WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

Бровин Дмитрий Сергеевич

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РОСТА

ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ ИЗ ХЛОРИДНЫХ

СОЕДИНЕНИЙ

Специальность

01.04.07 – физика конденсированного состояния

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург - 2008

Работа выполнена на кафедре экспериментальной физики Государственного образовательного учреждения высшего профессионального образования "Санкт-Петербургский государственный политехнический университет"

Научный руководитель: доктор технических наук, профессор Колгатин Сергей Николаевич

Официальные оппоненты: доктор физико-математических наук, ведущий научный сотрудник Романов Алексей Евгеньевич кандидат физико-математических наук, доцент Сегаль Александр Соломонович

Ведущая организация: Международный научный центр Энергии Солнца

Защита состоится « 26 » ноября 2008 года в 16.00 на заседании диссертационного совета Д 212.229.05 при ГОУ ВПО "Санкт-Петербургский государственный политехнический университет" (195251, Санкт-Петербург, Политехническая ул., 29, корпус 2, ауд. 265).

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО "Санкт-Петербургский государственный политехнический университет".

Автореферат разослан «_» 2008 года.

Ученый секретарь диссертационного совета, кандидат физико-математических наук, доцент Воробьёва Т.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы Кремний является основой для построения современных полупроводниковых приборов, применяющихся в различных электронных устройствах. Кроме того, кремний является основным элементом для солнечной энергетики, так как 90% всех солнечных элементов изготавливаются на кремниевых подложках. Последнее десятилетие количество получаемой с помощью солнечных батарей энергии растёт в среднем на 40% в год, и на ближайшее будущее прогнозируется только увеличение темпов роста.

Современная промышленность нуждается во всё больших количествах чистого кремния. Этим обусловлена высокая актуальность выбранной для исследования темы.

Основной технологией получения чистого кремния в настоящее время является газофазный метод, идея которого заключается в получении кремнийсодержащих соединений из кремния металлургического качества и последующего восстановления чистого кремния на затравочных кристаллах. В результате получают поликристаллический кремний высокого качества, который в дальнейшем используется либо для изготовления солнечных элементов, либо в качестве сырьевого материала для выращивания монокристаллов кремния. Понимание физико-химических процессов, протекающих в ростовой камере, исключительно важно для повышения производительности реакторов, качества получаемого материала, а также снижения затрат энергии и реагентов. В данной работе рассматривается самая перспективная технология восстановления поликристаллического кремния из хлорсиланов, в которой в качестве затравки используются кремниевые стержни, нагреваемые до высокой температуры электрическим током. Такая технология получения кремния впервые была применена в компании Siemens и теперь носит общепринятое название сименс-процесса.

Одной из сложных и нерешенных проблем роста является появление на относительно гладкой и однородной поверхности кремниевых стержней областей с резко нарушенной крупномасштабной структурой, получивших наименование «попкорна». Отличительной чертой «попкорна» являются тонкие окружные щели между возмущениями, в которых наблюдается повышенное содержание посторонних примесей. Обычно «попкорн» возникает на конечных стадиях роста, ограничивая тем самым производительность реактора при получении сверхчистого кремния. В связи с постоянным повышением требований к качеству получаемого материала рекомендации по подавлению «попкорна» увеличивают актуальность выбранной темы. Особенную важность результаты работы имеют в связи с интенсивными попытками нашей страны возродить на новом техническом уровне производство кремния.

Основной целью работы является предложение адекватной и работоспособной модели реактора, позволяющей предсказывать последствия модернизаций и оптимизировать производственный процесс получения поликремния.

Для достижения поставленной цели необходимо решить несколько задач:

поликристаллического кремния из хлоридных соединений. Помимо встраивания атомов в кристаллическую решетку, модель должна описывать сложную структуру турбулентного течения газовой смеси в реакторе, объемное реагирование, теплообмен в установке (включая излучение) и нагрев стержней электрическим током.

2) Предложить критерий, позволяющий судить о возможности роста поликристаллического кремния без образования пористых структур («попкорна»).

3) Выявить общие закономерности и специфические черты физикохимических процессов, протекающих в ростовой камере, а также факторы, существенно влияющие на процесс роста и его эффективность.

4) Основываясь на полученных результатах, предложить упрощенную модель, пригодную для параметрических исследований.



