WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

УДК: 681.518.3+621.391.08+

+681.782.473+629.7.05+] (043.3)

ЛУНЕВ Евгений Маркович

ПРОГРАММНО-АЛГОРИТМИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

ПРИБОРНОГО КОМПЛЕКСА БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО

АППАРАТА ДЛЯ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ

ПАРАМЕТРОВ НА БАЗЕ ФОТОИЗОБРАЖЕНИЯ

Специальность 05.13.01 – Системный анализ, управление и обработка информации (информатика, управление и вычислительная техника)

Автореферат диссертации на соискание учёной степени кандидата технических наук

Москва – 2011

Работа выполнена на кафедре «Приборы и измерительно-вычислительные комплексы» ФГБОУ ВПО «Московский авиационный институт (национальный исследовательский университет)» (МАИ).

Научный руководитель: доктор технических наук, профессор Павлова Наталия Владимировна

Официальные оппоненты: доктор технических наук, профессор Воробьев Александр Владимирович кандидат технических наук Веремеенко Константин Константинович

Ведущая организация: ФГУП «ГосНИИАС»

Защита диссертации состоится 26 декабря 2011 г. в 11 часов 00 минут на заседании диссертационного Совета Д212.125.11 в ФГБОУ ВПО «Московский авиационный институт (национальный исследовательский университет)» (МАИ) по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4.

С диссертацией можно ознакомиться в библиотеке МАИ.

Отзывы на автореферат, заверенные печатью организации, просьба направлять по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4.

Автореферат разослан « 23 » ноября 2011 г.

Учёный секретарь диссертационного совета, кандидат технических наук, доцент Ю.В. Горбачёв

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Беспилотная авиация – одно из самых перспективных направлений в авиации на сегодняшний день. Согласно оценке аналитической компании Teal Group, в период с 2011 по 2020 год объем рынка беспилотных летательных аппаратов (БПЛА) вырастет с 5,9 до 15,1 миллиардов долларов США. Маркетинговое агентство Frost&Sullivan прогнозирует рост доходов глобального рынка БПЛА с 2,8 миллиардов долларов США в 2005 году до 5,5 миллиардов долларов США в 2016 году, что является самым высоким показателем среди сегментов мировой авиакосмической отрасли.

Исследование структуры рынка БПЛА показывает, что наиболее востребованными аппаратами для гражданского применения в настоящее время являются моторные БПЛА средней дальности (класс MR) самолетного типа, что связано с более привлекательным, по сравнению с другими классами, соотношением цены и функциональных возможностей.

Бортовое оборудование этого класса БПЛА должно включать развитый пилотажно-навигационный комплекс (ПНК), формирующий пилотажнонавигационные данные для системы управления. К таким данным предъявляются повышенные требования по точности, доступности, целостности и непрерывности для обеспечения безопасного полета и успешного выполнения полётного задания.

Кроме того, к аппаратному обеспечению ПНК БПЛА средней дальности, предъявляются повышенные (по сравнению с БПЛА более высоких классов) требования по массогабаритным характеристикам, энергопотреблению и конечной стоимости.

Выполнение указанных требований обуславливает использование в ПНК БПЛА среднего класса недорогих и малогабаритных систем и датчиков первичной информации, что, в свою очередь, приводит к необходимости использования математического аппарата обработки первичных данных, позволяющего достичь заданных характеристик выходных параметров. Обеспечение требуемой точности на различных режимах полёта для этого класса БПЛА с одновременным повышением автоматизации управления– не до конца решённая на сегодня задача.

Один из наиболее сложных режимов полёта – режим посадки, а возможность выполнения автоматической посадки БПЛА в значительной степени зависит от точности определения пилотажно-навигационных параметров.

Работы по улучшению характеристик ПНК БПЛА проводятся как в России, так и за рубежом. Интересные теоретически и практические результаты для различных классов БПЛА получены в МАИ, МГУ, МГТУ им. Баумана, КГУ, СГАУ, ЗАО «Транзас Авиация», ОАО «НИИ «Кулон», корпорации «Иркут», ведущих технических ВУЗах и самолётостроительных фирмах России, США, Франции, Италии, Германии и Израиля. Тем не менее, задача достижения требуемой точности ПНК моторного БПЛА средней дальности самолетного типа для применения в гражданской сфере до сих пор не решена в полном объёме, что особенно касается этапа автоматической посадки.

Таким образом, повышение точности определения пилотажно-навигационных параметров моторного БПЛА средней дальности на этапе посадки является востребованной на практике актуальной задачей, имеющей большое значение для расширения возможностей и области применения аппаратов этого типа.

Объект исследования. ПНК моторного БПЛА средней дальности самолетного типа для применения в гражданской сфере (далее в тексте БПЛА).

