WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

«Тамбовский государственный технический университет»

Элементы линейной алгебры

Учебно-методические рекомендации для студентов 1 курса заочного

отделения

Тамбов 2010

УДК 512.64

ББК В143я73-2

У73

Утверждено Редакционно-издательским советом университета Р е ц е н з е н т: д.ф.-м.н. А.И. Булгаков С о с т а в и т е л ь: А.И. Урусов У73 Элементы линейной алгебры. Учебно-методические рекомендации для студентов 1 курса заочного отделения. / Сост. А. И. Урусов. Тамбов: Изд-во Тамб. Гос. Техн. Ун-та, 2010. 27 с.

Кратко изложены основные понятия теории матриц и определителей.

Приведены три метода решения систем линейных алгебраических уравнений.

Основные понятия и методы сопроваждаются примерами, поясняющими эти понятия и методы. Предназначены для студентов 1 курса технических специальностей заочного отделения.

©ГОУ ВПО "Тамбовский государственный технический университет" (ТГТУ), Сводка обозначений и соглашений.

R – множество вещественных чисел.

A B – из утверждения A следует утверждение B.

def A = B – выражение B является определением A.

Матрицы обозначаются большими латинскими буквами, а элементы этих матриц – соответствующими строчными буквами с индексами.

O – нулевая матрица.

I – единичная матрица.

AT – матрица, транспонированная по отношению к матрице A.

A 1 – матрица, обратная к матрице A.

det A – определитель матрицы A.

Матрицы.

Далее рассматриваем только вещественные числа, т.е. элементы множества R.

Числовой матрицей размерности m n называется Определение.

прямоугольная таблица, состоящая из m -строк и n -столбцов, на пересечении которых стоят числа, называемые элементами матрицы.

Матрицы принято обозначать большими латинскими буквами, а элементы – соответствующими строчными буквами с индексами. Первый индекс указывает номер строки, а второй – номер столбца в котором стоит элемент.

Если нужно указать размерность матрицы, то после обозначения матрицы через тире будем указывать эту размерность.

Примеры.

A = ( aij ) m n – Матрица A размерности m n, aij элементы этой матрицы, i – номер строки, в которой стоит элемент aij ; j – номер столбца, в котором стоит элемент aij.

3 0 2 1 9. Это матрица размерности 2 3, b11 = 3, b12 = 0, B = (bij ) = b13 = 7, b21 = 2, b22 = 1, b23 = 9.

Определение. Две матрицы A = ( aij ) (размерности m n ) и B = (bij ) (размерности m1 n1 ) называются равными, если они имеют одинаковую размерность и равны их элементы, стоящие на одинаковых местах, т.е. если:

a ) m = m1, n = n1 ; b ) Равенство aij = bij справедливо для всех i, j таких, что i = 1, m; j = 1, n.

Определение. Если A = ( aij ) – матрица размерности m n и m = n, то матрица называется квадратной, в противном случае матрица называется прямоугольной.

Определение. Матрица, все элементы которой равны нулю, называется нулевой.

Эту матрицу далее будем обозначать буквой O.

Определение. Матрица AT называется транспонированной по отношению к матрице A, если строки матрицы A являются столбцами матрицы AT с соответствующими номерами, т.е. первая строка матрицы A является первым столбцом матрицы AT, вторая строка матрицы A является вторым столбцом матрицы AT, и т.д.

Определение. Количество строк (которое равно количеству столбцов) квадратной матрицы называется порядком этой матрицы.

Определение. Главной диагональю квадратной матрицы называется диагональ, на которой расположены элементы aii. Другая диагональ матрицы называется побочной диагональю.

Определение. Квадратная матрица называется диагональной, если aij = для всех i, j таких, что i j.

Определение. Квадратная матрица, у которой элементы, стоящие на главной диагонали равны 1, а остальные равны нулю, называется единичной матрицей.

Далее единичную матрицу будем обозначать буквой I.

Определение. Матрица A называется верхней треугольной матрицей, если aij = 0 для всех i, j таких, что i > j.

Определение. Матрица A называется нижней треугольной матрицей, если aij = 0 для всех i, j таких, что i < j.

Здесь A – прямоугольная матрица размерности 3 2 ; B – квадратная матрица порядка 2; C – диагональная матрица; D – верхняя треугольная матрица; F – нижняя треугольная матрица; I – единичная матрица.

Пусть далее матрицы A = ( aij ) и B = (bij ) - матрицы размерности m n, а - некоторое число.

Определение.

вычисляются по формуле d ij = aij, называется произведением матрицы A на число и обозначается A. Таким образом все элементы матрицы A получаются умножением соответствующих элементов матрицы A на число.

Аналогично определяется матрица A : A = ( aij ).

Определение.

матрице A и обозначается A.

Определение. Матрица D = (d ij ) размерности m n элементы которой вычисляются по формуле d ij = aij + bij, называется суммой матриц A и B и обозначается A + B.

