WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 | 3 | 4 |

«ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ МОСКВА ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1 2005 В. И. Ляшков ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ Допущено Министерством образования Российской Федерации в качестве учебного пособия для ...»

-- [ Страница 1 ] --

В. И. Ляшков

ТЕОРЕТИЧЕСКИЕ

ОСНОВЫ

ТЕПЛОТЕХНИКИ

МОСКВА

"ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1"

2005

В. И. Ляшков

ТЕОРЕТИЧЕСКИЕ

ОСНОВЫ

ТЕПЛОТЕХНИКИ

Допущено Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированных специалистов "Теплоэнергетика" Издание второе, стереотипное

МОСКВА

"ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1"

УДК 536.7(07) ББК 311я73- Л Р е ц е н з е н т ы:

Кафедра промышленной теплоэнергетики Воронежского государственного технического университета, Заведующий кафедрой заслуженный деятель науки и техники РФ, доктор технических наук, профессор, В. В. Фалеев Доктор технических наук, профессор, С. А. Улыбин Настоящее издание осуществлено за счет спонсорской помощи ОАО "Тамбовэнерго", за что автор и ректорат ТГТУ выражают искреннюю благодарность коллективу и руководству акционерного общества Ляшков В. И.

Л99 Теоретические основы теплотехники: Учеб. пособие.

2-е изд., стер. М.: Изд-во Машиностроение-1, 2005.

260 с.

В учебном пособии лаконично и последовательно изложены теоретические основы теплотехники (основы термодинамики, теории тепло- и массообмена и теории горения), составляющие необходимый и достаточный объем информации для того, чтобы в дальнейшем специалист мог самостоятельно углублять знания в тех или иных областях прикладной теплотехники. Учебный материал изложен отдельными, сравнительно небольшими дозами, структурированность и последовательность изложения которых диктуется внутренней логикой названных наук.

Предназначено для студентов, обучающихся по специальности "Энергообеспечение предприятий".

Может быть использовано студентами других специальностей при изучении ими дисциплин теплотехнического профиля.

УДК 536.7(07) ББК 311я73- Ляшков В. И., ISBN 5-94275-027- "Издательство Машиностроение-1", Мы работаем для того, чтобы в Вашем доме было тепло и уютно "Теплосервис", ООО "Энергострой" Учебное издание ЛЯШКОВ Василий Игнатьевич

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ

Учебное пособие Издание второе, стереотипное Редактор З. Г. Ч е р н о в а Инженер по компьютерному макетированию М. Н. Р ы ж к о в а Формат 60 84 / 16. Бумага офсетная. Печать офсетная.

Гарнитура Times New Roman. Объем: 15,11 усл. печ. л.; 16,0 уч.-изд. л.

"Издательство Машиностроение-1", 107076, Москва, Стромынский пер., Подготовлено к печати и отпечатано в издательско-полиграфическом центре Тамбовского государственного технического университета,

ОТ АВТОРА

есмотря на практически прекратившееся за последние 10 лет учебное книгоиздание по техническим Н дисциплинам, на полках библиотек хранится еще много учебников под названием "Общая теплотехника", "Теплотехника" и т.п., изданных в 60–80 годы. К сожалению, неумолимое время, выдвигая новые задачи и подходы и осваивая новые научные достижения, все более делает их малопригодными для того, чтобы безоговорочно рекомендовать современным студентам, выбравшим благородную жизненную стезю: получив специальность теплоэнергетика, отдать себя решению важнейшей общегосударственной проблемы – предотвращению энергетического кризиса, все более надвигающегося на нашу страну.

Поэтому автор решается опубликовать настоящий труд, согревая себя надеждами, что он существенно облегчит студентам освоение теоретических основ теплотехники, поистине безграничной науки, изучающей принципы работы, основы конструкции и особенности расчета всевозможных машин, аппаратов и устройств, в которых фигурирует тепловая энергия.

Сегодня при организации учебного процесса особое значение придается самостоятельной работе студентов. При этом лекционные курсы все более сокращаются, лекции чаще носят обзорный или проблемный характер. В такой ситуации бывает нелегко правильно отобрать и расположить учебный материал так, чтобы он отражал внутреннюю логику науки, чтобы изложение было целостным, последовательным и доступным для понимания людям, только еще начинающим знакомство с этой наукой.

Учебное пособие отражает многолетний опыт работы автора со студентами второго – третьего курсов. Представляя собою последовательное и лаконичное изложение основ термодинамики, теплопередачи, теории массообмена, теории горения и др., оно написано не для того, чтобы заменить собою названные учебники. Скорее это первые врата в большую и интересную область научных знаний, связанных с теплотехникой. Поэтому в него включен только тот учебный материал, усвоение которого необходимо для приобретения такого уровня теоретической подготовки, который позволит в дальнейшем легко наращивать знания при последующей самостоятельной работе с учебниками, монографиями, справочниками и т.п.

Содержание книги неоднократно обсуждалось с коллегами по кафедре за что автор выражает им и, особенно, официальным рецензентам свою искреннюю признательность и сердечную благодарность.

ВВЕДЕНИЕ



Сегодня практически любая область инженерной деятельности во многом связана с проблемами энергосбережения, разработкой, внедрением и эксплуатацией ресурсосберегающих технологий, с вопросами трансформации и передачи энергии. Учебная дисциплина "Теоретические основы теплотехники" призвана вооружить будущего специалиста знаниями общих законов и основанных на этом инженерных методик расчета процессов, возникающих при получении, трансформации и распространении в пространстве тепловой энергии. Структурно сюда входят три отдельные науки: "Термодинамика", "Теплопередача" и "Основы теории горения".

Термодинамика изучает законы превращения различных видов энергии в тепло (и наоборот – тепла в другие виды энергии), а также особенности физических процессов, сопровождающих эти превращения. Как самостоятельная наука термодинамика начала складываться в начале XIX века, хотя многие принципиальные ее положения были открыты и сформулированы еще ранее в рамках общефизической теории. Среди основоположников и ученых, внесших наибольший вклад в развитие термодинамики, мы встречаем известные имена: М. В. Ломоносова, который в работе "Размышления о причинах тепла и холода" (1744 г.) предложил единую теорию теплоты и строения вещества, сформулировав законы сохранения массы и энергии, Д. Джоуля, В. Томсона, Р. Клаузиуса, С. Карно, Г. Гесса, Л. Больцмана, В. Гиббса, М. П. Вукаловича, А. А. Гухмана и др. Подробно об истории развития термодинамики и вклад отдельных ученых в эту науку можно прочитать в интересной книге [1]. За более чем стопятидесятилетнюю историю своего развития эта наука приобрела методологически безупречные формы и строгую аксиоматику, так что сегодня ее заслуженно называют классической термодинамикой.

Термодинамика не имеет собственного предмета изучения, в отличие, например, от биологии, изучающей живые организмы, или геометрии, изучающей плоские фигуры. Это наука методологического плана, вооружающая нас специфическим методом исследования, основу которого составляет рассмотрение любых процессов материального мира сквозь призму установленных термодинамикой основных законов природы.

Теплопередача, а точнее теория тепло- и массообмена – это наука, которая изучает процессы распространения тепла (или массы, поскольку выявлена явная аналогия таких процессов) в пространстве.

Процессы распространения тепла в пространстве, при всем их многообразии, и являются предметом изучения этой науки. Основные понятия и законы теории теплопереноса также были сформулированы в рамках общефизической теории на заре ее бурного развития. Например, основы аналитической теории теплопроводности были заложены Ж. Фурье еще в 1822 году. В середине XIX века были сформулированы основы теории подобия, а в 1915 году она впервые была применена В. Нуссельтом для исследования процессов теплообмена. Несколько раньше О. Рейнольдс применил ее при изучении гидродинамических процессов, высказав идею об аналогии между отдельными тепловыми и гидродинамическими явлениями.

Как самостоятельная наука теплопередача сложилась в начале XX века, и особенно бурно она стала развиваться в послевоенные годы. Здесь решающий вклад был внесен нашими соотечественниками, среди которых выделяются работы академиков В. М. Кирпичева, М. А. Михеева, С. С. Кутателадзе, Г. Н. Кружилина и др.

Отвечая на новые запросы, выдвигаемые современной практикой, наука эта продолжает бурно развиваться, все в большей мере осваивая новые области приложения (атомная энергетика, космическая техника и др.), расширяя и уточняя свои подходы и методы решения возникающих проблем. И сегодня большой вклад в дальнейшее развитие этой науки вносят такие авторитетные ученые как академики А. И.

Леонтьев, В. П. Скрипов, А. Г. Шашков и профессора Г. Н. Дульнев, Г. А. Дрейцер, С. П. Рудобашта и др., а также научная молодежь, посвящающая свои диссертационные работы решению отдельных актуальных теоретических и практических задач.

В основах теории горения рассматривается механизм химической реакции горения, раскрытый Нобелевским лауреатом академиком Н. Н. Семеновым и его последователями, а также физические особенности процессов горения при различных условиях сжигания наиболее распространенных топлив.

Здесь же дается методика технических расчетов горения.

Отметим еще одну важную особенность всех этих трех наук: они ориентированы на конкретную инженерную практику и всегда доводят свои выводы и заключения до однозначных практических рекомендаций и расчетных методик.

Бурное развитие компьютерной техники и информационных технологий вооружает исследователей мощнейшим инструментарием, позволяющим сравнительно просто проводить численное моделирование изучаемых явлений. Именно такой подход к решению многих вопросов теплопередачи становится сегодня одним из основных, поскольку при этом заметно сокращаются трудовые и финансовые затраты на решение поставленной задачи.

Совершенно ясно, что без глубоких знаний по всем трем этим разделам нашей учебной дисциплины невозможна успешная инженерная деятельность, и поэтому изучению теоретических основ теплотехники придается все возрастающее значение, особенно для будущих специалистов, непосредственно связанных с теплоэнергетикой.

1 ОСНОВЫ ТЕРМОДИНАМИЧЕСКОГО АНАЛИЗА

1.1 ОБЩИЕ ПОНЯТИЯ И ЗАКОНЫ ТЕРМОДИНАМИКИ

кружающий нас мир материален, материя находится в непрерывном движении. Меру движения материи называют энергией. Чаще всего мы встречаемся с механической и тепловой формами движения материи. В первом случае движение связано с перемещением в пространстве макрообъемов материи, а во втором – с движением только на микроуровне (тепловое движение молекул). Изменения энергии в результате таких движений называют соответственно механической работой и теплотой.

Тело или группу макротел, энергетические свойства которых подлежат изучению, называют термодинамической системой. Все остальные тела, способные взаимодействовать с системой, составляют окружающую среду. Границу между системой и средой называют контрольной поверхностью. Если контрольная поверхность допускает обмен массой между системой и окружающей средой, то систему называют открытой, если же такой обмен невозможен, – систему называют закрытой. Закрытые системы проще и именно с них начинают изучение основ термодинамики.

Одну из аксиом термодинамики составляет ее нулевое правило: всякие изменения в системе возможны только в результате взаимодействия с окружающей средой. Априорно принимая это положение, мы исключаем из объектов анализа многие биологические системы, обладающие способностью самопроизвольных изменений.

Состояния и свойства системы характеризуются рядом физических величин. При взаимодействии с окружающей средой некоторые из них изменяются, и их называют параметрами состояния системы.

Другие же величины при этом практически не меняют своего численного значения и их называют физическими константами. Физконстанты характеризуют свойства вещества, заполняющего систему, а параметры состояния – особенности состояния этого вещества. Примеры параметров: р, Т, V (давление, температура, объем); примеры физконстант: ср, r (теплоемкость, теплота парообразования).

Систему называют однородной, если параметры ее не изменяются в пространстве, и равновесной, если они не изменяются по времени. Нулевое правило термодинамики иногда формулируют и так: при отсутствии внешних воздействий система рано или поздно приходит к однородному и равновесному состоянию.