5) Провести параметрические исследования, направленные на изучение зависимости эффективности использования прекурсоров, затрат энергии и скорости роста от основных технологических параметров, таких как давление в реакторе, расходы исходных компонент, температуры поверхности стрежней и т.д.

6) Дать рекомендации по возможным улучшениям конструкции реакторов и режимов их работы.

Основные положения, выносимые на защиту 1) Предлагаемая математическая модель роста поликристаллического кремния из хлоридных соединений адекватно описывает процессы в реакторе и может служить основой для различных исследований.

2) Расчеты показывают, что процесс роста может быть улучшен как за счёт оптимизации режима (без изменения конструкции аппарата), так и путём внесения некоторых изменений в конструкцию рабочей камеры.

3) Критерий устойчивости роста, предложенный в работе, позволяет предсказывать появление «попкорна» и может быть использован для выбора режима, позволяющего выращивать кремний полупроводникового качества.

4) Упрощенная модель, разработанная при помощи обобщения детальной модели, позволяет эффективно оптимизировать процесс роста поликремния, избегая чрезмерно трудоёмких вычислений.

Научная новизна работы На настоящий момент отсутствуют адекватные модели сименс-процесса, обладающие достаточной предсказательной силой. Это вызвано чрезмерной трудоемкостью расчетов и недостаточной разработанностью моделей роста, турбулентного течения в камере, причем не только на техническом, но и на научном уровне. Поэтому предлагаемая работа обладает существенной научной новизной.

Достоверность результатов Достоверность результатов подтверждается сравнением с экспериментальными данными, полученными в исследовательских и промышленных установках, успешностью внедрения полученных рекомендаций в промышленное производство, а также использованием ведущими производителями поликристаллического кремния и сименсреакторов программного обеспечения, разработанного на основе предложенных моделей, для решения практических задач. Результаты работы многократно докладывались на научных конференциях, обсуждались в кругу специалистов из МНЦ Энергии Солнца, Красмаша, ФТИ им. А.Ф.Иоффе, Гиредмета и других организаций, имеющих отношение к попыткам организации производства кремния в нашей стране.

Практическая ценность работы Экспериментальное исследование сименс-технологии представляет собой чрезвычайно трудоёмкую и дорогостоящую процедуру, так как из-за высоких температур (порядка 1200 °С), повышенного давления в камере реактора и агрессивной среды какие-либо экспериментальные измерения крайне затруднены. Кроме того, промышленный процесс непрерывно протекает в течение нескольких суток и требует огромных затрат электроэнергии и реагентов, а проблема хранения и переработки продуктов реакции оставляет возможность хоть какого-то минимального экспериментального исследования только крупным химическим предприятиям, обладающим соответствующей инфраструктурой. В связи с этим, задача адекватного численного моделирования представляет большой практический интерес. В настоящей работе предложена детальная модель получения поликристаллического кремния из газообразных хлоридных соединений. Ввиду сложности задачи, включающей одновременное моделирование большого числа взаимосвязанных процессов, она поддается только численному анализу. Последний позволяет уточнить особенности ростового процесса и осуществить его оптимизацию при существенно меньшем количестве физических экспериментов, что и составляет основную практическую ценность представляемой диссертации.

Апробация работы Работа докладывалась на кафедре экспериментальной физики; на кафедре гидроаэродинамики СПбГПУ; на совещаниях с представителями Государственного научно-исследовательского и проектного института редкометаллической промышленности; в Международном научном центре Энергии Солнца; на VII-Всероссийской молодежной конференции по физике полупроводников и полупроводниковой опто- и наноэлектроннике (2005 г., г. Санкт-Петербург), на III Российском совещании по росту кристаллов и пленок кремния и исследованию их физических свойств и структурного совершенства «Кремний-2006» (г. Красноярск); на IV Российской конференции с международным участием по физике, материаловедению и физикохимическим основам технологий получения легированных кристаллов кремния и приборных структур на их основе «Кремний-2007» (г. Москва); на V Международной конференции по актуальным проблемам физики, материаловедения, технологии и диагностики кремния, нанометровых структур и приборов на его основе «Кремний-2008» (г. Черноголовка).

Публикации по теме диссертации Основные результаты работы изложены в шести научных публикациях.