Разность матриц A и B обозначается как A B и определяется формулой Пусть, - числа, A, B, C - матрицы размерности m n. Тогда, используя свойства числовых операций и вышеприведенные определения, легко доказать справедливость следующих равенств:



предполагается, что все рассматриваемые операции определены.

Пусть матрицы A = ( aij ) и B = (bij ) - матрицы размерности m n и n k соответственно. Т.е. количество столбцов первой матрицы равно количеству строк второй.

Определение. Матрица D = (d ij ) размерности m k, элементы которой определяются равенством называется произведением матриц A и B обозначается как A B или как Справедливы следующие равенства (предполагаем, что соответствующие операции выполнимы): A I = A, I A = A, ( AB)C = A(BC ), ( A + B )C = AC + BC, Обратим внимание на следующее обстоятельство: если оба произведения AB и BA существуют, то вообще говоря ABBA.

матрицы BA - 3 3, то ABBA.

Вычислим матрицу D = A B 2 C. Сначала (в соответствии с определением произведения матриц) вычисляем A B.

Теперь можно вычислить D :

Определение. Квадратная матрица A порядка n называется обратимой, если существует такая матрица D порядка n что D A = I. В этом случае матрица D называется обратной к матрице A.

Матрица, обратная к матрице A обозначается A 1. Справедливы следующие утверждения.

Теорема. Если матрица A обратима, то обратима и матрица A 1 и Теорема. Если матрица A обратима, то A 1 A = A A 1 = I.

Каждой квадратной матрице по определенному закону можно поставить в соответствии число, которое называется определителем этой матрицы.

Если A = ( aij ) матрица размерности n n, то определитель этой матрицы обозначается либо det A, либо Дадим определение определителя для матриц различной размерности.

Чтобы запомнить последнюю формулу можно воспользоваться правилом треугольников: слагаемые, заключенные в первую пару круглых скобок, получены путем перемножения элементов, стоящих на главной диагонали, (первое слагаемое), а текже перемножением элементов, стоящих в вершинах треугольников, основания которых параллельны главной диагонали (два других слагаемых). Аналогично получены слагаемые, заключенные во вторую пару круглых скобок: первое слагаемое - произведение элементов, стоящих на побочной диагонали, а два других слагаемых - произведение элементов, стоящих в вершинах треугольников, основания которых параллельны побочной диагонали.

При некоторой тренировке вычисление определителя матрицы третьего порядка производится достаточно быстро.

Можно воспользоваться также правилом Саррюса (приписыванием двух первых столбцов), которое ясно из нижеследующего рисунка :

Определение. Пусть A = ( aij ) - матрица размерности n n. Минором M ij элемента aij (минором M ij соответствующим элементу aij ) называется определитель матрицы, полученной из матрицы A вычеркиванием i -ой строки и j -ого столбца. Алгебраическим дополнением Aij элемента aij (алгебраическим дополнением Aij соответствующим элементу aij ) называется величина ( 1) M ij, т.е. Aij = ( 1) M ij.

Теперь дадим определение определителя для матрицы произвольной размерности n n, где n 2 :

Определение. det A a 1sA1s.

(Эта формула называется формулой вычисления определителя разложением по элементам 1-ой строки).

Легко показать, что это определение не противоречит предыдущим определениям.

Далее строку или столбец будем называть «ряд».

1. При транспонировании, т.е. при замене каждой строки определителя столбцом с тем же номером, определитель не меняется.

detA = detA.

2. При перестановке двух строк или двух столбцов определитель лишь меняет знак.

3. Если все элементы некоторого ряда равны нулю, то и определитель равен нулю.

4. Если элементы какого-либо ряда умножить на одно и то же число, то и определитель умножится на это число.

Обратите внимание на следующее: при умножении матрицы на число надо все элементы этой матрицы умножить на данное число, если же умножаем определитель на число, то на это число надо умножить элементы какого-либо одного ряда!

5. Если элементы двух параллельных рядов пропорциональны, то определитель равен нулю.

Пример.

6. Если каждый элемент k-ого ряда определителя представляет собой сумму двух слагаемых, то этот определитель может быть представлен в виде суммы двух определителей, первый из которых имеет в k-ом ряду первые из упомянутых слагаемых, а второй имеет в k-ом ряду вторые из упомянутых слагаемых, в остальных рядах эти определители имеют те же элементы, что и исходный определитель.

Пример.

7. Если элементы какого-либо ряда умножить на одно и то же число и прибавить к соответствующим элементам другого параллельного ряда, то определитель не изменится.

определитель получен из первого умножением элементов первого столбца на - и прибавлением к соответствующим элементам второго столбца, т.е.

8. Сумма произведений элементов некоторого ряда на алгабраические дополнения этих элементов равна определителю. Т.е. справедливы равенства (в скобках приведено название этих формул):

det A= aisAis (вычисление определителя разложением по элементам is= ой строки).

det A= a sjA sj (вычисление определителя разложением по элементам js= ого столбца).

