WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

И.Ю. Денисюк, М.И. Фокина, Ю.Э. Бурункова

Нанокомпозиты – новые материалы фотоники

Учебное пособие

Санкт-Петербург

2007

Министерство образования Российской федерации

Санкт-Петербургский Государственный университет

информационных технологий, механики и оптики

Нанокомпозиты

Учебное пособие Санкт-Петербург 2007 И. Ю. Денисюк, М.И. Фокина, Ю.Э. Бурункова СПб; СПбГИТМО (ТУ), 2006, - с.

Полимеры и нанокомпозиты В пособии представлены основные сведения о современных оптических полимерах, технологии их переработки, применению в интегрально-оптических устройствах и активным электрооптическим элементах на их основе.

Одобрено на заседании Совета факультета «Фотоники и оптоинформатики» СанктПетербургского государственного университета информационных технологий, механики и оптики 2007 (протокол № ).

© И.Ю. Денисюк, М.И. Фокина, Ю.Э.

Бурункова © Санкт-Петербургский государственный университет информационных технологий, механики и оптики, 2007.

Введение Мир объектов, объединенных определением "нано", настолько широк, что трудно найти такие области естественных наук и процессов, которые не были бы так или иначе связаны с ними. Отметим наиболее часто цитируемые в литературе применительно лишь к масштабным, размерным феноменам термины: нанохимия, нанофизика, нанофазные, наногибридные, нанокристаллические и нанопористые материалы, наноструктуры, нанокристаллы, структуры с нанофазной геометрией и наноразмерной архитектурой, наноструктурированные органические сетки, дизайн на молекулярном и наноразмерном уровнях и, наконец, нанотехнология. Особое место в наноразмерной химии принадлежит частицам, участвующим в различных биологических процессах, к которым следует отнести такие супрамолекулярные функциональные системы, как ферменты, липосомы, клетки. Приложение подобных материалов в химии - новые реакции, каталитические и сенсорные системы, получение соединений и нанокомпозитов с новым комплексом ранее неизвестных свойств; в физике создание материалов для электроники, структуры с нанометровой геометрией для записи информации, преобразование излучений различной энергии; в биологии и медицине - новые лекарственные средства и механизмы их транспортировки. Все более отчетливо просматривается связь между наукой о материалах и наукой о жизни, схема 1.1 иллюстрирует размерные соотношения между ними.

Вполне реальны утверждения, что наука и технология XXI века будут иметь наноразмерный характер, поскольку во многих областях традиционных технологий достигнуты пределы миниатюризации отдельных элементов (например, плотности расположения на поверхности кристаллов в микроэлектронике), что стимулирует поиск альтернативных путей.

Например, производство современных интегральных схем базируется на так называемой планарной технологии, основанной на сочетании процессов нанолитографии (формирование наноразмерных поверхностных рисунков в виде линий и точек) и травления. Для уменьшения их размеров уже используют новые приемы литографии (в частности, электронно- и ионнолучевая, ренгеновская), позволяющие достигнуть размеров элементов оптоэлектронных интегральных схем < 100 нм, а также новые подходы к сухому травлению - плазмохимический, реактивный, ионный и др.

Нанофазное материаловедение отличается от традиционного не только созданием принципиально новых материалов, но и необходимостью конструирования приборного оснащения для работы с такими материалами.

Из наиболее перспективных областей нанотехнологии металлических материалов и изделий из них в первую очередь выделим микро- и нанометаллургию, лазерную обработку поверхности материалов, у которых толщина слоев, подвергшихся воздействию, ограничена размерами в несколько сотен и десятков нанометров; всевозможные виды нанокерамики и др.

10-4 10-5 10-6 10-7 10-8 10-9 10-10,м Переход к таким высоким технологиям требует создания принципиально новых конструкционных материалов, функциональные параметры которых определяются свойствами формируемых микрообластей, а также процессами, протекающими на атомном, молекулярном уровнях, в монослоях и нанообъемах.

Дизайн на таком уровне может быть осуществлен лишь с участием кластерных молекул и наноразмерных частиц (НРЧ) - ультрамалых частиц металлов нанометрового размера (параметр которых хотя бы в одном измерении составляет не более 100 нм) как наиболее вероятных и перспективных элементов молекулярной электроники.

