WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Авторефераты, диссертации, методички

 

В.В. ФИЛИППОВ

ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ И

ТРУБОПРОВОДНАЯ АРМАТУРА

Учебное пособие

ВВЕДЕНИЕ

Когда попадаешь на химическое предприятие первое, что бросается в глаза – сеть трубопроводов. Посмотрим на рисунок. Разве не

потрясает? Хорошо видна паутина из множества труб разного диаметра. Завод состоит из производств, производства – из технологических установок, установки – из аппаратов. И все они связаны между собой в единую цепь с помощью трубопроводов. На долю трубопроводов приходится до 25% стоимости всего оборудования. А в общем объёме монтажных работ стоимость монтажа трубопроводов достигает 65%.

В кажущемся на первый взгляд хаотическом переплетении множества труб различного диаметра на самом деле царит строгая, выверенная расчётами закономерность. Ведь сначала специалисты рассчитали диаметр каждого трубопровода, подобрали марку стали, нашли толщину тепловой изоляции. Потом другие специалисты проложили каждую трубу сначала на бумаге. И только потом монтажники соединили аппараты трубопроводами – построили завод.

Общий вид современного производства Для каждой трубы рассчитаны и выбраны:

· диаметр, который определяется расходом проходящего по трубе потока;

· толщина стенки, которая зависит от давления транспортируемой среды;

· марка стали, которая определяется коррозионной активностью вещества;

· толщина тепловой изоляции, уменьшающей потери теплоты в окружающую среду.

Все промышленные объекты, в том числе и трубопроводы, должны соответствовать требованиям Федеральной службы по экологическому, технологическому и атомному надзору (ФСЭТАН), ранее Госгортехнадзор.

В задачи Федеральной службы по экологическому, технологическому и атомному надзору входят:

· организация и осуществление на территории России государственного регулирования промышленной безопасности и государственного надзора по безопасному ведению работ, устройству и безопасной эксплуатации оборудования;

· организация и осуществление государственного надзора за соблюдением законодательства РФ по безопасному ведению работ;

· разработка и осуществление мер по профилактике аварий и производственного травматизма;

· работы по устройству, изготовлению и безопасной эксплуатации оборудования, а также охране недр и переработки минерального сырья;

· осуществление лицензирования отдельных видов деятельности, связанных с повышенной опасностью промышленных производств (объектов) и работ;

· участие в разработке и контроль над реализацией научнотехнических программ по обеспечению безопасности промышленных производств, персонала и населения;

· обобщение практики применения законодательства России в области безопасного ведения работ и разработка предложений по его совершенствованию.

1. ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

1.1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Трубопровод – это сооружение из труб, деталей трубопровода и арматуры, плотно соединенных между собой, предназначенное для транспортирования газообразных и жидких продуктов.

В состав технологических трубопроводов входят:

· прямые участки (линии);

· фасонные детали (отводы, переходы, тройники, заглушки);

· опоры и подвески;

· крепежные детали (болты, шпильки, гайки, шайбы);

· запорно-регулирующая арматура;

· контрольно-измерительные приборы и средства автоматики;

· тепловая и антикоррозионная изоляция.

В зависимости от транспортируемой среды применяются названия: водопровод, паропровод, воздухопровод, маслопровод, газопровод, нефтепровод, продуктопровод и т.д.

Для геометрической характеристики труб используют следующие размеры:

· условный внутренний диаметр (проход) Dу;

· наружный диаметр Dн;

· толщина стенки ;

· длина l.

Основной характеристикой любого трубопровода является диаметр, определяющий его проходное сечение. Величина проходного сечения определяет расход потока при его рабочих параметрах (давление, температура, скорость).

Условный диаметр Dу – это номинальный внутренний диаметр присоединяемого трубопровода (мм). Труба при одном и том же наружном диаметре может иметь различные номинальные внутренние диаметры.

В нефтеперерабатывающей и нефтехимической отраслях промышленности обычно применяют трубы с условным внутренним диаметром 251400 мм, толщиной стенки 216 мм и длиной 412 м.

Для каждого наружного диаметра трубы в зависимости от давления перекачиваемой среды предусмотрено несколько толщин стенок.

Следовательно, труба при конкретном наружном диаметре может иметь различные внутренние диаметры. Внутренний диаметр определяет сечение трубопровода, необходимое для прохождения заданного количества вещества при рабочих параметрах эксплуатации (давлении, температуре, скорости).

В Российской Федерации существует Государственный комитет по стандартизации и метрологии, который разрабатывает государственные стандарты (ГОСТы) на всю выпускаемую в стране продукцию. Слово «стандарт» происходит от английского слова «stadart», что в переводе означает «норма, образец».

Кроме государственного стандарта в промышленности используются отраслевые стандарты (ОСТы).

Для сокращения количества видов и типоразмеров входящих в состав трубопроводов соединительных деталей и арматуры используют единый унифицированный ряд условных диаметров Dу. Для технологических трубопроводов наиболее часто применяют условные проходы, мм: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 800, 1000, 1200, 1400, 1600. Этот ряд условных диаметров введен для ограничения числа применяемых при проектировании и сооружении трубопроводов и, как следствие, сокращение числа типоразмеров входящих в их состав соединительных деталей, арматуры, а также труб.

При выборе трубы для трубопровода под условным диаметром (проходом) понимают ее расчетный округленный внутренний диаметр. Например, для труб наружным диаметром 219 мм и толщиной стенки 6 и 16 мм, внутренний диаметр которых соответственно равен 207 и 187 мм, в обоих случаях принимают ближайший условный диаметр трубы, т. е. Dу=200 мм.

Для выбора толщины стенки (наружного диаметра трубы) и типа стали, которые обеспечат механическую прочность трубопровода при заданных рабочих параметрах среды, вводится понятие «условное давление».

Условное давление Ру – это наибольшее избыточное рабочее давление (при температуре среды 20 °С), при котором обеспечивается длительная работа трубопровода. Для сокращения числа типоразмеров арматуры и деталей трубопроводов ГОСТом установлен унифицированный ряд условных давлений (МПа): 0,1; 0,16; 0,25; 0,4; 0,63;

1,0; 1,6; 2,5; 4,0; 6,3; 10; 12,5; 16; 20; 25; 32; 40; 50; 63; 80; 100; 160;

250. Например, если предполагается транспортировать поток с давлением 2 МПа, то необходимо выбрать трубу, рассчитанную на условное давление 2,5 МПа.

Рабочее давление Pраб – это наибольшее избыточное давление, при котором обеспечивается заданный режим эксплуатации арматуры и деталей трубопроводов.

Пробное давление Pпр – это избыточное давление, при котором должно проводиться гидравлическое испытание арматуры и деталей трубопроводов на прочность и герметичность водой с температурой не менее 5 и не более 70 °С.

Соотношение между условным, пробным и рабочим давлениями для арматуры и соединительных частей трубопроводов с учетом температуры рабочей среды установлены ГОСТ 356-80.

Применение ограниченного числа размеров труб упрощает проектирование трубопроводов, обеспечивает сокращение типоразмеров комплектующих изделий (соединительных деталей, арматуры и пр.), способствует организации их массового изготовления, а также упрощает комплектование строительных, ремонтных и производственных организаций трубами и изделиями.

