WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     || 2 |

«А.В. Губарев, Ю.В. Васильченко ТЕПЛОГЕНЕРИРУЮЩИЕ УСТАНОВКИ Часть 1 для студентов заочной формы обучения с применением дистанционных образовательных технологий специальности 270109 – Теплогазоснабжение и вентиляция ...»

-- [ Страница 1 ] --

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Белгородский государственный технологический

университет им. В.Г. Шухова

А.В. Губарев, Ю.В. Васильченко

ТЕПЛОГЕНЕРИРУЮЩИЕ

УСТАНОВКИ

Часть 1

для студентов заочной формы обучения

с применением дистанционных образовательных технологий

специальности 270109 – Теплогазоснабжение и вентиляция

Белгород 2008 УДК 697.32(07) ББК 31.3я7 Г93 Губарев, А.В., Васильченко, Ю.В.

Г93 Теплогенерирующие установки. Часть 1: учебное пособие / А.В. Губарев, Ю.В. Васильченко; Под общ. ред. Ю.В. Васильченко. – Белгород: Изд-во БГТУ им. В.Г. Шухова, 2008. – 162 с.

Данное издание содержит необходимые теоретические сведения о котельнопечном топливе, тепловых схемах котельных с паровыми или водогрейными котлами, назначении, устройстве и типах котельных установок отопительных, производственных и производственно-отопительных котельных, а также о вспомогательном оборудовании, используемом в котельных. Приведены общие положения расчета тепловых схем котельных, теплового и аэродинамического расчетов котла, расчета технико-экономических показателей котельной. Даны рекомендации по выбору котлов и вспомогательного оборудования Учебное пособие предназначено для студентов специальности 270109 – Теплогазоснабжение и вентиляция по заочной форме обучения с применением дистанционных образовательных технологий.

УДК 697.32(07) ББК 31.3я © А.В. Губарев, Ю.В. Васильченко, © Белгородский государственный технологический университет им. В.Г. Шухова,

ВВЕДЕНИЕ

Развитие систем централизованного и децентрализованного теплоснабжения промышленных предприятий и потребителей коммунально-бытовой сферы осуществляется путем максимального использования возможностей ТЭЦ, а также совершенствования тепловых схем котельных и внедрения современных конструкций паровых и водогрейных котлов небольшой мощности.

В современных условиях повышаются требования к уровню технико-экономических и экологических показателей котельных установок.

В последние годы разработан и освоен целый ряд высокоэкономичных котлов малой мощности.

Настоящее учебное пособие предназначено для студентов специальности «Теплогазоснабжение и вентиляция» по заочной форме обучения с применением дистанционных образовательных технологий.

Первая часть учебного пособия содержит необходимые теоретические сведения о котельно-печном топливе, тепловых схемах котельных с паровыми или водогрейными котлами, конструкциях котельных установок, наиболее часто устанавливаемых в отопительных, производственных и производственно-отопительных котельных и вспомогательном оборудовании, используемом в котельных.

В первой части учебного пособия указаны основные нормативные документы, регламентирующие устройство и безопасную эксплуатацию теплогенерирующих установок, приведены структура предприятия, генерирующего тепловую энергию, и требования к персоналу такого предприятия и его подготовке.

В первой части учебного пособия приведены основы расчета горения топлива, теплового и аэродинамического расчетов котла, а также расчета тепловой схемы и определения технико-экономических показателей котельной, даны рекомендации по выбору вспомогательного оборудования котельных.

Глава 1. ОРГАНИЧЕСКОЕ ТОПЛИВО 1.1. Основные источники энергии для теплогенерирующих установок В промышленной энергетике и коммунально-бытовом секторе для получения тепла используется, как правило, химическая энергия, содержащаяся в органической массе ископаемого топлива. Исключением являются электронагревательные приборы, солнечные коллекторы и геотермальные установки, использующие электроэнергию, энергию солнца и тепло земных недр. В настоящее время около 90% всей энергии, потребляемой нашей цивилизацией, обеспечивается процессами сжигания различных видов органического топлива.

В структуре мирового снабжения первичными ТЭР доля нефтяного топлива снижается при одновременном увеличении доли природного газа.

Определенные изменения наблюдались и в региональной структуре мирового топливно-энергетического баланса. Главные из них состояли в снижении доли промышленно развитых стран-членов Организации экономического сотрудничества и развития (ОЭСР), стран Центральной и Восточной Европы, а также стран СНГ в суммарном мировом потреблении первичных ТЭР при одновременном увеличении доли Китая, других стран Азии, а также Латинской Америки и Африки.

Более 25 лет назад из-за нефтяного кризиса многие страны приняли меры по рационализации структуры энергопотребления в сторону снижения в ней доли нефти. Несмотря на это, добыча ее из года в год увеличивается. Региональная структура мировой добычи нефти, %:

Страны-члены ОЭСР – 29,3; Ближний Восток – 30,0; Африка – 10,6;

Страны СНГ – 10,4; Латинская Америка – 9,7; Азия (без Китая) – 5,2;

Китай – 4,6; Центральная и Восточная Европа – 0,2.

Добыча природного газа в мире по сравнению с нефтью увеличивалась более быстрыми темпами. Например, за период с 1976 по 1996 г.

она возросла почти вдвое, при этом более 25% всего прироста добычи приходится на Россию. Другими крупнейшими производителями природного газа являются США (23,5%), Канада (7,1%), Нидерланды (4,1%), Великобритания (3,9%), Индонезия (3,3%), Алжир (2,6%), Узбекистан (2,1%), Саудовская Аравия (1,9%) и Норвегия (1,8%). Перечисленные выше страны в общей сложности добывают свыше 75% всего газа.



На долю России приходится почти 40% мирового экспорта природного газа из них в свою очередь почти 40% в страны СНГ. Другими крупнейшими экспортерами газа являются: Канада (48,7% от национальной добычи) Нидерланды (50%), Алжир (62,6%), Индонезия (48,1%), Норвегия (89,8%).

Несколько более низкими темпами, чем добыча природного газа, но более высокими темпами по сравнению с нефтью увеличивается мировая добыча каменного угля. При этом более трети мировой добычи приходится на Китай. Россия по добыче каменного угля занимает четвертое место в мире, уступая кроме Китая также США и Индии.

Анализ статистических данных позволяет сделать несколько выводов.

Основные из них:

- добыча каменного угля имеет тенденцию к росту;

- темпы развития мировой торговли каменным углем почти в 3 раза опережают темпы роста его добычи;

- крупнейшими экспортерами каменного угля в течение последних лет остаются Австралия, США и ЮАР, крупнейшими импортерами – Япония, Германия, Великобритания и Россия.

В настоящее время считается, что ресурсное обеспечение развития мирового энергетического хозяйства в ближайшие десятилетия не вызовет какой-либо озабоченности. Постепенное истощение наиболее экономически эффективных месторождений нефти и природного газа будет в перспективе в определенной мере компенсироваться благодаря научно-техническому прогрессу в соответствующих топливодобывающих отраслях, который призван обеспечить повышение нефте- и газоотдачи пластов, создать предпосылки для экономически обоснованной разработки более трудных для освоения месторождений и для широкого вовлечения в мировой энергетический баланс так называемых “нетрадиционных” видов углеводородов.

К категории “нетрадиционных” углеводородных энергетических ресурсов относятся залежи нефти и газа на очень больших глубинах на суше, месторождения газа с аномально высоким давлением, морские нефтегазовые месторождения с толщей воды над ними 300 м и более и т.д. Иными словами, это месторождения, на которых современные техника и технология, а также экономические показатели не позволяют вести не только разработку, но и разведку.

1.2. Классификация органического топлива Топливо – это горючее вещество, выделяющее при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах и для обогрева, либо преобразуется в другие виды энергии.

По агрегатному состоянию топлива органического происхождения разделяются на твердые, жидкие и газовые (газообразные).

По происхождению органические топлива делятся на природные (естественные) и искусственные, получаемые различными методами.

Классификация органического топлива Твердое угли, антрацит, горючие Газовое В зависимости от характера использования органическое топливо может быть разделено на энергетическое (для получения тепловой и электрической энергии) и на промышленное (для высокотемпературных теплотехнологических установок и систем). Энергетическое и промышленное топливо определяется также термином “котельнопечное топливо”.

1.3. Элементарный состав и технические характеристики В состав органического топлива входят различные соединения горючих и негорючих элементов. Твердое и жидкое топливо содержит такие горючие вещества, как углерод C, водород H, летучую серу Sл, и негорючие вещества – кислород O, азот N, золу A, влагу W. Летучая сера состоит из органических Sор и колчеданных Sк соединений:

Sл=Sор+Sк. Органическое топливо характеризуется:

- органической массой Cо Hо Sо Oо Nо 100%.

Сера органической массы не содержит колчеданную. Можно пересчитать состав топлива с одной массы на другую с помощью соответствующих коэффициентов (табл. 1.2) Пересчет состава топлива с одной массы на другую Заданная Газообразное топливо обычно приводится к сухой массе в объемных долях:

Важнейшими техническими характеристиками топлива являются теплота сгорания, жаропроизводительность, содержание золы и влаги, содержание вредных примесей, снижающих ценность топлива, выход летучих веществ, свойства кокса (нелетучего остатка).

Теплота сгорания (теплотворная способность) топлива - количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг) или объема (кДж/м3) топлива. Теплота сгорания является характеристикой, определяющей расход топлива для работы топливоиспользующего оборудования. Различают высшую и низшую теплотворные способности топлива. При проектировании котлов и технологических агрегатов, в которых не используется скрытая теплота конденсации водяных паров, содержащихся в продуктах сгорания топлива, расчеты традиционно ведутся по низшей теплотворной способности топлива.

В тех случаях, когда имеет место использование в агрегатах скрытой теплоты конденсации водяных паров, в расчетах фигурирует высшая теплота сгорания топлива.

Низшую теплоту сгорания топлива можно определить, зная высшую теплоту сгорания где rп – скрытая теплота конденсации водяных паров при н. у., кДж/кг;

GH 2 O – масса влаги, содержащаяся в 1 м3 газового топлива, кг/м3.

Скрытая теплота конденсации водяных паров при нормальных условиях равна rп=2510 кДж/кг.

Для жидкого и твердого топлива связь между высшей и низшей теплотой сгорания определяется соотношением Теплоту сгорания топлива определяют экспериментально в калориметрической бомбе или в газовом калориметре. Принцип работы калориметров основан на том, что в них сжигается точно замеренная масса или объем топлива, выделяющееся тепло которого передается воде, начальная температура и масса которой известны. Зная массу воды, и замеряя повышение ее температуры, определяют количество выделенного тепла и теплоту сгорания топлива. При известном составе топлива теплота его сгорания может быть подсчитана аналитически.

Рабочая низшая теплота сгорания твердого и жидкого топлива приближенно может быть определена по формуле Д.И. Менделеева, кДж/кг При известном составе газообразного топлива теплота сгорания м3 газа может быть подсчитана по формуле где QC m H n, QH 2S, QCO, QH 2 – теплота сгорания каждого газа, входящего в состав топлива, МДж/м3; CmHn, H2S, CO, H2–содержание отдельных газов в топливе, % об.

Теплота сгорания отдельных газов, входящих в состав газообразного топлива, приведена в табл. 1.3.

Теплота сгорания различных видов топлива колеблется в очень широких пределах. Для сравнения разных видов топлива при определении норм расхода, запасов, экономии топлива введено понятие об условном топливе. Условным топливом называют топливо, низшая теплота сгорания которого равна Qу.т = 29310 кДж/кг (7000 ккал/кг).

Для пересчета расхода какого-либо вида натурального топлива в условное и обратно пользуются тепловым эквивалентом, представляющим собой отношение низшей теплоты сгорания рабочей массы натурального топлива к теплоте сгорания условного топлива Теплофизические свойства газов, входящих в состав Жаропроизводительностью топлива называется температура горения с минимальным (стехиометрическим) количеством окислителя и без подогрева топлива и воздуха. Жаропроизводительность топлива позволяет оценить эффективность его использования в высокотемпературном процессе.

Зола топлива представляет собой твердый негорючий остаток, получающийся после сгорания горючей части топлива; причем зола, прошедшая стадию расплавления, называется шлаком. Зола существенно ухудшает качество топлива и вызывает значительные трудности в процессе сжигания (износ и шлакование поверхностей нагрева).