Предмет исследования. Дополнительный канал ПНК для определения пилотажно-навигационных параметров БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров, получаемых с бортовой камеры, как позволяющий улучшить характеристики комплекса.



Цель исследования. Повышение точности определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров для обеспечения автоматической посадки.

Для достижения поставленной в диссертационной работе цели решены следующие научно-технические задачи:

на базе системного подхода сформированы требования к системе определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров для обеспечения автоматической посадки и обосновано её включение в состав и структуру ПНК БПЛА для обеспечения автоматической посадки;

разработан алгоритм определения параметров ориентации и навигации БПЛА на этапе посадки, позволяющий повысить точность определения этих параметров;

построена математическая модель измерений системы определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения наземных ориентиров для цифрового изображения и исследовано влияние возмущающих факторов на точность их определения;

разработана методика поиска рабочих областей системы определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров;

разработано программное обеспечение, реализующее созданное математическое обеспечение определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров;

проведено имитационное и полунатурное моделирование на базе разработанного программно-алгоритмического обеспечения.

с использованием методов системного анализа, обработки информации, определения параметров ориентации и навигации, численных методов математического анализа и компьютерного моделирования. Экспериментальные исследования проводились с использованием пакета MATLAB и разработанного полунатурного стенда.

Научная новизна диссертационной работы заключается в следующем:

разработана математическая модель цифрового фотоизображения трех наземных ориентиров с известными координатами в связанной системе координат, формируемого бортовой камерой БПЛА; модель позволяет с достаточной точностью определять на этапе посадки параметры ориентации и навигации БПЛА относительно этой системы координат;

разработан алгоритм определения параметров ориентации и навигации БПЛА на этапе посадки на основе цифрового фотоизображения трех наземных ориентиров, базирующийся на новом способе определения местоположения и углов ориентации летательного аппарата относительно взлётно-посадочной полосы и численном методе Ньютона для решения системы нелинейных уравнений;

алгоритм позволяет определить эти параметры с требуемой точностью;

разработана методика поиска рабочих областей системы определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров, с использованием созданного программно-алгоритмического обеспечения.

Научные результаты, выносимые на защиту:

математическое обеспечение (разработанные модель и алгоритм), позволяющие определять параметры ориентации и навигации БПЛА на этапе посадки с требуемой точностью, а именно: по результатам математического и полунатурного моделирования оценка параметров ориентации относительно местной системы координат составила не более: 2 м по боковому смещению, 2 м по удалению, 1,5 м по высоте, 1,5 градуса по углу тангажа, 1,5 градуса по углу курса и 1,5 градуса по углу крена;

методика поиска рабочих областей системы определения параметров ориентации и навигации БПЛА, подтверждающая работоспособность разработанного математического обеспечения в требуемых областях на этапе посадки;

результаты моделирования и полунатурных экспериментов, подтвердившие достоверность полученных в работе результатов.

Практическая значимость результатов работы состоит в:

создании программного обеспечения для моделирования работы системы определения параметров ориентации и навигации БПЛА на базе фотограмметрической обработки изображения искусственных наземных ориентиров в среде математического моделирования и программирования MATLAB;

применении на этапе посадки разработанного программно-алгоритмического обеспечения для определения параметров ориентации и навигации БПЛА с требуемой точностью.

Внедрение результатов. Результаты диссертации использованы при разработке перспективного пилотажно-навигационного комплекса БПЛА «Дозор-100», разрабатываемого ЗАО «Транзас Авиация», и проведении учебного процесса на кафедре «Приборы и измерительно-вычислительные комплексы ФГБОУ ВПО «Московский Авиационный Институт (национальный технический университет)», что подтверждается соответствующими актами внедрения.

Достоверность полученных результатов обеспечивается корректным применением использованного математического аппарата, результатами математического моделирования и их экспериментальной проверкой на разработанном полунатурном стенде.

Апробация работы. Основные положения и результаты диссертационной работы докладывались и обсуждались на:

XIX и XX международных научно-технических семинарах «Современные технологии в задачах управления, автоматики и обработки информации», г. Алушта, 2010, 2011 гг;

VII Всероссийской конференции студентов, аспирантов и молодых учёных «Технологии Microsoft в теории и практике программирования», г. Москва, 2010 г;

научно-практической конференции «Инновации в авиации и космонавтикег. Москва, 2010 г.

Публикации. Основные результаты диссертационной работы опубликованы в 7 печатных работах, в том числе 3 статьи в рецензируемых журналах.

Структура и объём диссертационной работы. Диссертация состоит из введения, четырёх глав, заключения и списка использованных источников.

Общий объём работы составляет 143 страницы, включая 64 рисунка и 4 таблицы.