Параметры состояния можно разделить на две группы. Потенциалами p называют такие параметры, разница которых в среде и системе является движущей силой взаимодействия. При pнi = pвi взаимодействие i-го рода невозможно. Взаимодействие в принципе возможно только при pнi pвi. Примеры потенциалов: р, Т, Е (электрический потенциал). Координатами xi называют такие параметры, изменение которых в системе свидетельствует о протекании взаимодействия. Если dxi 0, то взаимодействие совершается, при dxi = 0 взаимодействие не совершается даже при наличии необходимой разности потенциалов (из-за наличия частичной или полной изоляции системы). Примеры координат: V, m (при химических взаимодействиях), число электрических зарядов, протекающих при электрических взаимодействиях и др. Вдумчивый анализ позволяет обнаружить для любого типа взаимодействий и потенциал, и координату состояния.

По аналогии с математической теорией поля в термодинамике принято следующее правило знаков для потенциалов: разность pнi pвi считается положительной (т.е. pнi > pвi ), если при этом возникает процесс взаимодействия с возрастанием соответствующей координаты состояния ( dxi > 0 ).

Координату теплового состояния называют энтропией. Сложность этого параметра в том, что он носит статистический характер и не обнаруживается непосредственным опытом или измерениями. Энтропия системы определяется вероятностью ее состояния. Под вероятностью состояния системы понимают число способов, которыми можно достичь данного состояния, начиная от некоторого первоначального. Поэтому вероятность состояния системы в числовой форме отражает меру хаотичности расположения элементов, ее составляющих. Минимальной частицей макромира является молекула. Значит, вероятность состояния характеризует степень упорядоченности (или беспорядка) распределения молекул в объеме термодинамической системы. Л. Больцман показал, что величина энтропии пропорциональна вероятности состояния W и определяется формулой S = k lnW, где k – постоянная СтефанаБольцмана (одна из универсальных физических констант).

При подводе тепла к системе растет интенсивность теплового движения молекул, растет и степень хаотичности распределения их в пространстве. Значит при этом численно возрастают и W, и S. При отводе тепла все происходит наоборот: энтропия S уменьшается.

Заканчивая параграф, отметим, что изложенный подход при введении понятия об энтропии сложился сравнительно недавно. Для более подробного изучения этот раздела термодинамики можно порекомендовать только учебные пособия [2] или [3], поскольку в большинстве учебников и пособий это излагается несколько по-другому, на основе подхода, предложенного Р. Клаузиусом.

ервый закон термодинамики устанавливает количественные соотношения при трансформации различП ных форм энергии друг в друга. Пусть некоторая термодинамическая система (см. рис. 1.1) обладает способностью совершать одновременно несколько видов взаимодействий с окружающей средой, например, механическое, тепловое, химическое и др. В результате такого сложного взаимодействия, при котором из среды в систему (или наоборот) передаются потоки энергии разных видов Е1, Еi, …, Еn..

Контрольная поверхность нится на величину U. В соответствии с законом сохранения энерE1 гии (энергия не исчезает и не возникает вновь, количество ее всегда Рис. 1.1 Сложное взаимо- Действительно, величину U невозможно измерить, потому что издействие между окружаю- вестно лишь философское определение энергии и нет ее инженерного определения (определены лишь отдельные формы энергии).

Величины Еi невозможно измерить потому, что не оговаривается однозначно окружающая среда (известна лишь одна ее граница – контрольная поверхность). Так что при попытке реализовать формулу (1.1) мы попадаем в деликатную ситуацию, знакомую из детской сказки: "Пойди туда, не знаю куда, измерь то, не знаю что".

Чтобы определиться, введем понятие о количестве воздействия данного рода Qi, называя так количество энергии определенного вида, полученное (или отданное) системой при взаимодействии со средой. Согласно такому определению Qi = Ei. Поскольку система описана однозначно, считается, что любые измерения в ней возможны, включая и те, которые позволяют определять величины Qi. Теперь формула (1) принимает вид Обычно в термодинамике проводится анализ бесконечно малых взаимодействий, поэтому от конечных приращений U и Qi перейдем к бесконечно малым dU и Qi. Тогда формулу (1.2) перепишем так и сделаем заключение: изменение внутренней энергии определяется суммой количеств воздействий, совершенных при взаимодействии. На ряде простых примеров рассмотрим, как определяются количества воздействия dQi при различных видах взаимодействий.

Первый пример (см. рис. 1.2): пружина, нагруженная внешней силой Fн. Здесь потенциалом является сила Fн, а координатой – величина линейной координаты х. Если внешний потенциал Fн изменить на некоторую величину dF, то произойдет механическое взаимодействие, при котором координата х изменится на величину dx (см. рис. 1.2, б). При таком взаимодействии количество воздействия – это механическая работа, совершаемая пружиной:

Пренебрегая вторым слагаемым, как величиной второго порядка малости, вибыло дим, что количество воздействия определяется произве- дением внутреннего Рассмотрим теперь взаимодействие в деформационной системе, представx ляющей собою цилиндр с подвижным поршнем (см. рис. 1.3). Координатой состало стояния здесь является объем системы, а потенциалом, если учесть принятое раP + dp, х – dx Допустим, что давление pн увеличивается на dp. Тогда возникает взаимодействие между системой и средой, в результате которого поршень переместится на велиРис. 1.3 Де- чину -dx, а давление в системе возрастет на dp и наступит новое равновесие состояние (см. рис. 1.3, б). Как и в предыдущем примере количество воздействия при деформации системы – это механическая работа, совершаемая над системой при взаимодействии со средой:

И опять в результате мы получили произведение внутреннего потенциала на изменение координаты (учитывая, что Sdx = dV, dp dV = 0 ).

простейшей электрической цепи (см. рис. 1.4). Потенциалом здесь является наR пряжение U источника тока, а координатой – число электрических зарядов Q, протекающих в цепи. Количеством воздействия в данном случае является работа Рис. 1.4 Про- электрических зарядов, протекающих в единицу времени i = Q/ и значит стая электри- Q = U Q. Говоря о бесконечно малом процессе, из предыдущей формулы получеская цепь чим d Q = U dQ.

Обобщая результаты рассмотренных примеров, сделаем следующее заключение: количество воздействия данного рода определяется произведением внутреннего потенциала на приращение соответствующей координаты:

Таким образом, первый закон термодинамики (формулу (1.3)) в развернутом виде можно записать так:

В абсолютном большинстве случаев величины потенциалов и координат достаточно легко измеряются на практике (исключая энтропию).

ермомеханической системой называют систему, в которой одновременно могут протекать тепловое и Т механическое взаимодействия. Они находят самое широкое распространение на практике, являясь основой теплоэнергетических установок, холодильной техники, компрегирующего оборудования и многих других технологических устройств. В общем случае такая система содержит: источник тепла, расположенный в окружающей среде, расширительный элемент (например, цилиндр с поршнем, турбину и др.), механическое устройство, приемник тепла в окружающей среде (см. рис. 1.5). Вещество, заполняющее систему, называют рабочим телом. Обычно в качестве рабочего тела используются воздух, газовые смеси в идеальногазовом состоянии, водяной пар, пары различных органических соединений и т.п. Обладая хорошей сжимаемостью и большим тепловым расширением, они являются термодинамически благоприятными по сравнению с другими жидкими или твердыми веществами.

Источник и приемник тепла могут работать непрерывно или периодически, и это позволяет с помощью термомеханической системы реализовать различные виды машин. Пусть, например, рабочее тело получает от источника Q1 тепла, а отдает приемнику Q2, несколько меньшее, чем Q1. Тогда разница Q1 – Q2 пойдет на нагрев рабочего тела. В результате теплового расширения рабочего тела давление в цилиндре будет возрастать, создавая силу, которая переместит поршень несколько вправо. При этом система совершит работу, которая с помощью механического устройства передается в окружающую среду. Таким образом, мы смоделировали работу теплового двигателя, с помощью которого тепло трансформируется в работу.

Термомеханическая система позволяет реализовать и обратную трансформацию. Представьте, что источник и приемник тепла первоначально были отключены (Q1 = Q2 = 0). Если с помощью механического устройства подвести к системе работу, так, чтобы поршень переместился влево, сжимая рабочее тело, то в результате взаимодействия внутренняя энергия и температура рабочего тела возрастут. Включим теперь приемник тепла и позволим рабочему телу охлаждаться до первоначальной температуры.

Тогда рабочее тело отдаст приемнику Q2 тепла, а его внутренняя энергия получит прежнее значение.

Значит, нам удалось преобразовать подведенную работу в тепло.

Таким образом, термомеханическая система позволяет трансформировать тепло в работу (и наоборот).

Потенциалами такой системы являются -р и Т, а координатами, соответственно V и S. Первый закон термодинамики (формула (1.4)) в этом случае запишется так Или в сокращенной форме где dQ и dL – обозначения тепла и работы за элементарный процесс взаимодействия.

Последняя формула позволяет легко понять и ту, известную из школьного курса физики, формулировку, которая утверждает невозможность вечного двигателя. Действительно, чтобы двигатель работал вечно, внутренняя энергия его рабочего тела не должна изменяться (т.е. у вечного двигателя dU = 0). Тогда видно, что не подводя тепла (dQ = 0), мы не получим и работы (dL = 0 – 0 = 0). Ту часть термодинамики, которая изучает процессы в термомеханических системах, называют технической термодинамикой, подчеркивая тем самым значение полученных в ней выводов и расчетных методик для очень многих технических устройств.

нергию, заключенную в системе, ранее мы назвали внутренней и представляем ее как сумму всех видов энергии, которой обладают все частицы, заполняющие систему. Говоря о газах, хотя в определенной мере это приемлемо и для жидкостей, и для твердых тел, отметим, что величина U определяется кинетической энергией молекул Eкин при их поступательном, вращательном и колебательном движениях, а также энергией межмолекулярного силового взаимодействия – потенциальной энергией молекул Епот:

Кинетическая энергия молекул зависит от средней скорости движения и массы молекул, которые пропорциональны, соответственно, макропараметрам Т и р (температура и плотность) газа. Величина Епот зависит от среднего расстояния между молекулами и их массы; межмолекулярное расстояние при прочих равных условиях определяется давлением газа р. Поэтому можно записать и, следовательно, Внутренняя энергия – величина аддитивная, при делении системы на части она разбивается пропорционально массам частей. Таким же свойством обладают и другие термодинамические величины (за исключением потенциалов). Поэтому термодинамический анализ принято проводить на единицу массы системы, при этом вводятся удельные величины: u =U / m, q =Q / m, l = L / m, s = S / m, v = V / m. Последнюю называют удельным объемом и рассматривают как один из параметров состояния системы.

Отметим, что =1 / v. С учетом этого формулу (1.7) перепишем в виде и еще раз подчеркнем, что величина внутренней энергии определяется только значениями параметров состояния и родом рабочего тела. Она не зависит от того, каким путем было достигнуто это состояние. При совершении элементарно малого процесса внутренняя энергия будет изменяться на величину du в зависимости от изменений параметров р, v и Т.

В термомеханической системе внутреннюю энергию можно обнаружить только в форме работы или тепла. В первом случае следует теплоизолировать систему, и дать ей возможность расширяться, помещая в среду с более низким давлением. Во втором случае нужно зафиксировать объем системы (тогда работа не сможет совершаться) и дать ей возможность охлаждаться. Тогда система отдаст более холодной среде некоторое количество тепла, равное изменению внутренней энергии. Приведенные рассуждения следуют из анализа формулы (1.6), т.е. из первого закона термодинамики.

Если совершить любой замкнутый процесс так, чтобы в итоге система, пройдя ряд промежуточных состояний, вернулась бы к первоначальному, то изменение внутренней энергии за такой процесс будет равно нулю, и интеграл от du будет равен нулю. Это доказывает, что du – полный дифференциал.

Рассмотрим теперь еще некоторые свойства внутренней энергии. Из первого закона термодинамики следует, что u = f (s, v), ибо только в этом случае изменения s и v будут вызывать изменения u, как это показывает формула (1.5). В противном случае и ds, и dv равны нулю и вместо (1.5) получается du = 0, и это означало бы, что внутренняя энергия остается постоянной при наличии тепловых и механических взаимодействий – явное противоречие с физической сутью явлений.

Запишем выражение полного дифференциала u как функции двух переменных и сопоставим формулы (1.5) и (1.8), отмечая, что левые части их одинаковы, значит одинаковы и их правые части. Из этом следует, что Мы обнаружили, что частная производная и по одному из параметров дает значение сходственного параметра (пару потенциал-координата называют сходственными или сопряженными параметрами).

