать определение понятия. Например, с помощью электронного микроскопа часто получают изображения, истинное содержание которых заранее неизвестно.

Только сравнение их со светомикроскопическими изображениями позволяет получить желаемые данные.

Во второй половине XIX в. благодаря Ч. Дарвину в биологию входит исторический метод, который позволил поставить на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и в пространстве. С введением этого метода в биологии немедленно произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку, объясняющую, как произошли и как функционируют многообразные живые системы. Благодаря этому методу биология поднялась сразу на несколько ступеней выше. В настоящее время исторический метод вышел, по существу, за рамки метода исследования. Он стал всеобщим подходом к изучению явлений жизни во всех биологических науках.

Экспериментальный метод заключается в активном изучении того или иного явления путем эксперимента. Нельзя не отметить, что вопрос об опытном изучении природы, как новом принципе естественнонаучного познания, т. е.

вопрос об эксперименте, как одной из основ в познании природы, был поставлен еще в XVII в. английским философом Ф. Бэконом (1561-1626). Его введение в биологию связано с работами В. Гарвея в XVII в. по изучению кровообращения. Однако экспериментальный метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характеризовать приуроченность функций к структуре. Благодаря трудам Ф. Мажанди (1783-1855), Г. Гельмгольца (1821-1894), И. М. Сеченова (1829-1905), а также классиков эксперимента К. Вернара (1813-1878) и И. П.

Павлова (1849-1936) физиология, вероятно, первой из биологических наук стала экспериментальной наукой.

Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов.

Здесь главнейшая заслуга принадлежит' Г. Менделю, который в отличие от своих предшественников использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. Работа Г. Менделя явилась классическим образцом методологии экспериментальной науки.

В обосновании экспериментального метода важное значение имели работы, выполненные в микробиологии Л. Пастером (1822-1895), который впервые ввел эксперимент для изучения брожения и опровержения теории самопроизвольного зарождения микроорганизмов, а затем для разработки вакцинации против инфекционных болезней. Во второй половине XIX в. вслед за Л. Пастером значительный вклад в разработку и обоснование экспериментального метода в микробиологии внесли Р. Кох (1843-1910), Д. Листер (1827-1912), И. И.

Мечников (1845-1916), Д. И. Ивановский (1864-1920), С. Н. Виноградский (1856-1953), М. Бейеринк (1851-1931) и другие. В XIX в. биология обогатилась также созданием методических основ моделирования, которое является высшей формой эксперимента. Созданные Л. Пастером, Р. Кохом и другими микробиологами способы заражения лабораторных животных патогенными микроорганизмами и изучение на них патогенеза инфекционных болезней — это классический пример моделирования, перешедшего в XX в. и очень дополненного в наше время моделированием не только разных болезней, но и различных жизненных процессов, включая происхождение жизни.

Начиная примерно с 40-х годов XX в. экспериментальный метод в биологии подвергся значительному усовершенствованию за счет повышения разрешающей способности многих биологических методик и разработки новых экспериментальных приемов. Например, была очень повышена разрешающая способность генетического анализа, ряда иммунологических методик. В практику исследований были введены культивированные соматические клетки, выделение биохимических мутантов микроорганизмов и соматических клеток и т. д.

Экспериментальный метод стал широко обогащаться методами физики и химии, которые оказались исключительно ценными не только в качестве самостоятельных методов, но и в сочетаниях с биологическими методами. Например, структура и генетическая роль ДНК были выяснены в результате сочетанного использования химических методов выделения ДНК, химических и физических методов определения ее первичной и вторичной структуры и биологических методов (трансформации и генетического анализа бактерий), доказательства ее роли как генетического материала.

В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, включая электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, разнообразных методов культивирования и прижизненного наблюдения в культурах клеток, тканей и органов, маркировки эмбрионов, техники оплодотворения в пробирке, метода меченых атомов, рентгене структурного анализа, ультрацентрифугирования, спектрофотометрии, хроматографии, электрофореза, секвенирования, конструкции биологически активных рекомбинантных молекул ДНК и т. д. Новое качество, заложенное в экспериментальном методе, вызвало качественные изменения и в моделировании. Наряду с моделированием на уровне организмов в настоящее время очень развивается моделирование на молекулярном и клеточном уровнях, а также математическое моделирование различных биологических процессов.

Успехи, достигнутые в результате использования экспериментального метода, сопровождались изменениями в подходах к изучению явлений жизни.

Новое, заложенное в экспериментальном методе и его техническом оснащении, определило и важные подходы к изучению явлений жизни. Продвижение вперед биологических наук в XX в. во многом определилось также возникновением и развитием системно-структурного подхода к изучению организации и функций живых организмов, анализом и синтезом получаемых данных о структуре и функциях исследуемых объектов. Экспериментальный метод в современном оснащении и в сочетании с системно-структурным подходом в корне преобразил биологию, углубил ее познавательные возможности, расширил представления о научной картине мира, еще больше связал ее с производством, с медициной.

Применение биологических знаний. Прежде всего биологические знания имеют познавательное значение. Однако чрезвычайно велико и их практическое значение. Впервые практика стала формулировать свои заказы биологии с введением в эту науку экспериментального метода. Но тогда биология оказывала влияние на практику опосредованно, в частности, через медицину и сельское хозяйство.

Прямое влияние биологии на материальное производство началось с создания основ биотехнологии в тех областях промышленности, которые основываются на биосинтезирующей деятельности микроорганизмов. На основе биологических знаний уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые широко используются в народном хозяйстве и медицине.

В 40—50-е годы было создано промышленное производство антибиотиков, а в начале 60-х годов — производство аминокислот. Важное место в микробиологической промышленности сейчас занимает производство ферментов.

Микробиологическая промышленность производит сейчас в больших количествах витамины и другие вещества. Как аминокислоты и антибиотики, так и витамины крайне необходимы в народном хозяйстве и медицине. На основе трансформирующей способности микроорганизмов основано промышленное производство веществ с фармакологическими свойствами из стероидного сырья растительного происхождения.

Наибольшие успехи в производстве различных веществ, в том числе лекарственных (инсулин, соматостатин, интерферон и др.), связаны с генетической инженерией, составляющей сейчас основу биотехнологии.

Исключительно важное значение биология имеет для сельскохозяйственного производства. Например, теоретической основой селекции растений и животных является генетика. В последние годы в сельскохозяйственное производство также вошла генетическая инженерия. Она открыла новые перспективы в увеличении производства пищи.

Генетическая инженерия оказывает существенное влияние на поиск новых источников энергии, новых путей сохранения окружающей среды, очистки ее от различных загрязнений.

Развитие биотехнологии, теоретическую основу которой составляет биология, а методическую — генетическая инженерия, является новым этапом в развитии материального производства. Появление этой технологии есть один из моментов новейшей революции в производительных силах.

Биологическое познание прямым образом связано с медициной, причем эти связи уходят в далекое прошлое и датируются тем же временем, что и возникновение самой биологии. Больше того, многие выдающиеся медики далекого прошлого были одновременно и выдающимися биологами (Гиппократ, Герофил, Эразистрат, Гален, Авиценна, Мальпиги и другие). Тогда и позднее биология стала обслуживать медицину путем «поставки» ей сведений о строении организмов. Однако роль биологии, как теоретической основы медицины в современном понимании, стала формироваться лишь в прошлом веке.

Создание в XIX в. клеточной теории заложило подлинно научные основы связи биологии с медициной. В 1858 году немецкий ученый Р. Вирхов (1821опубликовал книгу РНК-мир (биохимические реакции, катализируемые генетически кодируемыми рибозами) —> ДНК/белок-мир (биохимические реакции, катализируемые ДНК-кодируе-мыми белковыми ферментами) -> первые живые одноклеточные организмы. В соответствии с результатами молекулярно-генети-ческих исследований общий предок живых форм появился 2 млрд лет назад. Напротив, палеонтологические находки древнейших цианобактерий свидетельствуют о том, что такой предок существовал уже 3, млрд лет назад, а по результатам обнаружения углеродистых включений в скальных апатитах предполагают, что жизнь существовала 3,8 млрд лет назад.

