WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

УПРАВЛЕНИЕ

КАЧЕСТВОМ

ЭЛЕКТРОННЫХ

СРЕДСТВ

ИЗДАТЕЛЬСТВО ТГТУ

Учебное издание

УПРАВЛЕНИЕ КАЧЕСТВОМ

ЭЛЕКТРОННЫХ СРЕДСТВ

Методические указания

Составители: МУРОМЦЕВ Дмитрий Юрьевич, ТЮРИН Илья Вячеславович, БЕЛОУСОВ Олег Андреевич Редактор Е.С. М о р д а с о в а Компьютерное макетирование Е.В. К о р а б л е в о й Подписано в печать 14.03.2007 Формат 60 84/16. 3,02 усл. печ. л.

Тираж 100 экз. Заказ № 234 Издательско-полиграфический центр Тамбовского государственного технического университета 392000, Тамбов, Советская, 106, к. Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет»

УПРАВЛЕНИЕ КАЧЕСТВОМ

ЭЛЕКТРОННЫХ СРЕДСТВ

Методические указания по выполнению лабораторных работ Тамбов Издательство ТГТУ УДК 621.396.6.001.57(07) ББК з844-02я73- У Рецензент Доктор технических наук, профессор П.С. Беляев С о с т ав ит е ли:

Д.Ю. Муромцев, И.В. Тюрин, О.А. Белоусов У677 Управление качеством электронных средств: методические указания по выполнению лабораторных работ / сост. :

Д.Ю. Муромцев, И.В. Тюрин, О.А. Белоусов. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2007. – 52 с. – 100 экз.

Даны методические указания по выполнению лабораторных работ по дисциплине «Управление качеством электронных средств», вопросы для самопроверки и список рекомендуемой литературы.

Тематика и структура лабораторных работ 1 – 5 и 7 – 9 подготовлены доктором технических наук, профессором Ю.Л.

Муромцевым.

Предназначено студентам специальности 210201 «Проектирование и технология радиоэлектронных средств» всех форм обучения, а также могут быть использованы при изучении дисциплины «Управление качеством электронных средств» студентами дистанционной формы обучения и экстерната.

УДК 621.396.6.001.57(07) ББК з844-02я73- © ГОУ ВПО «Тамбовский государственный ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ТГТУ),

ВВЕДЕНИЕ

В первых двух лабораторных работах рассматриваются методы статистического анализа распределения случайной величины. В соответствии с полученным заданием в лабораторной работе 1 необходимо провести статистическую обработку данных, содержащихся в информационном сообщении в виде одномерного числового массива, а в лабораторной работе построить эмпирическую функцию распределения случайной величины и гистограмму.

Лабораторные работы 3 – 5 посвящены основам теории планирования эксперимента. Согласно полученному варианту в лабораторной работе 3 требуется составить матрицу планирования эксперимента, в лабораторной работе 4 выполнить обработку результатов гибридного эксперимента, а в лабораторной работе 5 выбрать оптимальный технологический режим.

В лабораторной работе 6 рассматривается метод точечных контрольных диаграмм. В работе требуется провести анализ качества продукции с использованием контрольных карт средних значений и размаха варьирования.

Лабораторная работа 7 посвящена основам дисперсионного анализа. В соответствии с заданием в ней требуется провести обработку экспериментальных данных и оценить влияние возможных причин отклонений от регламента технологического режима.

В лабораторных работах 8-9 рассматриваются основы математического аппарата анализа временных рядов. Согласно полученному варианту в работах требуется получить авторегрессионные модели 1-го и 2-го порядков и спрогнозировать с их помощью значения временного ряда.

Все лабораторные работы должны быть оформлены в соответствии с требованиями ГОСТ по оформлению текстовой документации и представлены в бумажном и электронном виде. Отчет по лабораторной работе должен включать следующие обязательные разделы:

– название лабораторной работы;

– цель работы;

– исходные данные;

– методические указания по выполнению работы;

– ход выполнения работы с представлением необходимых расчетов, рисунков и таблиц;

– выводы по результатам работы;

– список использованной литературы.

АНАЛИЗ СТАТИСТИЧЕСКОГО РЯДА

Цель работы: Провести статистическую обработку данных, содержащихся в информационном сообщении в виде одномерного числового массива.

Общие положения Информационное сообщение представляет собой одномерный числовой массив вида где n – число данных (размерность массива).

Массив (1) моделируется следующим образом. Число n устанавливается равным числу букв, содержащихся в фамилии и имени студента. Определяются порядковые номера букв, составляющих фамилию и имя и заносятся в табл. 1. Например, студента зовут Белов Денис. В данном случае размерность массива n = 10, а его элементы примут следующие значения: х1 = 2 (так как первой букве «Б» фамилии соответствует порядковый номер 2, х2 = 6 (второй букве «Е» соответствует 6) и т.д. до х10.

Расчеты требуется выполнить вручную и с использованием одного из пакетов прикладных программ.

Методические указания по выполнению работы В предположении, что массив (1) представляет собой выборку объемом n для некоторой случайной величины Х, производится оценка всех числовых характеристик распределения этой величины.



Наиболее важными числовыми характеристиками случайной величины (СВ) являются следующие:

– характеристики центра распределения;

– характеристики рассеивания случайной величины около ее математического ожидания;

– характеристика асимметрии распределения и его эксцесса.

В лабораторной работе необходимо рассчитать следующие числовые характеристики центра распределения: среднее значение, медиану и моду.

Среднее значение или оценка математического ожидания вычисляется по формуле среднего арифметического, т.е.

Заметим, что оценка математического ожидания дискретной СВ может вычисляться как сумма произведений всех возможных значений СВ на вероятности этих значений, т.е.

где pj – вероятность j-го значения СВ.

Значение mx характеризует как бы «центр тяжести» распределения СВ. Наряду с математическим ожиданием центр распределения определяют медиана и мода.

Медианой СВ называется такое значение Mex, для которого с одинаковой вероятностью значения Х может оказаться меньше Mex и больше Mex. Для расчета медианы Mex массив (1) записывается в виде ранжированного ряда где значения хi расставлены в порядке возрастания (или убывания). Пример получения ранжированного ряда представлен в табл. 1.

Таблица В случае, если n – четное, медиана равна при нечетном n При малом n медиана наиболее устойчиво характеризует центр распределения СВ Х.

Модой Mox называется наиболее вероятное значение СВ. В качестве оценки моды в ранжированном ряду (3) берется значение x, которое повторяется большее число раз (имеет большую частоту).

Для данных, приведенных в табл. Распределение СВ может характеризоваться несколькими модами, такое распределение называют полимодальным.

Применительно к данным табл. 1 можно указать второе значение моды Если массив (1) не содержит повторяющихся значений, то значение моды оценивается после построения гистограммы.

Необходимо отметить, что оценки mx, Mex, Mox могут как совпадать, так и существенно различаться.

В лабораторной работе необходимо рассчитать следующие числовые параметры характеристики рассеивания значений СВ около ее математического ожидания mx: дисперсию, среднее квадратичное отклонение, размах варьирования, среднее линейное отклонение от математического ожидания, коэффициент вариации и коэффициент осцилляции.