Схема 1.2 иллюстрирует основные этапы на пути превращения одиночного атома в блочный металл - через кластерные, нано-размерные и коллоидные частицы ("активные металлы" по терминологии ):

Размер Атом Кластер 1нм Наночастица Коллоид Блочный Другими словами, при движении вдоль оси размеров от единичного атома в нульвалентном состоянии (М) до металлической частицы, обладающей всеми свойствами компактного металла, система проходит через ряд промежуточных стадий:

главными из которых являются кластерообразование и формирование металлических НРЧ.

Термин "металлический" отражает лишь состав, а не природу этих частиц, промежуточных между металлом и его отдельными атомами;

"кластеры - это эмбрионы металлов". Разумеется, такая схема лишь демонстрирует простое механическое наращивание числа атомов металла, принимающих участие в построении j-меров. Процесс коллективизации электронов в образующемся зародыше происходит самопроизвольно и, по сути, подобен образованию молекул из отдельных атомов. Реальная картина зарождения и роста частиц новой фазы как на микро-, так и на макроуровне очень сложна и должна отражать единый физико-химический процесс (некоторые стадии могут иметь и цепную природу), включающий ряд взаимосвязанных стадий, наиболее существенные из которых - реакции химического превращения (источник "строительного материала"), массоперенос (диффузионная подвижность и транспорт конденсирующихся частиц в зону сборки), сорбционные процессы, проявляющиеся в адсорбции/десорбции и в реакциях частиц на поверхности зародышей, их кристаллизации и т.д. Многие из этих стадий гетерогенны, протекают пространственно неоднородно, особенно на поверхности или в объеме твердой фазы.

Термодинамический подход позволяет выявить условия возникновения зародышей новой фазы, оценить их критический размер и найти факторы управления ими. Для интерпретации экспериментальных результатов и определения функции распределения НРЧ по размерам используют кинетические уравнения, описывающие скорости и механизмы формирования (коагуляции) и распада у-ядерных структур по разным каналам и базирующиеся на макроскопическом приближении известных кинетических моделей. Часто при этом используют и статистический подход, а также численное моделирование.

В терминологическом плане наиболее часто используются обозначения "ультрамалые частицы", "нанокристаллы" для наноразмерных металлических частиц, диаметр которых заключен в диапазоне между 25 и 50 нм, а также "коллоидные кристаллиты", "субколлоидные частицы". Размеры нанокристаллов полупроводников в полимерных матрицах: верхняя граница их диапазона является условием, обеспечивающим оптическую однородность композиции (отсутствие рассеяния средой при размерах частиц меньше четверти длины волны света), а нижняя определяется самим существованием кристаллических частиц (граница перехода от кристаллической фазы к квазимолекулярной). Реже используют термины "молекулярные агрегации" и "кристаллические кластеры".

Принято различать два типа НРЧ: частицы упорядоченного строения, имеющие, как правило, до 38-40 атомов, а часто и более (например, Аu55, Pt серия палладиевых кластеров, состоящих из 500-2000 атомов), называемые кластерами, их размер 1-5-10 нм, и собственно НРЧ с диаметром 1050 нм, состоящие из 103-106 атомов.

Физические исследования показывают, что частицы с таким размерным диапазоном проявляют т.н. размерные эффекты, если параметры их структурных элементов хотя бы по одному направлению соизмеримы (или меньше) с корреляционным радиусом того или иного химического или физического явления (например, с длиной свободного пробега электронов, фононов, длиной когерентности в сверхпроводнике, размерами магнитного домена или зародыша новой фазы и др.). Они характеризуются квантоворазмерными эффектами, то есть классические физические законы заменяются правилами квантовой механики. Удельная теплота, восприимчивость, проводимость и другие фундаментальные характеристики металла теряются, по крайней мере, при низких температурах, когда частицы достигают размеров наношкалы. Кроме того, их специфика - немонотонная зависимость свойств, таких как температура плавления, давление, необходимое для перестройки кристаллической структуры, ионизационные потенциалы, энергии связи, отнесенные к одному атому металла, изменение межатомных расстояний, оптических и магнитных свойств, электронной проводимости, электрон-фононных взаимодействий и других от величины кластера - числа атомов N в нем. Именно этим определяется существование так называемых "магических чисел" - дискретного набора чисел атомов N, соответствующих энергетически наиболее выгодным кластерам: 1, 13, 55, 147, 309, 561, 923..., их вычисляют по формуле N = (10n3 + 15n2 + 11n + 3).