Список использованных источников содержит 89 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проведенных исследований для повышения точности определения параметров ориентации и навигации БПЛА на этапе посадки за счёт разработки нового канала измерительно-вычислительного комплекса БПЛА на базе фотограмметрической обработки изображения наземных ориентиров. Определены цели и задачи исследования, отражена научная новизна и практическая значимость работы.

В первой главе в качестве объекта исследований выбран пилотажнонавигационный комплекс моторного БПЛА средней дальности самолетного типа для применения в гражданской сфере. На базе системного анализа этого измерительновычислительного комплекса сформированы требования к системе определения параметров ориентации и навигации на этапе посадки, использующей фотоизображение наземных ориентиров, как к дополнительному каналу пилотажнонавигационного комплекса, а именно, погрешности не должны превышать 2 м по боковому смещению, 2 м по удалению, 1,5 м по высоте 1,5 градуса по углу тангажа, 1,5 градуса по углу курса и 1,5 градуса по углу крена. В качестве базового метода для разработки алгоритма функционирования этого канала выбран новый способ определения местоположения и углов ориентации летательного аппарата и поставлена задача определения параметров ориентации и навигации БПЛА на этапе посадки с использованием фотоизображения. Модель измерений бортовой видеокамеры на этапе посадки представлена на рис. 1.

В режиме посадки бортовая камера БПЛА непрерывно регистрирует изображение подстилающей поверхности с размещенными на ней ориентирами R, G и B с известными координатами в местной горизонтальной системе координат Oxyz.

Рис. 1. Модель измерений бортовой видеокамеры на этапе посадки Из полученного с камеры видеоряда на каждом цикле измерений выделяется один кадр, представляющий собой цифровой фотоснимок. По полученному снимку определяется относительное пространственное положение точки фотографирования S (Sx, Sy, Sz) и ориентация наблюдающей бортовой видеокамеры БПЛА в конкретный момент времени. Углы ориентации: угол наклона снимка, дирекционный угол снимка и угол поворота снимка представлены на рис.2.Так как взаимное расположение систем координат снимка Sx’y’z’ иСxсyсzс, связанной с центром масс БПЛА С (Сx, Сy, Сz), не меняется со временем (камера закреплена жёстко относительно центра масс БПЛА), возможно определение углов ориентации и местоположения БПЛА.

Рис. 2. Углы ориентации бортовой видеокамеры Этот способ позволяет построить систему нелинейных уравнений, которая создаёт базу для определения искомых параметров, но не задаёт алгоритма её решения. В рассматриваемой задаче способ не может быть применен без дополнительных исследований: для поиска решения необходимо разработать устойчиво сходящийся алгоритм на базе модификации этого способа.

Во второй главе разработано математическое обеспечение определения параметров ориентации и навигации на базе фотограмметрической обработки изображения. Обоснована структурная схема системы определения параметров ориентации и навигации как канала ПНК БПЛА, представленная на рис.3.

Эта система и представляет собой совокупность трёх частей – наземной, приёмноизмерительной и вычислительной. Наземная часть включает три искусственных ориентира с известными координатами в местной горизонтальной системе координат относительно точки касания. Приёмно-измерительная часть состоит из оптической системы, ПЗС-матрицы, аналого-цифрового преобразователя (АЦП), программируемой вентильной матрицы (ПВМ), графического процессора (ГП) и интерфейса передачи данных. Вычислительная часть включает блок распознавания образов и вычислитель параметров ориентации и навигации.

Ориентир R Ориентир B Входным сигналом для системы определения параметров ориентации и навигации является отраженный от наземных ориентиров R, GиB свет. Этот сигнал обрабатывается в приёмно-измерительной части и в виде цифрового кода (изображения) передается в вычислительную часть, для которой и разработано программно-алгоритмическое обеспечение. Измеренными величинами являются координаты изображений ориентиров на снимке, при этом модель измерений описывается следующими уравнениями:

где Px’, Py’– координаты фотографируемой точки P на плоскости проекции; Px, Py, Pz – координаты фотографируемой точки P в местной системе координат; Sx, Sy, Sz – координаты точки фотографирования в местной системе координат; f – фокусное расстояние оптической системы; – дирекционный угол оптической оси (элевация);

– продольный угол наклона снимка (азимут); – угол поворота снимка (поворот);

A(,, )11,, A(,, )33 – элементы матричной функции направляющих косинусов В диссертации разработана модель измерений системы определения параметров ориентации и навигации БПЛА на этапе посадки, представляющая собой вектор-функцию, состав элементов которой изменен по сравнению с использованным способом определения местоположения и углов ориентации летательного аппарата с целью обеспечения сходимости алгоритма вычисления этих параметров (для повышения внутренних связей системы произведен переход от углов к элементам матрицы направляющих косинусов). Она представляет собой параметры: Z = ( a11... a33 S x S y S z ), где Z1,, Z12 – элементы вектора состояния системы, a11,, a33 – элементы транспонированной матрицы направляющих косинусов A(,, )T. В этой функции также учтено, что исходной для обработки является цифровая фотография, получаемая от бортовой оптической системы.