Трубопроводы должны быть надежны в эксплуатации, так как неисправность в какой-либо части трубопровода может привести к аварии и полной остановке производства или всего промышленного объекта, а также к загрязнению окружающей среды.

В зависимости от размещения на промышленном объекте технологические трубопроводы подразделяют на внутрицеховые, соединяющие агрегаты, машины и аппараты технологических установок цеха, и межцеховые, соединяющие технологические установки разных цехов.

Внутрицеховые трубопроводы называют обвязочными, если они устанавливаются непосредственно в пределах отдельных аппаратах, насосов, компрессоров, резервуаров и др. и соединяют их.

Внутрицеховые трубопроводы имеют сложную конфигурацию, большое число деталей, арматуры и сварных соединений. На каждые 100 м длины таких трубопроводов приходится до 80120 сварных стыков. Масса деталей и арматуры в таких трубопроводах достигает 37% от общей массы трубопровода.

Межцеховые трубопроводы, наоборот, характеризуются довольно прямыми участками (длиной до несколько сот метров), сравнительно небольшим количеством деталей, арматуры и сварных швов.

Общая масса деталей и арматуры в межцеховых трубопроводах составляет 5%. Но в состав межцеховых трубопроводов необходимо включать П-образные температурные компенсаторы, на долю которых приходится около 7% массы (подробно П-образные компенсаторы описаны на с. 28).

Технологические трубопроводы считаются холодными, если они работают при среде, имеющей рабочую температуру tp 50 °C, и горячими, если температура рабочей среды больше 50 °С.

В зависимости от условного давления среды трубопроводы подразделяются на вакуумные, работающие при абсолютном давлении среды ниже 0,1МПа, среднего давления, работающие при избыточном давлении среды от 1,5 до 10 МПа и высокого давления, когда избыточное давление рабочей среды находится в пределах от 10 до МПа.

Кроме того, существуют ещё так называемые безнапорные трубопроводы, в которых среда движется самотёком.

Все применяемые в промышленности соединения можно разделить на неразъёмные и разъёмные (см. раздел 1.2). В трубопроводах применяются, как правило, неразъёмное соединение – сварка. Сварка является наиболее целесообразным и надежным методом соединения стальных труб. Она широко применяется в трубопроводных системах различного назначения. Но во многих случаях целесообразнее применять разъёмные (фланцевые и резьбовые) соединения, обладающие своими достоинствами и недостатками. Так, в местах установки арматуры, с целью присоединения ее к трубопроводу, принято применять именно фланцевые соединения. Они могут быть использованы и в трубопроводах, требующих периодической разборки в целях очистки или замены отдельных участков. А в трубопроводах с малыми условными диаметрами часто используются резьбовые соединения.

По методу прокладки труб трубопроводы или их участки подразделяют на:

· подземные – трубы прокладывают в траншее под землей;

· наземные – трубы прокладывают на земле;

· надземные – трубы прокладывают над землей на стойках, опорах или с использованием в качестве несущей конструкции самой трубы;

· подводные – сооружают на переходах через водные препятствия (реки, озера и т.п.), а также при разработке морских месторождений.

Подробная классификация технологических трубопроводов приведена в таблице.

В зависимости от класса опасности транспортируемого вещества технологические трубопроводы делятся на три группы А, Б и В.

К группе А относятся трубопроводы для транспорта чрезвычайно и высокоопасных веществ I и II классов опасности (бензол, дихлорэтан, метилхлорид и др.).

К группе Б относятся трубопроводы для транспорта умеренно опасных веществ III класса опасности (жидкий аммиак, винилацетат, ксилол, метанол, фурфурол и др.). К группе В отнесены трубопроводы, предназначенные для перекачивания взрыво- и пожароопасных веществ (горючие сжиженные газы, легковоспламеняющиеся жидкости, горючие жидкости).

Кроме деления на группы, применяется также деление технологических трубопроводов на пять категорий I, II, III, IV, V в зависимости от давления и температуры перекачиваемой среды. Для того чтобы определить группу и категорию трубопровода, необходимо воспользоваться «Правилами устройства и безопасной эксплуатации технологических трубопроводов» [1, 4].

Классификация технологических трубопроводов Способ прокладки Наземные Безнапорные или са- Давление близко к атмосферВнутреннее давление Температура трансниже минус 153 °С Расположение трубопроводов должно обеспечивать:

· безопасность и надежность эксплуатации в пределах нормативного срока;

· возможность непосредственного наблюдения за техническим · возможность выполнения всех видов работ по контролю, термической обработке сварных швов и испытанию;

· изоляцию и защиту трубопроводов от коррозии, вторичных проявлений молний и статического электричества;

· предотвращения образования ледяных и других пробок в · исключения провисания и образования застойных зон.

В любой отрасли промышленности, в том числе химической и нефтеперерабатывающей, широко используются различные соединения деталей, узлов, машин, приборов, аппаратов и оборудования.

Как уже отмечалось, соединения бывают разъёмные и неразъмные. К неразъемным соединениям относятся соединения, получаемые сваркой или пайкой, к разъемным – фланцевые и резьбовые (штуцерные, муфтовые и некоторые др.).

Выбор соединения зависит от материала соединяемых деталей, давления, температуры и физико-химических свойств транспортируемого вещества (агрессивности, токсичности, способности к застыванию или выпадению осадка), условий эксплуатации (герметичности, необходимости частых разборок, огне- и взрывоопасности производства).

Р и с. 1.1. Некоторые типы швов сварных соединений:

а - односторонний шов; б - односторонний шов со скосом кромок; в – шов с внутренней расточкой и подкладочным кольцом; г - шов с подкладочным кольцом с внутренней расточкой; д - угловой шов Наиболее широко распространен способ получения неразъемных соединений технологических трубопроводов путем электродуговой сварки, которая обеспечивает высокую прочность, надежность и плотность соединений. При строительстве и ремонте трубопроводов применяются различные виды неразъемных сварных соединений труб и деталей трубопроводов, некоторые из которых показаны на рис.1.1.

Среди разъёмных соединений на первом месте стоят фланцевые соединения (рис.1.2). Они состоят из фланцев 3 и 4, прокладки (обтюрации) 5, соединительных болтов 2 (или шпилек) с гайками.

Герметичность соединения достигается за счет кольцевых прокладок из упругого материала, установленных между торцевыми поверхностями фланцев.

Р и с. 1.2. Фланцевое соединение трубопровода:

1,6 – подлежащие соединению участки трубопровода; 2 – болт (шпилька) с гайкой; 3,4 – фланцы; 5 – прокладка (обтюрация) Штуцерные соединения1 (рис. 1.3) используют в трубопроводах, предназначенных для транспорта густой и жидкой смазки, коммуникаций высокого давления, на водо- и газопроводных линиях, а также для присоединения резьбовой трубопроводной арматуры и контрольно-измерительных приборов и автоматики. На резьбе также соШтуцер (нем. Stutzen – короткоствольное ружьё, обрез) – деталь, предназначенная для присоединения к трубопроводу арматуры или контрольно-измерительных приборов.

единяют трубопроводы из чугуна и стальных футерованных труб.

Штуцерные соединения для гибких трубопроводов (шлангов) иногда называют дюритовыми.