Основной характеристикой рассеивания значений СВ около ее математического ожидания mx является дисперсия Dx.

Дисперсией СВ Х называется математическое ожидание квадрата центрированной величины. Центрированная случайная величина X получается из исходной Х вычитанием ее математического ожидания mx, таким образом, X имеет нулевое математическое ожидание.

Оценка дисперсии рассчитывается по формуле Дисперсия имеет размерность квадрата СВ. Непосредственно с дисперсией связана другая характеристика рассеивания – среднее квадратичное отклонение х, оценка его вычисляется по формуле Эта числовая характеристика имеет размерность СВ Х.

Рассеивание значений Х характеризуется также размахом варьирования R, который равен Среднее линейное отклонение от mx рассчитывается по формуле Для оценки рассеивания относительно среднего mx используют коэффициент вариации, вычисляемый в процентах и коэффициент осцилляции В качестве числовой характеристики асимметрии распределения СВ применяется коэффициент асимметрии AS. Его оценка вычисляется по формуле где µ3 – оценка третьего центрального момента СВ, равная Если AS > 0, то имеет место положительная или правостороння асимметрия, если AS < 0, то отрицательная или левосторонняя (см. рис. 1).

Островершинность или плосковершинность распределения СВ описывается с помощью числовой характеристики EK, называемой эксцессом. Значение EK оценивается по формуле где µ4 – оценка четвертого центрального момента, равная В случае положительного эксцесса ( EK > 0 ) распределение имеет островершинный характер, при EK < 0 – < 0 ) в выводах можно отмечать качественную неоднородность массива (1).

В последнем случае ( EK Содержание отчета 1. Название работы.

2. Цель работы.

3. Исходные данные.

4. Формулы и результаты расчета значений характеристик центра распределения (среднее значение, медиана и мода).

5. Формулы и результаты расчета характеристик рассеивания случайной величины около ее математического ожидания (дисперсия, среднее квадратичное отклонение, размах варьирования, среднее линейное отклонение, коэффициент вариации и коэффициент осцилляции).

6. Формулы и результаты расчета характеристик асимметрии и эксцесса распределения СВ.

7. Результаты расчета с использованием пакета прикладных программ с необходимыми пояснениями.

8. Выводы по результатам обработки данных.

9. Список литературы.

Контрольные вопросы 1. Каковы основные характеристики центра распределения СВ?

2. Перечислите характеристики рассеивания СВ около ее математического ожидания.

3. Дайте понятие характеристик асимметрии и эксцесса.

ОПРЕДЕЛЕНИЕ ПОЛНЫХ ХАРАКТЕРИСТИК РАСПРЕДЕЛЕНИЯ

СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Цель работы: Построить эмпирическую функцию распределения случайной величины и гистограмму, выдвинуть гипотезу о законе распределения СВ.

Общие положения Наиболее часто в качестве полных характеристик распределения случайной величины используются функция распределения (интегральная функция распределения) F ( x) и плотность распределения (дифференциальная функция распределения) f ( x).

По заданному информационному сообщению, представляющему собой одномерный числовой массив вида требуется построить эмпирическую функцию распределения F ( x) и гистограмму f ( x).

Размерность массива и значения его элементов взять из лабораторной работы 1. Пример записи исходных данных приведен в табл. 1.

Для построения функции F ( x) составляют таблицу, содержащую значения СВ Хj в массиве (1) в виде упорядоченного (возрастающего) ряда и их частот где mj – число данных xi, равных значению Хj; n1 – число различных значений СВ Х, причем n1 n ; n – объем выборки.

На основании исходных данных упорядоченный ряд значений Хj и их частоты заносят в табл. 2.

значения СВ по порядку Значения pj 0,083 0,083 0,25 0,083 0,083 0,166 0,083 0,083 0, Из табл. 2 видно, что n1 = 9 (всего данных n = 12), первое значение Х1 = 1 содержится в выборке один раз (m1 = 1) и p 0,083, аналогично для Х2 = 2, m2 = 1 и p2 0,083, а X3 = 3 содержится в выборке три раза и p3 0,25 и т.д.

Эмпирическая функция распределения по данным табл. 2 строится следующим образом (рис. 1). Наименьшее значение Х в выборке Х1 = 1, поэтому до значения 1 F ( x) = 0. Так как Х1 = 1 наблюдалось один раз F ( x) = 0, 083. Следующий скачок она делает в точке Х2 = 2 и увеличивается на величину p2 0,083. На интервале от 2 до Х3 = 3 величина скачка равна p2 0,25 и т.д. Последний скачок происходит в точке Х9 = 10 и при х > Х9 F ( x) = 1.

Функцию F ( x) удобно использовать для решения задач, связанных с определением вероятностей того, что СВ Х примет значение в некотором интервале.

Например, необходимо определить вероятность того, что СВ Х будет иметь значение в интервале [0; 3]. Для полученной функции F ( x) эта вероятность равна Вер {0 < X 3} = F (3) F (0) 0, 42.

Построение гистограммы или эмпирической плотности распределения f ( x) непрерывных СВ связано с группированием выборочных данных по интервалам (разрядам), на которые разбивается весь диапазон значений СВ.

Обычно интервалы берутся одинаковыми по величине. Величину (ширину) интервала d и число интервалов k при достаточном объеме выборки n обычно определяют с использованием формулы Г.А. Стерджесса где R – размах варьирования, определенный в лабораторной работе 1.

Необходимо отметить, что число интервалов k при выполнении данной лабораторной работы не следует брать меньше четырех.

Примечание: Для ручных расчетов допускается некоторое расширение диапазона значений Х с целью получения удобных чисел границ интервалов.

После определения числа интервалов k и значений границ интервалов заполняется табл. 3. В первой и второй строках таблицы указывают соответственно номера интервалов и значения их границ. Покажем заполнение таблицы для гистограммы на примере данных табл. 1 в предположении, что это непрерывная случайная величина.

Возьмем интервал изменения СВ Х от 0 до 11, т.е. [0; 11], пусть k = 4 и d = 2,75. Таблица имеет следующий вид:

интервалов Значения границ интервалов, dj Число наблюдений в интервале, hj Относительная частота, p j В третьей строке табл. 3 h1 = 2, так как в первый интервал [0; 2,75] попадают значения x1 = 1 и x2 = 2 ранжированного ряда (см. третью строку табл. 1); h2 = 5, так как на втором интервале [2,75; 5,5] приходятся значения x3, x4, x5 равные 3, x = 4 и x7 = 5. Аналогично находятся h3 и h4. Необходимо отметить, что если значение x будет расположено на границе между интервалами, то его делят между интервалами (0,5 значения принадлежит левому интервалу и 0,5 – правому).

В четвертой строке расположены относительные частоты, вычисляемые по формуле В последней строке приведены значения высоты столбика гистограмм, получаемые делением значений p j на величину интервала d, т.е.

Правильность расчетов проверяется выполнением условий Рассчитанная гистограмма показана на рис. 2.