При сравнительных расчетах пользуются приведенной зольностью Влага W топлива отрицательно влияет на его качество, так как снижает теплоту сгорания, ухудшает процесс воспламенения топлива, приводит к увеличению объема дымовых газов, а следовательно, потерь с уходящими газами. Приведенная влажность топлива Сера S – весьма нежелательный элемент топлива. При ее сгорании образуются SO2 и SO3, которые вызывают коррозию элементов энергетических установок и оказывают отрицательное воздействие на окружающую среду.

При нагревании топлива происходит выделение газообразных продуктов разложения, которое называется выходом летучих веществ Vг и определяется в процентах от горючей массы топлива. Чем больше выход летучих веществ, тем ниже температура воспламенения топлива и больше объем пламени. По содержанию летучих веществ топливо подразделяют на пламенное и тощее.

Свойства кокса оказывают значительное влияние на процесс горения топлива и определяют области его использования.

Кроме того, характеристиками топлива являются: удобство сжигания топлива и расход энергии, связанный с подготовкой топлива к использованию; степень сложности разведки и трудности добычи топлива, определяющая объем капиталовложений и себестоимость топлива;

удаленность месторождений топлива от районов его потребления.

Наиболее распространенными видами твердого топлива являются бурые и каменные угли, антрациты, горючие сланцы, древесина и торф.

Бурые угли не спекаются, отличаются большим выходом летучих веществ (Vг = 40–60%), высокими зольностью (Aр = 15–30%) и влажнор стью (Wр = 30–40%). Теплота сгорания Qн 23 27 МДж/кг.

Каменные угли по составу и свойствам разнообразны. Они обладают сравнительно невысокими зольностью (Aр =5 – 25%) и влажностью (Wр = 5–10%) при широком диапазоне выхода летучих веществ (Vг = 10–40%). Основная масса каменных углей спекается. Теплота сгорания Qн 23 27 МДж/кг. Каменные угли классифицируются по выходу летучих веществ и характеру коксового остатка (длиннопламенный – Д, газовый – Г, жирный – Ж, коксовый – К, спекающийся – С, тощий – Т) и по крупности кусков (крупный – К, орех – О, мелкий – М, семечко – С, штыб – Ш, рядовой – Р).

Антрациты отличаются от других твердых топлив плотной структурой, высоким содержанием углерода (Cг = 93–96%), малым выходом летучих веществ (Vг = 3–5%), малой зольностью (Aр =13 – 17%) и ( Qн 30 35 МДж/кг).

Горючие сланцы характеризуются большой зольностью (Aр =50–60%) и высоким выходом летучих веществ (Vг = 80–90%);

влажность их невелика (Wр = 15–20%), они имеют самую низкую для твердых топлив теплоту сгорания ( Qн 5,7 10 МДж/кг).

Древесина отличается очень малой зольностью (Aр 75%) и паров конденсата, который выпадает при снижении давления. Пары конденсата представляют собой смесь паров тяжелых углеводородов (бензина, лигроина, керосина).

Сухие газы легче воздуха, а жирные легче или тяжелее в зависимости от содержания тяжелых углеводородов. Низшая теплота сгорания сухих газов, добываемых в нашей стране, составляет 31000–38000 кДж/м3. Теплота сгорания попутных газов выше и изменяется от 38000 до 63000 кДж/м3.

Природные газы подразделяются также на бессернистые, в которых сернистых соединений нет или есть только их следы, и сернистые газы, в которых содержание сернистых соединений достигает 1% и более.

Искусственные газы получаются из твердого или жидкого топлива.

При термической переработке твердых топлив в зависимости от способа переработки получают газы сухой перегонки и генераторные газы.

Сухая перегонка твердого топлива представляет собой процесс его термического разложения, протекающий без доступа воздуха. При сухой перегонке топливо проходит ряд стадий физико-химических преобразований, в результате которых оно разлагается на газ, смолу и коксовый остаток. Характер преобразований, претерпеваемых топливом, определяется его природой и температурой процесса. Сухую перегонку топлива, происходящую при высоких температурах (900– °C), называют коксованием, в результате которого получают кокс и коксовый газ с низшей теплотой сгорания Qн = 16000–18000 кДж/м3 и плотностью = 0,45–0,5 кг/м3. Из одной тонны каменного угля коксованием можно получить 300–350 м3 коксового газа.

Получать газ методом сухой перегонки можно и при температуре 500–550 °C (полукоксование). В этом случае выход газа незначителен (в пределах 25–100 м3 с 1 т угля), а основным продуктом перегонки служат смолы, идущие на выработку моторных топлив, и полукокс.

Газовое топливо может быть получено также путем газификации твердого топлива. Газификация – процесс термохимической переработки топлива. В результате реакции углерода топлива с кислородом и водяным паром образуются горючие газы: оксид углерода и водород.

Одновременно с процессом газификации протекает частичная сухая перегонка топлива. Продуктами газификации топлива являются горючий газ, зола и шлаки. Аппараты, в которых осуществляют газификацию топлива, называют газогенераторами.

При подаче в газогенератор паровоздушной смеси получают генераторный газ, называемый смешанным. Низшая теплота сгорания смешанного газа Qн = 5000–7000 кДж/м3, плотность = 1,15 кг/м3.

Водяной газ получают путем периодической продувки газогенератора воздухом и паром. Горючими компонентами в нем являются водород и оксид углерода.

Ввиду того, что большинство генераторных газов при сгорании способны давать сравнительно немного тепла и содержат в себе значительное количество негорючих и ядовитых веществ, они в чистом виде в городские газовые сети не подаются, а только добавляются к другим газам или употребляются для сжигания в металлургических, стекловаренных и других печах, требующих газового нагрева.

При выплавке чугуна в доменных печах получают доменный газ.

Основной горючий компонент доменного газа – CO (28 – 30%). Теплота сгорания доменного газа Qн = 3–4 МДж/м3.

В состав различных видов газового топлива входят:

1. горючая часть: углеводороды метанового ряда, водород, оксид углерода;

2. негорючая часть: диоксид углерода, кислород, азот;

3. вредные примеси: сероводород.

Метан (CH4 ) – нетоксичный газ без цвета, вкуса и запаха. Представляет собой химическое соединение углерода с водородом. Является основной горючей частью природных газов.

Тяжелые углеводороды (CmHn) – этан, пропан, бутан и др. – характеризуются высокой теплотой сгорания.

Водород (H2) – нетоксичный газ без цвета, вкуса и запаха.

Оксид углерода или угарный газ (CO) – газ без цвета, вкуса и запаха. На организм человека оказывает токсическое воздействие. Опасна для жизни при воздействии на человека в течение 5–6 мин. концентрация оксида углерода около 0,4об.%. Даже незначительное содержание CO в воздухе (0,02об.%) вызывает заметное отравление.

Диоксид углерода или углекислый газ (CO2) – газ без цвета, без запаха, со слабым кисловатым вкусом.

Кислород (O2) – газ без цвета, вкуса и запаха. Содержание кислорода в газе снижает его теплоту сгорания. Не горит, но поддерживает горение.

Азот (N2) – газ без цвета, вкуса и запаха. Не горит и горения не поддерживает.

Сероводород (H2S) – тяжелый газ с сильным неприятным запахом, напоминающим запах тухлых яиц. Сероводород обладает высокой токсичностью. При сжигании газа сероводород сгорает и образует сернистый газ, вредный для здоровья.

1.7. Основы процесса горения органических топлив Горение – химический процесс соединения топлива с окислителем, сопровождающийся интенсивным тепловыделением и резким повышением температуры продуктов сгорания.

Горение сопровождается смесеобразованием, диффузией, воспламенением, теплообменом и другими процессами, протекающими в условиях тесной взаимосвязи.

Различают гомогенное и гетерогенное горение. При гомогенном горении тепло- и массообмен протекают между веществами, находящимися в одинаковом агрегатном состоянии (обычно газообразном).

Гетерогенное горение свойственно жидкому и твердому топливам.

Скорость химической реакции зависит от концентрации реагирующих веществ, температуры и давления и определяется произведением концентраций реагирующих веществ где k – константа скорости реакции; CA и CB – концентрации реагирующих веществ.

Скорость реакции при росте температуры существенно увеличивается, что определяется законом Аррениуса где k0 – эмпирическая константа.

Энергия активации E – это наименьшая энергия (для газовых смесей 85–170 МДж/кмоль), которой должны обладать молекулы в момент столкновения, чтобы быть способными к химическому взаимодействию. Разность энергий активации прямой и обратной реакции составляет тепловой эффект химической реакции.

Реакции характеризуются сильной экзотермичностью, обусловливающей рост температуры. Влияние температуры на скорость реакции значительно сильнее влияния концентрации реагирующих веществ.

Поэтому, несмотря на уменьшение концентрации реагирующих веществ при горении, скорость реакции горения увеличивается и достигает максимума после выгорания 80–90% горючих веществ. Реакции горения газообразного топлива протекают практически мгновенно, что объясняется не только сильным влиянием температуры, но и цепным характером их протекания.

Скорость реакции зависит также от давления ~ p n 1 (n – порядок реакции).

Процесс горения топлива имеет две области: кинетическую, в которой скорость горения топлива определяется скоростью химической реакции, и диффузионную, в которой регулятором скорости выгорания является скорость смесеобразования. Примером кинетической области горения является горение однородной газовоздушной смеси. Диффузионно горит газообразное топливо, вводимое в реакционную камеру отдельно от окислителя.

Кинетическая область химического воздействия на скорость горения наиболее сильно ощущается при низких концентрациях, температурах и давлениях в смеси. В этих условиях химическая реакция может настолько замедлиться, что сама станет тормозить горение. Диффузионная область воздействия на скорость выгорания топлива проявляется при высоких концентрациях и температурах. Химическая реакция протекает очень быстро, и задержка в горении может быть вызвана недостаточно высокой скоростью смесеобразования.

Процесс смесеобразования практически не зависит от температуры.

Кинетическое горение готовой горючей смеси при турбулентном режиме движения очень неустойчиво. Поэтому в высокопроизводительных промышленных топочных устройствах при турбулентном режиме движения газовоздушных потоков горение является в основном диффузионным.

Процесс горения горючей смеси может начаться путем самовоспламенения или принудительного воспламенения (электрическая искра, факел и т.п.). Температура самовоспламенения определяется соотношением количества теплоты, выделяющегося при горении и отдаваемого во внешнюю среду. Количество теплоты, выделяющееся при горении, зависит от температуры и изменяется по экспоненте 1 (рис.

1.1) где Q – тепловой эффект реакции; – скорость реакции; V – объем;

T – температура среды.

Зависимость отвода теплоты qот от температуры T линейная (прямые 2, см. рис. 1.1) где – коэффициент теплоотдачи; A – площадь поверхности; Tс - температура охлаждаемой стенки.

При небольшом отводе теплоты (прямая 2''') количество выделяемой теплоты qв > qот, поэтому реакция сопровождается повышением температуры системы, приводящим к самовоспламенению.

При большем отводе теплоты (прямая 2'') в точке В qв = qот. Температура Tв в этой точке называется температурой воспламенения горючей смеси. Она зависит от условий отвода теплоты и не является физико-химической константой, характеризующей данную горючую смесь.

При увеличении отвода теплоты (прямая 2') самовоспламенение невозможно. Точка А соответствует стабилизированному окислению в области низких температур, а точка Б – неустойчивому равновесию в области высоких температур.

Температура воспламенения может быть найдена из условий определяемых точкой В (см. рис. 1.1).

С учетом уравнений (1.8) и (1.9) имеем RTв2 E Tв Tс 0. Решив это уравнение, получим Температура воспламенения Tв для некоторых газов приведена в табл. 1.4.

Минимальная и максимальная концентрации горючей составляющей, ниже и выше которых не происходит принудительное воспламенение смеси, называются концентрационными пределами воспламенения (табл. 1.4); они зависят от количества и состава негорючих составляющих газообразного топлива, повышающих нижний и понижающих верхний пределы воспламенения.

Температура воспламенения горючих газов Устойчивый непрерывный процесс горения в топочном устройстве требует стабилизации фронта воспламенения готовой (кинетическое горение) или образующейся (диффузионное горение) горючей смеси.

