WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

И.Ю. Денисюк, М.И. Фокина, Ю.Э. Бурункова

Нанокомпозиты – новые материалы фотоники

Учебное пособие

Санкт-Петербург

2007

Министерство образования Российской федерации

Санкт-Петербургский Государственный университет

информационных технологий, механики и оптики

Нанокомпозиты

Учебное пособие Санкт-Петербург 2007 И. Ю. Денисюк, М.И. Фокина, Ю.Э. Бурункова СПб; СПбГИТМО (ТУ), 2006, - с.

Полимеры и нанокомпозиты В пособии представлены основные сведения о современных оптических полимерах, технологии их переработки, применению в интегрально-оптических устройствах и активным электрооптическим элементах на их основе.

Одобрено на заседании Совета факультета «Фотоники и оптоинформатики» СанктПетербургского государственного университета информационных технологий, механики и оптики 2007 (протокол № ).

© И.Ю. Денисюк, М.И. Фокина, Ю.Э.

Бурункова © Санкт-Петербургский государственный университет информационных технологий, механики и оптики, 2007.

Введение Мир объектов, объединенных определением "нано", настолько широк, что трудно найти такие области естественных наук и процессов, которые не были бы так или иначе связаны с ними. Отметим наиболее часто цитируемые в литературе применительно лишь к масштабным, размерным феноменам термины: нанохимия, нанофизика, нанофазные, наногибридные, нанокристаллические и нанопористые материалы, наноструктуры, нанокристаллы, структуры с нанофазной геометрией и наноразмерной архитектурой, наноструктурированные органические сетки, дизайн на молекулярном и наноразмерном уровнях и, наконец, нанотехнология. Особое место в наноразмерной химии принадлежит частицам, участвующим в различных биологических процессах, к которым следует отнести такие супрамолекулярные функциональные системы, как ферменты, липосомы, клетки. Приложение подобных материалов в химии - новые реакции, каталитические и сенсорные системы, получение соединений и нанокомпозитов с новым комплексом ранее неизвестных свойств; в физике создание материалов для электроники, структуры с нанометровой геометрией для записи информации, преобразование излучений различной энергии; в биологии и медицине - новые лекарственные средства и механизмы их транспортировки. Все более отчетливо просматривается связь между наукой о материалах и наукой о жизни, схема 1.1 иллюстрирует размерные соотношения между ними.

Вполне реальны утверждения, что наука и технология XXI века будут иметь наноразмерный характер, поскольку во многих областях традиционных технологий достигнуты пределы миниатюризации отдельных элементов (например, плотности расположения на поверхности кристаллов в микроэлектронике), что стимулирует поиск альтернативных путей.

Например, производство современных интегральных схем базируется на так называемой планарной технологии, основанной на сочетании процессов нанолитографии (формирование наноразмерных поверхностных рисунков в виде линий и точек) и травления. Для уменьшения их размеров уже используют новые приемы литографии (в частности, электронно- и ионнолучевая, ренгеновская), позволяющие достигнуть размеров элементов оптоэлектронных интегральных схем < 100 нм, а также новые подходы к сухому травлению - плазмохимический, реактивный, ионный и др.

Нанофазное материаловедение отличается от традиционного не только созданием принципиально новых материалов, но и необходимостью конструирования приборного оснащения для работы с такими материалами.

Из наиболее перспективных областей нанотехнологии металлических материалов и изделий из них в первую очередь выделим микро- и нанометаллургию, лазерную обработку поверхности материалов, у которых толщина слоев, подвергшихся воздействию, ограничена размерами в несколько сотен и десятков нанометров; всевозможные виды нанокерамики и др.

10-4 10-5 10-6 10-7 10-8 10-9 10-10,м Переход к таким высоким технологиям требует создания принципиально новых конструкционных материалов, функциональные параметры которых определяются свойствами формируемых микрообластей, а также процессами, протекающими на атомном, молекулярном уровнях, в монослоях и нанообъемах.

Дизайн на таком уровне может быть осуществлен лишь с участием кластерных молекул и наноразмерных частиц (НРЧ) - ультрамалых частиц металлов нанометрового размера (параметр которых хотя бы в одном измерении составляет не более 100 нм) как наиболее вероятных и перспективных элементов молекулярной электроники.