К разъёмным относится также муфтовое соединение (рис. 1.4), которое применяется для монтажа водо- и газонапорных труб. На одном конце трубы нарезается или приваривается удлинённая резьба (сгон), на которую полностью может поместиться муфта 2 и контргайка 3. На конце другой трубы нарезается короткая резьба длиной, равной примерно половине длины муфты. Трубы соединяют путём свинчивания муфты со сгона на короткую резьбу до упора. Чтобы обеспечить необходимое уплотнение в резьбе, применяют ленту из полимерных материалов, паклю или лен на сурике, либо белилах, поджимая их контргайкой.

а - штуцерное соединение трубопроводов, приваренные встык; б-штуцерное соединение на отбортованных труба; в- штуцерное соединение на конической резьбе;

г- штуцерное соединение с врезающимся кольцом; 1 – соединяемые трубы; 2 – ниппель;

Прокладки. Для уплотнения фланцевых соединений трубопроводов и арматуры применяют прокладки, изготовленные из специальных прокладочных материалов. Они должны обладать достаточной упругостью и прочностью для восприятия внутреннего давления и температурных удлинений трубопровода, химической стойкостью в агрессивных средах, теплостойкостью. Выбор типа и материала прокладок зависит от конкретных условий работы трубопровода - температуры, давления и степени агрессивности среды. Форма и размеры прокладок определяются конфигурацией уплотняемых соединений (рис. 1.5).

Для изготовления прокладок применяются как неметаллические материалы, так и металлы. Металлические прокладки используются для ответственных объектов и тяжелых условий работы арматуры (высокой температуры, высокого давления и т.д.), но они требуют больших усилий затяга, чем мягкие прокладки.

1-участок трубы с длинной резьбой; 2-муфта; 3-контргайка; 4-труба с короткой резьбой Неметаллические материалы. Резина является наиболее пригодным материалом для уплотнения разъемных соединений. Она эластична, требует небольших усилий затяга уплотнений, практически непроницаема для жидкостей и газов. Резина применяется при температуре до +50 °С, а теплостойкая резина – до +140 °С. По твердости резину подразделяют на мягкую, средней твердости и твердую.

Существуют пять типов резины: маслобензостойкая (марки А, Б и В, в зависимости от степени стойкости), кислотощелочестойкостая, теплостойкая и пищевая.

Прокладки из целлюлозного прокладочного картона используются в арматуре для пара низкого давления и воды при рабочей температуре менее 120 °С и рабочем давлении до 0.6 МПа, для масла с 0.4 МПа, а также в других случаях.

Для высоких температур целлюлозный картон не пригоден, так как обугливается.

а - прокладка плоская; б - прокладка гофрированная; в - прокладка зубчатая;

Фибра листовая (ФЛАК) представляет собой бумагу или целлюлозу, обработанную цинком и затем каландрированную (прессованную). Фибра применяется для прокладок в арматуре при температуре до 100 °С. Она используется при работе на керосине, бензине, смазочном масле, кислороде и углекислоте.

Асбест в качестве прокладочного материала используется в арматуре при повышенных и высоких температурах. Материал минерального происхождения, в технике используется после переработки в виде листового картона или шнура. При температуре 500 °С прочность асбеста снижается на 33 %, а при 600 °С – на 77%.

К щелочам асбест достаточно хорошо устойчив, к кислотам наиболее устойчив антофиллит-асбест.

Асбестовый непропитанный картон имеет рыхлое строение, низкую прочность, но высокую жаростойкость, используется для арматуры, работающей при температуре до 600 °С, задвижек для горячего дутья, генераторных и дымовых газов и для другой арматуры, не работающей на жидкости. Пропитанный натуральной олифой асбестовый картон может быть использован для нефтепродуктов при давлении до 0.6 МПа и температуре до 180 °С, однако замена его при смене прокладок или ремонте арматуры затруднена, так как он прилипает к металлическим поверхностям. Для уплотнения фланцев газовых задвижек используется также асбестовый шнур, который укладывается спирально на поверхности фланца, предварительно смазанной техническим вазелином.

Паронит листовой изготовляется из смеси асбестовых волокон (60-70%), каучука (12-15%), минеральных наполнителей (15-18%) и серы (1,5-2,0%) путем вулканизации и вальцевания под большим давлением. Теплостойкость паронита зависит от количества в нем резины. Паронит является универсальным прокладочным материалом и используется в арматуре для насыщенного и перегретого пара, горячих газов и воздуха, растворов щелочей и слабых растворов кислот, аммиака, масел и нефтепродуктов при температуре до 450 °С. Чтобы улучшить плотность и увеличить сопротивление распору прокладки средой, на уплотняющих поверхностях соединения обычно создают две-три узкие канавки треугольного сечения, в котором паронит вдавливается под действием усилия затяга. Такие канавки делаются и при использовании других неметаллических прокладок. Листы паронита изготавливаются толщиной до 7,5 мм. Прокладку целесообразно применять возможно более тонкую, но толщина ее должна быть достаточной для уплотнения при данной шероховатости обработанных поверхностей и площади уплотнения.

Паронит листовой выпускается четырех марок: ПОН (паронит общего назначения), ПМБ (паронит маслобензостойкий), ПА (паронит, армированный сеткой), ПЭ (паронит электролизерный). Первые три марки используют для уплотнения соединений типов: «гладкие» с давлением рабочей среды не более 40 кгс/см2; «шип-паз»; «выступвпадина».

Листы паронита имеют размеры от 0,30,4 до 1,53,0 м, толщина листов от 0,4 до 7,5 мм. Условия применения паронита для различных сред и предельных рабочих параметров среды приведены в ГОСТе.

Пластмассы для прокладок применяются в арматуре, работающей при невысоких температурах. Пластикат полихлорвиниловый по эластичности наиболее близко подходит к резине, используется для арматуры в химическом производстве при сравнительно низком интервале температур (от -15 до + 40 °С). Полиэтилен в качестве прокладок может использоваться при температуре среды от – 60 до + °С. Фторопласт-4 и фторопластовый уплотнительный материал (ФУМ), выпускаемый в виде шнуров различных профилей и сечений, +200 °С. Винипласт как прокладочный материал используется ограниченно.

Металлические материалы. Металлические прокладки изготовляются в виде плоских колец прямоугольного сечения из листового материала или в виде колец фасонного сечения из труб или поковок. Помимо этого изготовляются комбинированные прокладки, состоящие из мягкой сердцевины (асбест или паронита), облицованной листовым материалом из алюминия, малоуглеродистой стали или коррозионностойкой стали Х18Н9 или Х18Н10Т.

Достоинства металлических прокладок: достаточная плотность при высоких давлениях и температурах среды, коэффициент линейного расширения близок к коэффициенту линейного расширения материла фланца и шпилек или болтов, они могут быть использованы несколько раз после ремонта. К недостаткам следует отнести: необходимость создания больших усилий для обеспечения герметичности соединения, относительно низкие упругие свойства.

2. ДЕТАЛИ ТРУБОПРОВОДОВ

При изготовлении и монтаже стальных технологических трубопроводов используют приварные соединительные детали следующего назначения:

· отводы для изменения направления потоков транспортируемого продукта;

· переходы для изменения диаметра трубопровода;

· тройники, тройниковые соединения, крестовины и седловины для устройства ответвлений;

· заглушки для закрытия свободных концов трубопроводов.