Пример. Вычислим определитель некоторой матрицы разложением по элементам первой строки.

Таким же образом можно вычислять определители разложением по любому столбцу или по любой строке.

9. Сумма произведений элементов некоторого ряда на алгабраические дополнения соответствующих элементов другого параллельного ряда равна нулю.

Вычисление определителя получением нулей в какой-либо строке или Умножая элементы строк или столбцов на определенные множители, а затем складывая строки или столбцы, можно добиться того, что все элементы некоторого ряда, за исключением одного, будут равны нулю, а тогда вычисление исходного определителя сводится к вычислению одного определителя меньшего порядка. Таким образом, систематическое применение сначала седьмого свойства определителей, а затем восьмого свойства определителей позволяет свести вычисление определителя n -ого порядка к вычислению одного определителя (n 1) -ого порядка, вычисление которого в свою очередь можно свести к вычислению определителя (n 2) -ого порядка и т.д.

Договоримся о следующих обозначениях. Если элементы какого-либо ряда будем умножать на число, то это число будем записывать в круглых скобках напротив этого ряда, а стрелочкой, направленной к другому параллельному ряду, будем показывать к соответствующим элементам какого ряда будем прибавлять полученные произведения.

В первом примере элементы 1-ого столбца умножаем на 3 и прибавляем к соответствующим элементам 3-его столбца, а во втором - элементы 1-ой строки умножаем на -2 и прибавляем к соответствующим элементам 3-ей строки.

Из 7-го свойства определителей следует, что если элементы i-ого ряда умножить на одно и то же число и прибавить к соответствующим элементам jого параллельного ряда, затем элементы i-ого ряда умножить на одно и то же число и прибавить к соответствующим элементам k-ого параллельного ряда, то определитель не изменится (предполагаем, что числа i,j,k попарно не равны друг другу). Т.е. элементы какого-то выбранного ряда можно умножать на различные множители и прибавлять к соответствующим элементам других параллельных рядов, при этом величина определителя не изменится. Например, далее показано что элементы первого столбца умножили на 3 и прибавили к соответствующим элементам второго столбца, затем вновь элементы первого столбца умножили на 2 и прибавили к соответствующим элементам третьего столбца, после чего применили формулу вычисления определителя разложением по элементам второй строки.

Вычислим определитель этой же матрицы получением нулей во втором столбце и последующим разложением по элементам этого столбца.

=(умножим элементы третьей строки на -1 и прибавим к соответствующим элементам первой строки, затем умножим элементы третьей строки на -3 и прибавим к соответствующим элементам второй строки)= соответствующим элементам третьей строки)= элементам второго столбца)= В общем случае алгоритм получения нулей в j-ом столбце выглядит следующим образом: в j-ом столбце выбираем какой-нибудь элемент, который отличен от нуля. Пусть это будет akj, т.е. akj 0. Тогда все элемнты строки, в которой находится выбранный элемент (в нашем случае это k-ая строка) умножаем на ( a sj /akj ) и прибавляем к соответствующим элементам s-ой строки ( s k ), в результате в s-ой строке в j-ом столбце получаем нуль.

Аналогично выглядит алгорит получения нулей в строке.

Примеры. Вычислим определитель некоторой матрицы получением нулей в первом столбце и разложением по элементам этого столбца:

Теперь вычислим определитель этой же матрицы получением нулей во второй строке и разложением по элементам этой строки:

Эти примеры показывают, что при использовании вышеописанного алгоритма получения нулей в строке или столбце (даже если все элементы исходной матрицы были целыми числами) будет получена матрица, некоторые элементы которой будут дробными числами. В случае когда элементы исходной матрицы целые числа можно изменить алгоритм получения нулей так чтобы иметь дело только с целыми числами. Пусть требуется получить нули в каком-либо ряде. Тогда сначала надо в этом ряде получить 1 или -1, а затем применить описанный выше алгоритм.

Пример. Вычислим определитель предыдущей матрицы получением нулей в первом столбце и разложением по элементам этого столбца, при этом все преобразования будем проводить так, чтобы иметь дело только с целыми числами. Для этого сначала получим, например, -1 в этом столбце:

Теперь получаем нули в первом столбце и применяем формулу вычисления определителя разложением по элементам этого столбца:

Справедливы следующие утверждения.

Теорема. Пусть A квадратная матрица порядка n. Для того, чтобы существовала обратная матрица A 1 необходимо и достаточно, чтобы det A 0.

Теорема. Пусть A квадратная матрица порядка n и det A 0. Тогда Т.е. столбцами матрицы det A A 1 являются алгебраические дополнения к элементам соответствующей строки матрицы A.

Покажем как вычисляется обратная матрица на следующем примере. Пусть следовательно A 1 существует. Находим алгебраические дополнения:

Следовательно, Действительно, Пусть A = ( aij ) - матрица размерности m n. Выделим в этой матрице произвольные k строк и k столбцов. Элементы, стоящие на пересечении выделенных строк и столбцов образуют квадратную матрицу порядка k, определитель которой будем называть минором k -ого порядка. Очевидно, что матрица A обладает минорами любого пордка от 1 до наименьшего из чисел m и n. Если матрица A не является нулевой, то среди всех отличных от нуля миноров этой матрицы найдется хотя бы один, порядок которого будет наибольшим.