§ 73 ХОД, ГЛАВНЫЕ НАПРАВЛЕНИЯ И ДОКАЗАТЕЛЬСТВА

ЭВОЛЮЦИИ

Поскольку эволюция представляет собой процесс, протекающий во времени, то узловым вопросом является определение этого времени. Главным путем определения эволюционного времени, т. е. определения геологической эпохи, к которой относятся палеонтологические находки. Поэтому представления о ходе эволюции, т. е. об основных этапах развития жизни, можно получить, ознакомившись с так называемой шкалой геологического времени, которая сконструирована посредством изучения ископаемых остатков организмов и использования радиоактивных изотопов (метода радиодатирования), а также использования данных геологии, биогеографии, систематики и других наук. С помощью этой шкалы можно проследить все изменения земной фауны и флоры во времени (табл. 32).

Историю Земли подразделяют на несколько очень крупных последовательных промежутков времени, называемых эрами, которые в свою очередь подразделяют на периоды, а периоды — на эпохи. Иногда эти подразделения продолжают, подразделяя эпохи на века. Эрами являются катархей, архей, протерозой, палеозой (возраст рыб и амфибий), мезозой (возраст рептилий) и кайнозой (возраст млекопитающих).

Конец одной эпохи и начало другой сопровождались существенным преобразованием лика Земли, менялось соотношение между размерами суши и морей, происходили горообразовательные процессы, менялся климат. Изменения лика Земли сопровождались сменой флор и фаун, изменениями в структуре биогеоценозов.

Предполагают, что жизнь возникла на границе катархея и архея, который начался около 3,5 млрд лет назад и длительность которого составляет около млрд лет. Эта эра характеризовалась широкой вулканической деятельностью.

Обнаружение в архейских породах графита и чистого углерода предположительно указывает на существование в этой эре очень простых живых организмов растительной и животной природы, в частности архебактерий и цианобактерий.

В протерозое происходило отложение большого количества осадков, неоднократно формировалось ледниковое покрытие Земли, активной была вулканическая деятельность. Обнаружение ископаемых остатков медуз, грибов, водорослей, плеченогих, членистоногих (ракоскорпионов) и других организмов, живших в ту эру, свидетельствует о том, что уже тогда существовали микроорганизмы, многие типы водных простейших и беспозвоночных. Предполагают, что первыми микроорганизмами были анаэробы. Земных форм жизни еще не было, но уже тогда произошли переходы от неядерных к ядерным формам и от одноклеточных к многоклеточным, что представляет собой крупнейший скачок в развитии жизни, в становлении ее в качестве геологического фактора.

В палеозойской эре возникли представители основных групп растений и почти всех типов и классов животных (кроме птиц и млекопитающих). Можно сказать, что эта эра знаменовала важнейший этап в развитии жизни, связанный с завоеванием растениями и животными суши.

В частности, в первом периоде эры (кембрии) жизнь по-прежнему существовала лишь в воде. В морях были широко распространены одноклеточные и многоклеточные водоросли, примитивные ракообразные и паукообразные формы, например, мечехвосты, морское дно было заселено губками, кораллами и иглокожими, брюхоногими и двухстворчатыми моллюсками. Очень распространены были плеченогие (сидячие животные с двухстворчатой раковиной) и трилобиты (примитивные членистоногие). В то время уже существовали все виды морских животных, кроме хордовых. Материки оставались безжизненными.

В ордовикский период продолжалось начавшееся в кембрии погружение материков в воду. Теплел климат. Начался выход растений на сушу. В пресных водах обитали гигантские скорпионы. В воде появились первые позвоночные. В частности, в пресных водах обитали щитковые, представлявшие собой примитивных бесчелюстных рыб, не имевших парных плавников.

В течение силура продолжался выход растений на сушу. Первыми растениями были травянистые псилофиты (плауны, хвощи) и древесные формы ликопсидов, сходные с папоротниками. Существовали все ветви беспозвоночных.

Начался выход на сушу животных (паукообразных). Появились животные, дышащие воздухом.

В девонский период этой эры поднималась суша, сокращалась площадь морей. Климат стал более континентальным. На суше впервые появляются примитивные голосеменные растения (семенные папоротники), появились первые леса гигантских папоротников, хвощей и плаунов, появились первые настоящие листья. В пресных водах появились настоящие акулы. Предки костных рыб дали начало двоякодышащим, кистеперым и лучеперым рыбам. Лучеперые дали начало в более поздние периоды костистым рыбам, а кистеперые стали предками наземных позвоночных.

В течение каменноугольного периода (карбона) этой эры происходит небольшое поднятие суши и потепление климата. Заболоченные леса состояли из обычных папоротников, семенных папоротников (появились первые настоящие семена) и широколиственных зеленых растений, давших начало залежам каменного угля. В изобилии были земноводные, широко распространились пресмыкающиеся. Появились первые насекомые (предки стрекоз и тараканов).

В течение пермского периода этой эры происходили разные изменения рельефа Земли и климата. Поднятие суши сопровождалось похолоданием климата. Вымирают папоротникообразные, шире стали распространяться голосеменные растения. Типичными растительными формами в тот период были цикадофиты и хвойные. На Земле в изобилии обитали пресмыкающиеся (поликозавры и терапсиды). Вымирает более 80% видов морских беспозвоночных, но в морях увеличилось количество костных рыб и головоногих моллюсков. Значительного развития достигают пресмыкающиеся (растительноядные и хищные), среди которых большое место занимали динозавры, принадлежащие к типам птицетазовых (травоядных) и ящеротазовых (хищных).

В мезозойской эре продолжалось поднятие суши, иссушался климат. В эту эру происходило возникновение и вымирание разных пресмыкающихся.

Мезозой часто называют эпохой рептилий.

В триасовом периоде этой эры достигают расцвета семенные папоротники, цикадовые и хвойные. В морях в еще большей мере повысилось количество костных рыб и головоногих моллюсков.

В юрском периоде этой эры появляются покрытосеменные растения (цветковые), древнейшие птицы, расширяется многообразие морских пресмыкающихся (ихтиозавров, плезиозавров). Уже существует четыре отряда млекопитающих, все представители которых были яйцекладущими животными.

В меловом периоде этой эры были распространены покрытосеменные растения (магнолии, пальмы, клены, дубы и др.). Появились первые цветки.

Отмечено появление современных костных рыб и исчезновение морских пресмыкающихся. Вымирают динозавры. Крупные пресмыкающиеся (крокодилы, черепахи, гаттерии) сохраняются лишь в экваториальном поясе. Впервые появляются змеи, птицы. Распространяются млекопитающие, способные рождать живых детенышей (сумчатые).

В кайнозойской эре произошло интенсивное горообразование, похолодание климата. Эта эра характеризуется временем цветковых растений, насекомых, птиц, млекопитающих и появлением человека. В этой эре возникли морские организмы всех' современных групп, на Земле появились травянистые покрытосеменные растения, птицы, современные млекопитающие, включая обезьян.

В третичном периоде этой эры различают эпохи палеоцен, эоцен, олигоцен, миоцен и плиоцен. В палеоцене уже существовали примитивные плацентарные млекопитающие. В палеоцене и эоцене возникли первые плотоядные хищники и древнейшие копытные. В эоцене и олигоцене на смену первым хищникам пришли формы, давшие начало современным кошкам, собакам, медведям и ласкам, а также тюленям и моржам. Что касается копытных (лошадей, верблюдов и слонов), то их эволюция шла в сторону увеличения размеров тела и изменения количества пальцев.

Герцинское горообразование Второе великое горообразование Первое великое горообразование Копытные в ходе эволюции разошлись на группу с четным числом пальцев (коровы, овцы, верблюды, олени, жирафы, свиньи и гиппопотамы) и группу с нечетным числом пальцев (лошади, зебры, тапиры, носороги). В эоцене существовали китообразные формы, давшие начало китам и дельфинам. В олигоцене широко были распространены также предковые формы человекообразных обезьян и человека.

В миоцене и плиоцене древесная растительность вытесняется травянистыми формами. Наступает расцвет покрытосеменных растений, членистоногих и млекопитающих. Конец третичного периода датируется появлением всех современных семейств животных и растений.

Следующий период (четвертичный) этой эры, длящийся последние 1,5млн лет, состоит из плейстоценовой и современной эпох. Для плейстоцена характерны четыре последовательных оледенения. Растения и животные, которые были распространены в плейстоцене, сходны с современными растениями и животными. Однако в плейстоцене вымерли многие растения (особенно лесные) и млекопитающие (мамонты, саблезубые тигры). Появились многие травянистые формы растений, но, самое главное, появился человек. Современная эпоха началась около 11 000 лет назад, когда отступил последний ледник.