По виду гистограммы делаются предположения о возможном законе распределения СВ, а также отмечается, насколько соответствуют оценки асимметрии и эксцесса виду эмпирической плотности вероятности.

В табл. 4 приведены наиболее распространенные законы распределения случайных величин и формулы связи параметров этих распределений с основными числовыми характеристиками СВ.

С помощью визуального сравнения полученной гистограммы f ( x) с теоретической кривой плотности вероятности f (x), а также учитывая знаки эксцесса и асимметрии, необходимо сделать предположение о возможном законе распределения СВ с выборочными данными (1).

В заключении отметим, что по гистограмме можно оценить моду Mo x непрерывной СВ при отсутствии повторяющихся значений xi. Для этого берется наиболее высокий столбик гистограммы и для него проводятся построения, показанные на рис. 2.

Наименовани е закона Гаусса-Лапласа показательное нормальное распределеD X = 0 = Содержание отчета 1. Название работы.

2. Цель работы.

3. Исходные данные.

4. Расчет и построение эмпирической функции распределения случайной величины.

5. Расчет и построение гистограммы.

6. Построение гистограммы с использованием пакета прикладных программ и кратким описанием для пользователя.

7. Используя табл. 4, по результатам обработки данных сделать выводы о возможном законе распределения случайной величины, видах асимметрии и эксцесса, а также приближенно сравнить с результатами, полученными в лабораторной работе 1.

8. Список литературы.

Контрольные вопросы 1. Перечислите характеристики центра распределения СВ.

2. Назовите характеристики рассеивания случайной величины около ее математического ожидания.

3. Что представляет собой асимметрия распределения случайной величины и эксцесс?

4. Назовите полные характеристики распределения СВ.

5. Как определить вероятность присутствия случайной величины в заданном интервале с использованием эмпирической функции распределения случайной величины?

6. Что представляет собой эмпирическая плотность распределения непрерывной СВ? Как используют гистограмму?

7. Перечислите наиболее распространенные законы распределения случайной величины.

ПЛАНИРОВАНИЕ ГИБРИДНОГО ЭКСПЕРИМЕНТА

Цель работы: Ознакомление с математическим аппаратом теории планирования эксперимента, приобретение навыков в составлении матрицы планирования эксперимента.

Используя данные из табл. 1, составить перечень входных переменных исследуемого процесса, образующих Число данных n устанавливается равным числу букв, содержащихся в фамилии, имени и отчестве студента. Массив (1) моделируется следующим образом. В соответствии с буквами, образующими фамилию, имя и отчество студента из табл.

1 выбираются входные переменные. Повторяющиеся переменные пропускаются.

Используя данные из табл. 2, составить перечень выходных переменных исследуемого процесса Массив (2) формируется в соответствии с первыми тремя неповторяющимися буквами имени студента из табл. 2.

Отобранные входные и выходные переменные представить в виде табл. 3 и 4.

Буква Методические указания по выполнению работы В данной лабораторной работе решаются следующие задачи:

1) составление полного перечня входных и выходных переменных процесса;

2) выделение из числа входных переменных группы факторов для активного эксперимента;

2) выбор метода экспериментального исследования и составление плана эксперимента.

Необходимо отметить, что в реальных условиях нельзя провести чисто активный эксперимент, так как часть входных переменных имеет характер возмущающих воздействий, значения которых не могут быть установлены на определенном уровне в заданное время, например, атмосферное давление или температура окружающей среды. Поэтому вектор входных переменных делится на активную (n1-факторов) и пассивную части, что указано в колонке 4 табл. 3 (А – активный, П – пассивный фактор).

Эксперимент, в опытах которого часть входных переменных устанавливаются на заданных уровнях, а часть переменных изменяются независимо и их значения лишь фиксируются оператором, называется гибридным или смешанным.

Один опыт эксперимента соответствует выпуску отдельной партии продукта при задаваемых значениях «активных»

переменных и зафиксированных уровнях «пассивных» переменных.

Для составления плана активного эксперимента целесообразно использовать методику случайного баланса. В соответствии с ней при изменении переменных на двух уровнях матрица планирования строится следующим образом:

1) множество «активных» компонентов делится на 2-3 группы по 4 – 8 факторов в каждой;

2) в первую группу включаются наиболее важные факторы;

3) для факторов первой группы выбирается полный или дробный факторный эксперимент;

4) опыты проводятся в случайной последовательности;

5) для остальных групп опыты выбираются случайным образом из плана факторного эксперимента первой группы (с использованием случайных чисел);

6) все n1 столбцов матрицы планирования попарно проверяются на отсутствие совпадения значений в N опытах; если какие-либо столбцы совпадают, то этап 5 повторяется, т.е. определяется новая выборка случайных чисел. В окончательном плане не должно быть повторяющихся столбцов.

Число опытов N обычно берется 16 или 32. При выполнении лабораторной работы рекомендуется установить N = 16.

Факторным называется такой эксперимент, при котором одновременно от опыта к опыту варьируют всеми факторами.

Полным факторным экспериментом (ПФЭ) называется эксперимент, при котором опыты ставятся для всех возможных уровней факторов. Если в эксперименте берется число возможных уровней, равное двум, то сокращенно такой ПФЭ обозначается где n1 – число активно варьируемых факторов.

Для сокращения количества опытов N применяется часть ПФЭ – дробная реплика или дробный факторный эксперимент (ДФЭ). Половина ПФЭ называется полурепликой и сокращенно записывается В табл. 5 приведены планы ДФЭ для количества опытов N = 16.

В качестве примера рассмотрим составление матрицы планирования эксперимента для приведенных в табл. 3 исходных данных. Разделим наши активные входные факторы на две группы: 7 факторов в первой и 5 во второй. Используя табл. 5, выбираем план ДФЭ при N = 16 N = 27 3 для первой группы факторов.

Для выбора опытов во второй группе случайным образом отберем 16 опытов из плана ДФЭ первой группы. Для генерации случайных чисел можно использовать программу Microsoft Excel. Полученный ряд случайных чисел имеет вид:

На основании полученных данных составим матрицу планирования эксперимента (табл. 6).

Опыты

A B C D E F G

Содержание отчета 1. Название работы.

2. Цель работы.

3. Составленный в соответствии с индивидуальным вариантом перечень входных переменных процесса с отмеченными активными и пассивными факторами и занесенный в табл. 3.

4. Сформированный и занесенный в табл. 4 перечень выходных переменных процесса.

5. Выбранный из табл. 5 план ДФЭ.

6. Составленная по форме табл. 6 матрица планирования эксперимента.

7. Выводы по работе.

8. Список литературы.

Контрольные вопросы 1. Дайте понятие гибридного эксперимента.

2. Что понимают под активными и пассивными факторами?

3. В чем заключается метод случайного баланса?

4. Что представляет собой полный и дробный факторный эксперименты?

5. Каков порядок составления матрицы планирования эксперимента?