Гибридные наноматериалы широко распространены и в живой природе. Взаимодействия металлсодержащих частиц с биополимерами (белками, нуклеиновыми кислотами, полисахаридами) и клетками играют важнейшую роль в ферментативном катализе, геобиотехнологии и биогидрометаллургии, в процессах биоминерализации. Совершенство процессов образования таких материалов, принципы саморегуляции вызывают наряду с восхищением исследователей стремление к биоподражанию - моделированию, созданию синтетических аналогов, приближающихся по своим характеристикам к живым организмам. В особой мере это относится к многоядерным металлоферментам, процессам биосорбции и биоминерализации. Так, микробы трудятся как старатели, извлекая НРЧ золота из руды по технологии биовыщелачивания, а затем укрупняют их до видимых глазом золотин. Кластеры и НРЧ - модельные объекты многих биомиметических концепций, составляющих предмет исследования биомиметики, бионеорганической химии. Уже достигнуты существенные успехи в моделировании полиядерных негемовых комплексов железа (компонентов метанмонооксигеназы), в конструировании фотосистем выделения кислорода из воды по типу ферментативных, в биохимической азотфиксации, в использовании НРЧ в диагностике патогенных и генетических болезней за счет их агрегации в присутствии комплементарных олигонуклеотидов, в создании металлобелковых препаратов и др.

Области применения кластерных и наночастиц, заключенных в полимерную матрицу, практически неограниченны. Перечислим лишь основные из уже реализованных.

По величине НРЧ сопоставимы с боровским радиусом экситонов в полупроводниках, что определяет их оптические, люминесцентные и редокссвойства. Опять же, поскольку собственный размер наночастиц сопоставим с размерами молекул, то это определяет специфику кинетики химических процессов на их поверхности. Внимание исследователей сосредоточено на изучении граничных областей НРЧ - полимер. Именно границы между фазами ответственны за протекание таких важных процессов, как адсорбция и катализ.

Большинство исследований НРЧ носит междисциплинарный характер, поскольку требует приложения методологии целого ряда научных областей, таких как физикохимия НРЧ, материаловедение, биотехнология, нанотехнология. Наука о нанокомпозитах возникла в последние годы (термин появился в 1970 г.) на стыке различных областей знаний и почти сразу же стала давать практические результаты. Ее интенсивное развитие, обогащение новыми представлениями и междисциплинарность до последнего времени не давали возможность провести хотя бы предварительный обзор достигнутого.

Одним ключевых факторов, ответственным за нанотехнологическую революцию, явилось усовершенствование старых и создание новых инструментальных средств для определения параметров наноструктур. Многие такие системы пока весьма громоздки, дороги (стоимостью порядка миллиона долларов) и часто требуют для работы на них высококвалифицированных специалистов. Рассмотрим принципы действия некоторых приборов и методов, а так же их возможности для определения положений атомов объеме, изучения наномасштабных структур на поверхности и изучения свойств наноструктур.

Структура Атомные структуры Для понимания наноматериалов надо в первую очередь знать их атомарную структуру, то есть определить типы атомов, являющихся строительными блоками, и их взаимное расположение в пространстве.

Большинство наноструктур имеет кристаллический характер, т.е. тысячи составляющих их атомов упорядочены в систему, называемую кристаллической решеткой. Решетку можно описать, задав положения атомов в элементарной ячейке, так что всю решетку можно построить путем многократного повторения этой элементарной ячейки в пространстве. На рис.

1.1 показаны схемы элементарных ячеек для четырех кристаллических систем в двумерном случае. Параметры а, b, для этих систем приведены в первых четырех строках Таблицы 1.1. Существует 17 возможных типов структур, называемых пространственными группами, что означает наличие 17-ти способов расположения атомов в двумерной элементарной ячейке. Их распределение по четырем кристаллическим системам показано в четвертом столбце таблицы. Наиболее важен случай самой плотной упаковки одинаковых атомов на поверхности, что соответствует гексагональной системе, показанной на рис.1.2а.