Хотя в палеонтологической летописи существуют многие пробелы, тем не менее она полностью раскрывает происхождение многих существующих в настоящее время видов животных и растений. Например, очень хорошо прослежено происхождение лошадей, слонов, парнокопытных, хищников.

Эволюцию на уровне крупных таксонов называют макроэволюцией. Основополагающие представления о макроэволюции в целом сводятся к тому, что все современные живые существа являются измененными потомками одной или нескольких форм, существовавших ранее. Более молодые по происхождению формы животных и растений произошли от предков, менее отличавшихся друг от друга, а те, в свою очередь, развились от общего единого источника (рис. 164).

Считают, что первыми возникли архебактерии. Примерно 3,5 млрд лет назад. Затем возникли истинные бактерии, а от них ответвились вирусы, цианобактерии, красные водоросли и зеленые жгутиковые. От последних ответвились водоросли (от которых позднее произошли, в свою очередь, высшие растения) и бесцветные ризофлагелляты, из которых развились диатомовые водоросли, плесневые грибы, губки и простейшие. Часть простейших стала паразитической.

Вторым крупнейшим этапом эволюции была трансформация одноклеточных организмов в многоклеточные. Считают, что первые эукариоты появились 1,5 млрд лет назад. Их появление есть крупнейший эволюционный переход, ибо в основе появления эукарио-тов лежит формирование митоза и развитие клеточных структур. Из цилиарных простейших (цилиофор) развились многоклеточные (синтициальные) плоские черви. Последние разветвились на пять линий, одна из которых повела к иглокожим и хордовым. Остальные линии повели к большинству других типов животного мира.

Первыми позвоночными были остракодермы, которые развились из беспозвоночных, а из остракодерм развились миноги и панцирные акулы. Хрящевые рыбы (акулы и скатовые) и костные рыбы развились из панцирных акул, а из костных рыб развились кроссоптериги, которые являлись примитивными рыбами и которые затем разошлись на две эволюционные ветви, одна из которых привела к дипловертебронам (ранним земноводным), называемым стегоцефалами. Дипловертеброны были предшественниками современных амфибий и пресмыкающихся. Первые пресмыкающиеся (котилозавры) разветвились на ветви, давшие начало динозаврам и морским пресмыкающимся, которые затем вымерли, а также черепахам, крокодилам, ящерицам, змеям, птицам и млекопитающим.

Эволюционная линия, ведущая к человеку, начинается от ту-пай и ведет к ранним приматам, разветвляясь затем на обезьян Нового света, обезьян Старого света, понгид и гоминид. От понгид (настоящих обезьян) произошли гориллы, орангутанги и шимпанзе, а от гоминид произошел непосредственный предшественник современного человека (см. гл. XVI).

Главные направления эволюции сформулированы А. Н. Север-цовым (1866-1936), который впервые четко определил различия между прогрессивным и регрессивным развитием, обосновал понятия о морфофизиологическом и биологическом прогрессе, а также о морфофизиологическом и биологической регрессе.

Морфофизиологический прогресс — это изменения структуры и общей жизнедеятельности на пути эволюции от простых форм к сложным, от одноклеточных организмов к многоклеточным. Напротив, Морфофизиологический регресс — это упрощение организации и жизнедеятельности, выражающееся в редукции органов (например, хорды у оболочников) на пути эволюции.

Следствием морофофизиологического прогресса является биологический прогресс. Он характерен для организмов, которые характеризуются возрастанием приспособленности к окружающей среде, что ведет к увеличению их численности и расширению их ареалов. Однако биологический прогресс может быть результатом не только морфофизиологического прогресса. Иногда от является и результатом морфофизиологического регресса В конечном итоге биологический прогресс ведет к процветанию вида.

В современную эпоху процветающими являются покрытосеменные растения, насекомые, костные рыбы, птицы, млекопитающие.

Значение биологического прогресса заключается в том, что он играет важную роль в эволюции и обеспечивает главные направления эволюции в виде ароморфозов, идиоадаптаций и общей дегенерации.

Ароморфозы — это крупные изменения организмов, которые поднимают на новый более высокий уровень их морфофизиологическую организацию и жизнедеятельность. Кроме того, они открывают организмам путь к проникновению в новую среду обитания. Ароморфозы возникают скачками. Примерами ароморфозов А. Н. Северцов называл развитие легких и четырехкамерного сердца, превращение парных плавников рыб в парные конечности земноводных. По А.

Н. Се-верцову, ароморфозы обозначили возникновение организмов новых классов и типов организмов, завоевание организмами новых просторов. У млекопитающих ароморфозами были: появление живорождения, шерстного покрова, постоянной температуры тела и др.

Идиоадаптация — это изменения, которые не приводят к повышению уровня организации организмов, но сопровождаются приданием им большей приспособленности к существующим условиям жизни, больших возможностей прогрессивного развития. Примером идиоадаптаций являются приспособления насекомых к жизни в разных средах (в воде, почве, воздухе), к разным типам питания. Другим примером служит разнообразие форм у насекомоядных (землеройка, крот, еж, выхухоль и др.), что позволило занять им разные экологические ниши.

Общая дегенерация — это изменения, которые заключаются в снижении уровня организации живых существ и в снижении активности отдельных или ряда органов. Примерами общей дегенерации А. Н. Северцов называл биологию саккулины из группы паразитических ракообразных (крабов), а также биологию оболочников. Выживаемость этих организмов обеспечивается чрезвычайным разнообразием их личиночных форм.

Следствием морфофизиологического регресса является биологический регресс.

Биологический регресс — это снижение приспособленности организмов к среде, сокращение их численности и ареалов. Конечным итогом биологического регресса является вымирание организмов.

Учение А. Н. Северцова о главных направлениях эволюционного процесса было развито дальше в трудах И. И. Шмальгаузена, который рассматривал организм как целое в историческом и индивидуальной развитии. Среди главных направлений эволюционного процесса И. И. Шмальгаузен большое внимание уделял различным формам ароморфозов.

Доказательства эволюции получены в разных науках. Классические доказательства эволюции получены, прежде всего, в палеонтологии в результате изучения ископаемых организмов, живших в прошлые эпохи. Предполагают, что в ходе эволюции вымерло около 200 000 видов животных. В более глубоких слоях Земли обнаруживаются остатки более древних форм жизни, тогда как в поверхностных слоях находят остатки более поздних форм. Можно сказать, что история жизни на Земле написана на языке ископаемых остатков. Палеонтологический материал дает также основания судить о темпах и направлениях эволюции.

Доказательства эволюции получены в биогеографии, которая является наукой о распространении растений и животных. В биогеографии различают шесть биогеографических областей. Каждая из этих областей характеризуется специфическими обитателями (растениями и животными), называемыми эндемиками, под которыми понимают организмы видов, родов и таксонов, ограниченных в своем распространении определенными территориями.

В Палеоарктической области (Европа, африканский север от Са-хары, часть Азии к северу от Гималаев, Азорские острова и острова Зеленого мыса) эндемичными, если говорить о животных, являются кроты, олени, быки, овцы, козы, скворцы и сороки.

В Неоарктической области (Гренландия и Северная Америка) эндемичными являются горные козлы, луговые собачки, опоссумы, скунсы, еноты, сойки и американские грифы. Кроме того здесь встречаются формы, андемичные для палеоарктической области.

В Неотропической области (Южная и центральная Америка, юг Мексики и острова Вест-Индии) обитают альпаки, ламы, цепко-хвостые обезьяны, тапиры, ленивцы, вампиры, муравьеды и многие виды птиц, не встречающиеся в других частях земного Шара.

В Эфиопской области (Африка к югу от Сахары, Мадагаскар) обитают шимпанзе, гориллы, зебры, носороги, трубкозубы, бегемоты, жирафы, многие виды птиц, пресмыкающихся и рыб, не обнаруживаемые в других областях.

В Восточной области (Индия, Цейлон, Индокитай, юг Китая, Малайский полуостров и отдельные острова Малайского архипелага) обитают орангутанги, черные пантеры, индийские слоны, гиббоны и долгопяты. В Австралийской области (Австралия, Новая Зеландия, Новая Гвинея и др. острова Малайского архипелага) эндемичными являются утконосы, кенгуру, вомбаты, коала и другие сумчатые животные. Эндемичными являются бескрылые птицы эму и казуар, а также птица-лира и какаду.