Отвод – фасонная деталь трубопровода, предназначенная для изменения направления потока.

Главными геометрическими характеристиками отводов являются:

· угол, на который поворачивает поток; этот угол может принимать значения 20, 30, 45, 60, 90, 110, 130, 150, 180 °;

· отношение радиуса поворота R к внутреннему диаметру трубопровода Dy, которое также нормируется и может принимать значения 1, 1.5, 4, 6, 15, 30.

Отводы (рис. 2.1) по конструкции и способу изготовления подразделяются на:

· бесшовные крутоизогнутые или гнутые;

· крутоизогнутые штампосварные;

· сварные (секционные).

Отводы бесшовные крутоизогнутые (см. рис. 2.1, а) имеют малый радиус изгиба R=(1.01.5) Dy, одинаковую толщину стенки на выпуклой и вогнутой образующих и небольшие габариты. Их применение обеспечивает компактное расположение трубопроводов и оборудования и, как следствие, экономию производственной площади.

Такие отводы изготовляют из бесшовных труб без прямых участков на концах способом горячей протяжки по рогообразному сердечнику на специализированных гидравлических прессах или штамповкой.

Крутоизогнутые отводы можно устанавливать на технологических трубопроводах всех категорий.

Отводы гнутые (см. рис. 2.1, б) изготовляют из бесшовных и сварных труб гибкой на трубогибочных станках в холодном и горячем состоянии. Так как в ходе изготовления таких отводов происходит неизбежное утоньшение стенки, то приходится радиус изгиба делать не менее 2Dy. Гнутые отводы имеют на концах прямые участки, что вызвано технологией гибки.

Гнутые бесшовные отводы можно устанавливать на технологических трубопроводах всех категорий. Однако изготовление гнутых отводов более трудоемко, чем крутоизогнутых, поэтому их рекомендуется применять на трубопроводах, для которых отсутствуют крутоизогнутые отводы (для трубопроводов из легированных сталей, трубопроводов специального назначения), а также когда по проекту требуется большой радиус изгиба.

Отводы сварные (секционные) (см. рис. 2.1, в) изготовляют из бесшовных и электросварных труб путем вырезки отдельных секций и их последующей сборки и сварки. Радиус сварных отводов обычно небольшой (11,5)Dу. Такие отводы рекомендуется применять в трубопроводах с условным давлением до 6,4 МПа и только в тех случаях, когда отсутствуют крутоизогнутые или гнутые отводы.

2.2. ОТВЕТВЛЕНИЯ (ТРОЙНИКИ) НА ТРУБОПРОВОДАХ Ответвление (тройник) – фасонная деталь трубопровода, предназначенная для слияния или деления потока вещества под углом 90 °.

Ответвления (тройники) по конструкции подразделяют на равнопроходные – без уменьшения диаметра ответвления и переходные – с уменьшением диаметра ответвления. Разнообразие конструкций тройников вызвано тем, что прочность участка трубопровода в местах образования отверстия резко снижается.

В зависимости от запаса прочности трубопровода и соотношения диаметра ответвления к диаметру основной магистрали может потребоваться его местное усиление. Для этого применяют специальные укрепляющие элементы.

Наибольшее снижение прочности трубопроводов происходит в равнопроходных сварных ответвлениях, получаемых путем врезки без укрепляющих элементов (рис. 2.2).

Такие соединения применяют обычно на условное давление Pу до 2 МПа. Для более высоких давлений применяют или усиленный корпус, который изготавливают в виде отдельных сварных тройников (рис. 2.3), или укрепляют врезку накладным воротником (рис. 2.4).

Р и с. 2.2. Врезка в трубу без укрепления отверстия Р и с. 2.3. Врезка с усиленным корпусом (сварной тройник) Если требуется более высокая прочность и надёжность тройника, то придётся вообще отказаться от сварного шва и перейти на бесшовное сопряжение горловины ответвления. Это достигается, например, с помощью штамповки (рис. 2.5).

Переход – фасонная деталь трубопровода, предназначенная для расширения или сужения потока.

Переходы по конструкции подразделяют на концентрические и эксцентрические.

Концентрические переходы (рис. 2.6, а) применяют для вертикальных трубопроводов, а эксцентрические (рис. 2.6, б) – для горизонтальных.

а – концентрический переход; б – эксцентрический переход Применение эксцентрических переходов позволяет избежать образования так называемых «мешков» в горизонтальном трубопроводе, облегчает удаление продукта при его отключении.

Рано или поздно любое производство останавливается на плановый ремонт. В это время происходит замена оборудования или его ремонт. Если аппарат отрезают от сети, то образовавшееся отверстие в трубопроводе необходимо заварить для предотвращения попадания перекачиваемого вещества в окружающую среду. Для этого используют заглушки (трубопровод заглушают). Можно также вставлять заглушку между фланцами.

а – заглушка эллиптическая; б – заглушка плоская Заглушка предназначена для отключения потока на длительный срок. На рис. 2.7 показаны эллиптическая и плоская заглушки.

При эксплуатации трубопроводов, техобслуживании и ремонте часто возникает необходимость в разъеме (разъединении) отдельных частей трубопроводов, снятии для замены или ремонта арматуры и контрольно-измерительных приборов. Для этих целей используются разъемные соединения – фланцевые, резьбовые и др.

Фланцы являются наиболее распространенным видом разъемного соединения трубопроводов. Они имеют простую конструкцию, легко собираются и разбираются.

Недостатком фланцевых соединений по сравнению со сварными является:

· более высокая трудоёмкость и стоимость изготовления;

· меньшая надежность в эксплуатации, так как при колебаниях температуры или давления транспортируемого продукта возможна их разгерметизация и как следствие – возникновение В связи с этим использование фланцевых соединений в трубопроводах ограничивают. Их применяют:

· для присоединения к фланцевой арматуре;

· к штуцерам оборудования;

· в трубопроводах, требующих периодической разборки для очистки внутренней полости или замены участков повышенной агрессивности;

· для временных или периодически демонтируемых трубопроводов.

Тип фланцев и конструкции уплотнительных поверхностей принимают в зависимости от рабочих параметров и физикохимических свойств транспортируемого продукта.

Р и с. 2.8. Типы уплотнительных поверхностей фланцев:

а – уплотнительные поверхности без выступов; б – уплотнительные поверхности с соединительным выступом; в – уплотнительные поверхности с выступом и впадиной;

г – уплотнительные поверхности с шипом и пазом; д – уплотнительные поверхности под прокладку овального сечения; е – уплотнительные поверхности под линзовую прокладку С целью обеспечения взаимозаменяемости фланцев всех типов их присоединительные размеры (наружный диаметр, диаметр болтовой окружности, число и диаметры болтовых отверстий) стандартизованы и установлены одинаковыми для одних и тех же условных давлений и проходов независимо от конструкции и материала фланца.

Чтобы создать необходимую герметичность фланцевого соединения трубопровода, между фланцами устанавливают прокладку, а соприкасающимся уплотнительным поверхностям придают специальную форму. В зависимости от давления и свойств транспортируемого продукта предусмотрено шесть типов уплотнительных поверхностей (рис. 2.8).