Для этого с помощью местного торможения создаются зоны со скоростью потока, меньшей скорости распространения пламени; осуществляется непрерывное воспламенение смеси от постороннего источника;

на пути потока устанавливаются плохо обтекаемые тела, обеспечивающие обратную циркуляцию продуктов сгорания, поджигающих смесь.

Горение жидкого топлива протекает в основном в парогазовой фазе, так как температура его кипения значительно ниже температуры воспламенения. Интенсивность испарения горючих веществ увеличивается с ростом поверхности контакта с воздухом и количества подводимой теплоты. Таким образом, скорость горения жидкого топлива определяется тонкостью его распыливания. Улучшению распыливания способствует понижение вязкости, что достигается предварительным подогревом топлива до 340–390 K перед подачей его в форсунки.

Твердое топливо претерпевает предварительную тепловую подготовку, в процессе которой происходит прогрев частиц, испарение влаги и выделение летучих веществ. Наиболее бурное выделение летучих веществ, воспламеняющихся первыми, происходит в интервале температур от 470 до 720 K. Время горения этих веществ вблизи твердого остатка составляет незначительную часть общего времени горения топлива и способствует его прогреву и воспламенению. После выгорания значительной части летучих веществ начинается выгорание коксового остатка. На процесс горения твердого топлива заметно влияет зола, затрудняющая диффузию кислорода к горючему. При температуре горения, превышающей температуру плавления золы, частицы горючих веществ ошлаковываются, что еще больше затрудняет доступ к ним кислорода.

1. Назовите основные источники энергии для получения тепла.

2. Укажите, какие углеводородные энергетические ресурсы относятся к категории «нетрадиционных»?

3. Дайте определение органического топлива.

4. По каким категориям классифицируют органическое топливо?

5. Укажите, какие горючие и какие негорючие вещества входят в состав рабочей массы твердого и жидкого органического топлива?

6. Какие компоненты входят в состав сухой массы газообразного топлива?

7. В чем состоит отличие между высшей и низшей теплотой сгорания органического топлива?

8. Что называют условным топливом? С какой целью вводится понятие условного топлива?

9. Укажите важнейшие технические характеристики органического топлива. Что они характеризуют?

10. Какими способами получают искусственные горючие газы?

11. На какие группы в зависимости от месторождения подразделяют природные газы?

12. Какой процесс называют горением?

13. Назовите две области процесса горения. Чем они определяются?

14. Чем определяется температура воспламенения горючей смеси?

15. Какими способами осуществляется стабилизация фронта воспламенения горючей смеси?

16. Каким параметром определяется скорость горения жидкого топлива?

Глава 2. ТОПЛИВНОЕ ХОЗЯЙСТВО КОТЕЛЬНЫХ 2.1. Системы топливоподачи твердого топлива В системе топливоподачи при поступлении несортированных углей независимо от способа сжигания твердого топлива (слоевой или камерный) всегда предусматривается его предварительное дробление. Топливо в котельные поступает по железной дороге, подвозится автомобильным или водным транспортом.

В топливное хозяйство входят устройства и сооружения для разгрузки, приема, складирования топлива, механизмы, обеспечивающие его предварительное дробление, и устройства для подачи топлива в бункера котельных агрегатов.

На рис 2.1. показана схема топливоподачи с приемным бункерным устройством при доставке топлива железнодорожным транспортом.

Железнодорожные вагоны могут разгружаться над приемным бункером или на расходном складе топлива. Из приемного бункера топливо подается ленточными транспортерами первого и второго подъема через дробилки в бункера котлов. При необходимости топливо может подаваться погрузчиком-бульдозером с открытого расходного склада в приемный бункер. Разгрузка топлива из железнодорожных вагонов непосредственно в приемный бункер топливоподачи позволяет уменьшить его потери. При такой системе топливоподачи для размещения приемного бункера приходится под зданием разгрузки оборудовать подвал глубиной до 7 м.

При доставке топлива автомобильным транспортом применяют систему топливоподачи, схематично показанную на рис. 2.2. Прибывающие машины разгружают под приемным бункером топливоподачи или на расходном складе. С расходного склада топливо погрузчикомбульдозером может транспортироваться к приемному бункеру. Из приемного бункера, пройдя через дробилку, топливо ленточным транспортером подается в бункера котельных агрегатов.

На предприятии обычно устраивается расходный склад твердого топлива. Размеры расходного склада зависят от мест добычи топлива и наличия собственного резервного склада. На резервном складе, как правило, необходим не менее чем двухнедельный запас топлива помимо специальных запасов, устанавливаемых особыми инструкциями. Если резервный склад удален от предприятия, устанавливают расходный склад с запасом не менее трехсуточного. Основную часть топлива, поступающего на предприятие, рационально направлять в бункера котлов, постоянно возобновляя запас топлива на расходном складе.

При хранении на складе топливо увлажняется, выветривается, смешивается с грунтом, загрязняется, что снижает его теплоту сгорания. Во избежание самовозгорания топлива хранение его производят в штабелях. При этом все угли с большим выходом летучих и сланцы при штабелевании уплотняют путем укатки.

При эксплуатации необходимо контролировать состояние штабелей путем внешнего осмотра и измерения температуры в штабелях. Признаками самовозгорания являются: повышение температуры, наличие пятен на увлажненной поверхности штабеля. Если появились признаки самовозгорания топлива, то необходимо в первую очередь начать подачу топлива из этого штабеля в бункера котлов, но без очагов огня во избежание пожара в котельном цехе. Для ликвидации очагов горения штабель вскрывают, переносят очаги горения на специальную площадку и на ней заливают водой. В первую очередь расходуются со складов штабеля, в которых температура поднялась до 40–60 С.

В зависимости от размеров топливных складов для выполнения погрузочно-разгрузочных работ применяют различные механизмы: автопогрузчики, передвижные ленточные транспортеры, грейферные краны и т.д.

2.1.2. Подготовка топлива к сжиганию При снабжении котельной углем, требующим дробления, на тракте топливоподачи от приемных разгрузочных устройств до бункеров котлов или на складе уголь подвергается дроблению в установках, состоящих из грохотов и дробилки. Устанавливаемые перед дробилкой наклонные решетки – грохоты – предназначены для отсеивания мелкой фракции топлива от более крупных кусков. Провалившееся через решетку грохотов топливо, минуя дробилку, поступает в тракт топливоподачи, а крупные куски топлива направляются в дробилку.

Для извлечения из топлива случайно попавших металлических предметов на тракте топливоподачи предусматривается установка магнитных сепараторов. Как правило, они устанавливаются перед дробилками во избежание поломок или повреждений последних.

При слоевом сжигании твердого топлива сырой уголь из бункеров перед котлами поступает через специальные питатели и забрасыватели в топку котлов.

При камерном сжигании твердого топлива необходима его дополнительная подготовка, для чего в котельных используется система пылеприготовления. Система пылеприготовления представляет собой совокупность оборудования, необходимого для размола топлива, его сушки и подачи готовой пыли в горелки топочной камеры.

Системы пылеприготовления разделяют на замкнутые с прямым вдуванием пыли в топочную камеру, замкнутые с промежуточным бункером пыли и разомкнутые с подачей пыли горячим воздухом. Разделение пылесистем на замкнутые и разомкнутые определяется характером использования сушильного агента после завершения сушки топлива. В первом случае он направляется в топочную камеру вместе с подсушенной пылью, во втором тщательно очищается от мелких фракций топлива и выбрасывается помимо котла в дымовую трубу.

Основной установкой любой пылесистемы является углеразмольная мельница. Наиболее широкое распространение получили шаровые барабанные (ШБМ) и молотковые (ММ) мельницы, причем в ШБМ размалывают преимущественно топливо с относительно малым выходом летучих веществ, а ММ используются при размоле молодых каменных и бурых углей, торфа и сланцев. На долю этих видов мельниц приходится около 98% размалываемых твердых топлив. Размол некоторых видов каменных углей более экономично происходит с применением валковых среднеходных мельниц. В о тдельных случаях при размоле «мягких» сильно влажных бурых углей используется мельница-вентилятор.

Шаровая барабанная мельница состоит из барабана диаметром 2–4 м и длиной 3–10 м, частично заполненного стальными шарами диаметром 30–60 мм. Внутренние стенки барабана покрыты брон евыми плитами. Сверху корпус барабана имеет тепло - и звукоизоляцию. Сырое топливо вместе с горячим воздухом поступает внутрь барабана через входной патрубок. Барабан приводится во вращение от электрического двигателя через редуктор и ведомую шестерню, находящуюся на барабане. В барабане шары подним аются вдоль стенки, а затем отрываются и падают вниз. Размол топлива прои сходит за счет удара падающих шаров по топливу и перетирания топлива между шарами. Готовая пыль постоянно удаляется из мельницы вентилирующим агентом – воздухом.

Молотковая мельница состоит из стального корпуса, покрытого изнутри гладкими броневыми плитами толщиной 20 –30 мм, и ротора с укрепленными на нем дисками. С дисками на шарнирах соед инены билодержатели и била. Во время работы мельницы окружная скорость бил достигает 50–60 м/с, и происходит начальное дробление кусков топлива, затем частицы топлива ударяются о броню и дополнительно истираются в зазоре между билами и корпусом.

Обычно молотковая мельница компонуется вместе с сеп аратором пыли и представляет собой единую установку.

Среднеходные мельницы работают обычно в системах с прямым вдуванием пыли и используются для углей умеренной твердости с относительно невысокой влажностью и малым содержанием выс окотвердых фракций (колчедана) в его минеральной массе. Мельн ицы этого класса начали серийно изготовляться в нашей стране в виде валковых среднеходных (МВС) для размола экибастузских каменных углей. Мельница состоит из вертикального корпуса, дном которого является вращающийся размольный стол (диск). К п оверхности последнего с помощью пружины прижимаются конич еские валки, свободно сидящие на своих осях. Вращение валков происходит за счет сил трения, возникающих между вращающимся размольным столом и поверхностью валков. Размол топлива осуществляется за счет раздавливания и истирания кусков угля, попадающих между размольным столом и валками. Горячий воздух п одается в корпус мельницы под размольный стол и, проходя через кольцевое отверстие между столом и корпусом, подхватывает о тбрасываемую к периферии угольную пыль и уносит ее в сепаратор.

Для размола мягких бурых углей с высокой влажностью прим еняют мельницу-вентилятор. Ротор мельницы имеет мельничное колесо с закрепленными на нем лопатками-билами. Размол топлива происходит за счет удара по нему вращающихся с большой скор остью лопаток-бил. Лопатки создают за мельницей относительно небольшой напор (1200–1500 Па), поэтому эта мельница не требует установки специального мельничного вентилятора.

К основным элементам системы пылеприготовления относятся также сепараторы, циклоны, питатели сырого угля и пыли, бунк ера.

Сепаратор служит для регулирования тонкости выдаваемой мельницей пыли. Для отделения мелких фракций пыли от крупных в сепараторах используют центробежные, инерционные и гравит ационные силы.

Циклон применяется в схеме с промежуточным бункером пыли для отделения готовой пыли от транспортирующего воздуха. Отд еление происходит за счет центробежного эффекта, а также при повороте воздушного потока в центральную отводную трубу.

Питатели сырого угля устанавливают для равномерной и регулируемой подачи топлива в углеразмольные мельницы. Для сухих углей находят применение ленточные питатели угля, для влажных, склонных к замазыванию углей – скребковые.

Питатели пыли устанавливают под бункером пыли для регулирования подачи ее в пылепроводы. Наиболее употребительны в энергетических установках шнековые и лопастные питатели.

Бункера пыли являются емкостью для хранения определенного запаса топлива. Объем пылевого бункера определяют исходя из работы котла с номинальной нагрузкой в течение 2–3 ч при отключенной пылесистеме и сохранением минимальной высоты слоя пыли в бункере не менее 3 м для равномерной загрузки пылепитателей.

Выпавшие в топке и газоходах котельного агрегата в результате сгорания топлива шлак и золу, а также летучую золу, улавливаемую в золоуловителе, удаляют из котельного агрегата, а затем из помещения котельной.