Определение. Рангом ненулевой матрицы называется наибольший из порядков отличных от нуля миноров данной матрицы. Ранг нулевой матрицы равен нулю по определению.

Ранг матрицы A обозначается через r ( A). Очевидно, что выполнены неравенства 0r Aminm, n.

Пусть B = 3 0 0 3, так как все миноры второго порядка этой матрицы равны нулю, а, например, b11 =20, то есть имеется ненулевой минор первого порядка, следовательно r (B ) = 1.

Системы линейных алгебраических уравнений Система уравнений вида называется системой m линейных алгебраических уравнений с n неизвестными.

Если m < n, то система называется недоопределенной.

Если m > n, то система называется переопределенной.

Если d1 = d 2 =... = d m = 0, то система (1) называется однородной.

Числа aij (i = 1; m, j = 1; n ) называются коэффициентами системы, а матрица A = ( aij ) - m n называется основной матрицей системы (1).

матрицей системы (1).

Числа d i, i = 1; m называются свободными членами системы, а матрица D =... m 1 - матрицей свободных членов системы.

x1,..., xn - неизвестные.

Решить систему это значит найти все такие наборы чисел z1,..., zn, подстановка которых во все уравнения системы вместо соответствующих неизвестных x1,..., xn превращает эти уравнения в верные равенства.

Система (1) может иметь единственное решение, бесчисленное множество решений и не иметь ни одного решения.

Однородная система уравнений всегда имеет хотя бы одно решение.

Если X = n 1, то систему уравнений (1) можно записать в матричном виде следующим образом:

Таким образом уравнение (2) представляет собой матричную запись системы (1).

Теорема. (Теорема Кронекера-Капелли) Система линейных алгебраических уравнений имеет решение тогда и только тогда, когда ранг расширенной матрицы равен рангу основной матрицы.

Пусть m = n и A 1 существует, тогда умножаем обе части равенства (2) слева на A 1 :

Полученная формула X = A 1 D позволяет найти решение системы.

Пример. Решим следующую систему линейных алгебраических уравнений матричным методом Систему (3) запишем в матричном виде:

Вычислим определитель основной матрицы системы (3) методом треугольников:

Так как det A=1820, то существует матрица A 1, следовательно можно применить матричный метод.

Рассмотрим систему уравнений (1), в которой количество уравнений равно количеству неизвестных, т.е. m = n, и пусть det A0.

Каждому неизвестному xi ставим в соответствие матрицу Axi, которая получается из матрицы A заменой i -ого столбца матрицы A столбцом свободных членов системы (1), т.е.

Тогда, используя свойства определителей, можно показать, что Пример. Решим систему (4) методом Крамера. Так как det A=1820, то для решения системы уравнений можно применить метод Крамера. Для этого вначале вычисляем три вспомогательных определителя:

Теперь вычисляем неизвестные:

Метод Гаусса решения систем линейных алгебраических уравнений.

Метод Гаусса заключается в последовательном исключении неизвестных и состоит из двух частей. Первую часть будем назывть прямым ходом метода Гаусса. Здесь, с помощью алгебраических преобразований, получают систему, равносильную исходной, основная матрица которой является верхней треугольной матрицей. Вторую часть будем называть обратным ходом метода Гаусса. На этом этапе уже вычисляются значения неизвестных величин.

Рассмотрим одну из модификаций метода Гаусса на примере решения следующей системы линейных уравнений:

Записываем расширенную матрицу системы (5), т.е. матрицу, первый столбец которой образуют коэффициенты системы (5) при первом неизвестном (в рассматриваемом примере - коэффициенты при x1 ), второй столбец - это коэффициенты системы (5) при втором неизвестном (в рассматриваемом примере - коэффициенты при x2 ), и т.д...., последний столбец - это столбец свободных членов системы (5):

Над строками расширенной матрицы можно производить только следующие действия: разрешается 1) изменять порядок строк (это соответствует изменению порядка уравнений), 2) умножать все элементы строки на любое отличное от нуля число (это соответствует умножению уравнения на это число) и 3) прибавлять к элементам любой строки расширенной матрицы соответствующие элементы любой другой строки, предварительно умноженные на какое-нибудь число (это соответствует прибавлению к одному уравнению системы другого уравнения, умноженного на это число). С помощью таких преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной. Над столбцами расширенной матрицы выполнять какие-либо действия запрещено.

Отметим, что имеет смысл все элементы строки расширенной матрицы делить на наибольший общий делитель (НОД) элементов этой строки.