В F(Z) входят элементы, характеризующие оптическую систему: f; rx, ry – разрешение ПЗС-матрицы по осям Xи Y в системе координат снимка; kx - величина, обратная физическому размеру пикселя.

Полученная вектор-функция состояния системы включает только однородные элементы, что повышает их внутренние связи. Хотя она и обладает большей размерностью по сравнению с исходной, но её легче дифференцировать при поиске решения, что позволяет разработать алгоритм поиска параметров ориентации и навигации БПЛА на этапе посадки, использующий фотоизображение наземных ориентиров.

Блок-схема разработанного алгоритма представлена на рис.4.Алгоритм реализует итерационный процесс поиска решения, использует численный метод Ньютона для решения систем нелинейных уравнений и позволяет повысить точность определения параметров ориентации и навигации БПЛА на этапе посадки.

В третьей главе разработано программное обеспечение системы определения параметров ориентации и навигации БПЛА на базе фотограмметрических измерений, реализующее созданное математическое обеспечение в среде программирования MATLAB.

Программное обеспечение позволяет решать следующие задачи:

моделировать цифровое изображение сферических ориентиров, формируемое цифровой камерой, с заданием параметров оптической системы (фокусного расстояния, разрешения кадра, ориентации и положения в пространстве ПЗС-матрицы) и представлять результаты в графическом виде;

вычислять на базе разработанного алгоритма с заданной точностью параметры ориентации и пространственного положения оптической системы в местной горизонтальной системе координат по имеющимся координатам наблюдаемых ориентиров и их известному расположению.

Программное обеспечение построено по модульному принципу и включает в себя следующие модули:

модуль формирования исходных данных моделирования снижения БПЛА по глиссаде;

модуль вычисления координат наблюдаемых точек на цифровом снимке и формирования изображения;

модуль вычисления параметров ориентации и пространственного положения оптической системы, реализующий разработанный алгоритм.

Для проведения тестирования разработанного программного обеспечения проведена серия контрольных прогонов, включавшая 87 экспериментов. Каждый эксперимент состоял из генерации траектории полёта и эволюции углов ориентации БПЛА вдоль линии глиссады, моделирования изображения наземных ориентиров для каждой полученной точки траектории и вычисления параметров ориентации и навигации БПЛА по сформированной модели изображения. В ходе тестирования оценивалось количество итераций алгоритма поиска параметров ориентации и навигации БПЛА и отклонение вычисленных значений от истинных.

По результатам проведенных экспериментов сформированы диаграммы количества совершенных итераций при поиске решения и отклонений расчётных значений от истинных, усредненные по времени. В результате установлено, что разработанное программное обеспечение работоспособно, при этом среднее количество итераций, совершаемых алгоритмом поиска, равно 9 и возможно повышение точности определения параметров ориентации и навигации БПЛА на этапе посадки при использовании данных с бортовой камеры. При учёте и погрешности дискретизации существующей оптической системы, полностью требуемая точность определения этих параметров достигается, начиная с определённой точки глиссады (на конечном этапе посадки). Все требования выполняются, начиная с удаления 200 м от точки касания и высоты 20 м.

Вычисление значения Гессиана: H(Z(i-1)) = JT(Z(i-1)) J(Z(i-1)) Вычисление значения обратной матрицы Гессиана: H-1(Z(i-1)) Вычисление значения градиента функции: F(Z(i-1)) = JT(Z(i-1)) J(Z(i-1)) Вычисление значения оценки: Z(i) = Z(i-1) – [H(Z(i-1))]-1 F(Z(i-1)) Проверка условия достижения требуемой точности Norm(i) Рис. 4. Блок-схема алгоритма вычисления параметров В четвёртой главе достигаемая точность проанализирована на разработанном стенде полунатурного моделирования, включающем три цветных ориентира, представляющих собой сферические светодиодные лампы красного, зелёного и синего цвета, размещенные на жестком ровном основании, и измерительную часть, представляющую собой фотокамеру, закреплённую на подвижном основании с угломерной головкой. Полученные в ходе экспериментов снимки обрабатывались с помощью созданного программного обеспечения. Для автоматизации процесса обработки изображения, а именно для выявления на снимках центров ориентиров (в форме искажённых окружностей) разработан алгоритм распознавания объектов по цветовому признаку и определения их центров. Алгоритм базируется на преобразовании Хафа и позволяет определить центр ориентира с точностью, достаточной для работы алгоритма определения параметров ориентации и навигации. Результат определения геометрических параметров изображения светодиодных ламп представлен на рис. 5, где Cx, Сy – координаты центра найденной окружности и R – её радиус.