Основными способами шлакозолоудаления являются:

- вагонеточный – для котельных с котлами старой конструкции;

- механический – скреперный, скребковый и др., как правило, следует предусматривать в котельных с котлами, оборудованными топками для слоевого сжигания топлива;

- гидравлический – в котельных с котлами для камерного сжигания твердого топлива и при выходе очаговых остатков 12 т/ч и более;

- пневматический – может применяться независимо от способа сжигания топлива при выходе шлака и золы от 4 до 12 т/ч;

- пневмогидравлический – применяется в котельных с котлами малой и средней производительности при расположении золоотвала на небольшом расстоянии от котельной. Такой способ золошлакоудаления применяется при реконструкции существующих котельных, в которых шлаковые и золовые бункера котлов находятся ниже отметки каналов гидрозолоудаления.

При вагонеточном способе золошлакоудаления золу и шлак выгружают несколько раз в смену из бункеров под котлами в вагонетки с опрокидывающимся кузовом. Перед выгрузкой в вагонетки шлак в бункере охлаждается и обильно увлажняется водой из специально установленных для разбрызгивания воды сопл. Для предохранения персонала от ожогов и вредных газов шлак спускают в вагонетки в закрытых вентилируемых камерах.

Большое применение в котельных имеет схема скреперного мокрого или сухого золоудаления. Шлак, образующийся в результате сгорания топлива, попадает в скреперный канал.

При мокром способе золошлакоудаления канал, в котором движется скрепер, заполнен водой, являющейся гидравлическим затвором для воронок шлаковых бункеров котлов. Скрепер перемещают в канале при помощи электролебедки и троса в направляющих роликах.

При сухом способе скреперного золоудаления шлак обливают водой в шлаковом бункере и сбрасывают в скреперный канал. Скрепер подхватывает выгруженный из топки шлак и подает его по горизонтальному и наклонному каналу в бункер, откуда он выгружается в автосамосвал и вывозится из котельной. Скребковое золоудаление принципиально не отличается от мокрого скреперного золоудаления.

Гидравлическое удаление золы и шлаков широко распространено в котельных большой мощности. Система обладает высокой производительностью и надежностью. Гидравлическое золоудаление включает в себя операции: удаление шлака и золы в пределах котельной; перекачивание с помощью багерных насосов или гидроаппаратов смеси воды, золы и шлака в золоотстойник.

Зола и шлак смываются из бункеров котлов с помощью специальных смывных устройств в самотечный канал, по которому шлакозоловая смесь перемещается к устройствам для ее внешней транспортировки.

Смыв золы осуществляется, как правило, непрерывно, а шлака периодически – 1–2 раза в смену. Самотечные каналы облицовывают базальтовыми плитками и выполняют с уклоном 2–3. Для предотвращения образования заторов гидросмеси в самотечные каналы через побудительные сопла подается вода.

При пневматической системе шлакозолоудаления транспортировка шлака и золы осуществляется в трубах потоком воздуха. Побудителями движения воздуха могут быть паровые эжекторы или вакуумные насосы. Пневматическую систему шлакозолоудаления рекомендуется применять в котельных для слоевого сжигания твердого топлива, а также в случаях, когда зола и шлак используются в качестве сырья побочных производств – изготовление строительных конструкций, производство цемента. Зола от сжигания древесных отходов может быть использована для удобрения полей в сельском хозяйстве. Пневматическая система применяется в случаях, когда район строительства котельной трудно обеспечивается водой или значительно удалены места для золоотвалов.

2.2. Системы топливоподачи жидкого топлива Технологический тракт подготовки мазута к сжиганию в топках котлов включает (см. рис. 2.3): приемно-сливное устройство (сливные эстакады с желобами, приемные резервуары с погружными перекачивающими насосами), основные резервуары для хранения постоянного запаса мазута, мазутонасосную, систему трубопроводов для мазута и пара, группу подогревателей мазута и фильтры. Подготовка мазута перед сжиганием заключается в удалении механических примесей, повышении давления мазута и его подогреве, необходимых для снижения потерь энергии на транспорт мазута к котлам и его тонкого распыления в форсунках горелочных устройств. Температура мазута в баках поддерживается на уровне 60–80°С в любое время года за счет циркуляционного подогрева путем возврата в бак части (до 50%) разогретого во внешних подогревателях мазута.

Типовой является двухступенчатая схема подачи топлива. По этой схеме подача топлива в устройства для подготовки к сжиг анию (подогрев, перемешивание мазута в резервуарах, фильтрация от внешних загрязнений) осуществляется при низком давлении м азута (около 1 МПа), а насосы второго подъема перекачивают в главное здание мазут при высоком давлении (3,5–4,5 МПа).

Рис. 2.3. Технологическая схема подготовки мазута к сжиганию:

1 – фильтр грубой очистки; 2 – сливной резервуар с подогревом; 3 – перекачивающий насос; 4 – основной резервуар; 5, 6 – линии рециркуляции мазута;

7 – насос первого подъема; 8 – обратный клапан; 9 – подогреватель мазута;

10 – фильтр тонкой очистки; 11 – насос второго подъема; 12 – запорная арматура; 13 – регулятор расхода; 14 – расходомер; 15 – задвижка; 16 – форсунка При высокой скорости мазута в распыливающих форсунках м ожет иметь место сильный абразивный износ металла мазутных к аналов форсунки и быстрый выход ее из строя. Кроме того, при ра змере каналов менее 3 мм не исключено их забивание крупными твердыми частицами или сгустками асфальтосмолистых веществ.

Очистка мазута от твердых фракций происходит сначала в фильтрах грубой очистки с размером ячеек сетки 1,51,5 мм 2, а затем в фильтрах тонкой очистки с ячейками 0,3–0,5 мм, установленных перед насосами второй ступени на подогретом мазуте.

Повышение температуры мазута обеспечивается в паровых подогревателях до температуры, меньшей температуры вспышки п аров. Для поддержания температуры мазута на нужном уровне нез ависимо от потребления его котлом обеспечивается непреры вный его расход через линию за счет частичного возврата в бак (реци ркуляция).

Подача газа в промышленные котельные производится от распределительных сетей среднего давления. Система газоснабжения промышленной котельной должна быть выполнена в соответствии с “Правилами безопасности в газовом хозяйстве” и СНиП. Система газоснабжения предприятия включает в себя части: ввод распределительных газопроводов на территорию предприятия, межцеховые газопроводы, газорегуляторный пункт (ГРП) или газорегуляторная установка (ГРУ), цеховые газопроводы и газопроводы в пределах котлоагрегата (обвязочные газопроводы). К наружным газопроводам относятся вводы и межцеховые газопроводы, к внутренним – цеховые газопроводы и газопроводы в пределах котлоагрегатов. Схема газопроводов промышленной котельной показана на рис. 2.4.

Рис. 2.4. Схема газопроводов промышленной котельной:

1 – отключающее устройство на вводе в ГРП; 2 – линзовый компенсатор; 3 – расходомер; 4 – отключающее устройство перед регулятором; 5 – газовый фильтр;

6 – предохранительный запорный клапан; 7 – регулятор давления; 8 – отключающее устройство за регулятором давления; 9 – манометр; 10 – предохранительный сбросной клапан; 11 – первая по ходу газа задвижка на байпасе (с электроприводом);

12 – вторая по ходу газа задвижка на байпасе;13 – отключающее устройство за ГРП;

14 – первое по ходу газа отключающее устройство на котел; 15 – второе по ходу газа отключающее устройство на котел; 16 – газовый отсечной клапан; 17 – регулирующая заслонка; 18 – импульсный трубопровод на защиту; 19 – пробоотборники;

20 – первое по ходу газа отключающее устройство на горелку; 21 – второе по ходу газа отключающее устройство на горелку; 22 – электромагнитный клапан на запальник; 23 – газовая горелка; 24 – котел; 25 – трубопровод безопасности; 26 – секционные задвижки Предприятием обслуживаются газопроводы от отключающего устройства на вводе распределительного газопровода до газовых горелок. Отключающее устройство на вводе распределительного газопровода обслуживается предприятием газового хозяйства.

Газорегуляторные пункты (ГРП) и установки (ГРУ) предназначены для снижения давления газа и поддержании его на необходимом в эксплуатации уровне независимо от изменений потребления газа и его давления перед регуляторными пунктами и установками. Одновременно с этим ГРП и ГРУ выполняют следующие функции: прекращают подачу газа при повышении или понижении давления после регулятора сверх заданных пределов, очищают газ от механических примесей, производят учет расхода газа и обеспечивают возможность контроля за входным и выходным давлением газа и его температурой.

В состав основного оборудования газорегуляторного пункта (ГРП) или установки (ГРУ) входят: газовый фильтр, предохранительный запорный клапан (ПЗК), регулятор давления, предохранительный сбросной клапан (ПСК), расходомер.

Газовые фильтры устанавливаются в ГРП и ГРУ перед предохранительными запорными клапанами и регуляторами давления. Они предназначены для очистки газа от пыли, ржавчины и других твердых частиц.

Предохранительные запорные клапаны (ПЗК) предназначены для автоматического прекращения подачи газа к потребителям в случае недопустимого повышения или понижения его давления относительно заданных пределов. В ГРП (ГРУ) ПЗК устанавливают на газопроводе перед регулятором давления, а импульс конечного давления к нему подводят от контролируемой точки газопровода за регулятором.

ПЗК настраивается так, чтобы подача газа прекращалась:

- при давлении, превышающем максимально допустимое рабочее давление газа в газопроводе за регулятором на 25 %;

- при понижении давления до минимально возможного по конструктивным характеристикам ПЗК, либо до давления, на 200–300 Па (при низком давлении) или на 2000–3000 Па (при среднем давлении) большего того, при котором может прекратиться горение газа у горелок или произойти проскок пламени в них.

Основным устройством ГРП (ГРУ) является регулятор давления. Регулятор давления автоматически снижает давление газа и поддерживает его постоянным на заданном уровне независимо от расхода газа и колебаний давления на входе. Элементами регулятора давления являются дроссельный орган (клапан), чувствительный элемент (мембрана) и управляющий элемент (пружина или командный прибор).

Основным элементом любого регулятора давления является регулирующий (дросселирующий) орган, который схематично можно представить себе как отверстие, перекрываемое в процессе регулирования клапаном или заслонкой. По существу – это переменное гидравлическое сопротивление на газопроводе.

Предохранительный сбросной клапан предназначен для стравливания в атмосферу газа из газопровода за регулятором в случае кратковременного повышения давления в нем при резком уменьшении расхода газа потребителями или внезапном повышении давления перед регулятором. Это предотвращает срабатывание в таких случаях предохранительного запорного клапана (ПЗК).

Для измерения количества газа, проходящего через газопровод за отрезок времени, применяются ротационные счетчики или измерительные диафрагмы.

Для подачи газа потребителю во время ремонта или ревизии оборудования основной линии в ГРП (ГРУ) предусмотрен обводной газопровод (байпас) с двумя последовательно размещенными запорными устройствами. Между запорными устройствами на байпасе устанавливают продувочный газопровод.

Кроме того, в комплект ГРП (ГРУ) входят сбросные и продувочные трубопроводы, предназначенные для сброса газа в атмосферу от предохранительных сбросных клапанов и продувки газопроводов и оборудования; контрольно-измерительные приборы – манометры для измерения давления до и после фильтра, после регулятора и термометры для измерения температуры газа; импульсные трубки, предназначенные для соединения отдельных элементов оборудования между собой и с контролируемыми точками газопроводов, а также для присоединения средств измерения к газопроводам в контролируемых точках.

Подача газа к отдельным котлам осуществляется от газопровода, называемого газовым коллектором. На ответвлении от коллектора к котлу устанавливают общее на котел запорное устройство. Перед запорным устройством на газопроводе должны быть установлены изолирующие фланцы для защиты от блуждающих токов. К наиболее удаленному участку коллектора присоединяют продувочный трубопровод, диаметром не менее 20 мм для вытеснения из газопровода воздуха перед пуском котельной и для удаления газа воздухом при длительной ее остановке. От газопровода каждого котла также предусмотрен продувочный трубопровод. Для отбора проб на продувочном трубопроводе имеется штуцер с пробкой.

Схема газопроводов котла зависит от количества и расположения горелок, способа подачи воздуха в горелки, степени их автоматизации и мощности. Перед горелкой с номинальной мощностью 0,3 Гкал/ч (~0,35 МВт) должен быть один газовый автоматический запорный орган, перед горелкой мощностью более 0,3 Гкал/ч до 1,7 Гкал/ч (~1,98 МВт) – два автоматических запорных органа, мощностью более 1,7 Гкал/ч – два автоматических запорных органа с автоматическим запорным органом утечки газа между ними. Орган утечки включает трубопровод безопасности при выключении запорных органов и выключает трубопровод безопасности при их включении. Трубопроводы безопасности и продувочные свечи с отключающими устройствами, которые у неработающих котлов должны быть открыты, необходимы для предотвращения попадания газа в топку котла при неисправных отключающих устройствах.