Продифференцируем формулы (1.9) и (1.10) и проведем простейшие преобразования, привлекая известные понятия о теплоемкостях и термических коэффициентах:

где сv – удельная теплоемкость газа в процессах при v = const; v0 – удельный объем газа при нормальных условиях; S = 1 / v0 (v / p) S – коэффициент адиабатической сжимаемости. Выявилось еще одно свойство внутренней энергии: вторые частные производные этой функции определяют значения величин cv и S.

Проведем теперь перекрестное дифференцирование формул (1.9) и (1.10), дифференцируя (1.9) по v, а (1.10) – по s:

Левые части полученных выражений различаются только порядком дифференцирования и, следовательно, одинаковы. Значит равны между собой и правые их части. На основании этого получаем Нами получено одно из дифференциальных соотношений термодинамики (их называют соотношениями Максвелла), которое позволяет при термодинамическом анализе заменять производные энтропии на производные других параметров, легко измеряемых на практике.

еличина внутренней энергии лишь приближенно характеризует работоспособность системы, ибо сюда не включается запас потенциальной или кинетической энергии, которыми может обладать рабочее тело на макроуровне. Представьте, для примера, что 10 кг газа в баллоне вместе с пассажирами самолета поднято на высоту 1000 м и перемещаются горизонтально со скоростью 100 м/с. Как и любая масса кг, этот газ приобретает дополнительную потенциальную и кинетическую энергии, которые при определенных условиях могут быть трансформированы в механическую работу (эти условия додумайте сами и ужаснитесь!). Значит, работоспособность системы зависит еще и от тех условий, в которых она находится в окружающей среде, от обстоятельств, предшествующих проводимому анализу.

Ту часть энергии рабочего тела, которой оно обладает на макроуровне и которую можно получить от системы в форме работы, называют располагаемой работой lрас. Сумму внутренней энергии и располагаемой работы называют энтальпией:

Чтобы шире раскрыть физический смысл энтальпии, определим ее величину для одного килограмма газа с параметрами р и Т, заключенного в теплоизолированной системе с подвижным поршнем, нагруженным внешней силой F (см. рис. 1.6). Отметим, что эта сила, уравновешиваемая давлением газа р, действующим на поршень с поверхностью S, в рассматриваемом случае обладает запасом потенциальной энергии eпот = FH и этот запас может быть получен в форме механической работы. Действительно, если, открыв кран 3, соединить цилиндр 1 с другим таким же цилиндром 2, то поршень в последнем переместится вправо, совершая работу lрас. Внутренняя энергия перетекающего газа остается неизменной, поскольку параметры газа не меняются.

Величину располагаемой работы определим очень просто. Выражая F через параметры системы (F = pS), получаем lрас = pSH. В итоге величина энтальпии газа определится соотношением в котором произведение рv в общем случае отражает запас располагаемой работы одного килограмма газа.

Чтобы получить выражение первого закона термодинамики в записи через энтальпию, в правой части уравнения (1.5) прибавим и отнимем величину vdp и проведем простейшие преобразования:

Отмечая, что сумма pdv + vdp представляет собою дифференциал произведения d(pv), запишем Учитывая формулу (1.11), получаем окончательно Формула (1.12) позволяет уяснить и более узкий физический смысл энтальпии. Обратим внимание: в процессах при p = const dp = 0 и второе слагаемое формулы (1.12) обращается в нуль. Тогда можно говорить, что энтальпия – это то количество тепла, которое подводилось (или отводилось) в процессах при p = const. Именно поэтому многие годы в отечественной технической литературе для этой величины применялся термин "теплосодержание".

Из полученного уравнения видно, что h – это функция двух параметров состояния s и р: h = f (s, p).

Запишем полный дифференциал этой функции и сопоставим полученное выражение с формулой (1.12). Рассуждения, аналогичные приведенным при знакомстве с внутренней энергией, позволяют записать два равенства Здесь мы опять обнаруживаем, что частные производные этой функции состояния по одному из параметров дают значения сходственных параметров. Повторным дифференцированием можно было бы обнаружить и другое свойство, аналогичное выявленному ранее. Проведем перекрестное дифференцирование формул (1.13) и (1.14):

Отсюда после простейших преобразований вытекает еще одно дифференциальное соотношение термодинамики:

Функции состояния, характеризующие запас работоспособности системы и обладающие отмеченными выше свойствами (дифференцирование этих функций дает значение сходственных параметров, а повторное дифференцирование – значения теплоемкостей газа и термических коэффициентов) называют характеристическими функциями.

реальных условиях невозможно превратить в работу (или тепло) весь запас внутренней энергии рабочего тела. Действительно, и это мы показали ранее, можно трансформировать часть внутренней энергии в тепло, и делать это можно до тех пор, пока температура рабочего тела не понизится до температуры окружающей среды Тср. Дальнейшие тепловые взаимодействия со средой становятся невозможными, так как отсутствует разница потенциалов. Однако и в таком состоянии рабочее тело может еще отдать часть внутренней энергии в форме работы, если дать ему возможность расширяться изотермически до тех пор, пока давление p не уменьшится до рср. Количество этой работы легко определить, если проинтегрировать (с учетом T = const) уравнение первого закона термодинамики (формула (1.5)):

где u0 и s0 – внутренняя энергия и энтропия такого условного состояния газа, при котором u и s принимаются равными нулю (u0 = 0 и s0 = 0); u и s – текущие значения этих величин, соответствующие температуре Т.

pdv = lиз, где lиз – работа изотермического расширения, после интегрирования полуУчитывая, что чаем Последняя формула показывает, что при Т = Тср только часть u трансформируется в работу. Определенная часть внутренней энергии, равная величине Тs, неизбежно остается в системе и не может быть использована. Эту часть называют связанной энергией. Величину u – Ts, характеризующую запас работоспособности в процессах при Т = Тср, называют свободной энергией (или энергией Гельмгольца):

Сумму свободной энергии и располагаемой работы называют свободной энтальпией (или энергией Гиббса):

Эти калорические характеристики являются функциями состояния и точнее чем предыдущие определяют запас работоспособности системы.

Чтобы выразить первый закон термодинамики через f и z, поступим также, как и при анализе энтальпии, т.е. запишем формулу (1.5) и в правой ее части прибавим и отнимем одно и то же выражение так, чтобы получить значение полного дифференциала произведения двух величин. Математики такие действия называют преобразованием Лежандра:

Поскольку Tds + sdT = d(Ts), то du = d(Ts) – sdT – pdv или d(u – Ts) = = –sdT – pdv. С учетом определения (1.15), окончательно получаем Аналогичные преобразования для z, но на основе формулы (1.12):

или dh = d(Ts) – sdT + vdp, или d(h – Ts) = –sdT + vdp и окончательно Из формулы (1.17) следует, что f = f (T, v). Тогда полный дифференциал этой функции будет Сопоставляя правые части этой формулы и формулы (1.17) и учитывая одинаковость их левых частей, получаем из чего видно, что f обладает одним из свойств характеристических функций. Дифференцирование полученных формул позволяет обнаружить и другое их свойство. Перекрестное дифференцирование дает третье соотношение Максвелла:

откуда Совершенно аналогичный анализ формулы (1.18) позволяет записать, что z = f (T, p) и получить соотношения Повторное дифференцирование дает где сp – теплоемкость газа в процессах при p = const; t – коэффициент изотермической сжимаемости.

Значит z обладает всеми свойствами характеристических функций.

Перекрестное дифференцирование позволяет получить еще одно дифференциальное соотношение термодинамики Самопроизвольно, без затрат энергии система может охладиться только до температуры T0 (обычно принимают Т0 = 277 К – температура на дне глубоких водоемов, неизменная ни зимой, ни летом). Количество связанной энергии при этом будет минимальным.

Величину свободной энтальпии h – T0s в такой ситуации называют эксергией: E = h – T0s. Эксергия определяет максимальную работоспособность рабочего тела в реальных условиях, поскольку учитывает и запас располагаемой работы, и ту часть энергии, которую невозможно получить от газа (т.е. связанную энергию).

В заключение сопоставим характеристические функции по их величинам, отсчитанным от состояния, при котором они принимаются равными нулю (см. рис. 1.7).

Важные связи в аналитической форме легко получить, если в формулы h = u + pv, f = u – Ts, z = h – Ts, z = u + pv – Ts вместо параметров v, p, s подставить их значения, выраженные через производные соответствующих функций:

заимодействие системы со средой, в результате которого изменяются термодинамические (p, v, T) и калорические (s, u, h, f, z) параметры рабочего тела, называют термодинамическим процессом.

Если движущая сила процесса, определяемая разницей потенциалов pн pв, очень мала (абстрактно рассуждая, ее принимают бесконечно малой), то процесс будет проходить вяло, медленно, малоинерционно. В каждом конкретном состоянии в течение такого процесса система будет оставаться практически однородной и равновесной. Она как бы проходит последовательно ряд следующих друг за другом равновесных состояний, отличающихся бесконечно малыми изменениями параметров. Такие абстрактные, длящиеся бесконечно долго, процессы принято называть квазистатическими или, чаще, равновесными, несмотря на противоречивость такого термина. Естественной особенностью равновесных процессов является то, что здесь не проявляется внутреннее сопротивление системы, изменения в ней происходят без внутреннего трения, подведенную к системе энергию можно полностью получить в ее первоначальном качестве. Если изменить знак разницы потенциалов, то такой процесс пойдет в обратном направлении, и рабочее тело будет проходить через все те же самые состояния, через которые оно проходило в прямом процессе и без остаточных изменений в окружающей среде. Поэтому равновесные процессы называют еще обратимыми, отмечая этим одно из важных их свойств. Практика показала, что равновесные процессы являются достаточно точными моделями почти всех реальных процессов.

Все реальные процессы протекают при некоторой конечной разности потенциалов pн pв, соизмеримой с величинами действующих потенциалов. Естественно, что процессы при этом протекают бурно, быстро, интенсивно. Это вызывает нарушение однородности системы, возникновение внутренних взаимодействий между отдельными частями системы, что связано с преодолением внутреннего сопротивления в форме внутреннего трения, а при отсутствии механических перемещений – в других, специфических формах. В такой ситуации часть подводимой или внутренней энергии затрачивается (но не теряется!) на преодоление сопротивления. Эта часть энергии теряет свое качество и уже не может быть получена от рабочего тела в прежнем виде. В каждый конкретный момент времени при этом отсутствует равновесие между системой и средой, поэтому такие процессы называют неравновесными. Неравновесные процессы необратимы – при изменении знака p процесс идет в обратном направлении, но совершенно через другие состояния и стадии, при этом вновь проявляется действие внутреннего сопротивления.

Чтобы наглядно представить протекание и особенности равновесных и неравновесных процессов, поместим в теплоизолированный цилиндр с подвижным поршнем один килограмм газа с параметрами р и Т. В первом случае будем нагружать поршень, кладя на него по малой частице груза – по песчинке (см.

рис. 1.8). Добавив очередную песчинку, мы практически не обнаружим никаких изменений в системе, поскольку последующее состояние будет отличаться от предыдущем бесконечно мало. Однако, набравшись терпения и нагрузив на поршень достаточное количество песчинок, мы обнаружим, что поршень переместился вниз, а температура и давление возросли и рабочее тело из состояния 1 перешло в состояние 2. Если после этого снимать тоже по одной песчинке, то поршень начнет перемещаться вверх, величины р и Т будут уменьшаться. Когда число песчинок на поршне снова станет равно n, то р и Т газа будут такими же, какими они были при этом же числе песчинок в прямом процессе, поскольку внутреннее трение в таких процессах отсутствует.

В другом случае на тот же поршень будем накладывать достаточно большие грузы – целые камни!

Когда мы положим на поршень очередной камень (см. рис. 1.9), то поршень резко переместится вниз.

При этом вблизи поршня возникает зона уплотнения, давление в которой будет выше, чем в других местах. Такое нарушение однородности вызывает импульс давления, который начинает распространяться вниз, отражаться от днища цилиндра и направляться вверх, отражаться там и снова двигаться вниз.