Рис. 5. Результат определения геометрических параметров изображения Следует отметить, что разработанный алгоритм позволяет определять параметры аппроксимирующей окружности и в случае частичного затемнения рассматриваемого сферического объекта при условии видимости не менее половины всего его контура.

Рис. 6. Диаграмма отклонений расчётных боковых отклонений от истинных Рис. 7. Диаграмма отклонений расчётных удалений от истинных Рис. 8. Диаграмма отклонений расчётных высот от истинных Рис. 9. Диаграмма отклонений расчётных углов тангажа от истинных Рис. 10. Диаграмма отклонений расчётных углов курса от истинных Рис. 11. Диаграмма отклонений расчётных углов крена от истинных Далее проведен анализ точности разработанного программно-алгоритмического обеспечения с учётом кроме погрешностей, рассмотренных в третьей главе, следующих возмущающих факторов:

неточности привязки характерной точки объекта к наземной системе координат;

геометрических искажений наблюдаемого объекта;

погрешности метода определения характерной точки на изображении объекта;

случайной погрешности определения координат главной точки изображения, вызванной смещением оптической оси от центра матрицы в результате вибраций, технологической погрешности установки и неидеальности оптической системы.

Результаты проведенного моделирования, включавшего 87 экспериментов, приведены на рис. 6-11, по оси абсцисс отложены значения времени этапа посадки в секундах. Моделирование подтвердило, что при выбранных параметрах оптической системы и учёте влияния возмущающих факторов достигается требуемая точность: 2 м по боковому смещению (на удалении 250 м и высоте 25 м), 2 м по удалению (на удалении 50 м и высоте 5 м), 1,5 м по высоте (на удалении м и высоте 15 м), 1,5° по углу тангажа (на удалении 850 м и высоте 85 м), 1,5° по углу курса (на удалении 750 м и высоте 75 м) и 1,5° по углу крена (на удалении 100 м и высоте 10 м).

Точность определения этих параметров возможно ещё повысить при увеличении разрешающей способности бортовой видеокамеры, что позволит снизить влияние погрешностей измерений на конечную точность системы, но приведет к удорожанию бортовой аппаратуры.

Проведенные эксперименты подтвердили, что при учёте всех рассмотренных погрешностей достигается требуемая точность по определению параметров ориентации и навигации с помощью разработанного алгоритма и при использовании существующей бортовой аппаратуры БПЛА.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

В диссертационной работе получены следующие основные выводы и результаты.

1. Поставлена и решена задача определения параметров ориентации и навигации моторного БПЛА самолётного типа средней дальности на этапе посадки с использованием фотоизображения, что позволило обеспечить повышение точности определения этих параметров на конечном участке этапа автоматической посадки. Требования к точности определены на базе системного анализа требований ИКАО к оборудованию воздушных судов, структуры и состава ПНК таких БПЛА и требований к их лётно-техническим характеристикам.

2. Обоснована структурная схема системы фотограмметрического определения параметров ориентации и навигации БПЛА на этапе посадки, как дополнительного канала ПНК, включающая три части: наземную (в виде трёх ориентиров), приёмно-измерительную (базирующуюся на оптической системе, входящей в состав бортового оборудования) и вычислительную (включающую разработанный алгоритм).

3. Разработана математическая модель регистрируемого бортовой камерой БПЛА на этапе посадки цифрового изображения, которая использована для анализа пороговой чувствительности системы к смещению центра ориентира.

4. Разработан алгоритм вычисления параметров ориентации и навигации БПЛА, базирующийся на модификации способа определения местоположения и углов ориентации летательного аппарата и численного метода Ньютона для решения систем нелинейных уравнений. Алгоритм позволяет повысить точность определения этих параметров.

5. Разработанное математическое обеспечение реализовано в виде программного обеспечения в среде MATLAB, которое имеет модульную структуру и включает три основных модуля: модуль формирования исходных данных, модуль вычисления координат наблюдаемых точек на цифровом снимке и формирования изображения и модуль вычисления параметров ориентации и навигации.

6. Проведено тестирование и моделирование созданного программного обеспечения (каждое по 87 экспериментов) с учётом погрешности реального оптического входного сигнала. Эксперименты подтвердили работоспособность созданного его сформулированным требованиям по точности.