ОБРАБОТКА РЕЗУЛЬТАТОВ ГИБРИДНОГО ЭКСПЕРИМЕНТА

Цель работы: Ознакомление с математическим аппаратом теории планирования эксперимента, приобретение навыков в обработке результатов гибридного эксперимента.

Исходными данными являются входные и выходные переменные исследуемого процесса, определенные в лабораторной работе 3 и составленная матрица планирования эксперимента.

В ходе лабораторной работы необходимо решить следующие задачи:

1) проведение эксперимента;

2) построение диаграмм рассеяния;

3) определение входных переменных, существенно влияющих на выходные показатели (качество продукции).

Главной задачей эксперимента является максимально точное поддержание значений режимных параметров в соответствии с составленной матрицей планирования. При этом последовательность проведения опытов не играет решающей роли. Используя составленную ранее матрицу планирования, составим таблицу результатов гибридного эксперимента. Значения выходных показателей получим с использованием генератора случайных чисел в диапазоне между заданным нижним и верхним значением соответствующей выходной переменной. Для генерации случайных чисел удобно использовать программу Microsoft Excel. Пример результатов активного эксперимента приведен в табл. 1.

Опыты 2) если левая медиана выше правой Mei ( ) > Mei ( + ), то Wi ( ) образуют точки левой совокупности, находящиеся выше наибольшего значения точек справа, а Wi ( + ) – точки правой совокупности, расположенные ниже наименьшего значения точек слева.

Общее число выделившихся точек для i-го фактора равно Чем больше Wi, тем сильнее влияние xi на y j. Показатель Wi обычно считается более важным, чем вклад Bi при выделении существенных связей между xi, i = 1…n и y j.

Замечание. Если Mei ( ) = Mei ( + ) или разность между медианами мала, то выделившиеся точки определяются при наличии явного смещения между интервалами значений левой и правой совокупности точек.

На рис. 1 приведен пример построения диаграммы рассеяния для выходного показателя у1, под ДР приведены значения Bi и Wi, i = 1…12.

1. Название работы.

2. Цель работы.

3. Таблица обработки результатов гибридного эксперимента.

4. Диаграммы рассеяния для выходных показателей y1, y2, y3.

5. Расчет для факторов значений вкладов и определение числа выделившихся точек.

6. По значениям вклада и числу выделившихся точек представить перечень наиболее влияющих факторов xi на выходные показатели y1, y2 и y3. Отметить, на каком уровне их предпочтительнее держать для улучшения качества;

7. Записать факторы, которые существенно влияют одновременно на два или три показателя и проанализировать, как они влияют – в одну сторону или в разные (по значению вклада).

8. Выводы по работе.

9. Список литературы.

1. Что представляет собой гибридный эксперимент?

2. Дайте определение активных и пассивных факторов.

3. Каков порядок составления таблицы обработки результатов гибридного эксперимента?

4. Приведите примеры использования диаграмм рассеяния.

5. Что понимают под вкладом и числом выделившихся точек?

6. Как определяется степень влияния факторов на выходной показатель с помощью диаграммы рассеяния?

ВЫБОР ОПТИМАЛЬНОГО РЕЖИМА

Цель работы: Ознакомление с математическим аппаратом обработки результатов эксперимента, приобретение навыков в методике выбора оптимального режима.

Общие положения Исходными данными данной работы являются перечень выходных переменных процесса, составленный в лабораторной работе 3, а также таблица результатов гибридного эксперимента, полученная в лабораторной работе 4.

Методические указания по выполнению работы В ходе лабораторной работы необходимо решить задачу, связанную с выбором оптимального режима из множества возможных, определенных на этапе проведенного эксперимента (см. табл. обработки результатов гибридного эксперимента, составленную в предыдущей лабораторной работе). Под оптимальным режимом понимается такой, который по наиболее важному выходному показателю или по сумме показателей является предпочтительней всех остальных. Для сравнения режимов будем использовать принцип Парето-оптимальности. В качестве критерия оценки вариантов примем значения выходных показателей.

Сущность алгоритма формирования Парето-множества P(x) состоит в том, что сначала первый режим сравнивается со вторым и далее со всеми остальными. На основании этих сравнений первый режим либо включается в P(x), либо исключается. При сравнении режимов r1 и r2 возможны три случая:

r1 f r2, т.е. режим r1 предпочтительнее r2, в этом случае режим r2 из дальнейшего рассмотрения исключается, а r сравнивается с r3;

r1 p r2, в этом случае для r1 есть более предпочтительный режим r2, поэтому r1 из рассмотрения исключается;

r1 r2, здесь ни один из режимов не имеет предпочтения перед другим, т.е. они эквивалентны; в этом случае переходим к сравнению r1 и r3. Если для режима r1 не найдется более предпочтительного, то он включается в множество P(x).

На этом заканчивается первая итерация. Затем на второй итерации режим r2 сравнивается с оставшимися и т.д., до сравнения r15 и r16.

Используя данную методику, сравним режимы на примере табл. 1.

По результатам сравнения получаем множество Парето-оптимальных режимов Режимы, не входящие в P(x), удаляются из табл. 1.

Определим суммарные показатели по трем выходным переменным.

Таким образом, из 16 проведенных опытов оптимальным является седьмой режим, так как сумма его выходных показателей является максимальной. К r7 близок режим r1. Эти режимы могут быть рекомендованы к внедрению.

Содержание отчета 3. Согласно варианту заполненная таблица списка режимов.

4. Сформированное множество Парето-оптимальных режимов.

5. Выделенный оптимальный режим.

6. Вывод по результатам работы.

7. Список литературы.

1. Что понимают под оптимальным режимом?

2. Сформулируйте принцип Парето-оптимальности.

3. Перечислите этапы формирования Парето-множества.

ПРИМЕНЕНИЕ ТОЧЕЧНЫХ ДИАГРАММ

КОНТРОЛЯ КАЧЕСТВА ПРОДУКЦИИ

Цель работы: Провести анализ качества продукции с использованием метода контрольных карт средних значений и размаха варьирования.

Общие положения В данной лабораторной работе требуется оценить качество операции изготовления валов. Для контроля диаметра валов производятся выборки по m валов. Число выборок, количество деталей в выборке, значение диаметра вала и технический допуск на размер взять из табл. 1 согласно номеру своего варианта.

Методические указания по выполнению работы Для эффективности статистического контроля качества, быстроты и наглядности анализа полученных показателей применяется метод контрольных карт (точечных контрольных диаграмм). Этот метод заключается в том, что сводные статистические показатели по каждой выборке наносятся точками на специально подготовленные карты.

Точечная контрольная диаграмма или контрольная карта строится для каждой контролируемой статистической параметра изделия. В лабораторной работе будем контролировать следующие две статистические характеристики:

1) среднее значение параметра в пробе х ;

2) размах варьирования значений параметра в пробе R.

Каждая точечная контрольная диаграмма строится следующим образом: по оси абсцисс откладывают номера последовательных выборок, по оси ординат – значения контролируемой статистической характеристики параметра изделия.