Выделим каким-либо способом (подчеркнём или выделим полужирным шрифтом) какую-нибудь строку матрицы B = (bij ), в которой элемент bi10, (т.е. коэффициент при первом неизвестном (при x1 ) отличен от нуля). Заметим, что путем изменения порядка строк, если это необходимо, всегда можно добиться выполнения неравенства b11 0. Т.к. в рассматриваемом случае b11 =20, то выделим полужирным шрифтом (или подчеркнём) первую строку:

Теперь с помощью эквивалентных преобразований будем изменять матрицу (6) таким образом, чтобы у новой матрицы выделенная строка осталась без изменения а в остальных строках в первом столбце новой матрицы были бы нули.

Чтобы получить нули надо проделать следующее:

1. Элементы выделенной строки матрицы (6) умножим на b21 = 5 и прибавим к соответствующим элементам второй строки, предварительно умноженным на b11 = 2. Таким образом получим новую вторую строку.

2. Элементы выделенной строки матрицы (6) умножим на b31 = 3 и прибавим к соответствующим элементам третьей строки, предварительно умноженным на b11 = 2. Таким образом получим новую третью строку.

Описанные выше действия коротко будем записывать так:

Итак, новая матрица получается из (6) следующим образом:

Таким образом, получили следующую матрицу:

Вторую и третью строки полученной матрицы поделим на 2:

В матрице C рассматриваем только не выделенные строки (т.е. 2 и строки). Из оставшихся строк выбираем такую, в которой элемент ci2 0. Так как c 22=110, то выделим вторую строку и преобразуем матрицу C таким образом, чтобы первые две строки остались без изменения, а в третьей строке первые два элемента новой матрицы стали бы равными нулю. Для этого все элементы второй строки умножим на c32 = 17 и прибавим к соответствующим элементам третьей строки, предварительно умноженным на c22 = 11. Таким образом получим новую третью строку.

Описанные выше действия коротко запишем так:

Таким образом, получим следующую матрицу:

Матрица (8) является расширенной матрицей следующей системы уравнений:

Основная матрица системы (9) является верхней треугольной матрицей, поэтому цель первой части метода Гаусса достигнута, а следовательно, прямой ход метода Гаусса закончен.

Теперь решаем полученную систему (9) последовательно "снизу вверх", начиная с последнего уравнения системы:

Подставляем полученное значение x3 в предыдущее уравнение системы (9) и находим x2 :

Найденные значения x2 и x3 подставляем в первое уравнение системы (9) и находим x1 :

Все неизвестные найдены, тем самым обратный ход метода Гаусса закончен.

Замечание. Отметим следующее обстоятельство, присущее данной модификации метода Гаусса. После того как в первом столбце расширенной матрицы получены нули (т.е. все элементы этого столбца, кроме одного, равны нулю), первая строка матрицы потребуется только на втором этапе метода Гаусса, поэтому её можно далее опустить. После этого получится новая система уравнений, содержащяя на одно неизвестное и на одно уравнение меньше, чем первоначальная система (первый столбец расширенной матрицы этой системы состоит из нулей). Теперь аналогично предыдущему получаем нули во втором столбце новой матрицы. После того как во втором столбце расширенной матрицы получены нули (т.е. все элементы этого столбца, кроме одного, равны нулю), первая строка этой матрицы потребуется только на втором этапе метода Гаусса, поэтому её можно далее опустить. И т.д.

Покажем, как будет выглядеть решение системы (5) при применении системы записи, вытекающей из этого замечания.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 1 на Делим элементы строки 2 на Из равенства 81 x3 = 81 следует, что x3 = 1.

В процессе выполнения прямого хода метода Гаусса может получиться строка имеющая вид (0 0... 0 | d ), где число d 0. Это означает, что исходная система уравнений не имеет решения.

Приведем пример системы, которая не имеет решения.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 3 на Делим элементы строки 1 на Делим элементы строки 2 на Так как в процессе прямого хода метода Гаусса получили строку ( 0... 0 | 1 ), то система уравнений не имеет решения.

Ответ: Система не имеет решения.

Если в процессе выполнения обратного хода метода Гаусса после подстановки найденных ранее неизвестных будет получено уравнение с несколькими неизвестными, то все неизвестные кроме одного надо объявить параметрами, выразить оставшееся неизвестное через параметры и продолжить выполнение обратного хода метода Гаусса. В этом случае система уравнений имеет бесчисленное множество решений, которые и будут найдены во время обратного хода.

Далее приведем пример системы уравнений, которая имеет бесчисленное множество решений.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 1 на Делим элементы строки 1 на Делим элементы строки 2 на Так как в процессе прямого хода метода Гаусса получили матрицу вида:

то прямой ход закончен и начинаем обратный ход, причем начинаем его с последней выделенной (подчеркнутой) строки, в которой есть хотя бы один не нулевой элемент.

Так как в равенстве 1 x3 + 4 x4 = 3 имеются два неизвестных, то одно из этих неизвестных объявим параметром. Пусть, например, x4 = t --- параметр.

Тогда из предыдущего равенства следует, что x3 = 4t + 3.