Возникшие колебания будут продолжаться до тех пор, пока за счет внутреннего трения полностью не сгладятся, и не установится новое равновесие между системой и средой. В течение неравновесного процесса из-за неоднородности системы нельзя однозначно определить значения параметров газа, поэтому процесс 1-2 изображают лишь условно. Если изменить знак p (резко снимать камни), то процесс пойдет в обратном направлении, но будет протекать по другому пути, поскольку часть энергии, подведенной при нагружении поршня, трансформировалась в тепло (работа трения всегда трансформируется в тепло), а полная трансформация этого тепла в работу при обратном процессе невозможна.

1.1.8 Принцип возрастания энтропии. Второй закон термодинамики же отмечалось, что работа трения, сопровождающая неравновесные процессы, всегда трансформируется в тепло, что во время таких процессов в системе как бы возникает внутренний источник тепла. Это приводит к увеличению энтропии рабочего тела и при отсутствии внешнего теплоподвода. Возрастание энтропии при неравновесных процессах наблюдается и в тех случаях, когда механические взаимодействия, а значит и обычное трение, отсутствуют.

Чтобы убедиться в этом, рассмотрим процесс неравновесного теплообмена между двумя телами 1 и 2, помещенными в теплоизолированную систему (см. рис. 1.10). Пусть тело 1 имеет температуру Т1, а тело 2 – темT1 dq пературу Т2 (Т1 > Т2). Тогда между телами возникнет неравновесный теплоT энтропия второго тела увеличится на ds2 (ds2 > 0). Запишем выражения, опРис. 1.10 Неравно- ределяющие величину dq, и сложим их правые и левые части:

теплообмен между откуда находим соотношение Поскольку Т1 /Т2 >1, то получается, что Изменение энтропии всей системы равно сумме этих энтропий Учитывая знаки ds1 и ds2 и предыдущее неравенство, приходим к заключению, что Этот принцип, установленный М. Планком, согласно которому при любых неравновесных процессах энтропия изолированной системы возрастает, составляет одну из самых корректных формулировок второго закона термодинамики. В неравновесных процессах с теплообменом изменение энтропии не адекватно подведенному (или отведенному) теплу и в то время как для равновесных процессов всегда Tds = dq. Выделенные неравенства часто называют аналитическими выражениями второго закона термодинамики.

Вполне естественно, что, отражая качественную сторону процессов трансформации энергии, этот закон имеет несколько формулировок, отличающихся более узкой или более широкой трактовкой. Можно сформулировать его и так: все реальные процессы сопровождаются преодолением внутреннего сопротивления системы и это приводит к деградации части энергии, связанной с переходом ее на более низкий потенциальный уровень, что сопровождается неизбежным ростом энтропии.

Еще более широко трактуется этот закон Больцманом: природа стремится от состояний менее вероятных к состояниям более вероятным, вероятность обратных процессов ничтожна. Такая трактовка подчеркивает относительный характер второго закона термодинамики, позволяя преодолеть некоторые тупиковые заключения, например, о тепловой смерти Вселенной, сделанные нашей наукой в процессе ее становления.

звестно, что вещество может находиться в одном из четырех фазовых состояний: твердое, жидкое, газообразное и плазма, и это определяется значениями параметров состояния. Но и в пределах одной фазы состояние и даже свойства вещества могут существенно отличаться, если различны параметры состояния.

Каждому состоянию соответствуют определенные значения характеристических функций, например u = f (р, v, Т). Ссылаясь на свойство этих функций, можно утверждать, что существует определенная однозначная связь между отдельными параметрами состояния. Действительно, ранее было показано, что Т = (u/s)v. Если подставить сюда вместо u ее значение, выраженное через параметры состояния, то получим Однозначную связь между потенциалами и координатами состояния называют уравнениями состояния:

Для термомеханической системы эти функциональные зависимости принимают вид T = f3 (v, s) и p = f4 (v, s). Обычно энтропию s, поскольку она не измеряется на опыте, исключают из рассмотрения: s = f5 (T, v), p = f6 (v, T) и уравнение состояния в общем виде записывают так:

Исследованием свойств газов и разработкой уравнений состояния занимается физика. В общем случае это весьма сложная и трудоемкая задача, о чем подробнее будет сказано ниже. Только для идеального газа (такие состояния газа, при которых можно пренебрегать силами взаимодействия между молекулами и объемом самих молекул) уравнение состояния, которое называют обычно уравнением Клапейрона, принимает простой вид где R – газовая постоянная, своя для каждого конкретного газа, молекулярная масса газа, кг/моль.

Термодинамика формулирует специальный критерий для оценки правильности получаемых уравнений состояния. Известно, что системы могут обладать свойством устойчивости или неустойчивости случайное изменение состояния которых вызывает процесс, направленный на восстановление начального состояния.

Рис. 1.11 Устойчивая и ибо всегда стремится к однородному и равновесному состоянию явим на знакомом примере с пружиной, нагруженной внешней силой (см. рис. 1.2). Такая система устойчива. Если случайное воздействие будет dFн, то координата изменится на dx, а при прекращении воздействия пружина вернется в исходное состояние. Если воздействие будет –dFн, то и координата изменится на –dx. Обнаруживается, что в любом случае dF / dx > 0. На многих других примерах можно убедиться, что у устойчивых систем Для термомеханической системы ( p = p и x = v ) получаем следующие критерии Легко убедиться, что уравнение Клапейрона удовлетворяет этому соотношению. Из формулы pv = RT выразим p = RT / v и продифференцируем это выражение по v, все остальные параметры принимая за постоянные величины Значения R, Т и v не бывают отрицательным и, значит, p / v < 0.

ак и в других инженерных дисциплинах, в термодинамике очень широко используются различные граК фические представления и зависимости, и это облегчает и упрощает понимание и Уравнение F (р, v, Т) графически интерпретируется некоторой поверхностью в системе координат р, v, Т (см. рис. 1.12). Ее называют термодинамичеdf ской поверхностью данного вещества. Любая точка на этой поверхности соота b ветствует некоторому состоянию (параметры р, v и Т однозначно определены), а любая линия – процессу. Однако использовать трехмерную систему координат для графических отображений и построений очень неудобно, поэтому на практике чаще всего используются плоские системы координат р–v, Т–s и р–t.

ответствует некоторому состоянию (величины р и v определены, величину Т следует рассчитать, используя уравнение состояния), а любая линия – некоторому термодинамическому процессу. При этом, если процесс идет слева направо, т.е. с увеличением объема системы, то это процесс расширения и система сопровождается уменьшением объема, то это процесс сжатия и работа совершается над системой (l < 0) (см. рис. 1.13).

С помощью р–v диаграммы легко определить не только характер процесса, но и количество работы 1.

Действительно, работа за элементарно малый процесс dl = pdv графически отражается выделенной на рис.

1.13 площадкой df.

Работа всего процесса определится так:

Аналогичным свойством обладает и другая диаграмма с координатами Т–s (см. рис. 1.14).

Здесь, если процесс идет слева направо (ds > 0), то это процесс с подводом тепла к рабочему телу, если направление процесса противоположное, то это процесс с отводом тепла от системы.

Количество тепла за процесс определяется интегрированием Произведение Тds равно площадке df на рис. 1.14, а интеграл – сумме таких площадок, т.е., как и прежде, площади под кривой, изображающей процесс: q = Fa12b.

Диаграмма р–t обычно применяется для отображения фазовых состояний и переходов различных веществ.

оскольку определить количество тепла через энтропию s на практике невозможно, то исторически сложилось так, что его определяют пропорционально изменению температуры за процесс dq = c dT, где коэффициент пропорциональности с и называют теплоемкостью. Более точно удельной теплоемкостью называют количество тепла, которое необходимо подвести к единице количества вещества, чтобы нагреть ее на один градус. Количество вещества можно выразить в килограммах, нормальных кубометрах (нм3) или киломолях, поэтому различают массовую, объемную и мольную теплоемкости. Теплоемкость элементарно малого процесса называют истиной. Для некоторого конечного процесса определяется средняя за процесс теплоемкость Для газов величины dq или Q зависят от особенностей протекающих процессов, а значит и величины с и сm для каждого из процессов будут своими. Наиболее простыми процессами являются процессы при v = const или p = const. Теплоемкости газов в таких процессах исследованы экспериментально и их называют соответственно изохорной cv и изобарной сp теплоемкостями. В первом приближении cv и сp – величины постоянные. Если говорить о более точных измерениях, то опыты показали, что величины теплоемкостей несколько увеличиваются с ростом температуры (см. рис. 1.15). Наибольшую точность обеспечивает квадратичная аппроксимационная формула но обычно ограничиваются линейной зависимостью c = a + bt.

Первый закон термодинамики, если учесть, что dq = c dT, можно записать теперь по другому:

Отсюда видно, что u = f (T, v). Запишем выражение полного дифференциала для этой функции двух переменных В процессах при v = const формулы (1.20) и (1.21) принимают вид и сопоставление их позволяет записать, что cv = (u/T)v.

Аналогичный анализ уравнения первого закона термодинамики, записанного через энтальпию, позволяет расширить физический смысл теплоемкости ср, записав, что cp= (h/T)p.

Приравниваем правые части формул (1.20) и (1.21) (с учетом полученного выше значения производной) и выразим величину с:

Значение производной (u/v)T найдем, записав первый закон термодинамики (формулу (1.5)) для процесса при T = const (при этом все дифференциалы станут частными):

откуда Если в последней формуле производную (s/dv)Т заменим по дифференциальному соотношению величиной (p/T)v, то получим Подставим теперь это значение в формулу (1.22) и после простейших преобразований получим важную формулу, которая позволяет определить теплоемкость любого процесса через табличную теплоемкость сv, характеристики газа (производная (p/T)v) и особенности процесса (производная dv/dT):

Для процесса при p = const, например, эта формула принимает вид 1.1.12 Уравнение Майера и другие свойства идеального газа ыражая значения р и v из уравнения состояния идеального газа и дифференцируя эти выражения, найдем значения производных, входящих в предыдущую формулу:

Подставляя в нее полученные значения, находим Связь между сp и сv для идеального газа и называют уравнением Майера, отмечая тем самым большой вклад этого ученого в развитие термодинамики.

Покажем далее, что внутренняя энергия (как и другие характеристические функции) идеального газа зависит только от температуры. Ранее мы показали, что Значит (u/v)T = T(R/v) – p = 0, т.е. u не зависит от v. Далее, записав убеждаемся, что u не зависит и от р, поскольку (v/p)T не равно бесконечности.

Таким образом мы убеждаемся, что u = f (Т).

Формула (1.21) с учетом равенства нулю производной (u/T)v для идеального газа дает простое соотношение Мы показали, что сv = (u/T)v, а с учетом зависимости u = f (Т) это дает cv = f (T), т.е. теплоемкость сv идеального газа зависит тоже только от температуры и не зависит от других параметров.

Аналогичный анализ, проводимый с уравнением первого закона термодинамики, записанным через h (формула (1.12)), позволяет получить зависимости:

о многих случаях исключать энтропию s из рассмотрения нецелесообразно. Поэтому следует научиться рассчитывать изменение энтропии за процесс и энтропию любого состояния газа.

Запишем формулы для расчета dq:

откуда найдем, приравнивая правые части, ds = c dT / T. Подставим сюда значение с по формуле (1.23):

Чтобы найти изменение энтропии за некоторый процесс 1-2, следует проинтегрировать полученное выражение от начала до конца процесса Но, чтобы выполнить такое интегрирование, в общем случае нужно знать зависимость сv = f (Т, v) и уметь определять значение частной производной (u/T)v для данного газа. Обычно, это весьма сложные зависимости и интеграл в квадратурах определить невозможно. Его находят, прибегая к численному интегрированию и привлекая сведения о теплоемкости и термических коэффициентах, полученные экспериментально.