Схема 1.2 иллюстрирует основные этапы на пути превращения одиночного атома в блочный металл - через кластерные, нано-размерные и коллоидные частицы ("активные металлы" по терминологии ):

Размер Атом Кластер 1нм Наночастица Коллоид Блочный Другими словами, при движении вдоль оси размеров от единичного атома в нульвалентном состоянии (М) до металлической частицы, обладающей всеми свойствами компактного металла, система проходит через ряд промежуточных стадий:

главными из которых являются кластерообразование и формирование металлических НРЧ.

Термин "металлический" отражает лишь состав, а не природу этих частиц, промежуточных между металлом и его отдельными атомами;

"кластеры - это эмбрионы металлов". Разумеется, такая схема лишь демонстрирует простое механическое наращивание числа атомов металла, принимающих участие в построении j-меров. Процесс коллективизации электронов в образующемся зародыше происходит самопроизвольно и, по сути, подобен образованию молекул из отдельных атомов. Реальная картина зарождения и роста частиц новой фазы как на микро-, так и на макроуровне очень сложна и должна отражать единый физико-химический процесс (некоторые стадии могут иметь и цепную природу), включающий ряд взаимосвязанных стадий, наиболее существенные из которых - реакции химического превращения (источник "строительного материала"), массоперенос (диффузионная подвижность и транспорт конденсирующихся частиц в зону сборки), сорбционные процессы, проявляющиеся в адсорбции/десорбции и в реакциях частиц на поверхности зародышей, их кристаллизации и т.д. Многие из этих стадий гетерогенны, протекают пространственно неоднородно, особенно на поверхности или в объеме твердой фазы.



Термодинамический подход позволяет выявить условия возникновения зародышей новой фазы, оценить их критический размер и найти факторы управления ими. Для интерпретации экспериментальных результатов и определения функции распределения НРЧ по размерам используют кинетические уравнения, описывающие скорости и механизмы формирования (коагуляции) и распада у-ядерных структур по разным каналам и базирующиеся на макроскопическом приближении известных кинетических моделей. Часто при этом используют и статистический подход, а также численное моделирование.

В терминологическом плане наиболее часто используются обозначения "ультрамалые частицы", "нанокристаллы" для наноразмерных металлических частиц, диаметр которых заключен в диапазоне между 25 и 50 нм, а также "коллоидные кристаллиты", "субколлоидные частицы". Размеры нанокристаллов полупроводников в полимерных матрицах: верхняя граница их диапазона является условием, обеспечивающим оптическую однородность композиции (отсутствие рассеяния средой при размерах частиц меньше четверти длины волны света), а нижняя определяется самим существованием кристаллических частиц (граница перехода от кристаллической фазы к квазимолекулярной). Реже используют термины "молекулярные агрегации" и "кристаллические кластеры".

Принято различать два типа НРЧ: частицы упорядоченного строения, имеющие, как правило, до 38-40 атомов, а часто и более (например, Аu55, Pt серия палладиевых кластеров, состоящих из 500-2000 атомов), называемые кластерами, их размер 1-5-10 нм, и собственно НРЧ с диаметром 1050 нм, состоящие из 103-106 атомов.

Физические исследования показывают, что частицы с таким размерным диапазоном проявляют т.н. размерные эффекты, если параметры их структурных элементов хотя бы по одному направлению соизмеримы (или меньше) с корреляционным радиусом того или иного химического или физического явления (например, с длиной свободного пробега электронов, фононов, длиной когерентности в сверхпроводнике, размерами магнитного домена или зародыша новой фазы и др.). Они характеризуются квантоворазмерными эффектами, то есть классические физические законы заменяются правилами квантовой механики. Удельная теплота, восприимчивость, проводимость и другие фундаментальные характеристики металла теряются, по крайней мере, при низких температурах, когда частицы достигают размеров наношкалы. Кроме того, их специфика - немонотонная зависимость свойств, таких как температура плавления, давление, необходимое для перестройки кристаллической структуры, ионизационные потенциалы, энергии связи, отнесенные к одному атому металла, изменение межатомных расстояний, оптических и магнитных свойств, электронной проводимости, электрон-фононных взаимодействий и других от величины кластера - числа атомов N в нем. Именно этим определяется существование так называемых "магических чисел" - дискретного набора чисел атомов N, соответствующих энергетически наиболее выгодным кластерам: 1, 13, 55, 147, 309, 561, 923..., их вычисляют по формуле N = (10n3 + 15n2 + 11n + 3).