На диаграмме имеется центральная линия, отвечающая среднему значению статистической характеристики. Кроме того, на диаграмме имеются две контрольные линии (нижний и верхний контрольный пределы), проведенные от центральной линии на таком расстоянии, что выход значения контролируемой характеристики за эти линии имеет достаточно малую вероятность.

Точками контролер отмечает средние результаты по каждой выборке. Если точки не выходят за контрольные линии, то процесс производства находится в состоянии статистического контроля.

Выход какой-либо точки за эти линии указывает на нарушение устойчивости производственного процесса и сигнализирует о необходимости вмешательства в этот процесс с целью его стабилизации, т.е. устранения неполадок в станке, улучшения режима его работы и т.п.

В качестве примера рассмотрим построение контрольных карт для варианта № 30.

По исходным данным табл. 1 заполняется табл. 2 расчетными значениями.

Количество значений Х соответствует объему выборки m, а сами значения Х заполняются следующим образом.

Определяются верхние и нижние технические пределы по формулам:

Затем с использованием генератора случайных чисел производится заполнение соответствующих столбцов табл. 2. Для генерации случайных чисел удобно использовать программу Microsoft Excel.

Среднее значение Х и размах варьирования R определяют по формулам и помещают в таблицу.

По данным табл. 2 для построения контрольных карт вычисляют среднее значение диаметра вала и средний размах Далее рассчитываются контрольные пределы для средних значений:

Значение коэффициента определяется с помощью табл. 3.

Таким образом, подставляя известные значения в (4) и (5), получим:

Затем рассчитываются контрольные пределы для размаха:

Коэффициенты Подставляя значения в (6), (7) получим:

Точечные контрольные диаграммы имеют вид, показанный на рис. 1, 2. Выход какой-либо точки за контрольные линии указывает на нарушение устойчивости технологического процесса и сигнализирует о необходимости вмешательства в этот процесс с целью его стабилизации. Этот сигнал будет своевременным, т.е. предупреждать брак, если точки, вышедшие за контрольные линии, останутся все же внутри линий, отвечающих техническим пределам (например, нижний и верхний пределы допуска).

1. Название работы.

2. Цель работы.

3. Исходные данные.

4. Заполненная таблица расчетных характеристик.

5. Расчет средних значений (диаметра и размаха варьирования).

6. Расчет нижнего и верхнего контрольного предела (для контрольной карты средних значений и контрольной карты размахов варьирования).

7. Контрольная карта средних значений.

8. Контрольная карта размахов варьирования.

9. Выводы по результатам обработки данных.

10. Список литературы.

Контрольные вопросы 1. Назовите основные инструменты контроля качества.

2. Каково назначение контрольных карт?

3. Перечислите виды контрольных карт.

4. Как применяют контрольные карты на производстве?

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

МЕТОДОМ ДИСПЕРСИОННОГО АНАЛИЗА

Цель работы: Провести оценку влияния возможных причин отклонений в установленном технологическом режиме с использованием дисперсионного анализа.

В лабораторной работе требуется оценить влияние возможных причин отклонений от установленных режимных параметров в операции изготовления валов, рассмотренной в предыдущей лабораторной работе, методом однофакторного дисперсионного анализа.

В качестве исходных данных используется таблица расчетных характеристик, составленная в лабораторной работе 6.

Методические указания по выполнению работы Дисперсионный анализ является одним из методов анализа экспериментальных данных по факториальной схеме, который применяется также при изучении влияния совокупности факторов на результаты наблюдения или опыта.

Рассмотрим производственную задачу, требующую для своего решения дисперсионный анализ. Пусть при введении статистического контроля качества продукции выяснилось, что процесс производства неустойчив в силу причин, которые не удается непосредственно обнаружить. При наличии определенных навыков знания и опыта специалист может выдвинуть несколько гипотез относительно возможных факторов, нарушающих устойчивость производственного процесса.

Для того, чтобы выявить, какие из этих факторов и в какой мере действительно нарушают устойчивость, необходимо произвести опыты, изменяя действие возможных причин неустойчивости технологического процесса.

Дисперсионный анализ помогает оценить действительное влияние каждого исследуемого фактора на выходную переменную.

Указанная задача непосредственно связана с контролем качества: проверка качества продукции методом контрольных диаграмм применяется для наблюдения за устойчивостью хода производственного процесса и выявления отклонений от установленного режима, а дисперсионный анализ – для оценки влияния возможных причин этих отклонений. Оба эти метода составляют, таким образом, две стороны статистического контроля качества. Первый метод представляет собой внутрицеховой контроль, второй – лабораторный тип анализа.

Представим себе, что для изучения влияния некоторых факторов на качество продукции мы испытываем эти факторы в различных вариантах и после каждого испытания измеряем некоторый количественный параметр изготовленной продукции (в нашем случае, размер обработанной детали). В результате произведенных испытаний получим ряд значений измеряемого параметра, который будем в дальнейшем называть результативным (в данной связи) признаком. Значения (показатели) результативного признака, полученные путем проведенных испытаний, образуют «статистический комплекс».

Внешне это выражается оформлением статистического комплекса в виде специальной комбинационной таблицы. В каждой клетке таблицы проставляются показатели (значения) результативного признака, отвечающие соответствующей комбинации испытываемых факторов.

Обработка экспериментальных данных для дисперсионного анализа является наиболее простой в случае однофакторного комплекса при любой повторяемости опыта.

В качестве примера приведем образец заполненной по исходным данным комбинационной табл. 1.

После внесения в таблицу исходных данных – по количеству выборок N, и числу вариантов фактора m определяются средние значения по формулам:

столбцам где K = mN – общее число показателей.

Составим теперь суммы квадратов этих отклонений, распространенные на все показатели рассматриваемой таблицы (варьирование).

В случае однофакторного комплекса общее варьирование разлагается на два слагаемых где есть варьирование по вариантам фактора А, а есть остаточное варьирование.

Далее производим сравнение дисперсии по фактору А с остаточной дисперсией где A, Z – числа степеней свободы, указывающие на число независимых отклонений, по которым вычислены соответствующие дисперсии:

и общее число степеней свободы Отношение дисперсий выборок (показатель достоверности) позволяет вычислить вероятность того, что отношение дисперсий превзойдет заданное число 1. Если эта вероятность окажется достаточно малой, то соответствующее число 1 можно считать пограничным показателем достоверности в том смысле, что в случайных выборках отношение дисперсий практически не должно превзойти его.

Исходя из общих соображений, можно заранее условиться о том, какую вероятность считать достаточно малой. В данной лабораторной работе за такую «малую» вероятность принимается p = 0,01. В табл. 2 приведены значения этих показателей для различных объемов выборок.

Рассмотрим пример расчета для приведенных исходных данных.

2. Значения пограничных показателей достоверности для вероятности 0, Варьирование по фактору А определим по формуле (6):

Используя формулу (7) определим остаточное варьирование:

Определим общее варьирование по формуле (5):

По формулам (10) – (12) определяем числа степеней свободы Дисперсию по фактору А определим по формуле (8):

Остаточную дисперсию вычислим с использованием формулы (9):

Показатель достоверности по фактору А определим по формуле (13):

Для удобства анализа полученные данные сведены в табл. 3.