На ранее смонтированных газопроводах котлов с ручным обслуживанием горелок также имеются газопроводы безопасности, присоединенные между двумя запорными устройствами перед горелкой. Штуцер с заглушкой на трубопроводе безопасности используют для периодической проверки плотности запорных устройств.

Трубопроводы продувочный и безопасности выводят на высоту не менее 1 м выше карниза крыши, в места, где обеспечено безопасное рассеивание газа. Для предохранения от попадания в них атмосферных осадков концы этих трубопроводов загибают вниз. Допускается объединение продувочных трубопроводов с одинаковым давлением газа в общий продувочный трубопровод.

Кроме арматуры и контрольно-измерительных приборов на газопроводе перед каждым котлом обязательно должно быть установлено автоматическое устройство, обеспечивающее безопасную работу котла. Таким устройством является клапан-отсекатель. При возникновении аварийной ситуации по любому параметру защиты сигнал от первичного датчика поступает на щит управления. На щите управления размыкается электрическая цепь, электромагнит клапана-отсекателя обесточивается, сердечник электромагнита падает, и при этом клапан садится в седло, перекрывая проход газа.

Газопроводы котельных низкого давления окрашивают в желтый цвет, а среднего – в желтый с красными кольцами.

1. Какие устройства, сооружения и механизмы входят в систему топливоподачи твердого топлива?

2. Каковы признаки самовозгорания твердого топлива на складе?

3. Какие действия предпринимаются при появлении признаков самовозгорания твердого топлива?

4. Опишите принцип действия шаровой барабанной мельницы.

5. Опишите принцип действия молотковой мельницы.

6. Опишите принцип действия валковой среднеходной мельницы.

7. Для каких целей в системах пылеприготовления используются сепараторы, циклоны, питатели сырого угля и пыли, бункера?

8. Какие существуют способы шлакозолоудаления в котельных? В каких случаях каждый из них используется?

9. В чем заключается подготовка мазута перед сжиганием?

10. За счет чего поддерживается определенная температура мазута в резервуарах (баках)?

11. С какой целью, и в каких устройствах производится очистка мазута от твердых фракций?

12. Какие части включает в себя система газоснабжения предприятия? Кем они обслуживаются?

13. Для чего предназначены газорегуляторные пункты и установки?

14. Какие устройства входят в состав основного оборудования газорегуляторного пункта? Для чего каждое из них предназначено?

15. Какие устройства должны быть установлены перед горелками в зависимости от их мощности и степени автоматизации?

16. С какой целью на газопроводе перед котлами устанавливается клапан-отсекатель? В каких случаях и каким образом он срабатывает?

Глава 3. РАЗРАБОТКА И РАСЧЕТ ТЕПЛОВЫХ СХЕМ

КОТЕЛЬНЫХ

3.1. Общие положения разработки тепловых схем В теплоэнергетике одним из обязательных конструкторских документов является тепловая схема. Тепловая схема представляет собой условное графическое изображение основного и вспомогательного оборудования, объединяемого линиями трубопроводов для рабочего тела.

Различают принципиальную, развернутую и рабочую или монтажную тепловые схемы.

В принципиальной тепловой схеме указывают условно лишь главное оборудование (котлоагрегаты, подогреватели, деаэраторы, насосы) и трубопроводы, не размещая арматуры, вспомогательных устройств и второстепенных трубопроводов и не уточняя количества и расположения оборудования.

Развернутая тепловая схема содержит все количество устанавливаемого оборудования, а также все коммуникации – трубопроводы, соединяющие оборудование с помещаемой на них запорной и регулирующей арматурой. Так как объединение в развернутой тепловой схеме всех элементов и оборудования котельной из-за их большого числа затруднительно, эту схему разделяют на части по технологическому процессу.

Рабочую или монтажную тепловую схему выполняют в ортогональном, а отдельные сложные узлы в аксонометрическом изображении с указанием отметок расположения трубопроводов, их наклона, арматуры, креплений, размеров и т.д.

Общие правила выполнения схем устанавливает ГОСТ 2.701-84.

ЕСКД. Схемы. Виды и типы. Общие требования к выполнению. Схемы выполняются компактно, но без ущерба для ясности и удобства их чтения. Графические изображения элементов и линии связей между ними располагают таким образом, чтобы обеспечить наилучшее представление о структуре изделия и взаимодействии его составных частей. Линии связи, соединяющие функциональные части изделия, должны иметь наименьшее количество изломов и пересечений. Они должны состоять из горизонтальных и вертикальных участков.

Схемы выполняют без соблюдения масштаба. Действительное пространственное расположение составных частей установки не учитывают.

Условные обозначения теплоэнергетического оборудования, гидравлических и пневматических машин и аппаратов Редукционно-охладительная РОУ установка Подогреватель поверхностный П Деаэратор (рабочее давление ДЭ контурах бака) Потребитель тепловой энергии ПТ Для пояснения каких-либо особенностей схемы можно вводить дополнительные к установленным стандартам сведения и поясняющие надписи, не шифруя их.

Условные графические обозначения элементов трубопроводов Трубопровод:

линия всасывания, напора, слива линия управления, дренажа, отвода конденсата Соединение трубопроводов, линий связи Пересечение трубопроводов без соединения Сифон (гидрозатвор) Компенсатор (общее обозначение) Условные графические обозначения арматуры трубопроводной Наименование Клапан запорный:

Клапан обратный (движение рабочей среды от бело- КО го треугольника к черному) Клапан редукционный (вершина треугольника направлена в сторону повышенного давления) Трубопровод питательной воды на всас насосов В Трубопровод периодической продувки котлов В Трубопровод непрерывной продувки котлов В Трубопровод выпара деаэратора и подогревателей Е Трубопровод горячей воды для отопления и венТ тиляции подающий Трубопровод горячей воды для отопления и венТ тиляции обратный Трубопровод горячей воды для горячего водоТ снабжения подающий Трубопровод горячей воды для горячего водоТ снабжения циркуляционный Трубопровод горячей воды для технологических процессов подающий Трубопровод горячей воды для технологических процессов обратный Трубопровод горячей воды для кондиционироваТ ния воздуха подающий Трубопровод горячей воды для кондиционироваТ ния воздуха обратный Для изображения на схемах различных элементов и устройств применяют условные графические обозначения, установленные стандартами. Все размеры условных графических изображений, указанные в стандартах допускается пропорционально изменять. Можно применять другие графические изображения: прямоугольники произвольных размеров, содержащие пояснительный текст; внешние очертания частей изделий (в том числе аксонометрические изображения); схематические разрезы. Графические обозначения выполняют линиями той же толщины, что и линии связи. Нестандартные условные графические обозначения на схемах должны быть пояснены. Если на один элемент стандартами установлено несколько допустимых изображений, следует выбрать один из вариантов обозначения и применять его во всех схемах одного типа, входящих в комплект документации на изделие.

Если необходимо указать, какая рабочая среда и в каком агрегатном состоянии находится на каждом участке схемы, применяют различные графические обозначения для линий связи, приводимые в справочной литературе. Однако, в схемах соединений трубопроводы всегда изображают сплошными основными линиями независимо от рабочей среды.

Условные графические обозначения теплоэнергетического оборудования, гидравлических устройств и арматуры трубопроводной на основании действующих государственных стандартов приведены в табл. 3.1–3. При выполнении тепловых схем следует соблюдать индексы инженерных сетей, приведенные в табл. 3.4.

В зависимости от характера тепловых нагрузок котельные разделяют на следующие типы:

Производственные – предназначенные для снабжения теплом технологических потребителей.

Производственно-отопительные – осуществляющие теплоснабжение технологических потребителей, а также дающие тепло для отопления, вентиляции и горячего водоснабжения промышленных, общественных, жилых зданий и сооружений.

Отопительные – вырабатывающие тепловую энергию для нужд отопления, вентиляции и горячего водоснабжения жилых, общественных, промышленных зданий и сооружений.

По надежности отпуска тепла потребителям котельные относятся:

- к первой категории – котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла;

- ко второй категории – остальные котельные.

Потребители тепла по надежности теплоснабжения относятся:

- к первой категории – потребители, нарушение теплоснабжения которых связано с опасностью для жизни людей или со значительным ущербом народному хозяйству (повреждение технологического оборудования, массовый брак продукции);

- ко второй категории – остальные потребители тепла.

3.2.1. Тепловые схемы котельных с водогрейными котлами Для того чтобы тепловые схемы котельных с водогрейными котлами легко читались, рекомендуется следующий порядок изображения оборудования на них (см. рис. 3.1). На верхней правой части листа размещают водогрейные котлы, а на левой – деаэраторы, ниже котлоагрегатов размещают рециркуляционные и еще ниже сетевые насосы, а под деаэраторами – теплообменники (подогреватели), баки деаэрированной и рабочей воды, подпиточные насосы, насосы сырой воды, дренажные баки и продувочный колодец.

Работа отопительной котельной, принципиальная тепловая схема которой показана на рис. 3.1, осуществляется следующим образом. Вода из обратной линии тепловых сетей с небольшим напором поступает на всас сетевого насоса 2. Туда же подводится вода от подпиточного насоса 6, компенсирующая утечки воды в тепловых сетях. На всас насоса подается и горячая вода, тепло которой частично использовано в теплообменниках 9 и 4 для подогрева, соответственно, химически очищенной и сырой воды.

Для обеспечения заданной из условий предупреждения коррозии температуры воды перед котлом в трубопровод за сетевым насосом подают при помощи рециркуляционного насоса 12 необходимое количество горячей воды, вышедшей из водогрейного котла 1. Линию, по которой подают горячую воду, называют рециркуляционной. При всех режимах работы тепловой сети, кроме максимально-зимнего, часть воды из обратной линии после сетевого насоса 2, минуя котел, подают по перепускной линии в подающую магистраль, где она, смешавшись с горячей водой из котла, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Вода, предназначенная для восполнения утечек в тепловых сетях, предварительно подается насосом сырой воды 3 в подогреватель сырой воды 4, где она подогревается до температуры 18–20 C и затем направляется на химводоочистку. Химически очищенная вода подогревается в теплообменниках 8, 9 и 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из бака деаэрированной воды 7 забирает подпиточный насос 6 и подает в обратную линию.

Рис. 3.1. Тепловая схема котельной с водогрейными котлами:

1 – водогрейный котел; 2 – сетевой насос; 3 – насос сырой воды; 4 – подогреватель сырой воды; 5 – химводоочистка; 6 – подпиточный насос; 7 – бак деаэрированной воды; 8 – охладитель деаэрированной воды; 9 – подогреватель химически очищенной воды; 10 – деаэратор; 11 – охладитель выпара; 12 – рециркуляционный насос Обозначения трубопроводов (буква с цифрой) выполнены в соответствии с табл. 3. Основной целью расчета любой тепловой схемы котельной является выбор основного и вспомогательного оборудования с определением исходных данных для последующих технико-экономических расчетов.

Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изготовителем. Во избежание низкотемпературной и сернокислотной коррозии конвективных поверхностей нагрева температура воды на входе в котел при сжигании топлив, не содержащих серу, должна быть не менее 60 С, малосернистых топлив не менее 70 С и высокосернистых топлив не менее 110 С. Для повышения температуры воды на входе в водогрейный котел при температурах воды ниже указанных устанавливается рециркуляционный насос.

В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Но они требуют при эксплуатации тщательного надзора, поэтому предпочитают устанавливать деаэраторы атмосферного типа.

Сильное влияние на оборудование котельной с водогрейными агрегатами оказывает система горячего водоснабжения – закрытая или открытая. Открытой называется система, в которой теплоноситель – горячая вода – частично или полностью используется потребителем. В закрытых системах нагрев воды на горячее водоснабжение осуществляется прямой отопительной водой в местных теплообменниках.

При открытой системе горячего водоснабжения количество воды, идущее на подпитку тепловых сетей, заметно возрастает и может достигать 20% расхода воды через тепловые сети. Т.е. количество воды, которое необходимо подготовить на химводоочистке, при открытой системе горячего водоснабжения возрастает в несколько раз по сравнению с закрытой.