Гибридные наноматериалы широко распространены и в живой природе. Взаимодействия металлсодержащих частиц с биополимерами (белками, нуклеиновыми кислотами, полисахаридами) и клетками играют важнейшую роль в ферментативном катализе, геобиотехнологии и биогидрометаллургии, в процессах биоминерализации. Совершенство процессов образования таких материалов, принципы саморегуляции вызывают наряду с восхищением исследователей стремление к биоподражанию - моделированию, созданию синтетических аналогов, приближающихся по своим характеристикам к живым организмам. В особой мере это относится к многоядерным металлоферментам, процессам биосорбции и биоминерализации. Так, микробы трудятся как старатели, извлекая НРЧ золота из руды по технологии биовыщелачивания, а затем укрупняют их до видимых глазом золотин. Кластеры и НРЧ - модельные объекты многих биомиметических концепций, составляющих предмет исследования биомиметики, бионеорганической химии. Уже достигнуты существенные успехи в моделировании полиядерных негемовых комплексов железа (компонентов метанмонооксигеназы), в конструировании фотосистем выделения кислорода из воды по типу ферментативных, в биохимической азотфиксации, в использовании НРЧ в диагностике патогенных и генетических болезней за счет их агрегации в присутствии комплементарных олигонуклеотидов, в создании металлобелковых препаратов и др.

Области применения кластерных и наночастиц, заключенных в полимерную матрицу, практически неограниченны. Перечислим лишь основные из уже реализованных.

По величине НРЧ сопоставимы с боровским радиусом экситонов в полупроводниках, что определяет их оптические, люминесцентные и редокссвойства. Опять же, поскольку собственный размер наночастиц сопоставим с размерами молекул, то это определяет специфику кинетики химических процессов на их поверхности. Внимание исследователей сосредоточено на изучении граничных областей НРЧ - полимер. Именно границы между фазами ответственны за протекание таких важных процессов, как адсорбция и катализ.

Большинство исследований НРЧ носит междисциплинарный характер, поскольку требует приложения методологии целого ряда научных областей, таких как физикохимия НРЧ, материаловедение, биотехнология, нанотехнология. Наука о нанокомпозитах возникла в последние годы (термин появился в 1970 г.) на стыке различных областей знаний и почти сразу же стала давать практические результаты. Ее интенсивное развитие, обогащение новыми представлениями и междисциплинарность до последнего времени не давали возможность провести хотя бы предварительный обзор достигнутого.

Одним ключевых факторов, ответственным за нанотехнологическую революцию, явилось усовершенствование старых и создание новых инструментальных средств для определения параметров наноструктур. Многие такие системы пока весьма громоздки, дороги (стоимостью порядка миллиона долларов) и часто требуют для работы на них высококвалифицированных специалистов. Рассмотрим принципы действия некоторых приборов и методов, а так же их возможности для определения положений атомов объеме, изучения наномасштабных структур на поверхности и изучения свойств наноструктур.

Структура Атомные структуры Для понимания наноматериалов надо в первую очередь знать их атомарную структуру, то есть определить типы атомов, являющихся строительными блоками, и их взаимное расположение в пространстве.

Большинство наноструктур имеет кристаллический характер, т.е. тысячи составляющих их атомов упорядочены в систему, называемую кристаллической решеткой. Решетку можно описать, задав положения атомов в элементарной ячейке, так что всю решетку можно построить путем многократного повторения этой элементарной ячейки в пространстве. На рис.

1.1 показаны схемы элементарных ячеек для четырех кристаллических систем в двумерном случае. Параметры а, b, для этих систем приведены в первых четырех строках Таблицы 1.1. Существует 17 возможных типов структур, называемых пространственными группами, что означает наличие 17-ти способов расположения атомов в двумерной элементарной ячейке. Их распределение по четырем кристаллическим системам показано в четвертом столбце таблицы. Наиболее важен случай самой плотной упаковки одинаковых атомов на поверхности, что соответствует гексагональной системе, показанной на рис.1.2а.

Рис.1.1. Пять решеток Браве для двумерного случая с выделенной элементарной ячейкой:

квадратная (а), простая прямоугольная (б), центрированная прямоугольная (в), Рис. 1.2. Плотная упаковка сфер на плоскости: а – для монослоя, б – для двухслойной структуры. Сферы второго слоя нарисованы меньшими для наглядности. На рисунке (б) октаэдрическая позиция отмечена буквой Х, тетраэдрическая – буквой Т.