Список работ приведен в конце автореферата.

Структура и объём работы Диссертация состоит из введения, пяти глав, заключения и списка литературы из 82 наименований. Работа изложена на 111 страницах машинописного текста и включает 13 таблиц и 68 рисунков.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность выбранной темы, её научное и практическое значение, формулируются основные цели и задачи исследования.

Первая глава содержит обзор литературных данных по тематике работы.

Вторая глава содержит описание модели роста поликристаллического кремния по сименс-технологии. Модель включает в себя уравнения течения многокомпонентной газовой смеси, модели теплового обмена и нагрева стержней электрическим током, а также оригинальные модели турбулентности, объёмного химического реагирования и поверхностной кинетики.

Модель турбулентности построена на основе двухслойной модели турбулентности, предложенной в [1]. Вдали от стенок решаются два уравнения (для кинетической энергии турбулентных пульсаций k и диссипации ) как в стандартной k- модели. Вблизи стенок решается только уравнение для k, а уравнение для заменяется алгебраическим соотношением. Отличия от модели из [1]: использование коррекции Като-Лаундера для генерации турбулентности, позволяющее избежать нефизичного повышения вязкости в зоне резкого торможения струи о купол реактора, применение переменного турбулентного числа Прандля, зависящего от локального числа Рейнольдса, и демпфирующей функции Ван-Дриста, позволяющие получить более близкие к экспериментам значения тепловых потоков на стержне.

Расчет одного турбулентного течения (без учета химических реакций) в такой системе представляет достаточно сложную задачу. Объемное реагирование в турбулентном потоке существенно усложняет моделирование:

кроме значительного увеличения времени расчета и необходимых ресурсов памяти компьютера, возникают сложности со сходимостью. Применение в данной задаче стандартных способов расчёта химического реагирования приводит к нарушению мольного баланса атомов на входе и выходе из реактора (с учетом атомов кремния, вошедших в кристалл). Поэтому предлагается способ расщепления задачи для упрощенного учета химических реакций в объеме. Принимая во внимание, что объёмные реакции в данной системе интенсивно протекают только при высокой температуре, которая достигается лишь вблизи поверхности стержней, расчетная область разделяется на две части: основной расчёт и расчёт реагирующих пограничных слоев. В первой проводится расчет турбулентного течения, теплообмена, нагрева стержней электрическим током и обеднения смеси во всем газовом объёме. Под обеднением смеси понимается увеличение мольного Cl/Si отношения в объеме из-за того, что часть атомов кремния уходит из газовой фазы в кристалл. При расчете обеднения считается, что рост кремния происходит по эффективной реакции: SiHCl3+H2 3HCl+Si(s). Вторая задача включает расчет объемных реакций вблизи стержня и поверхностной химии.

Процессы на поверхности рассматриваются в рамках квазиравновесной термодинамической модели, аналогичной предложенной в [2] для расчета роста нитрида галлия. Такой подход позволяет дать корректное описание ростовой поверхностной кинетики в условиях недостатка информации о деталях кинетического механизма и существенно редуцировать количество данных, необходимых для построения модели. В отличие от оригинальной модели [2], в данной работе используется модель, в которой ростовая поверхность считается состоящей из набора димеров, а также используются выражения для коэффициентов прилипания, учитывающие различные механизмы адсорбции и десорбции имеющихся в системе компонент. Считается, что атомы водорода и хлора на димерах поверхности кремния могут встречаться в следующих конфигурациях: H2-димер, Cl2-димер (с каждым из атомов кремния, образующих димер, связан атом водорода или хлора) или НCl-димер, и рассматриваются соответствующие покрытия поверхности ( q H 2, q Cl2 и q HCl ).

Согласно квазиравновесной термодинамической модели общий мольный поток компоненты (адсорбция и десорбция) на поверхности есть В последнем выражении N k - количество компонент в газовой смеси, q V = 1 - q H 2 - q HCl - q Cl2 доля свободных мест (q Si не входит в это выражение, поскольку считается, что кремний сразу встраивается в кристалл); b i (T ) коэффициент Герца-Кнудсена для i-й компоненты, a i (q V, T ) - коэффициент прилипания; Pi - парциальное давление компоненты; Pi e - «термодинамическое»

давление компоненты. Термодинамическое давление подчиняется закону разложения молекул на поверхности, K ie (T ) соответствующая константа равновесия, f ji - число атомов j-го элемента в i-й молекуле. Выражение для потоков компонент используется в качестве граничного условия на реагирующей поверхности.