Выводы при помощи дисперсионного анализа о влиянии фактора А на результативный признак можно делать на основании следующего соображения.

Если окажется, например, что A = > 1, то с надежностью, превышающей 0,99, мы должны считать расхождение между 2 и 2 не случайным, а существенным, и существенным влияние фактора А на результативный признак.

Таким образом, в рассмотренном примере A < 1, и можно сделать вывод, что с надежностью, превышающей 0, можно считать расхождение между 2 и 2 незначительным, т.е. фактор А на результативный признак оказывает несущественное влияние.

Содержание отчета 1. Название работы.

2. Цель работы.

3. Исходные данные.

4. Заполненная комбинационная таблица.

5. Расчет варьирования по вариантам фактора А, остаточного и общего варьирования.

6. Расчет дисперсии по фактору А и остаточной дисперсии.

7. Расчет показателя достоверности.

8. Заполненная сводная таблица дисперсионного анализа.

9. Результаты расчета с использованием пакета прикладных программ с необходимыми пояснениями.

10. Выводы по результатам обработки данных.

11. Список литературы.

Контрольные вопросы 1. Как применяют дисперсионный анализ на производстве?

2. Назовите виды дисперсионного анализа.

3. Дайте понятие дисперсии.

4. Каков порядок обработки результатов дисперсионного анализа?

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ. МОДЕЛИ АВТОРЕГРЕССИИ

Цель работы: Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии, получение навыков построения простейших моделей авторегрессии стационарных временных рядов.

Общие положения В качестве исходных данных используется временной ряд (ВР), промоделированный по формуле где zt – наблюдение в момент времени t; И – число букв, содержащихся в имени студента; Ф – число букв, содержащихся в его фамилии; t – случайная добавка в момент времени t, определяется генератором случайных чисел; N – число моментов времени, N принимается равным 40 для всех вариантов.

В качестве значения наблюдения z0 устанавливается z0 = O, где О – число букв, содержащихся в отчестве студента.

Полученный временной ряд округляется до сотых.

Методические указания по выполнению работы Временным рядом называется множество наблюдений, генерируемых последовательно во времени. Если время изменяется непрерывно, то временной ряд называется непрерывным, если время изменяется дискретно, то временной ряд называется дискретным (ДВР).

Наблюдения ДВР делаются в моменты времени t1, t2, …, tN и обозначаются zt1, zt2, …, ztN.

Порядок выполнения работы содержит следующие этапы.

1. По формуле (1) моделируется исходный временной ряд и заносится в табл. 1.

2. Рассчитывается выборочное среднее временного ряда по формуле для приведенных в табл. 1 данных z = 3. Оценивается дисперсия ВР с использованием формулы:

для нашего примера 2 = 4. Определяется автоковариация временного ряда с задержкой k:

Например, 0 = 0,13;

5. Оценивается автокорреляция временного ряда с задержкой k и строится график автокорреляционной функции (см.

рис. 1).

где k – безразмерная величина; k [ 1;1].

6. Производится оценка параметров авторегрессии первого порядка (P = 1):

где 1 – коэффициент уравнения авторегрессии 1-го порядка.

В нашем примере 1 = 0, 49.

7. Осуществляется прогнозирование значений временного ряда на момент времени t:

С помощью формулы (7) получается ряд прогнозируемых значений в интервале от N до N + 10 и далее заносится в соответствующий столбец табл. 1.

8. Определяется абсолютная погрешность между исходными данными и спрогнозированными значениями и также заносится в табл. 1:

9. Оценивается максимальная абсолютная погрешность zmax.

Для рассматриваемых данных zmax = 0, 25.

10. Определяется средняя абсолютная погрешность:

В нашем случае zt = 0, 086.

Таким образом, для рассматриваемого примера при прогнозировании значений временного ряда максимальная абсолютная погрешность составляет 0,25, а средняя абсолютная погрешность – 0,086. Следовательно, полученная авторегрессионная модель оказалась достаточно точной.

Содержание отчета 3. Смоделированный исходный временной ряд.

4. Расчет и построение графика автокорреляционной функции.

5. Оценка параметров авторегрессии первого порядка.

6. Прогноз значений временного ряда с использованием модели авторегрессии первого порядка.

7. Заполненная таблица исходных данных и расчетных значений.

8. Выводы по результатам обработки данных.

9. Список литературы.

Контрольные вопросы 1. Дайте определение временного ряда. Назовите виды временных рядов.

2. Назовите виды моделей авторегрессии.

3. Что представляет собой автокорреляционная функция?

4. Как оценивается точность моделей авторегрессии?

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ.

МОДЕЛЬ АВТОРЕГРЕССИИ 2-ГО ПОРЯДКА

Цель работы: Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии, получение навыков построения модели авторегрессии 2-го порядка для стационарных временных рядов.

В качестве исходных данных используется временной ряд, промоделированный в лабораторной работе 8, и расчетные значения автокорреляции.

Методические указания по выполнению работы Порядок выполнения работы включает следующие этапы.

1. Производится оценка параметров авторегрессии второго порядка (P = 2) по формулам где 1 и 2 – коэффициенты уравнения авторегрессии 2-го порядка; 1 и 2 – оценка автокорреляции.

Значения 1 и 2 берутся из лабораторной работы 8.

2. Осуществляется прогнозирование значений временного ряда по формуле Используя эту формулу, рассчитывают ряд прогнозируемых значений в интервале от N до N + 10 и заносят их в соответствующий столбец табл. 1.

3. Определяются абсолютные погрешности между исходными данными и спрогнозированными значениями и также заносятся в табл. 4. Определяется максимальная абсолютная погрешность zmax.

5. Рассчитывается средняя абсолютная погрешность В заключении расчетов сравниваются модель авторегрессии 2-го порядка с полученной в лабораторной работе авторегрессионной моделью 1-го порядка и делается вывод о том, какая модель более точная.

1. Название работы.

3. Оценка параметров авторегрессии второго порядка.

4. Прогноз значений временного ряда с использованием модели авторегрессии 2-го порядка.

5. Заполненная таблица расчетных значений.

6. Вывод по результатам обработки данных.

Контрольные вопросы 1. Дайте определение временного ряда. Какие существуют виды временных рядов.

2. Дайте понятие авторегрессии. Назовите виды моделей авторегрессии.

3. Для чего используют математический аппарат анализа временных рядов на практике?

СПИСОК ЛИТЕРАТУРЫ

1. Всеобщее управление качеством : учебник для вузов / О.П. Глудкин, Н.М. Горбунов, А.И. Гуров, Ю.В. Зорин ; под ред. О.П. Глудкина. – М. : Радио и связь, 1999. – 600 с.

2. Муромцев, Д.Ю. Управление качеством электронных средств : учебное пособие. Ч. 1 / Д.Ю. Муромцев, И.В. Тюрин, А.А. Кабанов. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2005. – 80 с.