В трехмерном случае ситуация намного сложнее. Здесь присутствуют три постоянные решетки а, b, с и три угла между ними а,, (а между b и с и т.д.). В трех измерениях существует семь кристаллических систем с 230-ю пространственными группами, распределенными по системам как показано в столбце 4 Таблицы 1.1. Целью анализа кристаллической структуры является определение симметрии, пространственной группы, постоянных решетки и углов, а также определение положений атомов в элементарной ячейке.

Рис. 3. Элементарные ячейки трех кубических решеток Браве: простой (а), объемноцентрированной (ОЦК) (б) и гранецентрированной (ГЦК) (в).

Для нанокристаллов важны определенные частные случаи кристаллических структур, относящиеся к простой кубической (ПК), объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК) элементарной ячейке, как показано на рис. 1.3. Другое важное структурное упорядочивание образуется при наложении плоских гексагональных слоев, обеспечивающих наибольшую плотность атомов в моноатомном слое, или наилучшую послойную упаковку идентичных сфер способами, показанными на рис.1.2б. Если третий слой расположен непосредственно над первым, четвертый над вторым и т.д. в последовательности типа А-Б-А-Б-..., то получается гексагональная плотноупакованная структура (ГПУ). С другой стороны, если такое наложение происходит размещением третьего слоя в третьей позиции, а четвертого над первым и т.д. в последовательности А-Б-В-А-Б-В-А-..., то получается ГЦК структура. Последний тип в нанокристаллах встречается более часто.

Некоторые свойства нанообъектов зависят от их кристаллической структуры, в то время как другие - такие как каталитическая активность и адсорбционные характеристики - от типа открытой поверхности.

Эпитаксиальные пленки ГЦК или ГПУ кристаллов обычно растут с вышеуказанным двумерным плотноупакованным расположением атомов.

Кристаллы с ГЦК решеткой, как правило, имеют ту же двумерную плотноупакованную структуру на открытых поверхностях.

Таблица 1.1. Кристаллические системы и количество связанных с ними пространственных групп в двух и трех измерениях (всего существует 17 двумерных и 270 трехмерных групп).





Похожие работы:

«1 2 Лист – вкладка рабочей программы учебной дисциплины Общая физическая подготовка, ДФ.05, вузовский название дисциплины, цикл, компонент Список основной учебной литературы *Указания о контроле на Соответствие ГОС Количество момент переутверждения Сведения об учебниках (для федеральных экземпляров программы дисциплин) или в соответствия библиотеке Дата Внесение, требованиям ООП на момент продление или (для региональных переутвержд исключение / и вузовских) - ения Год Подпись отв. Наименование,...»

«I О.Лукша, П.Сушков, А. Яновский Центр коммерциализации технологий – организационное развитие: как создать, управлять, организовать мониторинг и оценку деятельности Проект EuropeAid Наука и коммерциализация технологий 2006 Серия методических материалов Практические руководства для центров коммерциализации технологий подготовлена под руководством Питера Линдхольма (inno AG), директора проекта, представляющего консорциум inno AG (Германия), АЕА Technology (Великобритания), TNO (Нидерланды) при...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ Учебно-методическое объединение вузов по образованию в области менеджмента МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО РАЗРАБОТКЕ ПРОГРАММ ВСЕХ ВИДОВ ПРАКТИК БАКАЛАВРИАТА И МАГИСТРАТУРЫ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ 080200 МЕНЕДЖМЕНТ Москва 2010 2 УДК 37.012 Методические рекомендации по разработке программ всех видов практик бакалавриата и магистратуры по...»

«Оренбургский государственный профессионально-педагогический колледж СОЦИАЛЬНАЯ ПЕДАГОГИКА УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС Оренбург-2008 г. Автор: Горшенина Н.В. Допущено Институтом проблем развития среднего профессионального образования России в качестве учебного пособия для студентов образовательных учреждений среднего профессионального образования Социальная педагогика: Учебно-методический комплекс. – Оренбург: ОГППК, 2008. Учебно-методический комплекс представляет собой курс лекций, в которых...»