Так как расходы воды при открытой системе неравномерны, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности оборудования водоподготовки устанавливаются баки-аккумуляторы для деаэрированной воды.

Из них в часы максимума потребления горячая вода подпиточными насосами подается на всас сетевых насосов.

Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, т.к. к воде горячего водоснабжения предъявляются такие же требования, как к питьевой водопроводной воде.

Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему присоединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В настоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 3.2.

На рис. 3.2 а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 3.2 б, в показаны двухступенчатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения.

Рис. 3.2. Схемы присоединения местных теплообменников:

а – параллельное; б – двухступенчатое последовательное; в – смешанная схема Выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Qг.в/Qо0,06 присоединение местных теплообменников производится по двухступенчатой последовательной схеме; при 0,6< Qг.в/Qо1,2 – по двухступенчатой смешанной схеме; при Qг.в/Qо1,2 – по параллельной схеме. При двухступенчатой последовательной схеме присоединения местных теплообменников должно предусматриваться переключение теплообменников на двухступенчатую смешанную схему.

Расчет тепловой схемы водогрейной котельной базируется на решении уравнений теплового и материального баланса, составляемых для каждого элемента схемы. При расчете тепловой схемы водогрейной котельной, когда не происходит фазовых превращений нагреваемой и охлаждаемой сред (воды), уравнение теплового баланса в общем виде можно записать следующим образом где Gох, Gн – массовый расход, соответственно, охлаждаемого и нагреваемого теплоносителей, кг/с; cох, cн –средняя удельная теплоемкость, соответственно, охлаждаемого и нагреваемого теплоносителей, кДж/(кг·°C); tох, tох – соответственно, начальная и конечная температунк ры охлаждаемого теплоносителя, °C; tн, tн – соответственно, начальная и конечная температуры нагреваемого теплоносителя, °C; – КПД теплообменника.

При расхождении предварительно принятых в расчете величин с полученными в результате расчета более чем на 3% расчет следует повторить, подставив в качестве исходных данных полученные значения.

3.2.2. Тепловые схемы котельных с паровыми котлами и их расчет Отпуск пара технологическим потребителям часто производится от производственных котельных, в которых вырабатывается насыщенный или слабо перегретый пар с давлением до 1,4 или 2,4 МПа. Пар используется технологическими потребителями и в небольшом количестве – на приготовление горячей воды, направляемой в систему теплоснабжения.

Приготовление горячей воды производится в сетевых подогревателях, устанавливаемых в котельной.

Принципиальная тепловая схема производственной котельной с отпуском небольшого количества теплоты на нужды отопления, вентиляции и горячего водоснабжения в закрытую систему теплоснабжения показана на рис. 3.3.

Рис. 3.3. Тепловая схема производственной котельной:

1 – паровой котел; 2 – расширитель непрерывной продувки; 3 – насос сырой воды;

4 – барботер; 5 – охладитель непрерывной продувки; 6 – подогреватель сырой воды;

7 – химводоочистка; 8 – питательный насос; 9 – подпиточный насос; 10 – охладитель подпиточной воды; 11 – сетевой насос; 12 – охладитель конденсата; 13 – сетевой подогреватель; 14 – подогреватель химически очищенной воды; 15 – охладитель выпара; 16 – атмосферный деаэратор; 17 – редукционно-охладительная установка Насос сырой воды подает воду в охладитель продувочной воды, где она нагревается за счет теплоты продувочной воды. Затем сырая вода подогревается до 20–30 °C в пароводяном подогревателе сырой воды и направляется на химводоочистку. Химически очищенная вода направляется в охладитель деаэрированной воды и подогревается до определенной температуры. Дальнейший подогрев химически очищенной воды осуществляется в подогревателе паром. Перед поступлением в головку деаэратора часть химически очищенной воды проходит через охладитель выпара деаэратора.

Подогрев сетевой воды производится паром в последовательно включенных двух сетевых подогревателях. Конденсат от всех подогревателей направляется в головку деаэратора, в которую также поступает конденсат, возвращаемый внешними потребителями пара.

Подогрев воды в атмосферном деаэраторе производится паром от котлов и паром из расширителя непрерывной продувки, в котором котловая вода частично испаряется вследствие снижения давления. Продувочная вода после использования в охладителе непрерывной продувки сбрасывается в продувочный колодец (барботер).

Деаэрированная вода с температурой около 104 °С питательным насосом подается в паровые котлы. Подпиточная вода для системы теплоснабжения забирается из того же деаэратора, охлаждаясь в охладителе подпиточной воды до 70 °С перед поступлением к подпиточному насосу. Использование общего деаэратора для приготовления питательной и подпиточной воды возможно только для закрытых систем теплоснабжения ввиду малого расхода подпиточной воды в них. В открытых системах теплоснабжения расход подпиточной воды значителен, поэтому в котельной следует устанавливать два деаэратора: один для приготовления питательной воды, другой – подпиточной воды. В котельных с паровыми котлами, как правило, устанавливаются деаэраторы атмосферного типа.

Для технологических потребителей, использующих пар более низкого давления по сравнению с вырабатываемым котлоагрегатами, и для подогревателей собственных нужд в тепловых схемах котельных предусматривается редукционная установка для снижения давления пара (РУ) или редукционно-охладительная установка для снижения давления и температуры пара (РОУ).

Расчет тепловой схемы котельной с паровыми котлами выполняется для трех режимов: максимально-зимнего, наиболее холодного месяца и летнего. В основе расчета тепловой схемы котельной с паровыми котлами, лежит решение уравнений теплового и материального балансов, составляемых для каждого элемента схемы. Вид уравнения теплового баланса зависит от количества участвующих в теплообмене сред, их фазового состояния и происходящих фазовых превращений. Если в рассчитываемом элементе схемы не происходит изменения фазового состояния нагреваемой и охлаждаемой сред, уравнение теплового баланса описывается формулой (3.1).

Если охлаждаемый теплоноситель меняет свое фазовое состояние, то уравнение теплового баланса примет вид где i, i – соответственно, начальная и конечная удельные энтальпии (теплосодержания) охлаждаемого теплоносителя, кДж/кг.

Если меняет свое фазовое состояние нагреваемый теплоноситель где i, i – соответственно, начальная и конечная удельные энтальпии нагреваемого теплоносителя, кДж/кг.

Если оба теплоносителя меняют свое фазовое состояние По результатам расчета из каталогов подбираются котельные агрегаты с требуемыми паропроизводительностью и параметрами пара.

Что представляет собой тепловая схема?

Какие различают типы тепловых схем? Что на них изображают?

Как классифицируются котельные в зависимости от характера Как классифицируются котельные по надежности отпуска тепла Укажите рекомендуемый порядок изображения оборудования на тепловых схемах котельных с водогрейными котлами.

С какой целью производится расчет тепловой схемы котельной?

Чем отличаются открытые системы горячего водоснабжения от Какие существуют схемы присоединения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения? На чем основывается их выбор?

На чем базируется расчет тепловой схемы котельной?

10. Дайте описание работы котельной с водогрейными котлами, тепловая схема которой показана на рис. 3.1.

11. Дайте описание работы производственной котельной, тепловая схема которой показана на рис. 3.3.

Котельная установка – это комплекс устройств, предназначенных для получения пара или горячей воды. Котельная установка может быть одной из составляющих тепловой электростанции или выполнять самостоятельные функции (отопление и горячее водоснабжение, технологическое водо- и пароснабжение.

В зависимости от назначения котельная установка состоит из парового или водогрейного котла и вспомогательного оборудования, обеспечивающего его работу. Последовательно включенные элементы котельной установки образуют тракты.

Топливный тракт – комплекс оборудования для подготовки топлива к сжиганию и подачи в топку. При использовании твердого топлива в него могут входить бункера, питатели сырого топлива и пыли, углеразмольные мельницы, мельничные вентиляторы, сепараторы, транспортеры, пылепроводы и т.п. При сжигании газа и мазута - газопроводы и мазутопроводы, расходомеры, запорная и регулирующая арматура.

Пароводяной тракт – представляет собой систему последовательно включенных элементов оборудования, в которых движется обогреваемый теплоноситель (поверхности нагрева котла, трубопроводы, барабаны, сепараторы, пароохладители и теплообменники в пределах котла, запорная и регулирующая арматура).

Газовоздушный тракт состоит из последовательно расположенных воздушного и газового трактов. Первый из них включает в себя совокупность оборудования для забора воздуха из атмосферы, нагрева и подачи его в топку котла (дутьевые вентиляторы, воздушные короба, воздухоподогреватели и горелочные устройства), второй – комплекс элементов котельной установки, по которым осуществляется движение продуктов сгорания (топка и другие газоходы котла, устройства для очистки дымовых газов, дымососы).

Паровой (водогрейный) котел – это устройство, в котором для получения пара (горячей воды) требуемых параметров используют теплоту, выделяющуюся при сгорании органического топлива. Основные элементы котла – топка и теплообменные поверхности.

Если в котле используют теплоту уходящих газов других технических устройств (ГТУ, технологических установок), его называют котлом-утилизатором. Котел-утилизатор в некоторых случаях не имеет топки и воздухоподогревателя, а его основные элементы – поверхности нагрева.

По виду вырабатываемого теплоносителя котельные установки делятся на паровые и водогрейные. В зависимости от назначения они разделяются на энергетические, производственные, производственноотопительные и отопительные. Энергетические котельные установки вырабатывают пар для паровых турбин на тепловых электростанциях.

Такие котельные оборудуют, как правило, котлоагрегатами большой и средней мощности, которые вырабатывают пар повышенных параметров. Производственные и производственно-отопительные котельные установки (обычно паровые) вырабатывают насыщенный или слабо перегретый пар (до 4 МПа и 450 C), который используется в технологических процессах различных отраслей (сушка, варка, ректификация, концентрирование растворов и др.), а также для обеспечения теплотой систем отопления, вентиляции и горячего водоснабжения. Отопительные котельные установки (в основном водогрейные, но они могут быть и паровыми) предназначены для обслуживания систем отопления, горячего водоснабжения и вентиляции производственных и жилых помещений.

По характеру движения воды, пароводяной смеси и пара паровые котлы подразделяются на барабанные с естественной циркуляцией, барабанные с многократной принудительной циркуляцией и прямоточные (рис. 4.1). В барабанных котлах с естественной циркуляцией движение пароводяной смеси в подъемных (обогреваемых) трубах и жидкости в опускных (необогреваемых) трубах происходит вследствие разности их плотностей. В котлах с многократной принудительной циркуляцией движение воды и пароводяной смеси осуществляется с помощью циркуляционного насоса. В прямоточных котлах нет циркуляционного контура, нет многократной циркуляции воды, отсутствует барабан, вода прокачивается питательным насосом через экономайзер, испарительные поверхности и пароперегреватель, включенные последовательно.

По перемещению продуктов сгорания и воды котлы подразделяют на газотрубные (жаротрубные и с дымогарными трубами), в которых газы движутся внутри труб, водотрубные, в которых вода или пароводяная смесь движутся внутри труб и водотрубно-газотрубные.

По конструктивным особенностям различают котлы цилиндрические, горизонтально-водотрубные, вертикально-водотрубные.

В зависимости от паропроизводительности различают котлы малой (до 20 – 25 т/ч), средней (от 35 – 50 до 160 – 220 т/ч) и большой паропроизводительности (от 220 – 250 т/ч и выше).

Рис. 4.1. Схемы движения воды, пароводяной смеси и пара в котлах:

а – барабанном с естественной циркуляцией; б – барабанном с многократной принудительной циркуляцией; в – прямоточном; 1 – барабан; 2 – пароперегреватель;

3 – водяной экономайзер; 4 – питательный насос; 5 – обогреваемые трубы; 6 – опускные трубы; 7 – циркуляционный насос По уровню давления перегретого пара различают котлы с низким (ниже 4 МПа), средним ( от 4 до 11 МПа), высоким (более 11 МПа) и сверхкритическим давлением (выше 25 МПа).

По уровню давления в газовом тракте различают котлы с естественной, уравновешенной тягой и под наддувом.

Возможна также классификация по виду сжигаемого топлива, способу шлакоудаления и т.п.