Указанные трудности преодолеваются, когда речь идет об идеальном газе, так как в этом случае сv = f (Т) и (p/T)v = R/v. Тогда Чаще всего за s0 = 0 принимается энтропия состояния, соответствующего нормальным физическим условиям: Т0 = 273 К, p0 = 1,012105 Па. Если теперь интегрирование проводить от состояния с параметрами Т0, v0 и s0 до некоторого текущего состояния с параметрами Т, v и s, то получим формулу для расчета условного абсолютною значения энтропии Если в формуле (1.24) отношения Т2/Т1 и v2/v1 последовательно заменить величинами, найденными с помощью уравнения состояния то получим еще две формулы, справедливые для любых процессов с идеальным газом

1.2 ИДЕАЛЬНЫЕ ТЕРМОДИНАМИЧЕСКИЕ

ПРОЦЕССЫ И ЦИКЛЫ

олитропными называют процессы, которые протекают в соответствии с уравнением где n – показатель политропы (– < n < ), который определяется на основании сведений о параметрах в начале и конце процесса, полученных непосредственными измерениями. Величина n в течение каждого конкретного процесса остается постоянной. Для идеального газа p = RT/v и v = RT/p. Подставляя эти значения в предыдущую формулу, после простейших алгебраических преобразований получаем еще две формы уравнения политропы:

В логарифмической метаморфозе уравнение политропы pvn = const представляет собою прямую линию. Действительно, после логарифмирования получаем ln p + n lnv = ln const, или, вводя новые переменные X = lnv и Y = lnp, приходим к линейной зависимости Y + nX = const. На рис. 1.16 показано протекание политропного процесса в координатах lnp и lnv. Угловой коэффициент этой прямой и выражает собой величину показателя политропы n. Уравнение политропы справедливо для любого состояния в течение процесса, включая точки начала и конца процесса. Поэтому можно записать p1v1n = p2 v2 n, откуда находим формулу для расчета n:

Аналогичным образом можно получить формулы для расчета n и из двух других уравнений политропы.

lnp Особую важность и значимость политропные процессы имеют потермодинамический 1 процесс тому, что с их помощью можно описать и рассчитать любой сколь Рис. 1.17 Сложный угодно сложный термодинамический процесс, заменяя его рядом поA n2 B процессов со своим показателем политропы. Научившись рассчитывать характеристики политропного процесса, мы тем самым получим инструментарий для расчета сложных процессов. В нашем примере можно записать Получим теперь формулу для расчета работы за процесс, интегрируя выражение для элементарной работы Чтобы проинтегрировать это выражение, заменим параметр р, выразив его через v из уравнения политропы p = const / vn, где величину константы можно определить через параметры начала и конца процесса p1v1n = const или p2v2n = const. Подстановка значения р в подынтегральное выражение приводит нас к простому степенному интегралу. Выполняем интегрирование и простейшие преобразования Заменяя произведения p1v1 и p2v2 выражениями RТ1 и RТ2, соответственно, получим еще одну простую формулу Тепло за процесс определяем, интегрируя выражение для элементарно малого количества тепла, записанное через теплоемкость где спол – теплоемкость исследуемого политропного процесса. Чтобы найти эту величину, запишем формулу (1.23) для политропного процесса, учитывая, что при этом производная dv/dT станет частной Частную производную (p/T)v для идеального газа мы уже находили, она равна R/v. Чтобы найти частную производную (v/T)пол, прологарифмируем, а затем продифференцируем уравнение политропы, связывающее параметры v и Т:

Из последней формулы находим и, подставляя эти выражения в формулу (1.25), получаем где k = cp / cv – показатель адиабаты данного газа.

Из полученной формулы видно, что в каждом конкретном процессе (значение n имеет некоторую конкретную величину) величина cпол зависит только от свойств газа и в течение процесса остается постоянной. Политропный процесс – это процесс, в котором теплоемкость постоянна, и часто это его свойство и кладется в основу его определения. На рис. 1.18 приведена зависимость величины cпол от показателя политропы n, построенная на основании формулы (1.26). Отметим, что при n = 0 cпол = ср, при n = cпол = cv, а при n = 1 функция имеет разрыв и величина cпол стремится к ±.

Теперь нетрудно и проинтегрировать выражение cпол dT, чтобы получить формулу для расчета тепла за процесс Для расчета изменений внутренней энергии, энтальпии и энтропии за процесс используем полученные ранее формулы, справедливые для любых процессов с идеальным газом:

окажем сначала, что все простые процессы, которые изучались в курсе физики (изобарный, изохорный, изотермический и адиабатический) являются частными случаями политропного процесса. Действительно, при n = 0 из формулы pvn = const получаем pv0 = const или p = const, т.е. уравнение изобарного процесса. При n = 1 получаем pv = const или RT = const, откуда следует, что T = const. Если значению n придать величину k, то получаем уравнение адиабаты pvk = const. При n = ± получаем уравнение изохоры, если представим предварительно формулу pvn = const в виде p1/nv = const1, p0v = const1, v = const1.

Указанная особенность всех частных процессов позволяет рекомендовать для расчета l, q, u, h, s те же формулы, которые были получены нами в предыдущем параграфе. Исключение составляет изотермический процесс, для которого формулы для l и q дают неопределенность. Учитывая, что при T = const uТ = 0 и sT = R ln ( v2 / v1 ), находим lT = qT = T sT.

Изобразим все частные термодинамические процессы на р–v и Т–s диаграммах (см. рис. 1.19).

Рис. 1.19 Политропные процессы увеличением объема (процесс 1–2) или с его уменьшением s координатах, найдем вид функции T = f (s), воспользовавшись одной из формул для расчета энтропии = Т/Т0, откуда T = Т0 ехр(s/cpm).

Последняя формула свидетельствует, что изобара на Т–s координатах представляет собой отрезок экспоненты. В процессе 1–2 увеличивается объем газа, значит растет и температура (это следует из отношения Т1/v1 = Т2/v2, которое легко получается из формулы Tvn-1 = const при n = 0 и которое называют законом Гей-Люсака). В процессе 1–3 температура наоборот, уменьшается.

Изотермический процесс в р–v координатах изобразится равнобокой гиперболой (процессы 1–4 и 1– 5), а на Т–s диаграмме – отрезком горизонтальной прямой. В процессе 1–4 l > 0. Поскольку при этом внутренняя энергия газа не меняется ( u = cvm T = 0 ), то из первого закона термодинамики следует, что dT q = dT l, т.е. в процессе 1–4 q > 0 и значит это процесс с увеличением энтропии, идущий слева направо. Процесс 1–5 идет в противоположном направлении.

В адиабатных процессах, идущих без теплообмена с окружающей средой, энтропия газа не меняется, и на Т–s координатах этот процесс изображается отрезком вертикальной прямой. На р–v диаграмме этот процесс изображается неравнобокой гиперболой, проходящей несколько круче, чем изотерма (n = 1,0). Из первого закона термодинамики для этого процесса получаем соотношение u = l. В процессе 1–6 l > 0, значит u < 0 и температура газа уменьшается. Процесс сжатия 1–7, наоборот, протекает с увеличением Т.

На р–v координатах изохора представляет собой отрезок вертикали. Можно доказать, что на Т–s диаграмме она представляет собой тоже отрезок экспоненты, проходящей несколько круче, чем изобара. В процессе 1–8 давление газа уменьшается. Из соотношения p1/T1 = p2/T2, которое вытекает из объединенного закона газовых состояний рv/T = = const, следует, что в этом процессе уменьшается и температура. Процесс 1–9 идет, наоборот, с подводом тепла и увеличением температуры.

В результате проведенных построений p–v и T–s диаграммы разбились на отдельные зоны, что позволяет достаточно просто изображать процессы с некоторыми промежуточными значениями n. Например, процесс расширения с показателем политропы n = 0,5 будет на обоих диаграммах проходить в зоне между процессами 1–2 и 1–4.

Сопоставление расположения кривых на обоих диаграммах позволяет сделать ряд заключений:

1 Все множество политропных процессов можно разделить на две группы – правее и ниже начальной изохоры (изохоры, проведенной через точку 1 начала процесса) проходят процессы с совершением работы, левее и выше – процессы, в которых работа подводится к рабочему телу. Это называют обычно правилом изохоры и графически отображают так, как показано на рис. 1.20. В подтверждение названного правила, цессы можно разбить на две группы: те из них, которые протекают левее и выше начальной изобары, сопровождаются повышением давления, а процессы, проходящие правее и ниже – сопровождаются уменьшением давления газа, что и составляет правило изобары.

3 Можно выделить другие две группы политропных процессов – правее и выше начальной адиабаты протекают процессы с подводом тепла, а левее и ниже – с отводом тепла от рабочего тела, в чем и состоит правило адиабаты. Действительно, процессы 1–9, 1–2, 1–4, как это следует из свойств T–s диаграммы, протекают с подводом тепла. Все они на p–v координатах проходят действительно правее и выше начальной адиабаты 7–1–6.

4 Правило изотермы звучит так: все процессы делятся на две группы, из них те, которые проходят правее и выше начальной изотермы, сопровождаются повышением температуры, если же они идут левее и ниже, то температура газа уменьшается.

Каждое из этих правил можно представить и графически. Первые два из них наделяют T–s диаграмму свойствами p–v координат, позволяя по изображению процесса на T–s диаграмме делать заключения о характере процесса (расширение или сжатие) и изменении давления в процессе.

Правила изотермы и адиабаты наделяют p–v диаграмму свойствами тепловой, позволяя только по изображению процесса на ней ответить на вопросы об изменении температуры и направлении теплообмена.

В заключение отметим, что в политропных процессах в зависимости от величины n может существенно изменяться картина перераспределения видов энергии при их трансформации. В отдельных случаях (1 < n < k) количество получаемой работы может оказаться даже большим, чем количество подведенного тепла, так как часть работы получается за счет уменьшения внутренней энергии. Теплоемкость cпол при этом отрицательна. Более подробный анализ этого вопроса приводится в учебниках [4], [5], [6].

олучать неограниченно много механическую работу в одиночном процессе невозможно, поскольку П это связано с расширением рабочего тела и выравниванием потенциалов в среде и системе. Поэтому на практике работу получают отдельными порциями при совершении замкнутых круговых процессов или циклов. Термодинамический цикл – это ряд последовательных термодинамических процессов, в результате которых система приходит к первоначальному состоянию. Цикл можно повторять неограниченное число раз, и каждый раз получать порцию работы или другого нужного эффекта.

Циклы, у которых на p–v диаграмме процессы расширения проходят выше чем процессы сжатия, называют тепловыми. Они составляют основу тепловых двигателей. Здесь за счет подводимого извне тепла система совершает работу над средой (см. рис. 1.21). Работа за цикл lц определяется разницей между работой lр в процессах расширения и работой lc в процессах сжатия lц = lp – lc = Fa123b – – Fb341a = Fц. За цикл uц = u2 u1 = 0 и из первого закона термодинамики следует, что lц = qц. В тепловых циклах lц > 0 и qц > 0. На T–s диаграмме этот цикл (в общем виде) показан на рис. 1.22. Отметим: чтобы реализовать подвод тепла к рабочему телу, необходим источник тепла с температурой выше, чем температура в процессах подвода. Цикл невозможен без процессов с отводом тепла, и для их реализации в среде должен находиться приемник тепла с температурой ниже, чем температуры рабочего тела в процессах отвода. Таким образом, при совершении тепловых циклов система получает из окружающей среды тепло q1, часть ее трансформирует в работу и отдает среде, а другую часть q2 полученного тепла отдает приемнику тепла, тоже находящемуся в окружающей среде. Осуществление цикла приводит к перераспределению видов энергии во внешней среде. Отметим формальный признак тепловых циклов: на обоих диаграммах они идут по часовой стрелке. Эффективность тепловых циклов оценивают величиной термического КПД, который представляет собой отношение полезного эффекта к затратам на ее достижение:

димо подводить механическую работу. При этом естественно и qц < 0, т.е. за цикл тепла отводится больше, чем подводится его к рабочему телу. Подвод тепла здесь проводится при более низкой температуре, поэтому температура источника тепла тоже невысока.

Отвод тепла, наоборот, осуществляется при более высоких температурах и поэтому температура приемника тепла всегда выше, чем температура источника. Таким образом, осуществление холодильного цикла позволяет за счет подводимой извне работы переносить тепло с нижнего температурного уровня на верхний, т.е. совершать процесс, противоположный естественному направлению (от горячего к холодному) переноса тепла. Холодильные циклы идут против часовой стрелки, на их основе работают два типа машин разного назначения. р–v и Т–s диаграммы такого цикла приведены на рис. 1.23.