Рис.1.1. Пять решеток Браве для двумерного случая с выделенной элементарной ячейкой:

квадратная (а), простая прямоугольная (б), центрированная прямоугольная (в), Рис. 1.2. Плотная упаковка сфер на плоскости: а – для монослоя, б – для двухслойной структуры. Сферы второго слоя нарисованы меньшими для наглядности. На рисунке (б) октаэдрическая позиция отмечена буквой Х, тетраэдрическая – буквой Т.

В трехмерном случае ситуация намного сложнее. Здесь присутствуют три постоянные решетки а, b, с и три угла между ними а,, (а между b и с и т.д.). В трех измерениях существует семь кристаллических систем с 230-ю пространственными группами, распределенными по системам как показано в столбце 4 Таблицы 1.1. Целью анализа кристаллической структуры является определение симметрии, пространственной группы, постоянных решетки и углов, а также определение положений атомов в элементарной ячейке.

Рис. 3. Элементарные ячейки трех кубических решеток Браве: простой (а), объемноцентрированной (ОЦК) (б) и гранецентрированной (ГЦК) (в).

Для нанокристаллов важны определенные частные случаи кристаллических структур, относящиеся к простой кубической (ПК), объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК) элементарной ячейке, как показано на рис. 1.3. Другое важное структурное упорядочивание образуется при наложении плоских гексагональных слоев, обеспечивающих наибольшую плотность атомов в моноатомном слое, или наилучшую послойную упаковку идентичных сфер способами, показанными на рис.1.2б. Если третий слой расположен непосредственно над первым, четвертый над вторым и т.д. в последовательности типа А-Б-А-Б-..., то получается гексагональная плотноупакованная структура (ГПУ). С другой стороны, если такое наложение происходит размещением третьего слоя в третьей позиции, а четвертого над первым и т.д. в последовательности А-Б-В-А-Б-В-А-..., то получается ГЦК структура. Последний тип в нанокристаллах встречается более часто.

Некоторые свойства нанообъектов зависят от их кристаллической структуры, в то время как другие - такие как каталитическая активность и адсорбционные характеристики - от типа открытой поверхности.

Эпитаксиальные пленки ГЦК или ГПУ кристаллов обычно растут с вышеуказанным двумерным плотноупакованным расположением атомов.

Кристаллы с ГЦК решеткой, как правило, имеют ту же двумерную плотноупакованную структуру на открытых поверхностях.

Таблица 1.1. Кристаллические системы и количество связанных с ними пространственных групп в двух и трех измерениях (всего существует 17 двумерных и 270 трехмерных групп).



Похожие работы:

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановская государственная текстильная академия (ИГТА) Кафедра материаловедения и товароведения ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К МАТЕРИАЛАМ ДЛЯ ОДЕЖДЫ Методические указания к лабораторным работам по курсам Материалы для одежды и конфекционирование, Конфекционирование материалов для одежды для студентов специальностей 280800 Технология швейных изделий, 280900 Конструирование швейных...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА МЕНЕДЖМЕНТА И МАРКЕТИНГА МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению курсовой работы по дисциплине: УПРАВЛЕНИЕ И ОРГАНИЗАЦИЯ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА для студентов специальности Э 02.01.05 Коммерческая деятельность в строительстве Брест 2001 УДК У725 (07) Методические указания разработаны в соответствии с образовательным стандартом, действующими учебными планами, утвержденными...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ГОРНО-АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра безопасности жизнедеятельности, анатомии и физиологии ИММУНОЛОГИЯ Учебно-методический комплекс Для студентов, обучающихся по специальности 020201 Биология Горно-Алтайск РИО Горно-Алтайского госуниверситета 2008 Печатается по решению методического совета Горно-Алтайского государственного университета УДК 577.083.3 ББК Авторский...»

«Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНЫХ ПРОЕКТОВ Методические указания для студентов специальностей 1-48 01 02 Химическая технология производства и переработки органических веществ, 1-48 01 05 Химическая технология переработки древесины, 1-48 02 01 Биотехнология заочной формы обучения Минск 2008 УДК 336.45(075.8) ББК 65.9(2)304.17я73 Э 40 Рассмотрены и рекомендованы к изданию редакционноиздательским советом университета...»

«Методические указания для выполнения контрольной работы по дисциплине Экономика студентов гр. 12ЗМЭ31-2, 12ЗМГ31 Контрольные работы выполняются студентами с целью контроля за успеваемостью по курсу Экономическая теория. Каждая контрольная работа содержит два теоретических вопроса и задачу. В процессе освещения теоретического задания необходимо проработать лекционный материал, рекомендуемую литературу, а также законодательные акты и нормативный материал. Контрольная работа должна показать, что...»