Также в данной главе проводится сопоставление полученных моделей с экспериментальными данными. Отдельно верифицируется модель турбулентного течения и теплообмена и модели химического объёмного и поверхностного реагирования. Первая - путём моделирования работы специально построенной экспериментальной установки. Ввиду отсутствия достаточной экспериментальной информации по сименс-процессу, модели химического и объёмного реагирования проверяются путём сопоставления с данными по росту эпитаксиального кремния. Сравнение с экспериментами подтверждает адекватность предложенных моделей.

Третья глава посвящена разработке критерия, описывающего образование областей пористого кремния. Формулируется условие устойчивости роста и преобразуется к виду, в котором последнее выражается через величины, определяемые с помощью предложенной модели роста поликристаллического кремния. Сначала критерий выводится аналитически, затем делается его обобщение, требующее уже численной реализации.

Полученное условие устойчивого роста (т.е. получения поликристалла без зон «попкорна») выглядит следующим образом:

В этом выражении N = 6 – полуэмпирический коэффициент, Qw – тепловой DUgr - частные производные от скорости роста при постоянном составе смеси и при постоянной температуре, численно рассчитываемые с помощью предложенной модели.

В этой главе также приводятся сопоставления с экспериментальными данными по наличию областей «попкорна» на стержнях в различных режимах работы промышленной установки.

Четвёртая глава содержит результаты численного моделирования процесса роста поликристаллического кремния в различных установках.

Результаты, приведенные в этой главе, получены с помощью полномасштабной трёхмерной модели реактора.

В разделе 4.1 обсуждается структура трёхмерного течения в реакторе и его влияние на процесс. Расчёты восьмистержневого реактора показали, что основной причиной формирования областей «попкорна» в этом реакторе являются застойные зоны вблизи стержней. Для их ликвидации предложено ввести в реактор несколько дополнительных струй так, чтобы, не нарушая глобальной структуры течения газа в реакторе, добиться возникновения дополнительных контуров циркуляции газа, захватывающих застойные зоны.

Размещение дополнительных струй и перераспределение всего расхода газа между ними для достижения нужной структуры течения подобрано с помощью трехмерных расчётов. Также приводятся некоторые примеры неудачных способов подачи газа в реактор и рекомендации по их улучшению.

В разделе 4.2 рассматривается свободно-конвективный режим работы реактора, т.е. когда газ в реактор подается через сопла большого диаметра с невысокой скоростью. В таком случае снимается сложность организации струйной подачи газа, но необходимо некоторое изменение конструкции реактора. Рекомендовано перенести выходное отверстие в верхнюю часть реактора. Исследована структура течения в свободно-конвективных реакторах и показано, что газовый поток поднимается вдоль горячих стержней и опускается вдоль холодной стенки; в центральной части реактора также наблюдается слабый поток газа вниз. Расчёты показывают, что в таком режиме рост температуры поверхности и толщины пограничного слоя, согласно полученному критерию образования пористых структур, приводит к ухудшению качества кремния. Степень чистоты такого кремния уже не позволит использовать его для изготовления микроэлектронных схем, однако в солнечной энергетике использование такого материала вполне допустимо.

Кроме того, увеличение толщины пограничного слоя приводит к снижению производительности реактора.

В разделе 4.3 обсуждаются способы включения стержней в электрическую цепь. В современных реакторах стержни располагают вдоль концентрических окружностей разного радиуса и, соответственно, с разным числом стержней на каждой. При больших диаметрах стержней поверхности, обращенные к стенке реактора, за счет охлаждения излучением имеют существенно более низкую, чем средняя, температуру. Из-за этого условия роста на внутренних и внешних стержнях заметно отличаются и, соответственно, различаются скорости роста (см. рис. 1). Включение стержней в различные электрические цепи позволяет увеличить ток через внутренние стержни, повышая таким образом производительность реакторов.