7. Разработан стенд полунатурного моделирования для испытаний системы определения параметров ориентации и навигации БПЛА на этапе посадки, включающий имитацию трёх цветных ориентиров, подвижное основание и модуль их восприятия. Для распознавания ориентиров на цифровом снимке при проведении полунатурного эксперимента и определения для этого характерной точки их изображения (центра искажённой окружности) разработан алгоритм, базирующийся на преобразовании Хафа и позволяющий определить центр ориентира с достаточной (для работы созданного алгоритма определения параметров ориентации и навигации)точностью. Проведено экспериментальное исследование точности работы созданного алгоритма с учётом имитации на полунатурном стенде трёх типов погрешностей (погрешности привязки центров ориентиров к местной системе координат, погрешности определения внутренних элементов снимка и случайной погрешности геометрического искажения наблюдаемых объектов).

8. Проведенные эксперименты подтвердили, что достигается требуемая точность по определению параметров ориентации и навигации с помощью разработанного алгоритма и при учёте всех рассмотренных погрешностей, а именно: 2 м по боковому смещению (на удалении 250 м и высоте 25 м), 2 м по удалению (на удалении 50 м и высоте 5 м), 1,5 м по высоте (на удалении 150 м и высоте 15 м), 1,5° по углу тангажа (на удалении 850 м и высоте 85 м), 1,5° по углу курса (на удалении 750 м и высоте 75 м) и 1,5° по углу крена (на удалении 100 м и высоте 10 м).

9. Результаты диссертации использованы при разработке перспективного пилотажно-навигационного комплекса моторного БПЛА самолётного типа средней дальности «Дозор-100», разрабатываемого ЗАО «Транзас Авиация», и измерительно-вычислительные комплексы» ФГБОУ ВПО «Московский Авиационный Институт (национальный технический университет)» (МАИ), что подтверждается соответствующими актами внедрения.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Лунев Е.М. Повышение точности определения навигационных параметров беспилотного летательного аппарата на базе фотограмметрических измерений на этапе посадки // Вестник МАИ. – 2011. – т. 18, №2. –с. 150–159.

2. Лунев Е.М. Исследование сходимости нового алгоритма определения навигационных параметров беспилотного летательного аппарата на базе фотоизображения // Труды МАИ. – №45. – 2011(Идентификационный номер НТЦ «Информрегистр»0421100009\0130). – Режим доступа:

http://www.mai.ru/science/trudy/published.php?ID=25431 – 21.11. 3. Лунев Е.М., Павлова Н.В. Программно-алгоритмическое обеспечение для определения навигационных параметров беспилотного летательного аппарата на базе фотоизображения // Вестник МАИ. – 2009. – т. 16, №6. – с. 111–119.

4. Лунев Е.М., Антонов Д.А. Комплекс автоматической посадки беспилотного летательного аппарата // Современные технологии в задачах управления, автоматики и обработки информации: Труды XX Международного научно-технического семинара. Сентябрь 2011 г., Алушта. – Пенза.: Изд-во ПГУ.

– 2011. – с. 91-92.

5. Лунев Е.М. Подсистема измерений комплекса автоматической посадки БПЛА с использованием технологии технического зрения // Современные технологии в задачах управления, автоматики и обработки информации: Труды XIX Международного научно-технического семинара. Сентябрь 2010, г., Алушта.

– Тула.: Изд-во ТулГУ. – 2010. – с. 240.

6. Лунев Е.М. Программно-алгоритмическое обеспечение измерительной части системы автоматической посадки БПЛА // Научно-практическая конференция студентов и молодых учёных МАИ «Инновации в авиации и космонавтике – 2010». 26-30 апреля 2010 года. Москва. Сборник тезисов и докладов. – СПб.: Мастерская печати. – 2010. – с. 51–52.

7. Лунев Е.М. Использование современных технологий Microsoft для построения комплекса автоматической посадки БПЛА // Технологии Microsoft в теории и практике программирования: Труды VII Всероссийской конференции студентов, аспирантов и молодых ученных. Центральный регион. Москва, 21-22 апреля 2010 г. – М.: Вузовская книга. – 2010.– с. 95.

Программно-алгоритмическое обеспечение приборного комплекса беспилотного летательного аппарата для определения навигационных параметров на базе фотоизображения Автореф. дисс. на соискание учёной степени кандидата техн. наук.

119526, г. Москва, Страстной бульвар, 6/



Похожие работы:

«Лифшиц Юрий Михайлович АЛГОРИТМЫ И АНАЛИЗ ТРУДОЕМКОСТИ ОБРАБОТКИ СЖАТЫХ ТЕКСТОВ 05.13.17 Теоретические основы информатики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Санкт-Петербург 2007 Работа выполнена в лаборатории математической логики Санкт-Петербургского отделения Математического института им. В.А.Стеклова РАН Научный руководитель : член-корреспондент РАН, профессор Матиясевич...»

«Рахмонов Фируз Заруллоевич Асимптотическая формула в проблеме Варинга–Гольдбаха со сдвинутыми простыми числами 01.01.06 - математическая логика, алгебра и теория чисел Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2011 2 Работа выполнена на кафедре математического анализа механико-математического факультета Московского...»