«Колесников Борис Андреевич преподаватель спецдисциплин Улыбашев Анатолий Владимирович преподаватель спецдисциплин Воронин Александр Иванович Мастер производственного обучения Сыроватский Константин Борисович преподаватель спецдисциплин Государственное бюджетное образовательное учреждение среднего профессионального образования Курсавский региональный колледж Интеграл Ставропольский край, Андроповский район, село Курсавка МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ ДЛЯ СТУДЕНТОВ...»

«Министерство образования и науки Российской Федерации Южно-Уральский государственный университет Кафедра общей и экспериментальной физики 53(07) Г951 С.Ю. Гуревич ФИЗИКА ДЛЯ БАКАЛАВРОВ Учебное пособие для самостоятельной работы студентов Часть II Челябинск Издательский центр ЮУрГУ 2013 УДК 53(07) Г951 Одобрено учебно-методической комиссией физического факультета Рецензенты: д.ф-м.н., проф. Бучельников В.Д., д.ф-м.н., проф. Песин Л.А. Гуревич, С.Ю. Физика для бакалавров: учебное пособие для...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра конструирования и технологии радиоэлектронных средств МЕТОДИЧЕСКИЕ УКАЗАНИЯ к изучению дисциплины Материалы и компоненты электроники для студентов заочной формы обучения специальности 36 04 02з Промышленная электроника радиотехнического факультета Разработали: зав.кафедрой КиТРЭС, к.т.н., доц. Грозберг Ю.Г, ст.преподаватель кафедры КиТРЭС Рымарев В.А. Новополоцк, 2 1. Цель и задачи...»

«Министерство по делам молодежи, физической культуре и спорту Республики Карелия Межвузовский совет по профилактике употребления психоактивных веществ среди студентов высших учебных заведений Республики Карелия ОПЫТ РАБОТЫ ПО ПРОФИЛАКТИКЕ УПОТРЕБЛЕНИЯ ПСИХОАКТИВНЫХ ВЕЩЕСТВ СРЕДИ СТУДЕНТОВ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ РЕСПУБЛИКИ КАРЕЛИЯ Сборник методических рекомендаций Петрозаводск 2013 УДК 378 ББК 74.480.0 О 629 Авторы-составители: Бачинская А. С., Баканчук А. А., Бутенко А. А., Голубев Р. Г.,...»

«Учебно методический комплекс Интернет технологии — образованию Проектная деятельность в развитой информационной среде образовательного учреждения Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для системы дополнительного профессионального образования МОСКВА 2002 ББК 32.81 К93 Под редакцией: Светланы Михайловны Авдеевой, Павла Юрьевича Белкина, Александра Александровича Елизарова, Екатерины Владимировны Алексеевой Рецензенты: Никитин Эдуард Михайлович, д...»

«Дралин А.И., Михнева С.Г. МИНОБРНАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВПО Пензенский государственный университет) Факультет экономики и управления Кафедра Экономическая теория и мировая экономика МИРОВАЯ ЭКОНОМИКА И МЕЖДУНАРОДНЫЕ ЭКОНОМИЧЕСКИЕ ОТНОШЕНИЯ Часть I МИРОВАЯ ЭКОНОМИКА Учебное пособие ПЕНЗА ИИЦ ПГУ 2012 УДК.... Учебное пособие Мировая экономика и международные...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный университет имени С.А. Есенина В.А. Марков, Е.С. Иванов, Е.А. Лупанов Биоразнообразие и охрана природы Учебное пособие Рязань 2009 ББК 20.1я73 М26 Печатается по решению учебно-методического совета Государственного образовательного учреждения высшего профессионального образования Рязанский государственный университет имени С.А. Есенина в соответствии с...»

«ВОЕННО-ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра гидротехнических сооружений и мостов Е.Д. Шутов, А.В. Бухаров Учебное пособие по курсовому и дипломному проектированию по дисциплине “Основания и фундаменты” для специальности ПГС ч.2 Балашиха - 2009г. Шутов Е.Д., Бухаров А.В. Учебное пособие для выполнения курсовой работы по дисциплине “ Основания и фундаменты ” для специальности ПГС - Балашиха: издательство ВТУ Спецстроя России, 2009 - 138 с. В учебном пособии изложены: цели и задачи курсовой работы на...»