«Б.М.Лапидус, Ф.С.Пехтерев, Е.М.Махлин РЕГИОНАЛИСТИКА Издание 2-ое, переработанное Москва 2010 г. 5 ББК 65.9(2)23 УДК 33:911.6 Л24 Лапидус Б.М., Пехтерев Ф.С., Махлин Е.М. 124 Регионалистика: Учебное пособие для ВУЗов М. 2010 – 400 с. ISB№5-89035-033-1 Рассмотрена эволюция территориальной организации экономического пространства России и развитие экономики регионов в условиях функционирования укрупненных управленческих моделей в системе федеративных отношений. Показана роль железнодорожного и...»

«0 Н.Г.Бураго Вычислительная механика Москва 2012 1 Книга содержит расширенный конспект лекций по численным методам механики сплошной среды, читанных автором студентам 5-го курса МГТУ им. Н.Э. Баумана в период 2002-2012 г. Целью лекций является систематическое, краткое, но достаточно полное освещение идей, лежащих в основе численных методов механики сплошных сред, включая подходы, которые еще не освещались в учебной литературе. Книга может использоваться студентами, аспирантами и научными...»

«ФГБОУ ВПО Красноярский государственный педагогический университет им. В. П. Астафьева Научная библиотека КГПУ им. В. П. Астафьева Библиографический указатель трудов преподавателей КГПУ Научные, учебные, учебно-методические публикации 2002–2012 гг. Библиографический указатель Выпуск 2 Институт математики, физики и информатики. Составитель : Логвенкова Е.В, зав. отраслевой библиотекой ИМФИ. Красноярск 2013 Кафедра математического анализа и методики обучения математике в вузе. 2002 г. 1. Багачук,...»

«СОДЕРЖАНИЕ ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ...3 1. ОБЩИЕ ПОЛОЖЕНИЯ..4 1.1 Нормативные документы для разработки ООП по направлению подготовки 100400.62 Туризм..5 1.2 Общая характеристика вузовской ООП ВПО.5 1.2.1 Цель (миссия) и задачи ООП ВПО бакалавриата по направлению подготовки 100400 Туризм..5 1.2.2 Срок освоения ООП ВПО..6 1.2.3 Трудоемкость ООП ВПО..6 1.3 Требования к уровню подготовки, необходимые для освоения ООП.6 2. Характеристика профессиональной деятельности выпускника ООП...»

«Администрация Губкинского городского округа Управление образования и науки администрации Губкинского городского округа О практике работы Губкинского городского округа по формированию интеллектуального, творческого, духовно-нравственного потенциала детей и молодёжи и реализации программ оздоровления подрастающего поколения Сборник материалов Губкин 2012 –1– Составители: Жирякова Светлана Николаевна – заместитель главы администрации по образованию, культуре, делам молодёжи и спорту, к.с.н.,...»

«ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В. И. ЛЕНИНА БИБЛИОТЕКА Бюллетень новых поступлений (октябрь-декабрь 2012 г.) Иваново, 2012 Бюллетень новых поступлений (октябрь-декабрь 2012 г.) / Ивановский государственный энергетический университет им. В. И. Ленина, Библиотека; сост. С. В. Крамачева, отв. ред.: Л. В. Сухорукова. – Иваново, 2012. – 15 с. В бюллетене представлены новые книги, поступившие в библиотеку в октябре-декабре 2012 г. Бюллетень адресован научным работникам,...»

«Л.В. ВОРОБЬЕВА СЕМЕЙНОЕ ПРАВО РОССИЙСКОЙ ФЕДЕРАЦИИ • ИЗДАТЕЛЬСТВО ТГТУ • УДК 347.6(075) ББК Х404.5я73 В751 Рецензенты: Кандидат юридических наук, доцент Н.Е. Садохина Кандидат юридических наук, доцент Е.Е. Орлова Воробьева, Л.В. В751 Семейное право Российской Федерации : учебное пособие / Л.В. Воробьева. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2009. – 84 с. – 150 экз. – ISBN 978-5-8265-0850-3. Представлены лекции, тематика семинарских занятий с указанием основных нормативных правовых актов,...»

«УДК 615:547.466 А.В. Симонян, А.А. Саламатов, Ю.С. Покровская, А.А. Аванесян. Использование нингидриновой реакции для количественного определения -аминокислот в различных объектах: Методические рекомендации. – Волгоград, 2007. Разработан доступный метод спектрофотометрического количественного определения -аминокислот в лекарственном сырье, субстанциях и препаратах. Метод разработан на основании исследования спектральных характеристик продуктов нингидриновой реакции и оптимизации условий ее...»