Если источник тепла мал, а приемник достаточно велик, то реализация цикла приведет к захолаживанию источника. Так работают холодильные машины. Эффективность холодильных машин оценивают величиной холодильного коэффициента, который определяют тоже как отношение полезного эффекта q1 к затратам lц:

Отметим, что в отличие от t, который всегда меньше 1,0 (это мы докажем в следующих параграфах), величина всегда больше 1,0 и, чем она больше, тем совершеннее холодильная машина.

Если же источник тепла неограничен, а приемник тепла невелик, то осуществление цикла приведет к нагреванию приемника. Так работает машина, которую называют тепловым насосом. Ее эффективность оценивается теплонасосным коэффициентом Укажем на сравнительно простую конвертируемость холодильной машины в тепловой насос, для этого достаточно поменять местами источник и приемник тепла.

икл Карно – это теоретически наиболее эффективный термодинамический цикл. Естественно, что он Ц должен состоять из самых эффективных, с точки зрения получения работы, процессов. Самым экономичным в этом плане является адиабатический процесс – в нем работу получаем за счет внутренней энергии, не подводя совершенно тепла извне. Однако из одних адиабат цикл создать невозможно, поскольку необходимы процессы с подводом и отводом тепла. Из процессов с теплообменом самым привлекательным является изотермический процесс, в нем все подводимое тепло трансформируется в работу (если газ идеальный).

Цикл Карно состоит из двух изотерм и двух адиабат. Подвод и отвод тепла здесь осуществляется изотермически, а адиабаты служат для того, чтобы замкнуть цикл (см. рис. 1.24). Из рисунка видно, что это единственный цикл, который можно осуществить обратимым способом, подбирая Ти и Тп так, чтобы они отличались от Т1 и Т2, соответственно, на бесконечно малые величины.

Осуществить физически цикл Карно очень трудно, практически невозможно, поскольку это требует так соразмерить темп подвода тепла и темп расширения системы, чтобы увеличение температуры, вызванное подводом тепла, компенсировалось бы ее уменьшением при расширении. Те же затруднения с изотермическим отводом тепла. Кроме того, дважды за цикл систему необходимо теплоизолировать и дважды снимать эту изоляцию.

Если цикл Карно направить против часовой стрелки, то получим наиболее эффективный холодильный цикл. Его называют обратным циклом Карно.

Найдем теперь КПД цикла Карно и подчеркнем, что КПД цикла Карно зависит только от температуры и не зависит от рода рабочего dq = тела. Этот вывод, который непосредственно следует из полученной формулы, составляет первую часть теоремы Карно. Во второй части этой теоремы утверждается, что КПД цикла Карно является наибольшим для любых циклов, протекающих в заданном температурT циклов Сопоставление ном интервале Ти … Тп. Чтобы убедиться в этом, сопоставим на Т–s коор- Рис < q2 на величину площадок, заштрихованных в противоположном направРис. 1. позволяет сделать заключение о том, что tk > t. Отношение площади реального цикла к площади цикла Карно на Т–s диаграмме называют коэффициентом заполнения цикла, и по его величине судят о степени совершенства реального цикла.

Проведенные сопоставления позволяют дать еще одну формулировку второго закона термодинамики: термический КПД любого реального цикла не может достигать величины 1,0. Обычно это называют невозможностью осуществления вечного двигателя второго рода. Действительно, даже у цикла Карно термический КПД меньше 1,0, поскольку величина Т2 не может быть равно нулю, а величина Т1 – бесконечно большой. По теореме Карно tk > t значит для любого цикла, даже не учитывая потерь работоспособности от необратимости, будем иметь 1.2.5 Потери работоспособности, коэффициент качества теплоты рактически все наши предыдущие рассуждения, выводы и расчетные формулы относились только к П равновесным процессам и не учитывали потерь работоспособности и деградации энергии из-за необратимости реальных процессов.

Максимальная работа, которую может совершить система при обратимых процессах, как это было показано ранее, определяется уменьшением эксергии рабочего тела Интегрирование этого выражения для процесса, в котором параметры рабочего тела изменяются от p1, v1, T1 (состояние 1) до p2, v2, T2 (состояние 2) дает Из формулы видно, что lmax определяется только состояниями рабочего тела и не зависит от характера тех процессов, которыми система перейдет из состояния 1 в состояние 2.

Ранее мы доказали, что при необратимых процессах изменение энтропии включает в себя дополнительно положительную величину s, которая возникает в результате преодоления внутреннего сопротивления системы. Значит наибольшая полезная работа, которую может отдать система при совершении необратимого процесса, переходя из состояния 1 в состояние 2, будет где ( s1 s2 + sн ) – полное изменение энтропии в необратимом процессе. Потеря работоспособности в результате необратимости определится разностью l = lmax l.

Подставляя значения lmax и l, получаем Задача определения sн решается отдельно для каждого конкретного процесса в зависимости от его особенностей. Величина sн тем больше, чем выше степень необратимости процесса, определяемая величиной разности потенциалов.

Для необратимых процессов расширения или сжатия без внешнего теплообмена величину sнм определяют через работу трения lтр, которая практически вся трансформируется в тепло трения qтр, достаточно просто измеряемое опытным путем, где Tср – средняя за процесс температура. В процессах теплообмена без механических взаимодействий величину sнт определим, рассуждая следующим образом. Максимальную работу тепла q, передаваемого при температуре T1 можно получить, если совершить цикл Карно в температурном интервале от Т1 до Т0. Величина этой работы Аналогично найдем максимальную работу того же количества тепла при температуре T Потери работоспособности в результате совершения неравновесного процесса, в котором температура изменилась от Т1 до Т2, будет С другой стороны, мы показали, что l = T0 sнт. Приравнивая правые части приведенных формул, получаем Из формулы видно, что величина sнт тем больше, чем больше отличаются друг от друга значения Т1 и Т2. При совершении сложных процессов, сопровождающихся и изменениями объема, и теплообменом величину sн находят суммированием Обращая внимание на формулы (1.27) и (1.28), можно сделать вывод о том, что ценность тепла зависит только от температуры, при которой оно подводится или отводится, и чем ближе эта температура к температуре Т0, тем меньшую долю тепла можно преобразовать в работу. При T = T0 тепловая энергия совсем не обладает запасом работоспособности, т.е. полностью деградирует.

Величину (1 – Т0/Т), которая показывает, какая доля тепла при температуре Т может быть трансформирована в работу в реальных условиях, называют коэффициентом качества теплоты. Анализ, в котором учитывается качество теплоты и потери работоспособности, называют эксергетическим анализом. Результаты такого анализа всегда являются более точными и информативными, чем при обычном энергетическом анализе. В монографиях [7] и [8] мы найдем подробное изложение методов эксергетического анализа для многих технических устройств. Для примера определим эксергетический коэффициент эффективности холодильных машин Поскольку Т1 и Т0 различаются незначительно, то abs (1 T0 / T1 ) 1.

1.3 ТЕРМОДИНАМИКА РЕАЛЬНЫХ ГАЗОВ

точки зрения молекулярно-кинетической теории, твердая, жидкая и газообразные фазы вещества отС личаются, в основном, плотностью компоновки молекул, расстояниями между ними. Чем ближе молекулы друг к другу, тем плотнее вещество. К реальным газам относят любые конкретные газы (кислород, водород и т.д.) или их смеси, которые находятся в таких состояниях, когда расстояния между молекулами сравнительно малы и поэтому заметно проявляются силы межмолекулярного взаимодействия, объем самих молекул соизмерим с объемом пространства, занимаемым этим газом.

Непрерывность газообразных и жидких состояний вещества опытным путем впервые была обнаружена Эндрюсом (1869 г.), который сжимал изотермически углекислый газ при разных его температурах.

Было установлено, что при достаточно высоких температурах Т, больших некоторой Ткр, сжижение газа вообще невозможно (см. рис. 1.26, изотерма Т1) и чем выше Т, тем точнее состояния газа описываются уравнением Клапейрона-Менделеева. При Т < Ткр в процессе изотермического сжатия сначала растут давление и плотность газа, но при достижении некоторого давления (его называют давлением насыщения pн) рост давления прекращается, возникают центры конденсации, в которых выделяется жидкость.

Возникает двухфазная смесь, по мере сжатия которой доля жидкости растет до тех пор, пока не завершится полная конденсация газа (изотермы Т2 и Т3 на рис. 1.26). Интенсивность этих процессов уменьшается с уменьшением температуры Т, но сами они протекают идентично.

Основную проблему составляет определение уравнения состояния реальных газов, ибо наличие такого уравнения позволяет определять значения различных частных производных, необходимые при расчете теплоемкостей, энтропии, энтальпии и других термодинамических характеристик. В общем случае такое уравнение должно описывать состояния вещества в любой его фазе, однако обычно удовлетворяются описанием жидкого и газообразного состояний.

Простейшим и исторически одним из первых таких уравнений является уравнение Ван-дер-Ваальса (1873 г.), полученное автором аналитически на основании молекулярно-кинетической теории, где a/v – добавочное давление, возникающее из-за силового взаимодействия между молекулами; а и b – некоторые константы, определяемые экспериментально для каждого конкретного газа, причем величина b характеризует суммарный объем самих молекул. Относительно параметра v это уравнение является полным кубическим уравнением и в зависимости от величины параметров р и Т может давать различные решения. Графически эти решения можно интерпретировать сеткой изотерм на р–v диаграмме, которые удовлетворительно соответствуют Эндрюсовским изотермам в области газа и жидкости.

Уравнение Ван-дер-Ваальса лишь в первом приближении описывает состояния реального газа и не применимо для практических расчетов из-за недостаточной точности получаемых результатов. Поэтому физиками предлагались все более сложные уравнения для этой цели, отличающиеся разной степенью универсальности и числом определяемых экспериментально констант. В начале прошлого века была, наконец, понята бесперспективность этого направления и предложено (а затем и стандартизировано) уравнение состояния в виде где z называют общим коэффициентом сжимаемости, показывающим насколько реально-газовые состояния отличаются от состояний идеального газа при тех же условиях.

Величина z зависит от особенностей состояния газа и задается обычно для каждого конкретного газа в виде функции Характер этой зависимости определяют опытным путем, исследуя сжимаемость газа в простых процессах. Для технических расчетов используют обычно специальные таблицы, приводимые в справочной литературе [9] и позволяющие определить значение z по заданным величинам p и Т. Для этой же цели используют обобщенную графическую зависимость в безразмерных координатах, отражающую суть термодинамического подобия. Для наиболее распространенных рабочих тел (воздух и его компоненты, вода и водяной пар и др.) требуются более точные расчеты. В этом случае величину z описывают полиномом с вириальными коэффициентами где величины A1, A2, A3... сами являются полиномами:

Значения коэффициентов a0, a1, a2..., b0, b1, b2... рассчитываются на основании экспериментальных сведений о сжимаемости газа или жидкости в простых процессах. Степени полиномов получаются достаточно высокими (от шести до четырнадцати), поэтому и обработку опытных данных, и расчеты по уравнению (1.29) ведут с помощью ЭВМ, для чего разработаны специальные процедуры и программы.

При ручных расчетах уравнение (1.29) невозможно точно реализовать, учитывая сложность расчета величины z. Для многих задач это можно сделать только методом последовательных приближений, принимая в качестве первого приближения z = 1,0. Поэтому на практике широко используются другие формы представления зависимости (1.29) – в виде специальных таблиц состояний или в виде особых диаграмм, с которыми мы познакомимся при более подробном изучении свойств воды и водяного пара и процессов с ними.

о многих случаях для отдельных веществ проводить широкие исследования и составлять уравнение В состояния нет необходимости, поскольку на практике с этими веществами реализуются только один или два частных термодинамических процесса. Поэтому опытным путем определяют только значения так называемых термических коэффициентов, содержащих значения соответствующих частных производных:

Например, чтобы определить изменение объема газа или жидкости при изобарном нагревании от Т до Т2, достаточно, проинтегрировав формулу для, рассчитать v2 v1 = v0 (T2 T1 ).

Таким образом, система термических коэффициентов адекватно заменяет уравнение состояния при расчетах частных процессов.