Топка – устройство котла, предназначенное для сжигания органического топлива, частичного охлаждения продуктов сгорания и выделения золы.

Топки подразделяются на слоевые, камерные и вихревые. При слоевом процессе сжигания топлива (рис. 4.2, а) поток воздуха проходит через неподвижный или движущийся в поперечном направлении слой топлива.

Чтобы частицы топлива, лежащие на решетке, не уносились потоком, их вес должен быть больше подъемной силы воздуха, действующей на каждую частицу. Характерной особенностью слоевого сжигания топлива является наличие значительного количества горящего топлива в топке. Это обеспечивает устойчивость работы топки и позволяет при изменении нагрузки котла регулировать работу топки первоначально только изменением количества подаваемого воздуха.

Если крупнозернистое топливо находится во взвешенном состоянии и не перемещается с потоком газов, то образуется «кипящий слой»

(рис. 4.2, б).

При факельном топочном процессе (рис. 4.2, в) частицы топлива движутся вместе с газовоздушным потоком через топку, находясь во взвешенном состоянии. При этом время пребывания частиц топлива в топке незначительно, скорость обтекания частиц воздухом и количество горящего топлива также незначительные. Факельный процесс чувствителен к изменению режимов работы, поэтому необходимо тщательно регулировать подачу топлива и воздуха в топку.

При вихревом топочном процессе частицы топлива организованно циркулируют по определенным траекториям до полного выгорания, поэтому в топках можно сжигать более крупные частицы (3–5 мм). Более совершенным вихревым топочным процессом является циклонный процесс (рис. 4.2, г).

Работа топочных устройств характеризуется теплопроизводительностью (в МВт) Q B Qн (B – секундный расход топлива, кг/с или м 3/с;

Qн – низшая теплота сгорания топлива, МДж/кг или МДж/м3); объемной тепловой нагрузкой (в МВт/м3) топки объемом Vт (q= BQн / Vт); тепловой нагрузкой (в МВт/м2) зеркала горения решетки площадью Aт ( QAт B Qн Aт ); тепловой нагрузкой (в МВт/м 2) поперечного сечения топки площадью A (qA = BQн / A); КПД топки т = 100 – q3 – q4 (q3 и q4 – потери теплоты от химичнеской и механической неполноты сгорания топлива); коэффициентом т избытка воздуха на выходе из топки (см. табл. 1.8). Значения этих параметров зависят от типа и сорта сжигаемого топлива.

Слоевые топки, применяемые для сжигания твердого топлива под котлами мощностью до 30 МВт, весьма разнообразны. В зависимости от характера обслуживания различают топки ручные, полумеханические и механические (рис. 4.3). Топка с ручным обслуживанием операций загрузки топлива, шурования и удаления шлака (рис. 4.3, а), применяемая под котлами мощностью до 2 МВт, состоит из неподвижной колосниковой решетки 2, загрузочного отверстия 1, служащего одновременно для шурования слоя, и поддувального пространства 3, через которое воздух подается в топку. Показатели экономичности ручных топок невысокие:

q3 = 2–4 %, q4 = 7–12 %, т = 1,4–1,5.

Полумеханическая топка (рис. 4.3, б) снабжена специальным механическим или пневматическим забрасывателем 4 топлива на колосниковую решетку 2, выполненную из качающихся или поворотных колосников. Шлак вручную удаляется через отверстие 5 шлакового бункера 6.

для этих топок q3 = 1 %, q4 = 4–7 %, т = 1,3–1,4. В механических топках с движущейся цепной решеткой (рис. 4.3, в) топливо под действием собственного веса из бункера 7 через регулятор 8 толщины слоя поступает на медленно движущуюся (2–16 м/ч) колосниковую решетку 2.

Колосниковая решетка представляет собой, по существу, ленточный транспортер, что обеспечивает поточность процесса. По мере движения топлива вместе с решеткой оно постепенно прогорает и шлак сбрасывается в шлаковый бункер 6. Воздух через специальные зоны 9 подается под колосниковую решетку. Воспламенение топлива происходит при подводе теплоты излучением сверху и менее надежно, чем при встречной схеме движения топлива и воздуха. Поэтому на цепной решетке хуже горит топливо с малым выходом летучих.

В топках с забрасывателями на движущуюся цепную колосниковую решетку обратного хода (рис. 4.3, г) обеспечивается поточность процессов горения и смешения – встречно-поперечная схема движения топлива и воздуха. При этом преобладает встречная схема топочного процесса. Топки с забрасывателями на движущуюся колосниковую решетку получили широкое распространение при сжигании каменных и бурых углей под котлами мощностью до 30 МВт. В топках с цепными решетками q3 = 0,1–1 %, q4 = 4–6 %, т = 1,3–1,4.

На рис. 4.3, д показана топка, в которой по неподвижной колосниковой решетке 2 перемещается трехгранная планка 10, совершая возвратно-поступательное движение и обеспечивая подачу топлива и шурование слоя. В настоящее время топки с шурующей планкой вследствие недостаточной приспособленности их к сжиганию неспекающихся углей применяются редко.

1 – загрузочное отверстие; 2 – колосниковая решетка; 3 – поддувальное пространство; 4 – забрасыватель; 5 – отверстие для удаления шлака; 6 – шлаковый бункер;

7 – угольный ящик; 8 – регулятор толщины слоя; 9 – зоны для подачи воздуха;

При сжигании влажного топлива (торфа, древесных отходов) под котлами мощностью до 5 МВт применяют полумеханические шахтные топки с наклонной колосниковой решеткой (рис. 4.3, е). В этих топках топливо под действием собственной массы сползает сверху вниз, открывая доступ свежим порциям топлива. Шахтные топки имеют следующие характеристики: q3 = 2 %, q4 = 2 %, т = 1,4.

Камерные топки позволяют сжигать любое топливо – жидкое, газообразное и твердое в виде пыли. Камерная топка состоит из горелок и топочной камеры. Горелка – устройство, предназначенное для подачи топлива к месту смешения его с воздухом и сжигания, обеспечения стабильного сжигания и регулирования горения.

По способу подачи в топочную камеру газа и воздуха и условий их смешения все газовые горелки разделяются на горелки без предварительного смешения (диффузионные), горелки с полным предварительным смешением (кинетические), горелки с неполным предварительным смешением (диффузионно-кинетические).

Широко распространена классификация газовых горелок по способу подачи воздуха. По этому признаку горелки подразделяются на бездутьевые (воздух поступает в топку за счет разряжения в ней), инжекционные (воздух засасывается за счет энергии газовой струи), с принудительной подачей воздуха (воздух подается в горелку или в топку с помощью дутьевого вентилятора).

В диффузионных горелках газ смешивается с воздухом в топке вследствие взаимной диффузии газа и воздуха на границах вытекающего потока. Диффузионные горелки дают более длинный светящийся факел.

В инжекционных горелках воздух подсасывается за счет инжекции газовой струей, выходящей из сопла с большой скоростью. Такие горелки могут быть как с полным предварительным смешением газа с воздухом (инжекционные горелки среднего давления), так и с неполной инжекцией воздуха (инжекционные горелки низкого давления).

В горелках с принудительной подачей воздуха процесс образования газовоздушной смеси начинается в самой горелке и завершается в топке. Такие горелки называются двухпроводными и смесительными (газ и воздух подаются по двум трубам и смешиваются в горелке). Газ для лучшего перемешивания выходит через многочисленные отверстия, направленные под углом к потоку воздуха. В зависимости от направления газового потока различают горелки с центральной подачей газа, если поток направлен от центра к периферии, и горелки с периферийной подачей газа, если поток газа направлен от периферии к центру горелки.

В большинстве таких горелок воздуху придается вращательное движение с помощью завихрителей, либо придавая горелке улиткообразную форму или вводя воздух в цилиндрическую горелку тангенциально.

Эффективное и экономичное сжигание мазута достигается в результате его тонкого и однородного распыления, хорошего смешивания с воздухом и создания условий для стабилизации фронта загорания и стойкого факела необходимой формы и направления.

Мазутные горелки состоят из форсунки, воздухонаправляющего устройства и амбразуры. Форсунки предназначены для распыления жидкого топлива и регулирования его подачи, а воздухонаправляющие устройства и амбразуры – для создания однородной воздушно-мазутной смеси и ее распределения в топочном пространстве.

Чаще всего форсунки классифицируются по способу распыления топлива. Форсунки, в которых распыление топлива происходит за счет потенциальной энергии мазута, находящегося под высоким давлением, называются механическими. Форсунки, в которых для распыления мазута используется кинетическая энергия распыляющего агента (пар, воздух), называются пневматическими. Форсунки, в которых для распыления мазута используется механическая энергия вращательного распылителя (диск или стакан), называются ротационными.

В механических форсунках подогретое топливо под давлением пропускается через мелкие отверстия распыливающей головки. Механические форсунки компактны, но чувствительны к отклонениям от расчетных режимов работы и загрязнениям топлива. Паровые форсунки характеризуются высоким качеством распыления, но расходуют большое количество пара. Комбинированные паромеханические форсунки обеспечивают удовлетворительное распыление мазута в широком диапазоне изменения мощности форсунки (от 20 до 100 %) при существенно меньшем расходе пара.

Широкое применение находят комбинированные газомазутные горелки, предназначенные для раздельного и совместного сжигания газа и мазута. За основу создания таких горелок принимают обычно газовые горелки, в центральную часть которых устанавливают мазутную форсунку (рис. 4.4).

а – прямоточно-улиточная; б – прямоточно-лопаточная; в – двухулиточная;

I – первичный воздух с угольной пылью; II – вторичный воздух Для камерного сжигания пылевидного твердого топлива применяют вихревые и прямоточные щелевые горелки. Принципиальные схемы вихревых горелок приведены на рис. 4.5. Наименование горелки отражает способ ввода первичного (с пылью) и вторичного воздуха.

4.4. Основные элементы паровых и водогрейных котлов Основными элементами котла являются: топка, испарительные (в паровых котлах) или водонагревательные (в водогрейных котлах) поверхности нагрева, пароперегреватель, экономайзер, воздухоподогреватель, каркас, обмуровка, тепловая изоляция, обшивка.

Поверхности нагрева (экранные трубы и котельный пучок) – элементы котла, в которых происходит передача тепла от факела и продуктов сгорания теплоносителю (воде или пару). Различают радиационную поверхность, которая получает тепло преимущественно излучением, и конвективную поверхность, которая получает тепло в основном конвекцией. Радиационными поверхностями являются экраны, размещенные на стенах топки. В зависимости от размещения в топке, различают фронтовые, боковые, задние и потолочные экраны. Существуют также двусветные экраны, которые размещаются в топочном пространстве и обогреваются с двух сторон.

Пароперегреватель – устройство, предназначенное для повышения температуры пара выше температуры насыщения, соответствующей давлению в котле. По виду тепловосприятия пароперегреватели бывают радиационные, полурадиационные и конвективные. Радиационные пароперегреватели выполняют настенными и обычно размещают в верхней части топки. Радиационный пароперегреватель барабанного парового котла обычно занимает потолок топки. Полурадиационные пароперегреватели выполняются в виде плоских ширм или лент, собранных из пароперегревательных труб, находящихся друг за другом в одной плоскости. Ширмовые пароперегреватели представляют собой систему из большого числа вертикальных труб, имеющих один гиб на 180 и образующих широкую плоскую ленту, которая имеет опускной и подъемный участки. Их размещают на выходе из топочной камеры на заметном удалении друг от друга. Конвективные пароперегреватели выполняют из гладких стальных труб в виде змеевиков. Конвективные пароперегреватели располагают в горизонтальном газоходе или в начале конвективной шахты.

Экономайзер – устройство, предназначенное для подогрева или частичного испарения питательной воды, перед ее поступлением в испарительную часть котла за счет использования тепла уходящих газов. В зависимости от степени подогрева воды экономайзеры делят на некипящие и кипящие. В кипящих экономайзерах до 20% воды может превращаться в пар. Экономайзеры выполняются из гладких или оребренных (мембранное или поперечное оребрение) труб. В зависимости от металла, из которого изготовляются экономайзеры, их разделяют на чугунные и стальные. Чугунные экономайзеры состоят из ребристых чугунных труб и применяются при давлении в барабане котла до 2 МПа.

Наиболее часто экономайзеры выполняют из стальных труб, согнутых в вертикальные змеевики и скомпонованных в пакеты. Экономайзеры размещают в конвективном газоходе.