«ИТОГОВАЯ ГОСУДАРСТВЕННАЯ АТТЕСТАЦИЯ Министерство образования и науки Российской Федерации ФГБОУ ВПО Тамбовский государственный технический университет Кафедра Уголовное право и прикладная информатика в юриспруденции ИТОГОВАЯ ГОСУДАРСТВЕННАЯ АТТЕСТАЦИЯ УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по подготовке к государственным экзаменам, подготовке и защите выпускной квалификационной (дипломной) работы для студентов юридического факультета специальности 030501 – Юриспруденция и бакалавриата 030500 -...»

«СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ М. А. ЕРЕМУШКИН ОСНОВЫ РЕАБИЛИТАЦИИ Рекомендовано ГОУ ВПО Московская медицинская академия имени И. М. Сеченова в качестве учебного пособия для студентов учреждений среднего профессионального образования, обучающихся по специальностям Лечебное дело, Сестринское дело по дисциплине Основы реабилитации Регистрационный номер рецензии 644 от 25 декабря 2009 г. ФГУ ФИРО 3-е издание, стереотипное УДК 615.8(075.32) ББК 51.1(2)2я723 Е69 Р е ц е н з е н т ы: главный...»

«МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГОУ ВПО ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ИСКУССТВА И КУЛЬТУРЫ Консерваторский факультет Кафедра оркестровых струнных и духовых инструментов СИСТЕМА КАЧЕСТВА Одобрено НМС ПГИИК Протокол № _ 20 г. Председатель Ивонин Юрий Леонидович, Ивонина Людмила Фёдоровна. Чтение партитур УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС специальности: 070101.03 Инструментальное исполнительство (по видам инструментов: оркестровые духовые и ударные инструменты) Рекомендовано кафедрой:...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ЗАОЧНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ КОММЕРЦИИ, МЕНЕДЖМЕНТА И ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ Кафедра Менеджмента ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ (ПРОЕКТА) Для специальности: 080507– Менеджмент организации Москва 2010 г. Составители: к.э.н., доцент Гужин А.А., к.э.н., доцент Гужина Г.Н., ст.преподаватель Костина О.В. УДК 338.24 (075.5)...»

«ISSN 2304-120X www.covenok.ru/koncept Информационное письмо об итогах Всероссийского конкурса Лучшая научная книга в гуманитарной сфере – 2012 Подведены итоги Всероссийского конкурса на лучшую научную книгу в гуманитарной сфере 2012 года, организованного научно-методическим электронным журналом Концепт (АНОО Межрегиональный центр инновационных технологий в образовании) и научной библиотекой ФГБОУ ВПО Вятский государственный гуманитарный университет. Конкурс стартовал в январе 2012 г.;...»

«ФАКУЛЬТЕТ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ СЕКЦИЯ РЕШЕНИЕ СЛОЖНЫХ ЗАДАЧ В ОБЛАСТИ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ УДК 004 В.В.Глазунов (6 курс, каф. КИТвП), Д.В.Кетов, доц. РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ УЧЕБНЫМИ МАТЕРИАЛАМИ НА ОСНОВЕ СЕМАНТИЧЕСКИХ МОДЕЛЕЙ ПРЕДМЕТНЫХ ОБЛАСТЕЙ Современные методы образования предполагают доступность учебных материалов для самостоятельной работы студентов. Многие университеты предоставляют своим студентам или всем желающим возможность...»

«Томский межвузовский центр дистанционного образования М.А. Афонасова МЕНЕДЖМЕНТ Учебное пособие ТОМСК – 2005 Федеральное агентство по образованию ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра экономики М.А. Афонасова МЕНЕДЖМЕНТ Учебное пособие Допущено Советом Учебно-методического объединения вузов России по образованию в области менеджмента в качестве учебного пособия 2005 Корректор: Воронина М.А. Афонасова М.А. Менеджмент: Учебное пособие. Томск:...»

«Пояснительная записка к учебному плану для обучающихся 1-х классов муниципального общеобразовательного учреждения школы № 3 городского округа Тольятти на 2011-2012 учебный год Учебный план для обучающихся 1-х классов МОУ школы № 3 является нормативным правовым актом по введению Федеральных государственных образовательных стандартов (далее - ФГОС). определяющим перечень учебных предметов, объем учебной нагрузки обучающихся. 1. Нормативно-правовая основа формирования учебного плана Учебный план...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.