Между термическими коэффициентами существует однозначная связь, которую нетрудно установить. Из уравнения состояния F ( p, v, T ) следует, что p = f (v, T ). Полный дифференциал этой функции будет Для процесса при p = const величина dp = 0, и тогда формула (1.30) принимает вид откуда после простейших преобразований получаем уравнение состояния в дифференциальной форме Значения производных выразим через величины термических коэффициентов и подставим в предыдущую формулу После сокращения подобных членов получаем искомую связь Можно доказать, что величины t и s связаны зависимостью Таким образом, для полного описания свойств рабочего тела при совершении им простых термодинамических процессов достаточно определить опытным путем только два термических коэффициента и значение величины k.

ода и водяной пар очень широко используются в качестве рабочего тела в современных энергетичеВ ских и технологических промышленных установках.

Переход жидкости в пар называют парообразованием, обратный переход (пар в жидкость) – конденсацией. Парообразование с открытой поверхности называют испарением. В неограниченном пространстве в результате испарения вся жидкость может превратиться в пар. Если же парообразование происходит в закрытом сосуде, то вылетающие из жидкости молекулы постепенно заполняют пространство над ней, при этом некоторая часть из них в результате хаотического движения вновь возвращается в жидкость. С течением времени число молекул над жидкостью увеличивается и в конце концов наступает состояние динамического равновесия: сколько молекул вылетает из жидкости в паровое пространство, столько же молекул возвращаются назад в жидкость. В таком состоянии пар имеет наибольшую при данной температуре плотность и его называют насыщенным. При изменении температуры равновесие сначала нарушается, но постепенно снова восстанавливается, только уже при других давлении и плотности пара. Если к жидкости интенсивно подводится тепло, то парообразование происходит не только с поверхности, но и внутри жидкости и сопровождается выделением пузырьков пара. Это называют кипением. Над поверхностью кипящей жидкости находится насыщенный пар. Говорят, что и жидкость, и пар в этом случае находятся в состоянии насыщения.

С особенностями различных состояний воды и пара удобно познакомиться, прослеживая процесс изобарного нагревания одного килограмм воды при t = 0 °С сначала до кипения, затем до полного превращения в пар с последующим перегревом пара. На рис. 1.27 показаны последовательно (слева направо) пять специфических состояний, представляющих наибольший интерес.

Рис. 1.27, а отражает состояние воды при t = 0 °С и некотором зафиксированном давлении р.

Удельный объем воды в таком состоянии обозначим vж. Изобразим это состояние на p–v диаграмме точкой а (см. рис. 1.28). Аналогично будем изображать и другие состояния. При подводе тепла q температура и объем воды будут увеличиваться. Увеличение vж определяется степенью нагрева и величиной коэффициента теплового расширения v = v0 (T T0 ), где v0 – удельный объем воды при нормальных условиях (t = 0 °С, p0 = 1,01310 Па). По мере нагрева воды точка а на p v диаграмме будет смещаться вправо. На рис. 1.27, б зафиксировано состояние, когда температура воды достигла температуры насыщения и начинается процесс кипения. Все параметры такого состояния принято отмечать штрихом: v, h, s. На p–v диаграмме состояние насыщения изображается точкой b.

Если продолжить подвод тепла, то в результате кипения часть воды превратится в пар и под поршнем окажутся в равновесном состоянии вода и пар. При кипении подводимое тепло б) частично расходуется на дисгрегацию молекул и повышение их энергии (скрытая F теплота парообразования), а другая часть трансформируется в работу расширения пара. В промышленных условиях при кипении воды всегда получается механическая смесь воды и насыщенного пара, которую называют влажным паром. Двухфазное состояние показано на рис. 1.27, в. На точкой с. По мере выкипания жидкости объем паровой фазы возрастает и точка с смещается вправо. Влажный пар может содержать много воды и мало пара или на- Рис 1 27 Нагрев вод оборот. Для однозначного описания этого состояния используется дополнительно параметр, который называют степенью сухости и который представляет собою массовую долю насыщенного пара в смеси где mп и mв – массы пара и воды, соответственно. Ясно, что величина x может меняться от 0 до 1,0. Значение x = 0 соответствует воде в момент насыщения.

На рис. 1.27, г показано состояние, когда выкипает последняя капля воды, и цилиндр заполнен насыщенным паром. Пар при температуре tн, не содержащий в себе влаги, называют сухим насыщенным.

Параметры такого пара отмечают двумя штрихами: v", h", s". На диаграмме это состояние отражено точкой d. Степень сухости сухого насыщенного пара x = 1,0.

Если и дальше подводить тепло, то температура и объем пара будут увеличиваться. Такой пар, температура которого больше, чем температура насыщения при заданном давлении, называют перегретым.

На рис. 1.27, д показано состояние перегретого пара. На p–v диаграмме ему соответствует точка е. По мере подвода тепла увеличивается степень перегрева t = t – tн, и объем пара, и точка е перемещается вправо.

Если повторить описанный опыт при более высоком давлении, то в результате сжимаемости жидкости и пара точки а, b и d сместятся влево. Смещение точки b определяется двумя факторами: из-за сжимаемости воды она сместилась бы влево, но одновременно из-за повышения давления возрастает и температура насыщения, а значит и увеличивается тепловое расширение жидкости. В результате суммарный эффект сводится к смещению точки b вправо. Если повторять опыт при более низком давлении, то эффекты поменяют знак.

Объединяя точки a, b и d однофазных состояний, на p–v диаграмме получим пограничные кривые, разделяющие отдельные зоны фазовых состояний. Левее линии точек а находится область равновесного существования воды и льда. Между линиями точек а и b находится область состояний жидкости. Область между верхней и нижней пограничными кривыми (так называют линии точек b и d) соответствует состояниям влажного пара, а область праве линии x = 1 – состояниям перегретого пара.

Опыты обнаруживают, что при некотором достаточно высоком давлении (его называют критическим) свойства воды и пара становятся одинаковыми, исчезают физические различия между жидким и газообразным состояниями вещества. Такое состояние называют критическим состоянием вещества (см.

точку k на рис. 1.28). Если через точку k проведем критическую изобару и критическую изотерму, то на p–v диаграмме выделяются еще две области: область сверхкритических состояний воды (область I) и область сверхкритических состояний перегретого пара (область II). Переход от жидкости к перегретому пару при p > pкр сопровождается скачкообразным изменением свойств вещества без образования двухфазных смесей. При этом когда Т достигает величины Tкр, возникает критическое состояние, а при дальнейшем нагреве – перегретый пар сверхкритических параметров. Такие переходы называют фазовыми переходами второго рода. Приобретая все большее практическое значение, эти переходы еще ждут своих внимательных исследователей.

остояние воды и пара описываются стандартным уравнением состояния реальных газов но для повышения точности все состояния разделены на ряд областей и для каждой такой области, используя опытные данные о сжимаемости, находят свои полиномы с вириальными коэффициентами. Как уже отмечалось, использовать такое уравнение для практических расчетов неудобно из-за большой сложности (даже при наличии ЭВМ). Поэтому на его основе рассчитаны и издаются специальные таблицы [10], в которых вместе с данными о соотношениях между параметрами p, v и Т приводятся значения энтальпии h и энтропии s для этих состояний. Для расчета этих величин привлекаются экспериментальные сведения о теплоемкостях воды и пара, теплоте парообразования r.

Количество тепла, которое необходимо подвести к одному килограмму жидкости, чтобы нагреть ее от 0 °С до температуры t, называют теплотой жидкости. Из-за малой сжимаемости воды теплота жидкости практически равна ее энтальпии Состоянию насыщения соответствует наибольшая теплота жидкости Энтальпия сухого насыщенного пара превышает энтальпию h на величину теплоты парообразования r Энтальпию перегретого пара находят с помощью численного интегрирования по формуле Энтропию воды и перегретого пара рассчитывают, также прибегая к численному вычислению интегралов где значение частной производной находят с помощью уравнения состояния pv = zRT. Изменение энтропии за процесс парообразования будет s = r/Tн. Значит величины s и s связаны между собой соотношением Параметры влажного пара рассчитывают, используя свойство аддитивности. Например, Аналогично записываем и для других параметров:

Величины v, v, h, h, s и s приводят в таблицах насыщенных состояний (таблицы насыщения), которые строятся или по аргументу pн, или по аргументу tн. Для примера приводится небольшой фрагмент такой таблицы (см. табл. 1).

1 Параметры воды и пара на линии насыщения (по давлениям) 0,10 99,6 104 1,69 417,5 2674 2257 1,3026 7, Параметры воды и перегретого пара приводятся в таблицах с двумя аргументами р и t. В соответствие этим величинам приводятся значения v, h и s. Таблица 2 иллюстрирует фрагмент такой таблицы состояний.

p, MПа тобы упростить и облегчить решение многих практических задач, немецким теплофизиком МоЧ лье в начале нашего века (1904 г.) была предложена специальная диаграмма, на которой в координатах h–s графически отображаются сведения, приводимые в таблицах состояний.

Упрощенный вид такой диаграммы приведен на рис. 1.29. Если в координатах h–s по значениям h и s, h и s, взятым из таблицы насыщения, нанести соответствующие точки и объединить их плавными кривыми, получим две линии, которые называют соответственно верхней (при x = 1) и нижней (при x = 0) пограничными кривыми. Как и на p–v диаграмме, область, заключенная между этими кривыми – это область влажного пара. Область, лежащая выше линии x = 1, соответствует перегретому пару. Область воды стягивается практически в линию x = 0, поскольку вода практически несжимаема.

другую сетку – сетку изобар (на рис. 1.29 их изображено только три). Таким же способом наносится и сетка изохор, хотя это и требует более кропотливой работы с таблицей состояний.

Все изолинии строятся и в области влажного пара, для чего сначала рассчитывают величины hx и sx при фиксированном давлении pн или температуре tн и различных значениях x. Поскольку величины pн и tн однозначно связаны между собой, то изобары и изотермы в области влажного пара совпадают. В этой области наносится еще одна сетка – сетка линий равной сухости (линий, на которых степень сухости x одна и та же).

Чтобы выявить характер основных кривых, из первого закона термодинамики выразим значение производной dh / ds и проанализируем ее величину:

В процессах при p = const производная dp / ds равна нулю и тогда угловой коэффициент, выражаемый производной (h / s ) p, будет Таким образом, в области перегретою пара изобара – это кривая, имеющая выпуклость вправо, ибо только тогда по мере роста Т будет расти и величина производной (h / s ) p. В области влажного пара T = Tн и угловой коэффициент изобары (или изотермы) есть постоянная величина (h / s ) p = Tн. Это говорит о том, что в области влажного пара изотермы-изобары представляют собою прямые линии, которые проходят тем круче, чем больше Tн (или pн). При T = Tкр значение производной (h / s ) p не равно нулю, а равно Tкр. Значит на h–s диаграмме точка k не лежит на максимуме.

В процессах при v = const формула (1.31) принимает вид Заменим здесь частную производную (p / s) v с помощью дифференциального соотношения производной – (T / v) s, тогда Адиабатное расширение любого газа всегда сопровождается уменьшением внутренней энергии и температуры, т.е. всегда (T / v) s < 0. Значит (h / s) v > T, или, учитывая (1.32) Мы показали, что изохора на h–s диаграмме всегда проходит круче, чем изобара и это облегчает распознавание этих изолиний на h–s диаграмме.

Наличие сеток и надписей на изолиниях позволяет достаточно просто по любым двум заданным параметрам определить точку на диаграмме (как точку пересечения соответствующих изолиний), а следовательно и найти остальные параметры этого состояния. Применение достаточно подробных и крупномасштабных диаграмм гарантирует высокую точность определения параметров. Как правило, нижняя часть, соответствующая очень влажному пару, на таких диаграммах не приводится.

равнение Клапейрона-Клаузиуса устанавливает связь между температурой и теплотой фазового перехода. Получим его для перехода жидкость-пар. Для этого рассмотрим элементарно малый цикл Карно, в котором подвод и отвод тепла осуществляется в результате кипения воды и конденсации насыщенного пара. Ниже на рис. 1.30 приp Рис. 1.30 Элементарно (при этом считаем, что заштрихованные фигуры равны; это очень разницы давлений dpн). Величину термического КПД можно рассчитать как для любого цикла по формуле С другой стороны, эту же величину рассчитаем, как для цикла Карно через температуры подвода и отвода тепла, заменяя для элементарно малого цикла разницу T2 – T1 элементарно малой величиной dTн:

Приравнивая правые части полученных формул для t, находим Уравнение Клапейрона-Клаузиуса в аналогичном виде можно получить и для других фазовых переходов (плавление, сублимация). Обычно оно служит для проверки достоверности, "увязки" полученных опытных данных. При высоких давлениях с помощью этого уравнения рассчитывают величину v", поскольку опытное ее определение в этом случае затруднительно.