Далее находим:

Метод Гаусса можно применять для решения любой системы линейных алгебраических уравнений, в частности, для решения переопределеных систем (т.е. систем уравнений, в которых число неизвестных меньше числа уравнений) и систем уравнений, в которых число неизвестных больше числа уравнений.

Пример решения переопределенной системы уравнений.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 1 на Делим элементы строки 2 на Делим элементы строки 3 на Так как в процессе прямого хода метода Гаусса получили матрицу вида:

то прямой ход закончен и начинаем обратный ход, причем начинаем его с последней выделенной (подчеркнутой) строки, в которой есть хотя бы один не нулевой элемент.

Так как в равенстве 1 x2 1 x3 = 4 имеются два неизвестных, то одно из этих неизвестных объявим параметром. Пусть, например, x3 = t --- параметр.

Тогда из предыдущего равенства следует, что x2 = t 4.

Далее находим:

Приведём пример решения переопределенной системы уравнений.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 2 на Делим элементы строки 1 на Делим элементы строки 2 на Так как в процессе прямого хода метода Гаусса получили матрицу вида:

то прямой ход закончен и начинаем обратный ход, причем начинаем его с последней выделенной (подчеркнутой) строки, в которой есть хотя бы один не нулевой элемент.

Из равенства 1 x3 = 1 следует, что x3 = 1.

В заключение приведем пример решения системы уравнений, в которой количество неизвестных больше числа уравнений.

Задача. Найти все решения следующей системы уравнений:

Решение:

Делим элементы строки 1 на Делим элементы строки 2 на Так как в процессе прямого хода метода Гаусса получили матрицу вида:

то прямой ход закончен и начинаем обратный ход.

Так как в равенстве 37 x3 111 x4 = 148 имеются два неизвестных, то одно из этих неизвестных объявим параметром. Пусть, например, x4 = t --параметр. Тогда из предыдущего равенства следует, что x3 = 3t + 4.

Далее находим:

Литература.

Беклемишев,Д.В. Курс аналитической геометрии и линейной алгебры / Д.В.Беклемишев. – М.: Высшая школа, 1998. – 320с.

Бугров,Я.С. Высшая математика. Элементы линейной алгебры и аналитической геометрии / Я.С.Бугров, С.М.Никольский. – М.: Наука, 1980. – 176с.

Курош,А.Г. Курс высшей алгебры / А.Г.Курош. – М.: Наука, 1968. – 432с.

Мальцев,А.И. Основы линейной алгебры / А.И.Мальцев. – М.: Наука, 1970.

– 400с.

Рублев, А.Н. Линейная алгебра / А.Н.Рублев. – М.: Высшая школа, 1968. – 384с.

Тышкевич,Р.И. Линейная алгебра и аналитическая геометрия / Р.И.Тышкевич, А.С.Феденко. – Минск.: Вышэйшая школа, 1968. – 504с.

Шнейдер,В.Е. Краткий курс высшей математики. Том 1 / В.Е.Шнейдер, А.И.Слуцкий, А.С.Шумов. – М.: Высшая школа, 1978. – 384с.





Похожие работы:

«МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ИТОГОВОЙ АТТЕСТАЦИИ ВЫПУСКНИКОВ АНГЛИЙСКОГО ОТДЕЛЕНИЯ Барнаул - 2006 3 Печатается по решению учёного совета БГПУ Методические рекомендации по подготовке к итоговой аттестации выпускников английского отделения - Барнаул: Изд-во БГПУ, 2006. - с. Составители: Т.Г. Пшёнкина, доцент кафедры английской филологии ЛИИН БГПУ, Н.В Шевцова, доцент кафедры второго иностранного языка ЛИИН БГПУ, Н.А. Карманова, доцент кафедры лингводидактики ЛИИН БГПУ, Э.Г Вольтер,...»

«Методические ориентиры Составители Андреева В. Н., Садкина В. И. КлассифиКаЦия типоВ уроКоВ по дидаКтичесКой Цели Сегодня мы предлагаем Вам вспомнить классику: повторить одну из наиболее распространённых типологий уроков, сравнить способы организации учебной деятельности, актуализировать знания об особенностях каждого из этапов урока. Надеемся, что предложенная форма подачи материала — чёткая, лаконичная и систематизированная — поможет Вам при написании и подготовке собственных конспектов...»

«ФИЛИАЛ НОУ ВПО МОСКОВСКИЙ ПСИХОЛОГО-СОЦАЛЬНЫЙ УНИВЕРСИТЕТ В ГОРОДЕ БАРНАУЛЕ АЛТАЙСКОГО КРАЯ УТВЕРЖДЕН Советом филиала НОУ ВПО Московский психологосоциальный университет в г. Барнауле Алтайского края 24 марта 2014г. Протокол № 07 ОТЧЕТ по результатам самообследования филиал НОУ ВПО Московский психолого-социальный университет в г. Барнауле Алтайского края Барнаул 2014 СОДЕРЖАНИЕ Введение. 1. Организационно-правовое обеспечение образовательной деятельности 2. Система управления образовательным...»