Существует несколько способов соединения трубы и уплотнительной поверхности фланца. Наиболее часто применяются фланцы плоские приварные (рис. 2.9, а).

а – плоский приварной фланец; б - фланец приварной встык; в – фланец свободный на приварном кольце; г – фланец свободный на отбортованной трубе Фланцы приварные встык (рис. 2.9, б) широко применяются в технологических трубопроводах из углеродистой или легированной стали, особенно для трубопроводов с условным давлением до 20 МПа.

Применение фланцев приварных встык позволяет в 2 раза сократить трудоемкость сварки, так как они присоединяются к трубам одним сварным швом, а плоские приварные – двумя.

Одна из проблем фланцевых соединений – обеспечение центровки (совпадения) болтовых отверстий при монтаже. С целью упрощения монтажа фланцевого соединения применяют свободные фланцы (рис. 2.9, в, г). Их выполняют или на приварном кольце (см.

рис. 2.9, в) или на отбортованной трубе (см. рис. 2.9, г). Но изготовление свободных фланцев более трудоемко, чем фланцев приварных встык, и требует большего расхода металла. Единственное преимущество такого соединения – более простая центровка болтовых отверстий путем поворота фланца вокруг оси.

Р и с. 2.10. Основные типы фланцевых соединений:

а – с плоской прокладкой; б – с уплотнением типа «выступ-впадина»

с плоской прокладкой; в – с уплотнением типа «шип-паз» с плоской прокладкой;

г – фланцы плоские приварные с плоской прокладкой; д – с линзовой прокладкой;

Для сборки фланцевых соединений применяют крепёжные детали – болты, шпильки, гайки и шайбы. Шпильки имеют преимущества перед болтами, так как у шпилек при их затяжке напряжения распределяются более равномерно, а у болтов в местах перехода стержня в головку происходит концентрация напряжений. Кроме того, шпильки можно устанавливать в трудно доступных местах. На рис. 2.10 показаны основные типы фланцевых соединений трубопроводов.

Общеизвестно, что при изменении температуры предметы изменяют свои линейные размеры. Величина этого изменения зависит от длины изделия l, температурного перепада Dt и коэффициента линейного расширения металла. Расчётная формула для определения изменения длины участка трубопровода имеет вид Для снижения напряжений в трубопроводе при тепловом изменении его длины используют метод самокомпенсации. При этом трубопровод проектируют так, чтобы обеспечить свободное перемещение его элементов за счёт изгибов и поворотов трассы. Однако часто самокомпенсация не обеспечивает необходимого снижения нагрузок в трубопроводе. Тогда применяют П-образные компенсаторы (рис.

2.11). Их изготавливают гибкой или сваркой из стальных труб.

Главными геометрическими размерами компенсатора являются вылет Н, длина спинки К и радиус кривизны колен R, который должен быть равен R=4Dн.

3. ТРУБОПРОВОДНАЯ АРМАТУРА

3.1. КЛАССИФИКАЦИЯ ТРУБОПРОВОДНОЙ АРМАТУРЫ

Трубопроводной арматурой называются устройства, монтируемые на трубопроводах, емкостях, котлах, агрегатах и других установках, предназначенные для отключения, распределения, регулирования, смешения или сброса потоков сред.

Конструкторами создано огромное количество различных видов трубопроводной арматуры. Это количество так велико, что трудно провести даже её обычную классификацию. В основу такой классификации можно положить различные признаки: область применения, принцип действия, характер выполняемых функций, способ соединения с трубой и другие.

Здесь мы не будем рассматривать все эти признаки – они подробно описаны в [3]. Наиболее важно, на наш взгляд, знать, что же должна делать та или иная арматура, поэтому рассмотрим лишь классификацию арматуры по функциональному признаку и по способу перекрытия потока.

Итак, по характеру выполняемых функций арматуру подразделяют на следующие основные классы.

1. Запорная арматура, предназначенная для полного перекрытия потока среды в трубопроводе. По количеству применяемых единиц она составляет около 80 % всей арматуры. К запорной относят также пробно-спускную, или контрольно-спускную арматуру, предназначенную для проверки уровня жидкой среды в емкостях, отбора проб, выпуска воздуха из аппаратов, дренажа. Характерным для этой арматуры является малое значение условного диаметра прохода (Dу). Пробно-спускная арматура выпускается в больших количествах.

2. Регулирующая арматура, предназначенная для регулирования расхода рабочей среды с целью поддерживать в заданном диапазоне параметры технологического процесса (температуру, давление, состав материалов, участвующих в процессе). Регулирующую арматуру составляют регулирующие вентили и клапаны, регуляторы давления, регуляторы уровня. К регулирующей относится и дросселирующая арматура, предназначенная для работы при больших перепадах давления.

3. Распределительно-смесительная арматура, используемая для распределения потока среды по определенным направлениям. К ней относятся распределительные клапаны (распределители) и распределительные краны. Распределительно-смесительная арматура используется и для смешения различных сред, например холодной и горячей воды.

4. Предохранительная арматура, служащая для предохранения обслуживаемого объекта от чрезмерного повышения давления путем выпуска избыточного количества рабочей среды. К предохранительной арматуре относятся предохранительные клапаны, импульсные предохранительные устройства, мембранные разрывные устройства, перепускные клапаны.

5. Защитная арматура, предназначенная для защиты оборудования от аварийных изменений параметров рабочей среды. В отличие от предохранительной защитная арматура при возникновении аварийных условий закрывается и отключает обслуживаемый участок, чем предохраняет его от недопустимых воздействий. К защитной арматуре относятся защитные (отсечные) клапаны, обратные клапаны, отключающие клапаны. В качестве защитной арматуры часто применяют различные быстродействующие типы запорной арматуры (клапаны, задвижки, заслонки, краны).

6. Фазоразделительная и массоразделительная арматура, предназначенная для автоматического разделения рабочих сред в зависимости от их фазы и состояния. К ней относятся конденсатоотводчики, воздухоотводчики и маслоотделители.

По способу перекрытия потока среды арматура подразделяется на следующие основные типы.

1. Задвижка – это запорная арматура, у которой затвор имеет форму диска, пластины или клина, перемещается возвратнопоступательно вдоль своей плоскости, перпендикулярно к оси потока среды. Задвижки предназначены для полного перекрытия потока рабочей среды и являются одним из наиболее распространенных типов запорной трубопроводной арматуры, устанавливаемой на технологических и магистральных трубопроводах. Запирающий элемент в задвижках перемещается возвратно-поступательно, перпендикулярно направлению потока рабочей среды и имеет два крайних рабочих положения – «открыто» и «закрыто». Принцип работы задвижки показан на рис. 3.1, а.

2. Клапан2 – арматура, у которой затвор имеет форму тарелки или конуса и перемещается возвратно-поступательно параллельно оси потока среды в седле корпуса арматуры. Клапан, в котором затвор перемещается вручную с помощью винтовой пары (шпиндель и неподвижная ходовая гайка), называется вентилем. Принцип работы клапана показан на рис. 3.1, б, а устройство вентиля иллюстрирует рис. 3.2.