режде чем рассчитывать характеристики таких процессов, необходимо с помощью таблиц или h–s П диаграммы определить агрегатные состояния и все параметры начала и конца процесса:

s диаграммах. Работу за процесс находим интегрированием:

Тепло за процесс равно разнице энтальпий qp = h2 – h1. Чтобы определить изменение внутренней энергии u за процесс, запишем сначала соотношение u = h – pv, которое непосредственно следует из определения энтальпии h = u + pv. Тогда Подчеркнем, что полученная формула справедлива для любого процесса с водой и паром.

На рис. 1.32 приведено изображение изохорного процесса на p–v и h–s диаграммах. В таком процессе работа lv не совершается. В соответствии с первым законом термодинамики будем иметь qv = u, где величину u и можно рассчитать по приведенной выше формуле.

Рис. 1.33 Изотермические Рис 1 34 Адиабатный процесс на p–v и h–s диаграм- Величину u рассчитывают по приведенной ранее формуле, а работу за процесс находят затем, используя уравнение первого закона термодинамики Адиабатный процесс изображен на рис. 1.34. В таком процессе внешний теплообмен отсутствует, т.е. q = 0, поэтому работу за процесс находят по формуле ls = u, которая вытекает из первого закона термодинамики с учетом особенностей этого процесса. В первом приближении адиабатный процесс с водяным паром можно рассчитывать так же, как рассчитывают его для идеального газа. Значение показателя адиабаты в этом случае для перегретого пара принимают равным 1,31, а для влажного пара (при x > 0,8) – равным 1,13.

1.4 ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА

о многих технических устройствах преобразования энергии осуществляются в движущемся газе при течении его в открытой системе. Полученные ранее основные выводы и заключения справедливы и для таких случаев, но специальное рассмотрение с учетом всех особенностей явления позволяет выявить взаимосвязь между параметрами газа, характеристиками процесса и скоростью течения газа.



Pages:     || 2 | 3 | 4 |


Похожие работы:

«2211 ПОСТРОЕНИЕ СТАТИСТИЧЕСКИХ ГРАФИКОВ Методические указания для студентов экономических специальностей Иваново 2002 Министерство образования Российской Федерации Ивановская государственная текстильная академия Кафедра начертательной геометрии и черчения ПОСТРОЕНИЕ СТАТИСТИЧЕСКИХ ГРАФИКОВ Методические указания для студентов экономических специальностей Иваново 2002 2 В методических указаниях, предназначенных для студентов экономических специальностей, рассматривается выполнение графического...»

«Пособие по обучению социальных адвокатов: опыт и методические рекомендации Ашгабат 2007 Авторы сборника Благодарность За программой социальных адвокатов стоят юристы и преподаватели, благодаря знаниям, преданности и упорной работе которых стало возможно развитие проекта. Выражаем признательность всем нашим преподавателям и авторам сборника за вклад в создание и реализацию программы. Особая благодарность Жаклин Фостер, Кристине Теффт и Франку Хеспе, инициативе и организационным способностям...»

«История политических и правовых учений: [учебник для вузов по специальности Юриспруденция, 2012, 655 страниц, 5917683085, 9785917683089, Норма, 2012. В учебнике освещается всемирная история политической и правовой мысли. В нем представлены основные политико-правовые теории Древнего мира, Средних веков, Нового и Новейшего времени. Для студентов, аспирантов и преподавателей юридических вузов Опубликовано: 12th August 2010 История политических и правовых учений: [учебник для вузов по специальности...»

«Департамент здравоохранения Томской области ОГУЗ Томская областная клиническая больница ГОУ ВПО Сибирский государственный медицинский университет Росздрава, кафедра госпитальной терапии с курсом физической реабилитации и спортивной медицины Клинические классификации с принципами оформления клинического и патологоанатомического диагнозов Методические рекомендации для студентов, интернов, ординаторов и врачей Томск-2008 Составители: Варвянская Н.В. – ассистент, к.м.н. Елисеева Л.В. – зав....»

«ГРАЖДАНСКИЙ ПРОЦЕСС Учебник Второе издание, переработанное и дополненное Под редакцией М.К. Треушникова, доктора юридических наук, профессора, заслуженного деятеля науки РФ Рекомендован Учебно-методическим Советом по юридическому образованию УМО по классическому университетскому образованию Москва • 2007 Гражданский процесс: Учебник. 2-е изд., перераб. и доп. / Под ред. М.К. Треушникова. М.: ОАО Издательский Дом “Городец”, 2007. — 784 с. ISBN 5–9584–0111– В учебнике освещается порядок...»

«СОДЕРЖАНИЕ 1. Общие положения.. 1.1 Определение основной образовательной программы бакалавриата.5 1.2 Обоснование выбора направления и профиля подготовки.5 1.3 Нормативные документы для разработки ООП бакалавриата.6 1.4 Общая характеристика вузовской основной образовательной программы высшего профессионального образования.6 1.4.1. Цель ООП бакалавриата..6 1.4.2. Срок освоения ООП бакалавриата..7 1.4.3. Трудоемкость ООП бакалавриата..7 1.5. Требования к абитуриенту..8 2. Характеристика...»

«- 2009 Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет – УПИ имени первого Президента России Б.Н. Ельцина ГОУ ВПО Уральский государственный университет им. А.М.Горького ГОУ ВПО Уральская государственная архитектурно-художественная академия ГОУ ВПО Уральская государственная юридическая академия ГОУ ВПО Уральский государственный экономический университет ГОУ ВПО Российский государственный профессионально-педагогический университет Новые...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Адыгейский государственный университет ПЕШКОВА В. Е. УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине ОБЩИЕ ОСНОВЫ ПЕДАГОГИКИ для специальности 031200 – Педагогика и методика начального образования Учебно-методическое пособие МАЙКОП, 2010 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра педагогики и педагогических...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Горно-Алтайский государственный университет Юридический факультет Кафедра уголовного, гражданского права и процесса Уголовное право (Общая часть. Особенная часть) Учебно-методический комплекс Для студентов, обучающихся по специальности 030501 Юриспруденция Горно-Алтайск РИО Горно-Алтайского государственного университета 2008 Печатается по решению методического совета...»

«Учебное пособие для 10 класса учреждений, обеспечивающих получение общего среднего образования, с русским языком обучения с 12-летним сроком обучения Допущено Министерством образования Республики Беларусь Минск Издательский центр БГУ 2006 УДК 94(476)1945/2005(075.3=161.1) ББК 63.3(4Беи)6я721 Ф76 Р е ц е н з е н т ы: зав. каф. истории Беларуси Гродненского государственного университета им. Я. Купалы, канд. ист. наук, проф. И. П. Крень; проф. каф. истории и культуры Беларуси Могилевского...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ С.Г. Селетков СОИСКАТЕЛЮ УЧЕНОЙ СТЕПЕНИ Издание третье, переработанное и дополненное Ижевск 2002 1 УДК 378.245 (07) С 29 Р е ц е н з е н т ы : И.В. Абрамов, д-р техн. наук, проф.; В.С. Черепанов, д-р пед. наук, проф. Селетков С.Г. С 29 Соискателю ученой степени. – 3-е изд., перераб. и доп. – Ижевск: Изд-во ИжГТУ, 2002. – 192 с. ISBN 5–7526–0122–3 Издание содержит основные методологические установки...»

«№, Наименование и краткая характеристика библиотечно- Номер диска. п/п информационных ресурсов и средств обеспечения Наименование предмета, дисциплины (модуля) образовательного процесса, в том числе электроннобиблиотечных систем и электронных образовательных соответствии с учебным планом ресурсов (электронных изданий и информационных баз данных) 1 2 3 4 Основы философии 2. 34 История философии : Компакт диск.-М ООО Директ Медиа Паблишинг,2008. Козлова Т.В. Основы права: Учебно- методическое...»

«Школа менеджеров инвестиционных проектов Под общей редакцией Савельева Ю.В., Жирнель Е.В. Учебно-методическое пособие БИЗНЕС-ПЛАНИРОВАНИЕ И РАЗРАБОТКА ИНВЕСТИЦИОННЫХ ПРОЕКТОВ Петрозаводск 2007 Бизнес-планирование и разработка инвестиционных проектов СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. Тема Инвестиции и их виды 1.1. Сущность и классификация инвестиций 1.2. Принципы инвестирования, основные этапы инвестиционного проекта 2. Тема Структура и виды бизнес-плана 2.1. Сущность, роль и функции бизнес-планирования...»

«Рассмотрено Согласовано Утверждаю на заседании МО учителей математики и естественных наук Зам. директора по УВР Директор МБОУ Орловской СОШ Ефанова И. А. Л.А.Ермолова Протокол №1 от 29.08.2013г. 30 августа 2013 г. Приказ №_42/10 от 31 августа2013 г. Руководитель МО Т.Я.Ефанова 29августа 2013г. 2013 -2014 учебный год РАБОЧАЯ ПРОГРАММА ПО БИОЛОГИИ класс 11_ учитель Казьмина Л. В. количество часов в год количество часов в неделю 2_ контрольных работ _ Лабораторных работ Программа составлена на...»

«Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МАРКЕТИНГ В ЛЕСНОМ КОМПЛЕКСЕ Учебно-методическое пособие по выполнению курсовой работы для студентов специальности 1-26 02 03 Маркетинг очной и заочной форм обучения Минск 2005 1 УДК 659.1 ББК 65: 43 М 26 Рассмотрено и рекомендовано к изданию редакционноиздательским советом университета Составитель ст. препод. канд. экон. наук В.Г. Куртин Рецензенты: доц. кафедры менеджмента и маркетинга МИТСО, канд. экон. наук А.Н....»

«Министерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет радиотехники, электроники и автоматики МГТУ МИРЭА УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ЦЕЛЕВЫХ КУРСОВ Специалист по обслуживанию и наладке современных лазерных технологических комплексов на основе волоконных лазеров. Модуль ПМ 02. Наладка ЛТК на основе волоконных лазеров Форма обучения: очная 2012 г. Состав...»

«В.К. КЛЮЕВ МЕНЕДЖМЕНТ РЕСУРСНОГО ПОТЕНЦИАЛА БИБЛИОТЕКИ Учебное пособие Рекомендовано Учебно-методическим объединением по образованию в области народной художественной культуры, социально-культурной деятельности и информационных ресурсов в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки 071900 – Библиотечно-информационная деятельность Москва 2011 СОДЕРЖАНИЕ Предисловие 3 I. Организационно-экономические основы управления ресурсным комплексом...»

«Нацистский оккупационный режим на территории СССР и проблема выживания в гетто План-конспект урока. Обществознание, 11 класс Учебник: Отечественная история ХХ-начала XXI вв. Под редакцией академика А.О. Чубарьяна. М., Просвещение, 2006. Цели урока: 1.Формирование знаний об оккупационном режиме, о бесчеловечности и беспрецедентной жестокости нацизма, об уничтожении и порабощении населения оккупированных территорий; о Холокосте на территории СССР. Развитие навыков анализа (в том числе...»

«Московский государственный университет имени М.В. Ломоносова Физический факультет Государственный астрономический институт имени П.К. Штернберга В.Е.Жаров Основы радиоастрометрии Рекомендовано Учебно-Методическим Объединением по классическому университетскому образованию РФ в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 011501 — Астрономия Москва, 2011 УДК 521.2, 523.164 ББК 22.6 Ж 35 В.Е. Жаров Основы радиоастрометрии. — М.: Физический...»

«Негосударственное образовательное учреждение высшего профессионального образования Московский экономико-правовой институт (НОУ ВПО МЭПИ) Кафедра социально-гуманитарных, естественнонаучных и математических дисциплин РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МАКРОЭКОНОМИКА образовательная программа направления подготовки 080100.62 - экономика Квалификация (степень) выпускника - бакалавр экономики Москва 2013 СОДЕРЖАНИЕ 1. Цели и задачи дисциплины 2. Место дисциплины в структуре ООП ВПО 3. Компетенции...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.