Географические закономерности, характерные для фауны, присущи и флоре этих биогеографических областей.

Одно из основных положений биогеографии заключается в том, что каждый вид растений и животных возникал только однажды и только в одном месте (центре происхождения), откуда он расселялся до тех пор, пока не встречал какую-нибудь преграду, например, географическую, климатическую, пищевую и т. д. Географические ареалы близких видов, как правило, не совпадают, но они и не очень отдалены один от другого.

Особенности географического распространения животных и растений являются отражением специфики эволюции каждого вида. Например, сходство фауны Неоарктической и Неотропической областей обусловлено относительно недавним геологическим разделением Северной Америки и Евразии в результате образования Берингова пролива. Наличие в Австралии однопроходных и сумчатых, которых нет ни в одной из других областей, является результатом того, что этот континент давно (в мезозое) был изолирован от других частей суши. Примитивным млекопитающим — аборигенам Австралии не довелось конкурировать с более приспособленными плацентарными млекопитающими, поэтому они дали начало формам, легко приспособившимся к местным условиям.

Далее, сейчас аллигаторы встречаются только в реках юго-востока США и в р.

Янцзы (КНР), тогда как магнолии произрастают только в восточной части США, в КНР и Японии. В начале кайнозоя Северная Америка соединялась с Азией (на месте теперешнего Берингова пролива). При тогдашнем теплом климате аллигаторы и магнолии на этой территории были распространены повсеместно. В дальнейшем из-за поднятия Скалистых гор и похолодания (оледенения) аллигаторы и магнолии погибли повсеместно, кроме юго-восточной части США и восточной части КНР, где не было оледенения. Поскольку виды магнолий и аллигаторов были разделены в отдаленных частях земного шара на протяжении многих миллионов лет и эволюционировали обособленно, то в современную эпоху, оставаясь близкородственными видами, они несколько различаются между собой.

Еще Ч. Дарвин отмечал различия островных и материковых флор и фаун. Например, на Галапагосских островах, возраст которых составляет всего лишь 3— 5 млн лет и которые никогда не были связаны с материком, отсутствуют лягушки и жабы, ибо ни они, ни их яйца не смогли бы выжить в морской воде, с которой неизбежно пришлось бы столкнуться мигрирующим на этот остров животным. На этих островах нет также наземных млекопитающих, но на одном из этих островов встречаются гигантские ящерицы и черепахи, которые очень близки некоторым формам, обитающим на побережье Эквадора. Это указывает на эволюцию растений и животных после заселения этих островов.

В систематике главное доказательство эволюции заключается в том, что все живые существа можно расположить в иерархическую систему таксономических единиц — виды, роды, семейства, отряды, классы и типы. Это означает, что все организмы связаны между собой филогенетически в результате существующих между ними эволюционных взаимоотношений. Принадлежность организмов к тем или иным систематическим группам свидетельствует о том, что большинство промежуточных форм, существовавших в прошлом, вымерло. Если бы виды всех существовавших в прошлом организмов жили до настоящего времени, то классифицировать живой мир на таксономические группы было бы невозможно. Будучи генетически различными, виды представляют собой независимо эволюционирующие и репродуктивно изолированные единицы. Поскольку можно предполагать, что у генетически сходных видов общий предок существовал в менее отдаленном прошлом по сравнению с генетически различными видами, то степень генетических различий является, по существу, мерой, на основе которой сейчас совершенствуют филогенетическое древо, Степень генетических различий между видами определяют либо прямо путем изменений последовательностей нуклеотидов в генах, либо косвенно путем изменений последовательностей нуклеотидов в рРНК, или последовательностей аминокислот в белках. Результаты сравнения последовательностей ДНК разных организмов позволяют определить количество пар нуклеотидов, в которых в ходе эволюции имели место замены азотистых оснований (табл. 33), тогда как сравнение белков от разных организмов позволяет определить различия в аминокислотных последовательностях, т. е. судить о близости организмов (рис.

165) и о связи последовательностей со скоростью эволюции (табл. 34, рис. 166).

На основе данных о филогении отдельных белков строят филогенетическое древо, которое, как показано для цитохрома С, совпадает с филогенетическим древом, построенным по ископаемым останкам. На основе реконструкции филогении и определения степени генетических различий по аминокислотным последовательностям ряда белков считают, что гены, кодирующие эти белки у животных, происходят от общего предка.

Таблица Количества нуклеотидных замен в генах, кодирующих цитохромы С у разных организмов змея натная С целью определения степени сходства белков используют также иммунологическое и электрофоретическое сравнение белков. Степень иммунологического сходства белков выражают в иммуно-логическом расстоянии (табл. 35), которое приближенно можно связать с различиями по аминокислотным последовательностям. Электрофоретические исследования позволяют выявить электрофоретическое сходство белков и на основе этих данных также определить генетические расстояния между видами.

Связь между аминокислотными различиями в и-и р-глобинах со скоростью эволюционной дивергенции Плацентарные в сравнении между собой 16,1 16,7 16,4 Кенгуру в сравнении с плацентарными 21,7 26,9 24,3 млекопитающими Куры в сравнении с млекопитающими 29,6 31,7 30,6 (сумчатыми и плацентарными) Земноводные в сравнении с наземными 46,7 48,9 47,8 животными Костные рыбы в сравнении с четвероно- 49,3 49,6 49,5 гими (рептилиями, амфибиями и млекопитающими) Иммунологические различия между приматами (по альбуминам) Вид приматов Антисыворотка в альбуминам Эволюция подтверждается данными сравнительной морфологии, эмбриологии, физиологии, биохимии и генетики.

Результаты сравнительного изучения строения животных в пределах систематических групп показывают, что оно имеет общий план (рис. 167). Особенно это проявляется в случае гомологичных органов, которые характеризуются общим строением, сходством эмбрионального развития, иннервации, кровоснабжения и отношения к другим органам. Например, гомологичными являются передний ласт тюленя, крыло летучей мыши, передняя нога собаки и рука человека (рис. 168) и другие. Эти органы состоят из почти одинакового количества костей и мышц, их сосуды и нервы имеют сходную топографию. Гомологичные органы с несомненностью указывают на общность происхождения животных, у которых есть эти органы.

Помимо гомологичных органов морфологическим свидетельством в пользу эволюции являются данные о рудиментарных органах, являющихся «остатками» развитых органов, имевшихся в прошлом у предковой формы. Например, у человека имеется свыше 100 разных рудиментов, типичными примерами которых являются червеобразный отросток слепой кишки (аппендикс), копчик (слившиеся хвостовые позвонки), волосяной покров туловища и конечностей, третье веко. Червеобразный отросток слепой кишки является результатом перехода человека на диету с большим содержанием мяса и меньшим количеством клетчатки. Слепой вырост в таких условиях уменьшился и стал рудиментом.

Напротив, у травоядных животных он представляет собой активно функционирующий орган. Кости задних конечностей китов в связи с переходом их к водному образу жизни стали рудиментами, располагающимися в толще брюшных мышц.

На эмбриологические доказательства эволюции обращал внимание еще Ч. Дарвин. В 1866 г. Э. Геккель сформулировал биогенетический закон, в соответствии с которым онтогенез есть повторение филогенеза (краткое и быстрое резюме филогенеза по терминологии Э. Геккеля), т. е. зародыши в процессе развития как бы сокращенно повторяют эволюционный путь своих предков. Как оказалось позднее, Э. Геккель был прав в принципе, но не в деталях, поскольку зародыши высших животных сходны лишь с зародышами низших животных, но не со взрослыми особями низших форм, как это считал Э. Геккель.

Эмбриологические данные в пользу эволюции сводятся к тому, что на ранних стадиях развития между зародышами млекопитающих, рыб, земноводных и пресмыкающихся существует много сходных признаков. В то же время эти организмы обладают рядом собственных признаков, присущих только им и обеспечивающих приспособленность к развитию в утробе материнского организма, но не под скорлупой яйца.