«Министерство образования и науки Российской Федерации ГОУ ВПО Тамбовский государственный технический университет Л.В. АРХИПОВА, Т.В. ГУБАНОВА ИЗУЧАЕМ ВИДЫ ГЛАГОЛА Рекомендовано Ученым советом в качестве учебного пособия для студентов-иностранцев подготовительного факультета с естественно-технической профессиональной ориентацией Тамбов Издательство ТГТУ 2010 УДК 8136(075) ББК Ш13(Рус)-932.96 А877 Рецензенты: Доктор филологических наук, профессор кафедры русского языка ТГУ им. Г.Р. Державина С.В....»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ АКАДЕМИЯ СОЦИАЛЬНОГО УПРАВЛЕНИЯ Кафедра общего менеджмента Рабочая программа по дисциплине Риск-менеджмент и антикризисное управление Направление подготовки – 080200.68 Менеджмент Профили подготовки – Управление проектами, Управление человеческими ресурсами Квалификация (степень) выпускника – магистр Формы обучения – очная, заочная АСОУ 2013 УДК 371 А в т о р - с о с т а в и т е л ь: Лошаков А. С., канд. экон. наук, доцент, доцент кафедры общего...»

«В. Г. СТОРОЖИК ПРОЕКТИРОВАНИЕ ОБЪЕКТОВ ТЕПЛОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И СИСТЕМ Ульяновск 2007 1 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. Г. Сторожик ПРОЕКТИРОВАНИЕ ОБЪЕКТОВ ТЕПЛОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И СИСТЕМ Учебное пособие к дипломному проектированию для студентов специальности 14010465 Промышленная теплоэнергетика Ульяновск УДК 697.31 (075) ББК 22.253.3я С...»

«ЗАДАЧИ ЛИНГВИСТИЧЕСКИХ ОЛИМПИАД 1965–1975 АБВГ DEFGH ИКЛ (эмблема) Корректура 2-го издания — версия 12.08.2008 ХРАНИТЬ ДО ВЫХОДА ИЗДАНИЯ ИЗ ПЕЧАТИ Москва Издательство МЦНМО 2007 УДК 81 ББК 74.200.58:81.2 З15 Учебное издание З15 Задачи лингвистических олимпиад. 1965–1975 / Ред.–сост. В. И. Беликов, Е. В. Муравенко, М. Е. Алексеев. — М.: МЦНМО, 2006. — 570 с. — ISBN 978–5–94057–216–9. Сборник содержит 294 задачи Олимпиад по лингвистике и математике с решениями. Лингвистические олимпиады...»

«1 Бабинцева О.А. Некоторые проблемы предметизации документов химико-технологического содержания. Цель работы – сформулировать проблемы предметизации ресурсов химикотехнологического содержания, выявить модели построения предметных рубрик (ПР) и используемые в этих моделях лексические единицы (ЛЕ), обсудить возможность и целесообразность их унификации. Химическая технология традиционно находятся в авангарде научно-технического прогресса, химическая отрасль экономики производит большой ассортимент...»

«ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по обучению грамоте для 1 класса общеобразовательной школы разработана на основе Примерной программы начального общего образования (Стандарты второго поколения. – М.: Просвещение, 2011) и авторской программы М.С.Соловейчик, Н.С.Кузьменко. Н.М.Бетенькова, О.Е.Курлыгина. (Программы общеобразовательных учреждений. Начальные классы 1–4. – Смоленск.: Ассоциация ХХI век, 2007). Учебники имеют гриф: Рекомендовано Министерством образования и науки. Для реализации...»

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИСТОРИЧЕСКИЙ ФАКУЛЬТЕТ С.А. Некрылов, Е.В. Луков СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ СИБИРИ В ПОСЛЕВОЕННЫЙ ПЕРИОД Учебное пособие Издательство Томского университета 2012 УДК 947.8(075.5)(571.1/.5) ББК 63.3 Н 48 Научный редактор – доктор исторических наук С.Ф. Фоминых Рецензент – доктор исторических наук, профессор В.П. Зиновьев Некрылов С.А., Луков Е.В. Н 48 Социально-экономическое развитие Сибири в послевоенный период: учеб....»




























 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.