«ЛУНИН Эдуард Андреевич СОВЕРШЕНСТВОВАНИЕ УПРАВЛЕНИЯ ОБРАЗОВАТЕЛЬНЫМ ТУРИЗМОМ В РФ Специальность: 08.00.05 – экономика и управление народным хозяйством (организация и управление предприятиями, отраслями, комплексами – сфера услуг) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Санкт-Петербург 2009 Диссертация выполнена на кафедре управления и планирования социально-экономических процессов...»

«АРЖАНОВА Ирина Вадимовна ЭВОЛЮЦИЯ МЕЖДУНАРОДНОГО ОБРАЗОВАТЕЛЬНОГО СОТРУДНИЧЕСТВА В УСЛОВИЯХ МОДЕРНИЗАЦИИ РОССИЙСКОЙ ВЫСШЕЙ ШКОЛЫ В 1991-2011-е ГОДЫ Специальность 07.00.02 – Отечественная история Автореферат диссертации на соискание ученой степени доктора исторических наук Москва - 2012 Работа выполнена на кафедре истории России и кафедре сравнительной образовательной политики Федерального государственного бюджетного учреждения высшего профессионального образования Российский...»

«Хамзина Алина Феликсовна ВЗАИМОСВЯЗЬ ПСИХОФИЗИОЛОГИЧЕСКИХ СВОЙСТВ ЛИЧНОСТИ, ГИГИЕНИЧЕСКОГО СОСТОЯНИЯ ЗУБОВ И ТИПА КРИСТАЛЛОГРАММЫ РОТОВОЙ ЖИДКОСТИ У ЛИЦ 15–18 ЛЕТ 19.00.02 – Психофизиология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Челябинск – 2008 2 Работа выполнена в ГОУ ВПО Стерлитамакская государственная педагогическая академия. Научный руководитель : доктор психологических наук, профессор Уразаева Фирдауз Халафовна Официальные...»

«Буренкова Наталья Владимировна Моделирование как способ формирования обобщённого умения решать задачи 13.00.01 – Общая педагогика, история педагогики и образования (педагогические наук и) АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата педагогических наук Москва – 2009 1 Работа выполнена на кафедре психологии образования и педагогики факультета психологии Московского государственного университета имени М.В. Ломоносова. Научный руководитель : доктор...»

«ШУКУРОВА СУЛХИЯ РУСТАМОВНА СТРУКТУРНО-СЕМАНТИЧЕСКИЙ АНАЛИЗ МАТЕМАТИЧЕСКОЙ ТЕРМИНОЛОГИИ В РУССКОМ И ТАДЖИКСКОМ ЯЗЫКАХ Специальность 10.02.20 – сравнительно- историческое, типологическое и сопоставительное языкознание АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата филологических наук Душанбе – 2014 1 Работа выполнена на кафедре общего языкознания и сравнительной типологии Таджикского национального университета Научный руководитель : доктор филологических наук,...»

«УДК 338.45:519.876.2 ББК У290-21в6 Д 81 ДУДКО Валентин Анатольевич ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИТУАЦИОННОГО УПРАВЛЕНИЯ ПРОМЫШЛЕННЫМ ПРЕДПРИЯТИЕМ Специальность 08.00.13 – Математические и инструментальные методы экономики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Тамбов 2004 г. Диссертационная работа выполнена на кафедре Экономика и менеджмент экономического факультета Курского государственного технического университета. доктор...»

«КУЗЫЧЕНКО Юрий Алексеевич НАУЧНОЕ ОБОСНОВАНИЕ ЭФФЕКТИВНОСТИ СИСТЕМ ОСНОВНОЙ ОБРАБОТКИ ПОЧВЫ ПОД КУЛЬТУРЫ ПОЛЕВЫХ СЕВООБОРОТОВ НА РАЗЛИЧНЫХ ТИПАХ ПОЧВ ЦЕНТРАЛЬНОГО И ВОСТОЧНОГО ПРЕДКАВКАЗЬЯ 06.01.01 – общее земледелие, растениеводство АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора сельскохозяйственных наук Ставрополь – 2014 Работа выполнена в ГНУ Ставропольский научно-исследовательский институт сельского хозяйства Россельхозакадемии Научный консультант : доктор...»

«ШЕРСТНЕВ ГРИГОРИЙ КОНСТАНТИНОВИЧ РАЗРАБОТКА РЕКОМЕНДАЦИЙ ПО КОРРЕКЦИИ РЕЗКОСТИ С УЧЁТОМ ОСОБЕННОСТЕЙ КОНКРЕТНЫХ ОРИГИНАЛОВ Специальность 05.02.13 – Машины, агрегаты и процессы (печатные средства информации). АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва – 2011 Работа выполнена на кафедре Технология допечатных процессов в ФГБОУ ВПО Московский государственный университет печати имени Ивана Федорова Научный руководитель : доктор...»