Данные эмбриологии свидетельствуют о том, что после гаструляции развитие зародышей проходит в одном из двух направлений. С одной стороны, бластопор превращается либо в анальное отверстие, либо занимает положение около этого отверстия, как это имеет место в случае иглокожих и хордовых. С другой стороны, бластопор развивается в ротовое отверстие, либо занимает положение около этого отверстия, как это имеет место в случае кольчатых червей, моллюсков, членистоногих и др. При развитии как в одном направлении, так и другом между эктодермой и энтодермой развивается мезодерма, которая у иглокожих и позвоночных закладывается частично (карманами или выпячиваниями первичной кишки), а у кольчатых червей и других организмов закладывается из специальных клеток, дифференцирующихся на ранних этапах развития.

Вслед за появлением мезодермы у всех хордовых развивается дорзальный полый нервный тяж, а также нотохорд (основа скелета тела) и жаберные щели (отверстия в глотке). На ранних стадиях развития у зародышей, например человека, как и у зародышей рыб, имеются жаберные щели, дуги аорты, пересекающие жаберные перегородки, сердце с одним предсердием и одним желудочком, примитивная почка (пронефрос) и хвост с мышцами. Таким образом, на ранних стадиях развития зародыши человека напоминают зародыши рыб.

На более поздних стадиях развития зародыши человека приобретают сходство с зародышами пресмыкающихся, в частности, зарастают жаберные щели, сливаются кости, из которых состоят позвонки, исчезает старая почка (пронефрос) и образуется новая почка (мезонефрос), разделяется предсердие на правую и левую части. Еще позднее у зародышей человека развивается четырехкамерное сердце и метанефрос (совершенно новая почка), исчезает нотохорд.

На седьмом месяце внутриутробного развития плод человека покрыт волосами и имеет «обезьянье соотношение» в размерах тела и конечностей.

Явление рекапитуляции признаков у человека объясняют действием сохранившихся «рыбьих», «земноводных» и «пресмыкающихся» генов, существовавших у предковых форм, вслед за которыми действуют гены млекопитающих, затем приматов. Следовательно, на начальных стадиях развития человека действуют гены далеких предков и проявляются признаки, сходные с признаками далеких предков, на поздних же стадиях действуют гены, характерные для млекопитающих, в частности приматов, в результате чего проявляются признаки млекопитающих и приматов. Закономерность здесь такова, что у зародышей человека раньше проявляются признаки, присущие типам и классам, а позднее признаки, присущие родам и видам.

Например, у человека и свиньи процессы развития дивергиру-ют раньше, чем у человека и человекообразных обезьян, поскольку предки человека разошлись с предками свиней раньше, чем произошло расхождение человека и человекообразных обезьян, эволюционировавших от одного предка.

Основные физиологические доказательства эволюции заключаются в сходстве физиологических процессов — дыхания, пищеварения, кровообращения, выделения, реакций на раздражения у организмов многих систематических групп.

Данные биохимии в пользу эволюции очень значительны. Во-первых, химический состав всех живых организмов является сходным. В элементарном составе организмов преобладают три элемента — С, О и Н, в атомарном составе 50приходится на С (в земной коре он составляет 0,35%), что указывает на естественное родство всего органического мира. Далее, у всех организмов белки построены из 20 аминокислот. Между белками животных и растений имеется сходство. Например, между гемоглобином позвоночных, гемоцианином беспозвоночных и хлорофиллом растений существует принципиальное сходство, что указывает на единство происхождения всех организмов. Кроме того, имеется иммуноло-гическое сходство между белками крови разных животных. Например, ближайшими родственниками человека являются человекообразные обезьяны, затем обезьяны Старого света, цепкохвостые обезьяны Нового света и, наконец, долгопяты. Кошки, собаки и медведи образуют одну родственную группу, тогда как коровы, овцы, козы олени и антилопы — другую. Тюлени и морские львы стоят ближе к хищникам.

Отмечается сходство ферментов и биосинтетических путей у различных организмов. У всех животных и растений в качестве универсального звена в энергетических реакциях используется АТФ. Налицо также сходство продуктов выделения. У человека и других приматов конечным продуктом обмена пуринов является мочевая кислота, у других млекопитающих — аллантоин, у земноводных и у большинства беспозвоночных — мочевина, а у некоторых беспозвоночных — аммиак. Эволюция позвоночных сопровождалась постепенной потерей способности синтезировать ферменты, необходимые для постепенного распада мочевой кислоты.

Основное доказательство эволюции, представляемое генетикой, заключается в установлении универсального характера ядерного генетического кода. Универсальностью обладают также митохон-дриальный и хлоропластный генетические коды. Можно сказать, что ядерный и экстраядерный генетические коды — это важнейшее доказательство дарвиновской идеи единства происхождения всех форм жизни, т. е. происхождения всех живых форм из одного корня.

Наконец, в пользу эволюции свидетельствует практика сельского хозяйства, на что неоднократно указывал сам Ч. Дарвин, приводя множественные примеры происхождения культурных растений и домашних животных от диких предков.

Например, все сорта белокочанной, листовой, цветной и брюссельской капусты, а также кольраби и брокколи происходят от одного вида дикой капусты, а кукуруза берет начало от травянистого растения (теосинта), произрастающего в Андах и в Мексике. Можно сказать, что среди культивируемых сельскохозяйственных растений нет ни одного вида, который был бы в «диком» состоянии.

Это же заключение относится и к домашним животным. Все существующие ныне породы крупных и мелких домашних животных также происходят от диких предков.

§ 74 УЧЕНИЕ О МИКРОЭВОЛЮЦИИ И ВИДООБРАЗОВАНИЕ

Эволюция на уровне вида (на внутривидовом уровне) получила название микроэволюции. В рамках учения о микроэволюции различают элементарную эволюционную единицу, элементарное эволюционное явление, элементарный эволюционный материал и элементарные факторы эволюции.

Элементарной единицей эволюции является популяция. Популяция (от фр. population) — это совокупность особей одного вида, длительно (в течение многих поколений) населяющих определенную территорию, свободно скрещивающихся между собой и отделенных от других популяций этого же вида давлением изоляции. В составе вида может быть одна или несколько (много) популяций.

Для популяций характерны такие показатели, как ареал, численность особей, размеры по числу особей в пространстве, возраст, половой состав, генетическая гетерогенность (см. гл. XVII).

Популяция является элементарной эволюционной единицей по той причине, что изменения отдельных особей не приводят к эволюционным изменениям. Эволюционируют не особи, а группы особей, составляющие популяцию.

Что же касается особей, то они являются объектом действия естественного отбора (см. ниже). В эволюционном процессе популяция является неделимой единицей, характеризующейся экологическим, морфофизиологическим и генетическим единством. В существовании элементарных эволюционных единиц (популяций) проявляется такое важнейшее свойство жизни, как дискретность.

Совокупность всех генов во всех их аллельных формах в гаметах организмов, составляющих популяцию, представляет собой пул генов, тогда как совокупность всех генотипов популяций называют их генофондом. В случае индивидуального диплоидного организма частота какого-либо аллеля может составлять 100%, 50% или 0%, но в популяции организмов частота этого аллеля является функцией количества (%) индивидуумов в популяции, которые имеют этот ген. Поэтому в популяции организмов частота аллеля может составлять от 0 до 100%. Стойким является тот генетический пул, в котором частоты генов, независимо от их функций, являются постоянными во всех следующих одно за другим поколениях организмов.

В популяционной генетике различают разницу между частотой генов (аллелей) и частотой генотипов. Допустим, какая-либо воображаемая популяция состоит из 100 индивидуумов, из которых 20 гомозиготны по аллелю а, 60 гомозиготны по аллелю А, а 20 гетерозиготны. Следовательно, в этой популяции количество людей с генотипом АА составит 60%, с генотипом Аа — 20% и с генотипом аа — тоже 20%. Из этих частот возможно вычисление общего числа генов и частот генов в популяции (табл. 36).

Представления о поведении в популяциях генных аллелей отражены в названном выше законе Дж. Харди и В. Вайнберга, в соответствии с которым в постоянной популяции при отсутствии свободного скрещивания и давления других факторов (отбор, мутации и др.) частота доминантных и рецессивных аллелей была, есть и будет константной. Этот закон предсказывает, что частоты генов порядка 0,7 для А и 0,3 для гена а будут поддерживаться и в будущих поколениях, если популяция является устойчивой. Частоты генотипов будут изменяться, если в популяции начнутся случайные скрещивания, но до тех пор, пока не достигнут равновесия. Если частоты аллелей у исходных организмов были одинаковы у обоих полов, то при случайных скрещиваниях равновесие частот генотипов по определенному локусу достигается уже за одно поколение.