В зависимости от назначения клапаны подразделяются на:

· запорные – предназначены для полного перекрывания потока;

· регулирующие (вентили) – предназначены для пропорционального (аналогового) регулирования расхода;

· предохранительные – предназначены для автоматического сброса среды при повышении давления сверх установленного;

· перепускные – предназначены для поддержания давления среды на требуемом уровне путём перепуска её через ответвления трубопровода;

· отсечные – предназначены для быстрого перекрытия потока;

· дыхательные – предназначены как для выпуска накопившихся в резервуарах паров, так и для впуска в них воздуха при «большом» и «малом» дыхании3.

· обратные – предназначены для предотвращения обратного Среди всего этого многообразия нас в первую очередь интересуют вентили, так как наряду с задвижками они широко применяются на предприятиях нефтепереработки и нефтехимии для управления расходами потоков.

3. Кран – затвор, имеющий форму тела вращения (или части его), поворачивается вокруг своей оси, расположенной перпендикуВ двигателях внутреннего сгорания, насосах, компрессорах клапаном принято называть деталь в виде диска со штоком, скользящим в направляющем отверстии.

Этот клапан предназначен для перекрытия потока среды путём перемещения вдоль оси и посадки в седло «Большое дыхание» в резервуарах связано с подъёмом или опусканием уровня жидкости, а «малое дыхание» вызвано изменением температуры окружающей среды (день и ночь).

лярно к оси потока среды. Принцип работы крана показан на рис. 3.1, в.

Р и с. 3.1. Принцип действия запорной арматуры:

4. Заслонка (затвор поворотный дисковый)4 – затвор, имеющий форму диска, который поворачивается вокруг оси, расположенной в плоскости затвора или параллельно ей. Принцип работы заслонки показан на рис. 3.1, г.

Старое название этого вида арматуры – заслонка, сейчас чаще употребляется термин «затвор дисковый» или «затвор поворотный дисковый».

3.2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ТРУБОПРОВОДНОЙ АРМАТУРЫ

В различные конструкции арматуры входят детали и узлы, имеющие общее назначение и одинаковое название. Рассмотрим их на примере вентиля нормального (см. рис. 3.2).

Корпус — деталь, заменяющая отрезок трубы длиной, равной расстоянию между торцами присоединительных фланцев или патрубков под приварку к трубопроводу. Корпус вместе с крышкой образует герметически изолированную от внешней среды полость, внутри которой перемещается затвор.

Затвор — подвижная часть рабочего органа — деталь или конструктивно объединенная группа деталей, предназначенная для герметичного разъединения двух участков трубопровода путем перекрытия проходного отверстия в проточной части корпуса. Для этой цели в корпусе предусмотрено седло, снабженное уплотнительным кольцом.

Затвором в вентилях служит тарелка клапана (при малых размерах называется золотником), в задвижках – клин или диск, либо два диска одновременно, в кранах — пробка в виде конуса, цилиндра или шара.

Крышка — деталь, используемая для герметичного перекрытия отверстия в корпусе, через которое устанавливается затвор. В управляемой арматуре крышка имеет отверстие под шпиндель.

Шпиндель — деталь, представляющая собой стержень, снабженный резьбой, при помощи которого происходит управление затвором. Шпиндель, не имеющий резьбы, называется штоком.

Ходовая гайка имеет также резьбу и образует со шпинделем резьбовую пару для перемещения затвора и установки его в требуемое крайнее или промежуточное положение (резьба самотормозящая).

Сальник — устройство, предназначенное для герметизации подвижного сопряжения крышки со шпинделем. Свое название сальник получил в связи с тем, что набивка сальника для воды и пара обычно пропитывается жировыми составами. Крышка сальника — деталь, предназначенная для сжатия набивки; она бывает цельной и составной. В последнем случае крышка сальника состоит из нажимной втулки и фланца сальника. Поднабивочная втулка является опорой набивки. Нажимные шпильки, анкерные или откидные болты сальника с гайками служат для затяжки сальниковой набивки. В клапанах и вентилях, предназначенных для опасных или вредных сред, вместо сальника применяется сильфонный5 узел, обеспечивающий абсолютную герметичность подвижного соединения шпинделя с крышкой.

Маховик — деталь (обычно литая), имеющая вид обода со ступицей, которая соединена с ободом спицами. Служит для ручного управления арматурой. Маховики малых размеров изготовляются в виде сплошного диска.

Сильфон – тонкостенная металлическая гофрированная оболочка («гармошка»);

расширяется или сжимается под действием разности давлений внутри и снаружи.

3.3. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ЗАПОРНОЙ АРМАТУРЫ

При изменении величины или направления вектора скорости потока происходит потеря его энергии. Элементы сети, в которых происходит такая потеря, называют местными сопротивлениями6. Так вот, любая арматура обладает гидравлическим сопротивлением, т.е.

вызывает потерю энергии потока. Тут можно выделить два крайних случая.

1. Арматура установлена на трубопроводе с большим расходом потока. В этом случае необходимо, чтобы гидравлическое сопротивление арматуры было минимальным во избежание больших энергетических затрат на транспорт.

2. Арматура установлена в тупиковых участках трубопровода, предназначена для отбора проб, сброса или слива транспортируемой среды и используется периодически. В таких случаях потеря энергии не имеет принципиального значения.

Для характеристики величина потери энергии в арматуре вводится коэффициент гидравлического сопротивления. Чем больше его значение, тем при прочих равных условиях больше потеря напора (давления). Ориентировочные значения коэффициента для различных типов запорной арматуры приведены в табл. 3.1.

Из приведённых в табл. 3.1 значений коэффициентов гидравлического сопротивления следует, что в трубопроводах, по которым поток движется постоянно и с большой скоростью, целесообразно устанавливать в качестве запорной арматуры задвижки, краны или заслонки. На тупиковых трубопроводах, поток в которых движется редко и его скорость не имеет принципиального значения, лучше устанавливать вентили.

В табл. 3.2 приведена сравнительная характеристика различных типов запорных устройств.

Подробно см. раздел гидравлики в курсе «Процессы и аппараты химических производств»

Значения коэффициента гидравлического (местного) сопротивления для Задвижка Вентиль Характеристика различных типов запорных устройств Задвижка большое время открывания и закрывания. Малое гидравлическое сопротивление Большая длина. Малый ход затвора, малое время открываКлапан ния и закрывания. Большое гидравлическое сопротивление Кран Большой крутящий момент, необходимый для срабатывания. Малое гидравлическое сопротивление Малые габариты и масса. Малое время открывания и закрывания. Проход частично перекрыт затвором при отЗаслонка крытом положении. Незначительное гидравлическое сопротивление

3.4. ТИПОВЫЕ КОНСТРУКЦИИ ЗАПОРНОЙ АРМАТУРЫ

Вентили. Напомним, что вентиль – это разновидность клапана, предназначенная для ручного управления расходом потока. В качестве затвора в вентилях используется пара «диск – седло». Диск закреплён на шпинделе, который движется возвратно-поступательно по ходовой резьбе перпендикулярно плоскости седла (см. рис. 3.1, б, 3.2).