3. Муромцев, Ю.Л. Информатика : методические указания по выполнению контрольных работ и подготовки рефератов. Ч. I / Ю.Л. Муромцев, Д.Ю. Муромцев, Л.П. Орлова. – Тамбов : Изд-во Тамб. гос. техн.

ун-та, 1997.

4. Басовский, Л.Е. Управление качеством : учебник / Л.Е. Басовский, В.Б. Протасьев. – М. : ИНФРА-М, 2000, 2001.

5. Управление качеством : учебник / С.Д. Ильенкова, Н.Д. Ильенкова, В.С. Мхитарян и др. ; под ред. С.Д. Ильенковой.

– М. : Банки и биржи; ЮНИТИ, 1998. – 199 с.

6. Шиндовский, Э. Статистические методы управления качеством / Э. Шиндовский, О. Шюрц. – М. : Мир, 1976. – 7. Авдеева, Н.Г. Менеджмент для инженера : учебник. В 3 ч. Ч. 1. Основы менеджмента / Н.Г. Авдеева, О.Н. Дмитриев, Э.С. Минаев ; под ред. Э.С. Минаева. – М. : Высшая школа; Доброе слово, 2002. – 359 с.

СОДЕРЖАНИЕ

Лабораторная работа АНАЛИЗ СТАТИСТИЧЕСКОГО РЯДА ……………………………… Лабораторная работа

ОПРЕДЕЛЕНИЕ ПОЛНЫХ ХАРАКТЕРИСТИК РАСПРЕДЕЛЕНИЯ

СЛУЧАЙНОЙ ВЕЛИЧИНЫ …………………………………………… Лабораторная работа ПЛАНИРОВАНИЕ ГИБРИДНОГО ЭКСПЕРИМЕНТА …………….. Лабораторная работа

ОБРАБОТКА РЕЗУЛЬТАТОВ ГИБРИДНОГО ЭКСПЕРИМЕНТА...

Лабораторная работа ВЫБОР ОПТИМАЛЬНОГО РЕЖИМА ………………………………. Лабораторная работа

ПРИМЕНЕНИЕ ТОЧЕЧНЫХ ДИАГРАММ КОНТРОЛЯ

КАЧЕСТВА ПРОДУКЦИИ

Лабораторная работа

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ

ДИСПЕРСИОННОГО АНАЛИЗА …………………………………….. Лабораторная работа

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ. МОДЕЛИ АВТОРЕГРЕССИИ

…..

Лабораторная работа

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ. МОДЕЛЬ АВТОРЕГРЕССИИ

2-ГО ПОРЯДКА …………………………………………………………



Похожие работы:

«Федеральное агентство морского и речного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МОРСКОГО И РЕЧНОГО ФЛОТА имени адмирала С.О. МАКАРОВА КАФЕДРА ИСТОРИИ И КУЛЬТУРЫ ПЛАНЫ СЕМИНАРСКИХ ЗАНЯТИЙ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К НИМ ПО КУРСУ КУЛЬТУРОЛОГИИ Для курсантов 1 курса всех специальностей Санкт-Петербург Издательство ГУМРФ им. адм. С.О. Макарова 2013 ББК П37 П37 Планы семинарских занятий и...»

«НОУ ВПО САНКТ-ПЕТЕРБУРГСКИЙ ИНСТИТУТ ВНЕШНЕЭКОНОМИЧЕСКИХ СВЯЗЕЙ, ЭКОНОМИКИ И ПРАВА (НОУ ВПО СПб ИВЭСЭП) РАБОЧАЯ ПРОГРАММА ТЕОРИЯ И ПРАКТИКА МАССОВОЙ ИНФОРМАЦИИ Направление подготовки 031600 Реклама и связи с общественностью Квалификации (степени) выпускника _бакалавр_ Санкт-Петербург 2012 1 ББК 76.0 Т 33 Теория и практика массовой информации [Электронный ресурс]: рабочая программа / авт.-сост. В.И. Кузин, Е.В. Кокшина,. А.Н. Тепляшина, О.В. Волкова. – СПб.: ИВЭСЭП, 2012. – 67 с. Утверждена на...»

«Учреждение образования Белорусский государственный технологический университет УТВЕРЖДЕНА Ректором БГТУ профессором И.М. Жарским 17.05.2011 г. Регистрационный № УД-546 /баз. ТЕХНОЛОГИЯ ЛИСТОВОГО И ПОЛОГО СТЕКЛА Учебная программа для специальности 1-48 01 01 Химическая технология неорганических веществ, материалов и изделий специализаций 1-48 01 01 06 Технология стекла и ситаллов; 1-48 01 01 10 Технология эмалей и защитных покрытий 2011 г. УДК 666.151(073) ББК 35.41я73 Т 38 Рекомендована к...»

«СИБИРСКИЙ УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ ТОВАРОВЕДЕНИЕ И ЭКСПЕРТИЗА ТОВАРОВ Программа, методические указания и задания контрольной и самостоятельной работы для студентов заочной формы обучения специальности 0803201.65 Коммерция (торговое дело) Новосибирск 2008 Кафедра товароведения и технологии сельскохозяйственной продукции Товароведение и экспертиза товаров: программа, методические указания и задания контрольной и самостоятельной работ / [сост. ст. преподаватель, к.техн.н....»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ивановский государственный энергетический университет имени В.И. Ленина А.Е. Аржанникова, Т.Ю. Мингалва ПРОЕКТИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ СЕТИ Учебное пособие к выполнению курсовой работы Иваново 2014 УДК 621.311 АРЖАННИКОВА А.Е., МИНГАЛЁВА Т.Ю. Проектирование электрической сети: Учеб. пособие / ФГБОУВПО Ивановский государственный энергетический...»

«Содержание 1. Цели освоения дисциплины 2. Место дисциплины в структуре ООП бакалавриата 3. Компетенции обучающегося 4. Структура и содержание дисциплины 5. Образовательные технологии 6. Формы и методы контроля 7. Учебно-методическое и информационное обеспечение дисциплины 8. Материально-техническое обеспечение Приложение 1 Лист согласования рабочей программы дисциплины Приложение 2 Дополнения и изменения рабочей программы дисциплины 2 1.Цели освоения дисциплины Целью изучения дисциплины...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕЖДУНАРОДНЫЙ ИНСТИТУТ ФИНАНСОВ, УПРАВЛЕНИЯ И БИЗНЕСА Кафедра Управления качеством А.Г. Рыбка, А.В. Воронцова ПОРЯДОК ВЫПОЛНЕНИЯ, ОФОРМЛЕНИЯ, ЗАЩИТЫ КУРСОВЫХ И ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ / ДИПЛОМНЫХ РАБОТ Учебно-методический комплекс Методические рекомендации для студентов специальности...»

«Программно-методическое обеспечение 2013-2014 Наименование Вид Автор, название, издательство, год программы программ издания учебника Рабочие тетради. Методические пособия, Аппаратура ы дидактические материалы Класс Общее образование Русский язык 5 класс- Разумовская М.М. Богданова Г.А. Русский язык 5 класс в 4-х Русский язык 5 класс. Рабочая тетрадь в 5. 61 учащихс частях.- М.: Дрофа, 2007 2-х частях.- М.:Генжер,2013 я Егорова Н.В. Контрольно-измерительные материалы. Русский язык 4...»