В свою очередь равновесие частот генотипов остается неизменным до тех пор, пока популяция пребывает в устойчивом состоянии. Если в популяции представлены лишь два аллеля (А и а) с частотами р и q, то частоты всех трех возможных генотипов (АА, Аа и аа) можно описать следующим уравнением:

Напротив, если в популяции представлены три аллеля (А1 A2 и A3), частоты которых есть р, q и г, частоты возможных генотипов (A1A1, А2А2, А3А3, AlA2, A1A3 и A2A3) тоже можно описать следующей формулой: (p+q+r)2 = p2+q2+r2+2pq+2pr+2qr.

Важно подчеркнуть, что рассматриваемый закон применим лишь для бесконечно больших популяций, причем его применимость демонстрируется многими примерами. Например, в случае альбинизма в популяции присутствуют генотип аа (альбиносы) наряду с нормальными генотипами АА, и Аа. Известно также, что частоты альбиносов во многих популяциях человека составляют 1 альбинос на 10 000. В соответствии с законом Д. Харди-В. Вайнберга частота гомозигот аа составляет q2, т. е. q2 = 0,0001.

Частоты генов в популяции Генотип Количество инди- Количество аллелей каждо- Общее число Частота генов Следовательно, q = 0,0001 = 0,01, а частота нормального аллеля будет равна 0,99. Таким образом, частоты нормальных генотипов (нормально пигментированных индивидуумов) будут равны: р2 = 0,992 = 0,98 для генотипа АА, тогда как для генотипа Аа 2pq = 2 х 0,99 х 0,01 = 0,02.

Как было установлено в 1926 г. С. С. Четвериковым, природные популяции насыщены рецессивными мутациями, обеспечивающими скрытый резерв (материал) для действия естественного отбора. По закону Д. Харди—В. Вайнберга в гетерозиготном состоянии присутствуют редкие аллели.

Элементарным эволюционным явлением служит мутация. В результате мутаций популяции становятся генетически гетерогенными, т. е. представляют собой смесь разных генотипов. Если условия существования популяции постоянны, ее генетический состав в среднем будет неизменным (как следует из закона Д. Харди-В. Вайнберга). Однако, если имеется давление со стороны каких-либо внешних факторов, причем в одном направлении, то тогда происходит векториальное изменение генотипического состава популяции, т. е. возникает элементарное эволюционное явление. Как показал С. С. Четвериков, популяции подобно губке насыщены рецессивными мутациями, но фенотипически являются однородными. Однако помимо генных мутаций в популяциях существуют хромосомные мутации, создавая хромосомный полиморфизм.

Мутации случайны во времени и пространстве применительно к отдельным организмам. Однако мутационные изменения организмов в популяции не являются направляющими для эволюционного процесса. Направления изменений организмов определяются естественным отбором.

Накопление в генеративных клетках мутаций и их отбор обеспечивают не только микроэволюцию, но и макроэволюцию. Таким образом, случайность в виде мутаций создает беспорядок, тогда как закономерность в виде естественного отбора создает упорядоченность.

Современные данные о транспозируемых генетических элементах и о подвижности геномов свидетельстуют о том, что многие гены могут изменять свой статус и частоту в течение одной или нескольких генераций без дифференциальной репродукции целых генотипов, т. е. неменделевским путем. Например, многократное повторение коротких последовательностей нуклеотидов приводит к образованию новых генов. Так ген коллагена цыплят содержит несколько десятков эксонов, являющихся повторами одной и той же последовательности, состоящей из 9 нуклеотидов.

Помимо мутаций эволюционным явлением служит также рекомбинация генов, но ее вклад в микроэволюцию является меньшим.

Элементарным эволюционным материалом служат любые ге-нотипически различные особи и группы особей, т. е. мутантные организмы или особи-носители мутаций, различающиеся между собой генетически. С эволюционной точки зрения важнейшей характеристикой мутантных организмов как элементарного эволюционного материала является частота появления их в природных популяциях. Наличие организмов-носителей мутаций создает различия между близкими природными группами особей (популяциями, подвидами, видами).

Элементарными факторами эволюции служат естественный отбор, мутационный процесс, популяционные волны, изоляция, дрейф генов, миграция, с действия которых начинается эволюция в популяциях. Естественный отбор является важнейшим направляющим фактором эволюции, поскольку его основная функция заключается в устранении из популяций организмов с неудачными комбинациями генов и сохранение генотипов, которые не нарушают процесса приспособительного формообразования. Действие естественного отбора проявляется в пределах популяции, но объектами приложения естественного отбора являются отдельные мутантные особи, которые являются элементарным материалом, на котором работает естественный отбор.

Специфика действия естественного отбора определяется тем, что организмы, которым благоприятствует отбор, характеризуются большей эффективностыо размножения и, следовательно, большей приспособленностью. Таким образом, приспособленность организмов является отражением их эффективности размножения. Скорость, с которой снижается частота организмов — обладателей тех или иных генотипов, называют коэффициентом отбора. Отбор действует как против, так и в пользу какого-либо аллеля (организма-носителя этого аллеля). Поэтому результатом действия естественного отбора является либо элиминация того или иного аллеля, либо появление полиморфизма, заключающегося в том, что в популяции будут присутствовать организмы-носители двух или более аллелей одного и того же гена. Отбор может действовать в нескольких случаях, в частности, против рецессивного или доминантного аллеля, в пользу или против гетерозигот.

Естественный отбор является результатом борьбы за существование, представляющейся обычно в двух формах — внутривидовой и межвидовой. Внутривидовая борьба за существование является наиболее упорной, т. к. организмы одного и того же вида конкурируют за сходные условия существования (за свет, воду, места охоты, самку и т. д.). Межвидовая борьба приобретает остроту у видов, обитающих в сходных экологических условиях.

Различают три основные формы естественного отбора: движущий, или обновляющий, стабилизирующий и дизруптивный.

Представления о движущем (обновляющем) отборе были сформулированы Ч.

Дарвином. Этот отбор обеспечивает преобразование старых и выработку новых приспособлений организмов, что ведет к смене нормы реакции. По существу он заключается в адаптациогенезе и взаимодействии популяций со средой. В этом проявляется его творческая роль, а вслед за его действием и творческий характер эволюции.

Один из известных примеров движущего отбора, описанного еще Ч. Дарвином и действующего против рецессивных гомозигот, связан с индустриальным меланизмом бабочки — березовой пяденицы (Biston betularia). До середины прошлого века бабочки этого вида на Британских островах имели светло-серую окраску и были гомозиготными по рецессивному аллелю, контролирующему окраску тела. Однако после того, как в промышленных районах Англии стволы деревьев стали чернеть от копоти, выбрасываемой из заводских труб, начала появляться разновидность этих бабочек, окрашенных в темный цвет, т. е. гомозиготных доминантных и гетеро-зиготных. Бабочки темного цвета почти полностью вытеснили бабочек светлой разновидности, ибо последние оказались более доступными для питающихся ими птиц. Следовательно, отбор «подхватил» бабочек с темной окраской тела. Другим примером отбора против рецессивных гомозигот был отбор при фенилкетонурии человека в то время, когда патогенез этой болезни был неясен и когда еще не прибегали к диетотерапии.

Рецессивные гомозиготные организмы (дети) без соответствующей диеты оказывались неприспособленными к существованию и погибали еще до достижения половой зрелости.

Отбор в пользу гетерозигот часто называют сверхдоминированием, поскольку гетерозиготы превосходят по выживанию гомозигот. Обычно он завершается созданием устойчивого полиморфного равновесия в популяции. Примером такого отбора является отбор при серповидноклеточной анемии, которая, как отмечено в гл. XIII, возникает в результате того, что в эритроцитах индивидов, гомозиготных по аллелю Нbs, синтезируется аномальный гемоглобин. Нормальный гемоглобин синтезируется в эритроцитах индивидов с аллелем Нba.

Индивидуумы с генотипом HbsHba по причине невозможности приспособления к среде из-за аномального гемоглобина в большинстве случаев умирают еще до достижения половой зрелости.