Применение ходовой резьбы, обладающей свойством самоторможения, позволяет оставлять затвор в любом положении с уверенностью, что это положение сохранится и не будет самопроизвольно изменяться под действием давления среды.

Вентиль отличается простотой конструкции и обеспечивает высокую плотность в закрытом положении. Промышленностью выпускаются вентили с размером до Dy=200 мм. Но наиболее целесообразна установка вентилей на трубопроводах малого диаметра. По мере увеличения условного диаметра трубопровода, начиная с Dу=50 мм, вентили уступают место задвижкам.

Это объясняется тем, что при больших условных диаметрах прохода и высоких давлениях усилие на шпинделе возрастает настолько, что вентиль становится трудноуправляемым.

Положительным качеством вентиля является сравнительно небольшой ход затвора, необходимый для полного открытия вентиля.

Для этой цели тарелку вентиля достаточно поднять на диаметра отверстия в седле, тогда как для открытия задвижки необходимо клин или диск переместить на величину, равную диаметру отверстия, т.е. в четыре раза больше, поэтому вентиль имеет значительно меньшую габаритную высоту, чем задвижка того же диаметра, но длина его (расстояние между наружными торцами проходных фланцев вентиля) больше, чем в задвижке, причем с увеличением диаметра прохода эта разница увеличивается.

Конструкторами арматуры создано большое количество типов вентилей, предназначенных для работы в конкретных условиях. На рис. 3.3 сделана попытка показать классификацию используемых в промышленности вентилей.

По месту расположения на трубопроводе различают вентили проходные (рис. 3.4, а) и угловые (рис. 3.4, б).

Проходные вентили устанавливаются на горизонтальном или вертикальном участке трубопровода, угловые – на месте поворота трубопровода. Угловые вентили имеют меньшее гидравлическое сопротивление, однако область их применения ограничена поворотными участками трубопровода.

И проходной, и угловой вентили вызывают резкое изменение траектории потока, что приводит к значительным потерям давления в них. С целью уменьшения гидравлического сопротивления сконструированы прямоточные вентили (рис. 3.5). Их шпиндель расположен под углом к оси прохода потока. Но за уменьшение сопротивления приходится заплатить увеличением хода шпинделя: для полного открывания вентиля этот ход у прямоточного вентиля значительно больше, чем у нормального.

Р и с. 3.3. Классификация запорных вентилей а – вентиль запорный проходной; б – вентиль запорный угловой Как правило, вентили конструируются и устанавливаются так, чтобы движение среды происходило «под клапаном», т.е. навстречу движения тарелки клапана при закрывании (см. рис. 3.1, а и 3.2). Обратное движение среды, т.е. «на клапан» (см. рис. 3.1 б), осуществляется редко и применяется главным образом в вентилях большого диаметра, для неответственных установок, с целью разгрузить шпиндель от больших продольных усилий сжатия.

Для присоединения к трубопроводам вентили снабжаются либо фланцем, либо муфтами с внутренней резьбой. Для энергетических установок вентили ввариваются в трубопровод, для чего они снабжаются соответствующими патрубками.

Вентили чаще всего приводятся в действие вручную, с помощью маховика. В последнее время все шире стали применять вентили с электрическим, электромагнитным, пневматическим и гидравлическим приводом. На рис. 3.6 показан конструкция вентиля с электроприводом.

Задвижки. Напомним, что задвижка – это арматура с затвором в виде листа, диска или клина, который перемещается вдоль уплотнительных поверхностей корпуса перпендикулярно оси потока.

Задвижки имеют большее распространение и применяются обычно для трубопроводов от Dу=50 мм до Dу=2000 мм. Положительными качествами задвижки являются сравнительная простота конструкции и малое, по сравнению с вентилями, гидравлическое сопротивление, поэтому в нефтехимической и нефтеперерабатывающей промышленности в качестве запорно-регулирующего устройства, как правило, используются задвижки. Недостатком задвижек является их относительно большая высота, поэтому в тех случаях, когда затвор должен быть, как правило, закрыт, а открывание производится редко,



Похожие работы:

«Государственное казенное учреждение Новосибирской области Новосибирский институт мониторинга и развития образования Результаты мониторинга качества начального общего, основного общего, среднего (полного) общего образования в общеобразовательных учреждениях Новосибирской области (I этап 2013 г.) Новосибирск 2013 1 ББК 74.24 Р 34 Р 34 Результаты мониторинга качества начального общего, основного общего, среднего (полного) общего образования в общеобразовательных учреждениях Новосибирской области...»

«План издания учебно-методической литературы на 2003 г. № Кафедра Авторы Наименование работы Специаль- Объем, Тираж, Срок Срок Источник п/п ность стр. экз. предостав выпуска финансирова ления в тиража ния РИО Металлур- Зальцман Э.С. Тепловые процессы в слитках и февраль Июнь ЦФ - 50% 1 1101, 80 100 гии изложницах. К - 50% Учебное пособие БЖД и Э Кудинова А.В., Безопасность в чрезвычайных Июнь Сентябрь ЦФ - 50% 2 3301 80 Вольшонок И.З. ситуациях. Раздел: Пожаробезопасность. К - 50% Курс лекций...»

«ОАО НТЦ Промышленная безопасность СТРОИТЕЛЬНЫЙ КОНТРОЛЬ МЕТОДИЧЕСКОЕ ПОСОБИЕ Под общей редакцией д.т.н., профессора В.С. Котельникова МОСКВА-2010 г. 2 Ответственные составители: В.С. Котельников, Н.П.Четверик Методическое пособие разработано для учебных заведений, саморегулируемых организаций в области инженерных изысканий, архитектурно-строительного проектирования, строительства, реконструкции, капитального ремонта объектов капитального строительства, студентов, преподавателей, слушателей и...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени С.М. Кирова Кафедра лесной таксации, лесоустройства и геоинформационных систем ТАКСАЦИЯ ЛЕСА Методические указания по выполнению курсовой работы для подготовки бакалавров по направлению 250100 Лесное дело всех форм обучения САНКТ-ПЕТЕРБУРГ 2013 Рассмотрены и рекомендованы...»

«Министерство образования и науки Российской Федерации Владивостокский государственный университет экономики и сервиса _ С.Г. КАЛИНИЧЕНКО О.А. КОРОТИНА ПСИХОФИЗИОЛОГИЯ Учебное пособие Владивосток Издательство ВГУЭС 2010 1 ББК 65.56 К 17 Рецензенты: Н.Ю. Матвеева, д-р мед. наук, профессор кафедры гистологии, цитологии и эмбриологии Владивостокского государственного медицинского университета; Е.А. Могилвкин, канд. психол. наук, профессор кафедры философии и психологии Владивостокского...»

«СИБИРСКИЙ УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ ПОВЕДЕНИЕ ПОТРЕБИТЕЛЕЙ Программа, методические указания и задания контрольной и самостоятельной работы для студентов заочной формы обучения специальностей 032401.65 Реклама, 080111.65 Маркетинг Новосибирск 2007 Кафедра маркетинга Поведение потребителей : программа, методические указания и задания контрольной и самостоятельной работы / [сост. ст. препод. Е.И. Конева]. – Новосибирск : СибУПК, 2007. – 32 с. Рецензент И.И. Золотарев, канд. техн....»

«Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники Кафедра философии Философия в исторической динамике культуры Методическое пособие для семинарских занятий студентов дневного отделения всех специальностей БГУИР Под редакцией зав. кафедрой Г. И. Малыхиной Минск БГУИР 2010 УДК 1(091)(076) ББК 87.3я7 Ф56 С о с т а в и т е л и: Г. И. Малыхина, И. Ф. Габрусь, М. Р. Дисько-Шуман, Т. А. Пушкина, В. В. Шепетюк, И....»

«Г. Ф. ЧЕКМАРЁВ ПРОБЛЕМЫ ТЕОРИИ ГОСУДАРСТВА И ПРАВА Учебно-методическое пособие по изучению дисциплины Для студентов юридического факультета очного, очно-заочного и заочного отделений. Специальность: Юриспруденция Москва – 2011 2 Р е ц е н з е н т: кандидат юридических наук И. Л. Лёзов, заведующий кафедрой государственно-правовых дисциплин ИНЭП; Чекмарёв, Геннадий Федорович. Проблемы теории государства и права. Учебно-методическое пособие по изучению дисциплины. — М.: Институт экономики и...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Р.Х. РАМАЗАНОВА, А.А. ЖАППАРОВА КРАТКИЙ КУРС ПОЧВОВЕДЕНИЮ С ОСНОВАМИ ГЕОЛОГИИ АЛМАТЫ ББК 40.4 я 7 Ж 33 Авторы: Рамазанова Р.Х– к.с.х.н. доцент кафедры почвоведения, агрохимии и экологии КазНАУ. Жаппарова А.А – к.с.х.н. доцент кафедры почвоведения, агрохимии и экологии КазНАУ. Рецензенты: Учебно - методическое пособие Конспект по почвоведению с основами геологии одобрены и рекомендованы для...»

«Приложение 7А: Рабочая программа дисциплины по выбору Когнитивная лингвистика ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПЯТИГОРСКИЙ ГОСУДАРСТВЕННЫЙ ЛИНГВИСТИЧЕСКИЙ УНИВЕРСИТЕТ Утверждаю Проректор по научной работе и развитию интеллектуального потенциала университета профессор З.А. Заврумов _2013 г. Аспирантура по специальности 10.02.04 Германские языки отрасль науки: 10.00.00 Филологические науки Кафедра теории и практики перевода...»

«Федеральное агентство по образованию ГОУ ВПО Алтайский государственный университет УТВЕРЖДАЮ декан исторического факультета Демчик Е.В. _ 2010 г. РАБОЧАЯ ПРОГРАММА по дисциплине Введение в историю и теорию менеджмента для специальности 031502.65 Музеология факультет исторический кафедра археологии, этнографии и музеологии курс 4 семестр 8 лекции 22 (час.) Зачет в 8 семестре Всего часов 22 Самостоятельная работа 22 (час.) Итого часов трудозатрат на дисциплину (для студента) по ГОС 44 (час.) 2010...»

«МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Г. МУРМАНСКА СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 21 Рассмотрено Согласовано Утверждено на заседании методического на Методическом совете школы приказ № _ объединения учителей протокол от 01_сентября2012 г. естественно - математического № 1_от 30.08.12 цикла протокол №1_от_30.08.12_ Руководитель МО: Зам. директора по УВР: Директор школы _ /Кирияк Л. П./ _ /Булакова С. В./ /Чемеркина И. И./ РАБОЧАЯ ПРОГРАММА основного общего образования по...»

«Министерство образования Российской Федерации Государственное образовательное учреждение Высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ Кафедра технологии приборостроения МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА ПО ОРГАНИЗАЦИИ СОВРЕМЕННОГО ПРОИЗВОДСТВА И РАЗРАБОТКЕ ТЕХНОЛОГИЧЕСКОЙ ПОДГОТОВКИ ПРОИЗВОДСТВА ( РЕИНЖЕНЕРИНГ БИЗНЕС-ПРОЦЕССА) Рекомендовано УМО по образованию в области приборостроения и...»

«Министерство образования и науки Российской Федерации ФГБОУ ВПО Уральский государственный горный университет В. Н. Полузадов ЭЛЕКТРИЧЕСКИЕ МАШИНЫ Учебное пособие по дисциплине и контрольные задания для студентов специализаций 130 400 – Электрификация и автоматизация горного производства и Горные машины и оборудование ( специалисты ) и 140 400 - Электропривод и автоматика ( бакалавры ) Екатеринбург 2012 0 Министерство образования и науки Российской Федерации ФГБОУ ВПО Уральский государственный...»

«Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Уральский государственный горный университет Н.Г. Валиев, А. М. Вандышев, В.В. Потапов УЧЕБНАЯ ПРАКТИКА Учебно-методическое пособие по учебной практике для студентов специальности 130400.65 – Горное дело специализаций Подземная разработка пластовых месторождений Подземная разработка рудных месторождений, Маркшейдерское дело, Шахтное и подземное...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ШУЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра теории и методики физической культуры и спорта УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине специализации МЕТОДИКА ФИЗИЧЕСКОГО ВОСПИТАНИЯ ДОШКОЛЬНИКОВ для специальности 050720.65 - Физическая культура со специализацией Физическое воспитание в дошкольных учреждениях Составитель:...»

«АДМИНИСТРАЦИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ БАРЫШСКИЙ РАЙОН ПО СТА НОВЛЕНИЕ № г. Барыш Об утверждении регламента сопровождения инвестиционных проектов по принципу одного окна на территории муниципального образования Барышский район Во исполнение методических рекомендаций по реализации инвестиционной политики Ульяновской области для администраций муниципальных образований Ульяновской области, утверждённых Губернатором – Председателем Правительства Ульяновской области С.И. Морозовым от 27.11.2013...»

«Н.П. ПЕЧНИКОВ Издательство ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО Тамбовский государственный технический университет Н.П. ПЕЧНИКОВ ПРАВООХРАНИТЕЛЬНЫЕ ОРГАНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Утверждено Ученым советом университета в качестве учебного пособия Издание второе, переработанное и дополненное Тамбов Издательство ТГТУ 2006 ББК Х311я73-5 П317 Рецензенты: Кандидат юридических наук, подполковник милиции, начальник кафедры криминалистики и уголовного процесса Тамбовского...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Утвержден приказом Министерства образования и науки Российской Федерации от 200 г. № Регистрационный номер ФЕДЕРАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ по направлению подготовки 88 м - Машиностроение Квалификация (степень) Магистр ОБЩИЕ ПОЛОЖЕНИЯ Направление подготовки Машиностроение утверждено приказом Министерства образования и науки Российской Федерации от №_ Федеральный государственный...»

«Приложение к приказу МБОУ СОШ №1 г. Белева Тульской области от 2012г. № Правила пользования библиотекой/медиатекой школы Общие положения. I. Настоящие Правила пользования библиотекой/медиатекой 1. разработаны в соответствии с Положением о школьной библиотеке/медиатеке, рекомендациями по составлению примерных правил пользования библиотекой ОУ (письмо МО РФ от 14.01.98. № 06-51-2 ин/27/06). Правила пользования библиотекой/медиатекой – документ, 2. фиксирующий взаимоотношения пользователя с...»










 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.