«Г.М. Егорова, Н.В. Гусева, Н.Г. Остроухова ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА НА ПРЕДПРИЯТИЯХ ОТРАСЛИ (ТЭК) Методические рекомендации по выполнению курсового проекта 2012 УДК 658.5 (075.5) Организация производства на предприятиях отрасли (ТЭК): методические рекомендации по выполнению курсового проекта/Сост. Г.М. Егорова, Н.В. Гусева, Н.Г. Остроухова. – Самара: 2012. – 68 с. Методические рекомендации содержат основные требования к структуре, содержанию и оформлению курсового проекта по дисциплине...»

«УДК 338.45 ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ СТРАТЕГИИ ЗАКУПОЧНОЙ ДЕЯТЕЛЬНОСТИ МЕТАЛЛУРГИЧЕСКОЙ КОМПАНИИ З.М. Магрупова, д.э.н., Ю.В. Кудряшова, Д.Ф. Иванов, аспирант Череповецкий государственный университет В статье обоснована необходимость изменения стратегии закупочной деятельности металлургической компании путем внедрения категорийного подхода к управлению закупками, представлены основные этапы его реализации, рассмотрены методы осуществления стратегии закупочной деятельности в...»

«Л.В. ВОРОБЬЕВА СЕМЕЙНОЕ ПРАВО РОССИЙСКОЙ ФЕДЕРАЦИИ • ИЗДАТЕЛЬСТВО ТГТУ • УДК 347.6(075) ББК Х404.5я73 В751 Рецензенты: Кандидат юридических наук, доцент Н.Е. Садохина Кандидат юридических наук, доцент Е.Е. Орлова Воробьева, Л.В. В751 Семейное право Российской Федерации : учебное пособие / Л.В. Воробьева. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2009. – 84 с. – 150 экз. – ISBN 978-5-8265-0850-3. Представлены лекции, тематика семинарских занятий с указанием основных нормативных правовых актов,...»

«Учебное пособие Второе издание, стереотипное УДК 35(075.8) ББК 66.033.141.3я73 А68 Анненков В.И. А68 Государственная служба: организация управленческой деятельности : учебное пособие / В.И. Анненков, Н.Н. Барчан, А.В. Моисеев, Б.И. Кисе­ лёв. — 2е изд., стер. — М. : КНОРУС, 2011. — 256 с. ISBN 9785406008942 Рассмотрены понятие, сущность и основы организации управленческой дея­ тельности, ее формы и методы, структуры. Определены методы организации и технологические основы управленческой...»

«ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ Кафедра философии КОРЯВКО Г.Е., ФИЛАТОВ Т.В. ЛОГИКА УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ, ОБУЧАЮЩИХСЯ ПО СПЕЦИАЛЬНОСТИ 030602 – СВЯЗИ С ОБЩЕСТВЕННОСТЬЮ Самара 2009 2 ББК 87.4 К 70 Корявко Г.Е., Филатов Т.В. Логика: учебное пособие для студентов, обучающихся по специальности 030602 – Связи с общественностью. – Самара, 2009. –с. В учебном пособии...»

«Международный консорциум Электронный университет Московский государственный университет экономики, статистики и информатики Евразийский открытый институт Г.Н. Ронова Л.А. Ронова Финансовый менеджмент Учебно-методический комплекс Москва 2008 1 УДК 336 ББК -93*65.2/4-65.9 Р 715 Ронова Г.Н., Ронова Л.А. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ: Учебнометодический комплекс. – М.: Изд. центр ЕАОИ. 2008. – 170 с. Рекомендовано Учебно-методическим объединением по образованию в области антикризисного управления в...»

«ГОУ ВПО РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ РОСЗДРАВА РОСТОВСКОЕ ОБЛАСТНОЕ ОБЩЕСТВО НЕФРОЛОГОВ ПРОТОКОЛЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ ПОЧЕК У ВЗРОСЛЫХ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВРАЧЕЙ (издание второе, переработанное и дополненное) РОСТОВ-НА-ДОНУ 2010 Подготовлены Ростовским областным обществом нефрологов и Ростовским государственным медицинским университетом в качестве стандартов диагностики и лечения в нефрологии. Утверждены Ростовским областным обществом нефрологов...»

«МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ГИГИЕНЫ ДЕТЕЙ И ПОДРОСТКОВ Г.В. Лавриненко, Е.О. Гузик ПРОФЕССИОНАЛЬНАЯ ОРИЕНТАЦИЯ И ВРАЧЕБНО-ПРОФЕССИОНАЛЬНАЯ КОНСУЛЬТАЦИЯ ПОДРОСТКОВ Методические рекомендации Минск 2005 УДК 613.6-053.5 (075.8) ББК 51.24 я 73 Л 13 Утверждено Научно-методическим советом университета в качестве методических рекомендаций 14.12.2004 г., протокол № 4 А в т о р ы : Г.В. Лавриненко, Е.О. Гузик Р е ц е н з е н...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ А.С. ПУШКИНА ЮРИДИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЭКОНОМИКИ И УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по оформлению текстовых материалов контрольных, курсовых, дипломных работ, отчетов по практикам по специальностям Государственное управление и экономика, Бизнес-администрирование Брест 2011 Настоящие методические указания устанавливают обязательные единые требования к оформлению текстовых...»