Между тем в тех районах тропической Африки и Среднего Востока, где распространена малярия, вызываемая Р. falciparum, частота аллеля является довольно большой (до 30%). Причина заключается в том, что гетерозиготы НbaHbs более устойчивы к тропической малярии по сравнению с нормальными гомозиготами. Следовательно, в малярийных районах гетерозиготы обладают селективными преимуществами по сравнению с гомозиготами обоих типов, для которых характерна значительно большая смертность от анемии (HbsHbs) или от малярии (HbaHbs). Гетерозиготы имеют предпочтение к выживанию и размножению, поддерживая в популяциях высокую частоту аллеля Нbs. Таким образом, в данном случае отбор благоприятствует гетерозиготам.

Очень известными современными примерами движущего отбора является отбор резистентных микроорганизмов (контрселекция на резистентность к антибиотикам), а также отбор резистентных форм насекомых, крыс и других животных на резистентность к используемым в борьбе с ними химическим соединениям.

Понятие о стабилизирующем отборе было сформулировано в 1946 г. И. И.

Шмальгаузеном (1884-1963). Если исторически сложившаяся определенная приспособительная форма («адаптивная норма») сохраняет свою полезность в жизни организмов, то стабилизирующий отбор автоматически отсекает все отклонения от «нормы» и последняя как бы берется под охрану этого отбора.

Стабилизирующий отбор закрепляет норму реакции, закрепляет уровень, достигнутый организмами в процессе эволюции. Стабилизирующий отбор действует обычно в условиях среды, долго остающейся однотипной. Примером стабилизирующего отбора является гибель потомства в пометах млекопитающих, размеры которых (пометов) выше среднего значения.

Дизруптивный естественный отбор (от англ. disrupt — разрывать) — это такой отбор, когда ни одна из групп генотипов в популяции не имеет преимуществ из-за одновременного изменения условий среды. В этом случае у одних организмов отбор идет по одному признаку, у других — по другому, в результате чего популяция как бы разрывается на группы особей, каждая из которых затем эволюционирует самостоятельно. Этот отбор действует против средних промежуточных форм организмов и бывает как индивидуальным, так и групповым.

Наиболее част дизруптивный отбор в мире растений.

Диалектическая взаимосвязь между разными формами естественного отбора является отражением чрезвычайной противоречивости эволюции как процесса, но в любом случае творческая и направляющая роль принадлежит только движущему (дарвиновскому) отбору. Стабилизирующий и дизруптивный отборы играют второстепенную роль.

Определенное значение в эволюции имеет половой отбор, направленный на успех в размножении организмов, но этот отбор также имеет подчиненное значение.

Мутационный процесс в качестве элементарного фактора эволюции важен тем, что он является поставщиком элементарного эволюционного материала (мутантных организмов), поддерживая генетическую гетерогенность природных популяций. Однако важно заметить, что, выполняя эту роль, мутационный процесс в качестве фактора эволюции также не направляет ход эволюционных изменений. Эту функцию осуществляет естественный отбор.

Популяционные волны или волны жизни (колебания численности особей в популяциях в сторону от средней численности) являются элементарными факторами эволюции по той причине, что они тоже служат поставщиками элементарного эволюционного материала для естественного отбора (Четвериков С.

С.).

Примерами их служат колебания численности вредителей полей и огородов в разные годы. Эволюционное значение волн жизни состоит в том, что они резко изменяют (повышают) концентрацию в популяциях редко встречающихся аллелей (генотипов), в результате чего под отбор попадают организмы, обладающие редкими генами, которые обычно ускользают от действия отбора.

Дрейф генов, или генетико-автоматический процесс, является следствием популяционных волн и, как отмечено выше, заключается в том, что в малых популяциях имеет место либо потеря какого-то аллеля, либо резкое повышение его концентрации. Примером дрейфа генов является утрата многих аллелей у баптистов, переселившихся около 250 лет назад из Германии в США. Но дрейф генов также не определяет направления эволюции.

Изоляция в качестве элементарного фактора обеспечивает барьеры, исключающие репродукцию. Различают географическую, экологическую и генетическую изоляцию, каждая из которых ведет в конечном итоге к репродуктивной изоляции на межвидовом уровне. При этом установлены презиготические и постзиготические механизмы, предотвращающие скрещивания.

К презиготическим изолирующим механизмам относят географическую и экологическую изоляции, которые исключает встречи потенциальных брачных партнеров. Известна также поведенческая изоляция, когда потенциальные брачные партнеры встречаются, но из-за недостаточного полового влечения эти встречи заканчиваются отрицательно, и сезонная изоляция, когда партнеры встречаются, но не спариваются, ибо спаривание у них в нормальных условиях обычно происходит в разное время. Наконец, известна гаметическая изоляция, при которой после совокупления животных не происходит осеменения, т. к.

сперматозоиды утрачивают жизнеспособность в женских половых путях.

Постзиготические изолирующие механизмы также различны. Например, после встречи партнеров яйцеклетки могут оплодотвориться, но зиготы погибают.

Если зиготы развиваются, то гибриды все же не достигают половой зрелости.

Далее могут формироваться гибриды, но их жизнеспособность оказывается невысокой, либо они могут быть стерильными (не способными продуцировать гаметы, обладающие нормальными свойствами).

Важнейшей особенностью изоляции как элементарного фактора эволюции является ее длительность. Нарушая скрещивания и закрепляя различия в генотипах, изоляция как бы расчленяет популяцию на генотипически различные группы организмов, полностью исключая среди них обмен генами, усиливая дивергенцию признаков. Изоляция является, по существу, усилителем начальных стадий генотипической дифференциации, развертывающейся в популяциях.

Она подставляет разделенные части популяций под действие естественного отбора. Однако изоляция тоже не направляет эволюцию. Это делает только естественный отбор.

Миграция аллелей (мутантных организмов) ведет к изменению в популяциях как частот аллелей, так и генотипов. Например, негритянское население США унаследовало около 30% генов от белых предков. Миграция способствует объединению генных пулов популяций.

Видообразование, т. е. появление нового вида — это центральный и важнейший завершающий этап эволюции. Вид — это совокупность особей, которые имеют сходное строение и характеризуются сходными функциями, в природе скрещиваются только между собой, приспособлены к жизни в определенных условиях, имеют характерный ареал распространения и общее происхождение. Будучи реальной биологической категорией, виды состоят из популяций, причем особям, образующим вид, присуща сформировавшаяся в ходе эволюции единая генетическая программа.

Для отличия одних видов от других используют ряд критериев. Одним из важнейших критериев вида является морфологический критерий, под которым понимают строение организмов, принадлежащих к тому или иному виду. В случае отдаленных видов морфологический критерий весьма точен. Однако в случае близких видов этот критерий не является совершенным.

Генетический критерий вида заключается в количестве хромосом, присущих данному виду, а также в характере последовательности азотистых оснований в ДНК и аминокислотных остатков в полипептидах (белках). Этот критерий характеризуется чрезвычайной чувствительностью и позволяет различать даже очень близкие виды.

Эколого-географический критерий определяется ареалом и экологической нишей организмов, входящих в данный вид. Другими словами, каждому виду присущ собственный ареал и собственная среда обитания.



Pages:     || 2 | 3 | 4 | 5 |   ...   | 6 |


Похожие работы:

«Пояснительная записка Данная рабочая программа составлена на основании: 1. Федерального компонента государственного стандарта основного общего образования по географии. 2. примерной программы для основного общего образования по географии 2004г. (сборник нормативных документов География М.: Дрофа,2004). Курс географии материков и океанов – это второй по счету школьный курс географии. В содержании курса увеличен объем страноведческих и общеземлеведческих знаний. Программа определяет содержание...»

«ПРОГРАММА инновационной деятельности МБДОУ МО г. Краснодар Центр – детский сад №115 по теме Группа семейного воспитания – альтернативная форма дошкольного образования, обеспечивающая его доступность и качество Направление инновационной деятельности: Развитие вариативных форм дошкольного образования для детей, не посещающих ДОУ и оценка качества предоставляемых образовательных услуг. Тема инновационной деятельности: Группа семейного воспитания – альтернативная форма дошкольного образования,...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ Государственное бюджетное образовательное учреждение среднего профессионального образования Армавирский индустриально – строительный техникум Краснодарского края ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 250401 ТЕХНОЛОГИЯ ДЕРЕВООБРАБОТКИ базовая подготовка Квалификация – Техник - технолог Нормативный срок освоения ОПОПгода 10 месяцев 2013 1 2 3 Содержание стр. 1. Характеристика...»