«Ауад Максим Сами АНАЛИТИЧЕСКИЕ И ПРОЦЕДУРНЫЕ МОДЕЛИ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ В СЕТЕВЫХ ИНФОРМАЦИОННЫХ СИСТЕМАХ С РАЗЛИЧНОЙ СТРУКТУРОЙ Специальность 05.25.05 Информационные системы и процессы Автореферат диссертации на соискание ученой степени кандидата технических наук Тамбов – 2014 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Тамбовский государственный технический университет (ФГБОУ ВПО ТГТУ) на...»

«УШАНОВА Валентина Михайловна Комплексная переработка древесной зелени и коры пихты сибирской с получением продуктов, обладающих биологической активностью 05.21.03 – Технология и оборудование химической переработки биомассы дерева; химия древесины Автореферат диссертации на соискание ученой степени доктора технических наук Красноярск- 2012 2 Работа выполнена в ФГБОУ ВПО Сибирский государственный технологический университет на кафедре Промышленной экологии, процессов и...»

«ВАКСМАН Владислав Борисович КОМПЕТЕНЦИЯ ФЕДЕРАЛЬНОГО СОБРАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (КОНСТИТУЦИОННО-ПРАВОВОЙ АСПЕКТ) Специальность 12.00.02 — конституционное право; муниципальное право АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Москва 2011 г. Работа выполнена в секторе теории конституционного права Учреждения Российской академии наук Институт государства и права РАН Научный руководитель :...»

«Грибов Александр Сергеевич Дифференциация ответственности за экономические преступления в России, ФРГ и США (сравнительно-правовое исследование) 12.00.08 – уголовное право и криминология; уголовно-исполнительное право АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Саратов - 2011 2 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Ярославский государственный университет им. П.Г. Демидова...»

«Кузнецов Вячеслав Сергеевич МЕХАНИЗМ ПРОЕКТНОГО УПРАВЛЕНИЯ ИНТЕГРИРОВАННЫМ САМОЛЕТОСТРОИТЕЛЬНЫМ ПРЕДПРИЯТИЕМ РОССИИ Специальность 08.00.05 Экономика и управление народным хозяйством, специализация Экономика, организация и управление предприятиями, отраслями, комплексами – промышленность АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Москва – 2011 Работа выполнена на кафедре Экономика промышленности Московского авиационного института...»

«УДК 517 Кудряшов Юрий Георгиевич КОСТЛЯВЫЕ АТТРАКТОРЫ И МАГИЧЕСКИЕ БИЛЬЯРДЫ 01.01.02 — Дифференциальные уравнения, динамические системы и оптимальное управление Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Москва, 2011 Работа выполнена на кафедре дифференциальных уравнений Механико-математического факультета Московского государственного...»

«Авкопашвили Павел Тамазович СОВЕРШЕНСТВОВАНИЕ ОРГАНИЗАЦИОННОЭКОНОМИЧЕСКОГО МЕХАНИЗМА КОРПОРАТИВНОГО УПРАВЛЕНИЯ В ПРОМЫШЛЕННЫХ ХОЛДИНГАХ Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами – промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Барнаул – 2012 Диссертация выполнена на кафедре управления социально-экономическими процессами АНО ВПО...»

«Кульков Сергей Сергеевич Разработка комплексной автоматизированной информационной системы для создания, хранения и предоставления информации в области химии и химической технологии 05.13.01 Системный анализ, управление и обработка информации (химическая технология, нефтехимия и нефтепереработка, биотехнология) 05.13.18 – Математическое моделирование, численные методы и комплексы программ (технические наук и) АВТОРЕФЕРАТ Диссертации на соискание ученой степени Кандидата...»

«Финский Игорь Петрович ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ ЭФФЕКТИВНОСТИ ПАТРИОТИЧЕСКОГО ВОСПИТАНИЯ В СИСТЕМЕ ВЫСШЕГО ВОЕННОГО ОБРАЗОВАНИЯ 13.00.01 — общая педагогика, история педагогики и образования Автореферат диссертации на соискание ученой степени кандидата педагогических наук Томск – 2009 Работа выполнена в лаборатории развития образовательных систем Учреждения Российской академии образования Институт развития образовательных систем доктор педагогических наук, профессор Научный...»

«КАБАЛИНА ТАТЬЯНА ВАЛЕНТИНОВНА Моделирование пассажирских перевозок городским общественным транспортом Специальность 08.00.13 – Математические и инструментальные методы экономики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Санкт-Петербург - 2012 2 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Санкт-Петербургский государственный университет экономики и финансов...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.