Воздухоподогреватель – устройство, предназначенное для подогрева воздуха, поступающего в топку на горение за счет использования тепла уходящих газов. Воздухоподогреватели выполняются рекуперативными (трубчатыми) или регенеративными вращающимися. Трубчатые воздухоподогреватели выполняются из отдельных кубов (секций). Куб состоит из вертикальных тонкостенных труб, закрепленных в трубных досках. Газы движутся в трубках сверху вниз, воздух – в межтрубном пространстве. В регенеративном воздухоподогревателе тепло передается металлической насадкой, которая периодически нагревается дымовыми газами, после чего переносится в поток воздуха и отдает ему аккумулированное тепло.

Каркас – металлическая конструкция из колонн, балок и связей, которые установлены на фундаменте и предназначены для соединения и крепления элементов котла.



Pages:     || 2 |


Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОУ ВПО МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА Воронежский филиал Кафедра экономических дисциплин УТВЕРЖДАЮ Директор Воронежского филиала д.т.н., профессор Заряев А.В. 2013 г. УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по учебной дисциплине УЧЕТ НА ПРЕДПРИЯТИЯХ МАЛОГО БИЗНЕСА по специальности: 080109.65 – Бухгалтерский учет, анализ и аудит Воронеж Автор: Воронин В.П., д.э.н., профессор _ Учебно-методический комплекс рассмотрен и одобрен на заседании...»

«Приложение 7Б: Рабочая программа дисциплины по выбору Теория менеджмента ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПЯТИГОРСКИЙ ГОСУДАРСТВЕННЫЙ ЛИНГВИСТИЧЕСКИЙ УНИВЕРСИТЕТ Утверждаю _ Проректор по научной работе и развитию интеллектуального потенциала университета профессор З.А. Заврумов _2012 г. Аспирантура по специальности 22.00.08 Социология управления отрасль науки: 22.00.00 Социологические науки Кафедра креативно-инновационного...»

«Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ЛЕСОУСТРОЙСТВО Программа, методические указания и контрольные задания для студентов заочной формы обучения специальности 1-75 01 01 Лесное хозяйство Минск 2005 УДК 630.001.2 ББК 65.9(2)34 Рассмотрены и рекомендованы к изданию редакционноиздательским советом университета Составитель профессор В.Е. Ермаков Рецензент зав. кафедрой лесоводства д-р с.-х. наук, профессор Л.Н. Рожков. По тематическому плану изданий...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЕСТНИК ДАЛЬНЕВОСТОЧНОГО РЕГИОНАЛЬНОГО УЧЕБНО-МЕТОДИЧЕСКОГО ЦЕНТРА № 15/2007 Владивосток 2008 УДК 378.12 Вестник Дальневосточного регионального учебно-методического центра. Владивосток: Изд-во ДВГТУ -2008. – с. 176 Предлагаемый Вестник ДВ РУМЦ продолжает серию сборников информационных материалов ДВ РУМЦ. Материалы Вестника адресуются работникам высших учебных заведений Дальневосточного региона, органов управления высшим профессиональным...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТУРИЗМА И СЕРВИСА Факультет туризма и гостеприимства Кафедра бизнес-технологий в туризме и гостеприимстве ДИПЛОМНАЯ РАБОТА на тему: Повышение конкурентоспособности туристской индустрии региона (на примере города Санкт – Петербург) по специальности экономика и управление на предприятии (в сфере сервиса)...»

«ФТИЗИАТРИЯ национальное руководство Главный редактор акад. РАМН М.И. Перельман Подготовлено под эгидой Российского общества фтизиатров и Ассоциации медицинских обществ по качеству АССОЦИАЦИЯ МЕДИЦИНСКИХ ОБЩЕСТВ издательская группа ПО КАЧЕСТВУ ГЭОТАР-Медиа Москва 2007 УДК 616-0015 ББК 55.4 Ф93 Национальное руководство по фтизиатрии разработано и рекомендовано Российским обществом фтизиатров и Ассоциацией медицинских обществ по качеству (АСМОК) Рекомендуется Учебно-методическим объединением по...»

«Новые книги Русский язык как иностранный Скороходов, Л. Ю. Окно в Россию : учебное пособие по русскому языку как иностранному для продвинутого этапа. Ч. 1 / Л. Ю. Скороходов, О. В. Хорохордина. - 3-е изд. - Санкт-Петербург : Златоуст, 2012. - 189 с. Скороходов, Л. Ю. Окно в Россию : учебное пособие по русскому языку как иностранному для продвинутого этапа. Ч. 2 / Л. Ю. Скороходов, О. В. Хорохордина. - 4-е изд., испр., перераб. и доп. - Санкт-Петербург : Златоуст, 2010. - 263 с. Учебное пособие...»

«Новые книги (политология, правоведение, философия и др.) Введение в политическую теорию : учебное пособие : для бакалавров / Б. А. Исаев [и др.] ; под ред. Б. Исаева. - Санкт-Петербург [и др.] : Питер, 2013. - 432 с. Учебное пособие написано коллективом авторов в составе профессоров отделения политологии Балтийского государственного технического университета (БГТУ) ВОЕНМЕХ и других университетов СанктПетербурга. Руководитель авторского коллектива — заслуженный работник высшей школы, заведующий...»

«РЯЗАНСКОЕ ВЫСШЕЕ ВОЕННОЕ КОМАНДНОЕ УЧИЛИЩЕ СВЯЗИ ИМЕНИ МАРШАЛА СОВЕТСКОГО СОЮЗА М.В. ЗАХАРОВА ПОДГОТОВКА СПЕЦИАЛИСТА РАДИОСВЯЗИ. СПЕЦИАЛЬНАЯ, ТЕХНИЧЕСКАЯ И ТАКТИКОСПЕЦИАЛЬНАЯ ПОДГОТОВКА Учебное пособие выпускнику РВВКУС Под редакцией кандидата военных наук, доцента Н.В. Тютвина Рязань 2007 УДК 623.00.621.396.72(07) ББК 32.884.1 Г 91 Руководитель авторского коллектива кандидат военных наук, доцент Н.В. Тютвин Авторский коллектив: Гутенко А.И., Ковляшкин В.П., Корнеев А.В., Мостовщиков С.А.,...»

«В.В. Пиляева ГРАЖДАНСКОЕ ПРАВО В СХЕМАХ И ОПРЕДЕЛЕНИЯХ УЧЕБНОЕ ПОСОБИЕ Пятое издание, переработанное УДК 347(075.8) ББК 67.404я73 П32 Пиляева В.В. П32 Гражданское право в схемах и определениях : учебное пособие / В.В. Пи­ ляева. — 5е изд., перераб. — М. : КНОРУС, 2012. — 272 с. ISBN 978-5-406-01946-7 Учебный материал представлен в наглядной форме — структурнологи е­ ч ски и схемами, что способствует успешному усвоению курса граждан кого м с права России. Для студентов, аспирантов и...»

«Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра лесозащиты и древесиноведения ЛЕСНАЯ ФИТОПАТОЛОГИЯ Программа, методические указания и контрольные задания для студентов заочной формы обучения специальности 1-75 01 01 Лесное хозяйство Минск 2011 УДК 630*44(075.8) ББК 44.7я73 Л 50 Рассмотрены и рекомендованы к изданию редакционноиздательским советом университета Составители: А. В. Хвасько, В. Н. Кухта Рецензент кандидат сельскохозяйственных наук, доцент...»

«ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ УЧЕБНО-МЕТОДИЧЕСКИЙ ЦЕНТР ПО ПРОФЕССИОНАЛЬНОМУ ОБРАЗОВАНИЮ КАЛЕНДАРЬ ПАМЯТНЫХ ДАТ НА 2013–2014 УЧЕБНЫЙ ГОД Москва 2013 УДК 061.75 ББК 92я2 К 17 Авторы-составители: Жильцова Н.Р., заведующий сектором организационно-методического сопровождения деятельности библиотек ГБОУ УМЦ ПО ДОгМ; Илюшина Е.А., методист сектора организационно-методического сопровождения деятельности библиотек ГБОУ УМЦ ПО ДОгМ К 17 Календарь памятных дат на 2013–2014 учебный год. – М.: ГБОУ...»

«Министерство образования Российской Федерации Южно-Уральский государственный университет Кафедра общей психологии Ю9.я7 Б287 Н.А. Батурин ПСИХОЛОГИЯ УСПЕХА И НЕУДАЧИ Учебное пособие Челябинск Издательство ЮУрГУ 1999 ББК Ю 932 Батурин Н.А. Психология успеха и неудачи: Учебное пособие. – Челябинск: Изд. ЮУрГУ, 1999. – 100 с. Изложены основные сведения по психологической характеристике успеха и неудачи. Показаны особенности их влияния на различные стороны психического функционирования. Рассмотрены...»

«Г. Ф. ЧЕКМАРЁВ ПРОБЛЕМЫ ТЕОРИИ ГОСУДАРСТВА И ПРАВА Учебно-методическое пособие по изучению дисциплины Для студентов юридического факультета очного, очно-заочного и заочного отделений. Специальность: Юриспруденция Москва – 2011 2 Р е ц е н з е н т: кандидат юридических наук И. Л. Лёзов, заведующий кафедрой государственно-правовых дисциплин ИНЭП; Чекмарёв, Геннадий Федорович. Проблемы теории государства и права. Учебно-методическое пособие по изучению дисциплины. — М.: Институт экономики и...»

«ОГУК Орловская Научно-методический детская библиотека отдел им. М. М. Пришвина Серия Книги — юбиляры Азбучные истины Льва Толстого (методико-библиографический материал по творчеству Л.Н. Толстого. К 135-летию выхода книги Новая азбука; к 100-летию со дня смерти писателя) Орёл, 2009 Содержание 1. От составителя _ С. 3-4 2. Счастье в том, чтобы делать добро другим.: библиотечный урокбиография с элементами театрализации. Для детей среднего школьного возраста _ С. 5-13 3. Сперва Аз да Буки, а затем...»

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ А.А. Титов ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ Учебное пособие Томск – 2010 2 Федеральное агентство по образованию ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра радиоэлектроники и защиты информации (РЗИ) УТВЕРЖДАЮ Заведующий кафедрой РЗИ доктор технических наук, профессор _ А.С. Задорин _2010 г. ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ Учебное пособие для студентов специальностей...»

«Д. М. Сахарных (Институт повышения квалификации и переподготовки работников образования Удмуртской Республики, г. Ижевск). [email protected] Рецензия на учебник Кураева А. В. Основы религиозных культур и светской этики. Основы православной культуры. 4–5 классы: учебное пособие для общеобразоват. учреждений — М. : Просвещение, 2010. — 95 с. : ил. Рецензируемое издание представляет собой опытный образец учебника по апробируемому в 4–5 классах школ 19 регионов России в 2010—2012 гг. предмету...»

«Государственное образовательное учреждение высшего профессионального образования Липецкий государственный технический университет Гуманитарно-социальный факультет (наименование факультета) УТВЕРЖДАЮ Декан. 2011 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Вспомогательные исторические дисциплины_ (наименование дисциплины (модуля)) Направление подготовки 034700.62 Документоведение и архивоведение Профиль подготовки Документационное обеспечение управления_ Квалификация (степень) выпускника бакалавр_...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тверской государственный университет Экономический факультет Кафедра национальной экономики МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ РАБОТ для студентов специальности 080103.65 – Национальная экономика Тверь 2012 Составители – авторский коллектив: Бойко О. Г., Забелина О. В., Козлова Т. М., Пилипчук Н.В., Романюк А. В./ Под ред....»

«ИСТОРИЯ ЛИНИЯ УЧЕБНО МЕТОДИЧЕСКИХ КОМПЛЕКТОВ ПО ВСЕОБЩЕЙ ИСТОРИИ ПОД РЕДАКЦИЕЙ А. О. ЧУБАРЬЯНА Программы 5–11 Учебник Рабочая тетрадь Поурочные разработки Книга для чтения Методические КЛАССЫ рекомендации Электронное приложение История: Программы общеобразовательных учреждений: Академический школьный учебник: В основе комплекта серии Акаде получить наглядное представление о 5—11 классы. 4 мический школьный учебник для 5–9 прошлом. — 160 с. — Обл. и для 10–11 классов, подготовленно В учебниках...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.