«СОДЕРЖАНИЕ Введение... 5 1. Организационно-правовое обеспечение образовательной деятельности.. 7 2. Структура института и система управления им. 11 2.1. Структура института.. 11 2.2. Соответствие организации управления институтом уставным требованиям... 15 2.3. Соответствие собственной нормативной и организационнораспорядительной документации действующему законодательству и Уставу университета... 16 2.4. Организация взаимодействия структурных подразделений института.. 19 3. Структура...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО Кубанский государственный аграрный университет факультет Водохозяйственного строительства и мелиорации, водоснабжения, водоотведения (Наименование вуза, факультета) Рабочая программа дисциплины (модуля) Гидрология, климатология и метеорология (Наименование дисциплины (модуля) Направление подготовки _280100.62 Природообустройство и водопользование Профиль подготовки Инженерные системы сельскохозяйственного водоснабжения, обводнения...»

«АННОТАЦИЯ Наименование магистерской программы: Риск-менеджмент в АПК, направление 080500.68 Менеджмент Факультет: экономический Выпускающая кафедра: экономической кибернетики Руководитель магистерской программы: Светлов Николай Михайлович, доктор экон. наук, доцент. Координатор программы: Филатов Анатолий Иванович, кандидат экон. наук, заведующий кафедрой экономической кибернетики. Цель магистерской программы: подготовка магистра менеджмента к решению сложных стратегических и оперативных задач...»

«1 РАБОЧАЯ ПРОГРАММА ИЗОБРАЗИТЕЛЬНОЕ ИСКУССТВО ДЛЯ 8 КЛАССА ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа адресована для общеобразовательного учреждения, МБОУ Смородинская СОШ с Смородино 8 класс. Уровень обучения – базовый. Статус документа Рабочая программа составлена на основе авторской программы Изобразительное искусство. 5-9кл. (Б.М. Неменский, Л.А. Неменская, Н.А, Горяева, А.С Питерских.). 2011 Просвещение. Срок реализации программы – 1 год Концепция (основная идея) программы...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Пермский государственный национальный исследовательский университет Утверждено на заседании Ученого совета университета от 30.03.2011 №8 Основная образовательная программа высшего профессионального образования Направление подготовки 03.03.03 Радиофизика Профиль Телекоммуникационные системы и информационные технологии. Квалификация (степень)...»

«ПРОГРАММА VI ТРАНСПОРТНОГО КОНГРЕССА ПЛЕНАРНОЕ ЗАСЕДАНИЕ 10.00 – 12.00, Малый конференц-зал 10.00 – 10.30 Официальное открытие VI Транспортного конгресса. Приветственные слова: Представитель ГУОБДД МВД России; Речицкий Владимир Ильич, научный руководитель Экспертного совета Торговопромышленной палаты Российской Федерации по технологической оценке инвестиционных проектов. Фельде Юрий Владимирович, заместитель министра транспорта Московской области; Josef A. Czako (Йозеф Джако), председатель...»

«Европейские программы: конкурсы на 2008 А.В.Акульшина, Региональный информационный центр научнотехнологического сотрудничества с ЕС, Воронежский госуниверситет 11 декабря 2007г., Воронеж Седьмая Рамочная программа научнотехнологического развития ЕС (7РП) Erasmus Mundus - External Cooperation Window Erasmus Mundus Tempus IV 2 7РП 22 декабря 2006 – первые конкурсы 7РП Всего в 2007г. было объявлено 100 конкурсов по всем программам 3 Стартовал второй этап 7РП По разным программам и направлениям...»

«УТВЕРЖДЕНЫ приказом директора КГБОУ СПО Красноярский колледж искусств имени П.И. Иванова-Радкевича от 28.02.2014 № 54/1 ПРАВИЛА ПРИЕМА на обучение по образовательным программам среднего профессионального образования в Краевое государственное бюджетное образовательное учреждение среднего профессионального образования Красноярский колледж искусств имени П.И. Иванова-Радкевича на 2014/2015 учебный год I. Общие положения. 1. Настоящие Правила приема на обучение по образовательным программам...»

«Климацкая Л.Г. Международная деятельность. ДОГОВОРА О СОТРУДНИЧЕСТВЕ между федеральным государственным бюджетным образовательным учреждением высшего профессионального образования Красноярский государственный педагогический университет имени В.П. Астафьева, Российская Федерация, и Государственной Высшей профессиональной школой в Сувалках, Республика Польша Проект программы фундаментальных и прикладных научных исследований на 2013-2017 годы Социально- гуманистическим институтом государственной...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ БАЛТИЙСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИММАНУИЛА КАНТА Утверждаю: Ректор БФУ им. И Канта _А.П. Клемешев _ 2013 г. Номер внутривузовской регистрации_ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Направление подготовки 270800.62СТРОИТЕЛЬСТВО Профиль подготовки Промышленное и гражданское строительство Квалификация (степень) Бакалавр Форма обучения Очная Калининград 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Основная образовательная...»

«ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ О КАЧЕСТВЕ И ГАРАНТИЯХ КАЧЕСТВА ОБРАЗОВАНИЯ ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ПО СПЕЦИАЛЬНОСТИ 151022 Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок ГБОУ СПО города Москвы Пищевой колледж № 33 РЕЗЮМЕ Основная профессиональная образовательная программа 151022 Монтаж и техническая эксплуатация холодильно-компрессорных машин реализуется в рамках направления Монтаж и техническая эксплуатация холодильно-компрессорных машин...»

«Подпрограмма 2 Совершенствование оказания специализированной, включая высокотехнологичную, медицинской помощи, скорой, в том числе скорой специализированной, медицинской помощи, медицинской эвакуации Паспорт Программы Ответственный Министерство здравоохранения Республики Башкортостан исполнитель Программы: Участники Министерство здравоохранения Республики Башкортостан, Подпрограммы: Медицинские организации Республики Башкортостан Программноцелевые не предусмотрены инструменты Цель повышение...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ; утверж Проректор по научной работе / f /У _ П.М. Огар Ий: 2012 г. — Цьф ||||! | РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ,- г'0РЛ% О?-' ^ fij У /д ОД. А. 04Л ИСТОРИЯ СТРАН ЦЕНТРАЛЬНОЙ ИТОГО-ВОСТОЧНОЙ АЗИИ В НОВЕЙШЕЕ ВРЕМЯ основной образовательной программы послевузовского профессионального образования...»

«Муниципальное бюджетное образовательное учреждение Красноватрасская средняя общеобразовательная школа Рабочая программа по предмету Литературное чтение на 2011 – 2015 учебный год УМК Школа России Составители: Е.В.Ширдина учитель начальных классов высшей квалификационной категории Н.П.Королева учитель начальных классов первой квалификационной категории 2011 г. Рабочая программа по предмету Литературное чтение на 2011 – 2015 учебный год. Рабочая программа учебного предмета Литературное чтение...»

«ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Г. МОСКВЫ ГИМНАЗИЯ №1532 Рассмотрено на заседании МО Согласовано Утверждаю Руководитель МО Заместитель директора по Директор ГБОУ гимназии №1532. УВР Бобылева О.И. Бутырская М.А. _ Протокол № _ от 2013г. 2013 г. Приказ № от 2013 г. РАБОЧАЯ ПРОГРАММА ПО БИОЛОГИИ 5 класс (базовый уровень) Учебный год: 2013-2014 Составитель: учитель биологии Комкова Юлия Николаевна \ г. Москва Пояснительная записка Рабочая программа по биологии для 5 класса...»

«НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКАЯ МЕЖДУНАРОДНАЯ АКАДЕМИЯ ТУРИЗМА Московский филиал Колледж гостиничного сервиса СОГЛАСОВАНО УТВЕРЖДАЮ Президент Российской Гостиничной Ассоциации Г.А. Ламшин __2013 г. Ректор РМАТ М.П. _Е.Н. Трофимов СОГЛАСОВАНО “” 2013 Заместитель Генерального директора г. ООО Газпром торгсервис _Ю.А. Хвостенко _2013 г. М.П. М.П. ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ подготовки...»

«6 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТУРИЗМА И СЕРВИСА Филиал в г. Смоленске Кафедра туризма и сервиса ДИПЛОМНАЯ РАБОТА на тему: Культурно-историческое пространство Израиля как фактор развития международного туризма по специальности: 100103.65 Социально-культурный сервис и туризм Студент Татьяна Николаевна Юцова Руководитель к.филол.н.,...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.