«ОБЯЗАТЕЛЬНАЯ ДИСЦИПЛИНА 14.01.20 – анестезиология и реаниматология (Медицинские науки) Цикл дисциплин (по учебному плану) ОД.А.03 – Специальные дисциплины отрасли науки и научной специальности Курс 2 Трудоемкость в ЗЕТ 2 Трудоемкость в часах 72 Количество аудиторных часов на 30 дисциплину В том числе: Лекции (часов) 12 Практические занятия (часов) 18 Количество часов на 42 самостоятельную работу Рабочая программа дисциплины анестезиология и реаниматология (ОД.А.03) составлена на основании...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ ЮРИДИЧЕСКАЯ АКАДЕМИЯ имени О.Е.КУТАФИНА КАФЕДРА КОНСТИТУЦИОННОГО (ГОСУДАРСТВЕННОГО) ПРАВА ЗАРУБЕЖНЫХ СТРАН Учебно-методический комплекс по курсу КОНСТИТУЦИОННОЕ (ГОСУДАРСТВЕННОЕ) ПРАВО ЗАРУБЕЖНЫХ СТРАН для всех форм обучения на 2011/12, 2012/13, 2013/14 учебные годы МОСКВА 20 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ...»

«Министерство образования и науки Российской Федерации Негосударственное образовательное учреждение высшего профессионального образования Томский экономико-юридический институт УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине Гражданский процесс для направления подготовки 030900.62 Юриспруденция Томск - 2012 1 СОДЕРЖАНИЕ Раздел 1. Рабочая программа С.6 Раздел 1.1. Организационно-методический С.6 С.6 1.1.1. Выписка из государственного образовательного стандарта С.6 1.1.2. Цели и задачи учебной...»

«В.В. Коротаев, Г.С. Мельников, С.В. Михеев ОСНОВЫ ТЕПЛОВИДЕНИЯ Санкт-Петербург 2012 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ b В.В. Коротаев, Г.С. Мельников, С.В. Михеев, В.М. Самков, Ю.И. Солдатов ОСНОВЫ ТЕПЛОВИДЕНИЯ Учебное пособие Санкт-Петербург 2012 В. В. Коротаев, Г.С. Мельников, С. В. Михеев, В. М. Самков, Ю. И. Солдатов. Основы тепловидения – СПб: НИУ ИТМО,2012 – 122...»

«ОГЛАВЛЕНИЕ 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ – ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ПСИХОЛОГИЮ, ЕЕ МЕСТО В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ – ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ПСИХОЛОГИЮ. 3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1. Лекционный курс 4.2. Практические занятия 4.3. Самостоятельная внеаудиторная работа студентов (СВРС) 5. МАТРИЦА РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ И ФОРМИРУЕМЫХ В НЕЙ ОБЩЕКУЛЬТУРНЫХ И...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА МЕЖДУНАРОДНЫХ ЭКОНОМИЧЕСКИХ ОТНОШЕНИЙ И ИНВЕСТИЦИЙ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по преддипломной практике и выполнению дипломной работы для студентов специальности Э.01.08.00. Мировая экономика и международные экономические отношения дневной формы обучения Брест 2001 УДК Методические рекомендации разработаны в соответствии с Инструкцией по подготовке, оформлению и представлению к защите дипломных...»

«Ректор Национального технического университета Харьковский политехнический институт, Лауреат Государственной премии Украины, Заслуженный работник высшей школы Украинской ССР, доктор технических наук, профессор ТОВАЖНЯНСКИЙ ЛЕОНИД ЛЕОНИДОВИЧ (К 70-летию со дня рождения) Биобиблиографический указатель Содержание Предисловие Основные даты жизнедеятельности Л.Л. Товажнянского. Библиография трудов Л.Л. Товажнянского. Методические пособия. Книги. Монографии. Статьи. Авторские свидетельства. Патенты,...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ БУРЯТИЯ ГБОУ СПО КОЛЛЕДЖ ТРАДИЦИОННЫХ ИСКУССТВ НАРОДОВ ЗАБАЙКАЛЬЯ Ж.Н.Будаева ПРАКТИЧЕСКАЯ РАБОТА ИСТОРИЯ специальность 072601 Декоративно-прикладное искусство и народные промыслы (по видам) (Методические указания) с.Иволгинск 2014 Методические указания рассмотрены на методобъединении преподавателей общеобразовательных предметов, утверждены на научно-методическом совете колледжа и рекомендованы к использованию. В сборнике представлены практические...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.