«ФАКУЛЬТЕТ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ СЕКЦИЯ РЕШЕНИЕ СЛОЖНЫХ ЗАДАЧ В ОБЛАСТИ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ УДК 004 В.В.Глазунов (6 курс, каф. КИТвП), Д.В.Кетов, доц. РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ УЧЕБНЫМИ МАТЕРИАЛАМИ НА ОСНОВЕ СЕМАНТИЧЕСКИХ МОДЕЛЕЙ ПРЕДМЕТНЫХ ОБЛАСТЕЙ Современные методы образования предполагают доступность учебных материалов для самостоятельной работы студентов. Многие университеты предоставляют своим студентам или всем желающим возможность...»

«67.99 К 93 /пекдекцт/ в сщр^укту/іе Костанайская Социальная академия Курзова Н. А. Абдуллина А. А. Этиоправовые тенденции в структуре мусульманского права. Костанай 2002 I/ ББК 67.99 (2) Курзова Н. Д., Абдуллина Д. Д. Эхноправовь.е тенденции в структуре мусульманского права.— Костанай, 2002 г. - 284 стр. ISBN № 9965-13-730-7 ББК 67.99 (2) Одобрено научно-методическим советом Костанайской Социальной академии. Рецензент: доктор философских наук, профессор Мурзапин С. К. Авторы составители:...»

«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЮРИДИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра Коммуникационный менеджмент Учебно-методический комплекс по курсу ПСИХОЛОГИЯ МАССОВОЙ КОММУНИКАЦИИ для специальности Связи с общественностью ПЕНЗА 2011 СОДЕРЖАНИЕ СОДЕРЖАНИЕ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА ДИСЦИПЛИНЫ ПСИХОЛОГИЯ МАССОВОЙ КОММУНИКАЦИИ РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ПСИХОЛОГИЯ МАССОВОЙ КОММУНИКАЦИИ ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ САМОСТОЯТЕЛЬНЫХ РАБОТ ВОПРОСЫ ПРОМЕЖУТОЧНОГО КОНТРОЛЯ ДИСЦИПЛИНЫ ПСИХОЛОГИЯ...»

«Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования ФГОУ ВПО Московский агроинженерный университет имени В.П. Горячкина С.Н. Киселв, Л.П. Смирнов МАШИНЫ ДЛЯ РЕСУРСОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ методические указания и задания для студентов заочников 3-го курса Москва 2010 г. УДК: 631.3 Рецензент: доктор технических наук, профессор заведующий кафедрой ЭМТП ВГОУ ВПО Московского государственного агроинженерного университета им. В.П. Горячкина...»

«МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение ГОСУДАРСТВЕННАЯ МОРСКАЯ АКАДЕМИЯ имени адмирала С.О. Макарова КАФЕДРА ПОРТОВ И ГРУЗОВЫХ ТЕРМИНАЛОВ А.Л. Степанов, О.А. Туаршева ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ ПЕРЕГРУЗОЧНОГО ПРОЦЕССА Методические указания к курсовому проекту для курсантов 4-го курса очного и студентов 5-го курса заочного обучения по специальности 240100 Организация перевозок и управление на транспорте (водном) Санкт-Петербург 2004 УДК...»

«Федеральное государственное общеобразовательное учреждение высшего профессионального образования Московский государственный агроинженерный университет имени В.П. Горячкина В.Ш. Магадеев Методические указания по курсовому и дипломному проектированию Расчет тепловой схемы и выбор основного оборудования промышленноотопительных котельных Москва 2007 2 Рецензенты: Доктор технических наук, заведующий лабораторией ОАО Всероссийский технический институт Ю.П. Енякин Доктор технических наук, профессор...»

«Рабочая программа по курсу Теория государства и права. Программа по теории государства и права предназначена для студентов I курса МГГУ, обучающихся по специальности 021100-ЮРИСПРУДЕНЦИЯ Программа содержит общие цели и задачи курса, тематические планы, содержание курса, планы семинарских занятий, примерную тематику вопросов к экзамену и зачету, методические указания по написанию курсовых работ, тематику курсовых работ и список рекомендуемой литературы. Составитель - Кузнецов С.В Введение В...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ПСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. С. М. КИРОВА ПСКОВСКОЕ ОТДЕЛЕНИЕ РУССКОГО ГЕОГРАФИЧЕСКОГО ОБЩЕСТВА А. Г. МАНАКОВ ТУРИСТСКИЕ РЕГИОНЫ МИРА ГЕОГРАФИЯ КУЛЬТУРНОГО НАСЛЕДИЯ Учебное пособие Псков ПГПУ 2011 УДК 796.5 ББК 75.81 М 23 Рецензенты: доктор географических наук, профессор В.Л. Мартынов (Российский государственный педагогический университет им. А.И. Герцена); доктор географических наук, профессор Г.М. Федоров (Российский...»

«Посвящается светлой памяти Владимира Ланцберга ТЕХНОЛОГИЯ ГРУППЫ Учебное пособие для лидера молодёжной неформальной группы Москва 2008 ISBN 978-5-9900354-3-0 Кордонский М., Кожаринов М. Очерки неформальной социотехники (Учебное пособие для лидера молодёжной неформальной группы). (Серия: Технология группы), предисловие В.Хилтунена - М.: Net2Net, 2008. - 336 c., ил. Это книга о неформалах и для неформалов, а ещё для их родителей, друзей, учителей, журналистов, политиков, социологов. О...»

«Государственное образовательное учреждение высшего профессионального образования Курский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию Повышение качества образовательного процесса в университете Сборник материалов научно-методической конференции (5-6 февраля 2008 года) Том II Курск – 2008 УДК 37(063) Печатается по решению ББК 74 редакционно-издательского совета ГОУ ВПО КГМУ Росздрава Повышение качества образовательного процесса в...»

«Государственное образовательное учреждение высшего профессионального образования Московская академия рынка труда и информационных технологий Дворец Н.Н. ТЕОРИЯ И ПРАКТИКА ФИНАНСОВОГО ОЗДОРОВЛЕНИЯ ПРЕДПРИЯТИЯ Учебно-методическое пособие Москва Издательство МАРТИТ 2010 1 УДК 330.1 ББК 65.01 Д-24 Дворец Н.Н., Теория и практика финансового оздоровления предприятия: Учебно-методическое пособие. М.: Изд-во МАРТИТ, 2010. 101 с. В пособии рассмотрены следующие темы: правовое содержание процедур...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ РАБОТЫ ПО ДИСЦИПЛИНЕ ТОКСИКОЛОГИЧЕСКАЯ ХИМИЯ Учебно-методическое пособие для вузов Составители: И.В. Шкутина, Н.В. Мироненко, В.Ф. Селеменев Издательско-полиграфический центр Воронежского государственного университета – 2011 Утверждено научно-методическим советом фармацевтического факультета, протокол...»








 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.