Growth rate, mm/min Рис. 1. Распределение скорости роста по окружности стержня (а - одинаковый ток через все стержни, б - ток через внутренние стержни увеличен так, чтобы максимальная температура поверхности на всех стержнях стала одинаковой) В разделе 4.4 исследуется ещё одна проблема струйной подачи реагентов в реактор: слишком близко расположенные к стержню турбулентные струи переохлаждают поверхность, что крайне нежелательно и может привести к растрескиванию стержней из-за больших тепловых градиентов. Расположению струй системы подачи на заведомо больших расстояниях от стержней препятствует ограниченность диаметра камеры реактора, а его увеличение значительно усложняет реактор и увеличивает его стоимость. Уменьшение числа стержней в реакторе также крайне нежелательно. Необходимо найти некоторое компромиссное решение данной проблемы. Расчеты с помощью предложенной модели позволяют оценить степень воздействия струй на близлежащие стержни и сделать вывод о возможности использования конкретного устройства системы подачи.

Пятая глава посвящена построению упрощённой модели роста поликристаллического кремния, которая позволяет относительно быстро проводить исследования влияния различных параметров процесса на его характеристики. При описании процессов передачи тепла или вещества между потоком газа или жидкости и твердой поверхностью расчетную область часто разбивают на два слоя: ядро течения (вдали от поверхности), где температура и концентрация постоянны, и пристенный слой, непосредственно прилегающий к поверхности, в котором происходит существенное изменение этих величин. В случае турбулентного течения такое допущение обычно близко к действительности. Для сименс-реакторов характерно развитое турбулентное течение с сильной циркуляцией газа в реакторе. При правильно организованном течении газовая смесь в реакторе обедняется равномерно и имеет близкую температуру в разных частях объёма. Данное положение подтверждается как накопленным опытом трехмерного моделирования, так и производственным опытом, указывающим, что в нормальном процессе формируются стержни почти цилиндрической формы. В то же время, температура и концентрации компонент изменяются существенно в тонких пограничных слоях газа у поверхности стержней. Эти факты указывают на возможность описания процесса с помощью двухслойной модели: определение характеристик турбулентного ядра потока на базе балансовых соотношений и одномерных расчетов химического реагирования и процессов переноса в пристенном слое.

Моделирование процессов в пристенном слое осуществляется в рамках полученных моделей объёмного и поверхностного реагирования.

Рассматривается одномерная задача (по толщине пограничного слоя). В качестве размера вычислительной области задается некоторая средняя по поверхности стержней толщина слоя.

Расчеты ядра потока включают определение на основе интегральных балансовых соотношений обеднения смеси за счет встраивания атомов кремния в стержень. Мольный расход i-й компоненты на выходе из реактора складывается из потока этой компоненты через входные отверстия и потребления (выделения) её в результате процессов в пограничном слое:

Расчет температуры газа в ядре течения учитывает тепло, затрачиваемое на нагрев газовой смеси (на вход реактора подаётся холодный газ, на выходе он нагрет до достаточно высокой температуры), отбираемое от стержней тепло и уходящее через стенку реактора. Конвективные потоки тепла от стержней и через стенку рассчитываются по толщине пограничного слоя (), разности температур в ядре потока и на соответствующих стенках и по эффективной теплопроводности газа (eff). Таким образом, баланс энергии в реакторе можно выразить следующим уравнением:

в котором H – разница энтальпий газа на входе и выходе из реактора, Srods и Swall – площади поверхности стержней и внешней стенки.

Весьма важной характеристикой для реакторов данного типа является толщина пристенного слоя. От этой величины зависит скорость роста, поскольку, чем тоньше пограничный слой, тем эффективнее диффузия кремнийсодержащих компонент к ростовой поверхности и продуктов реакций от поверхности. С другой стороны, уменьшение толщины погранслоя ведет к увеличению тепловых потоков со стержней и, следовательно, к увеличению потребляемой реактором мощности. Толщина пристенной области определяется интенсивностью течения в реакторе, на которую влияет целый ряд факторов: расположения и диаметры сопел, конструкция камеры, расположения и диаметры стержней, расход газа и т.д. Эта толщина не может быть найдена с помощью предлагаемого упрощённого подхода. Её можно определить либо экспериментально, либо из трехмерного моделирования. В случае оптимизации режима работы действующего реактора возможна такая методика использования модели на практике: по имеющемуся режиму работы подобрать среднюю толщину пограничного слоя, чтобы выйти на нужную производительность и потребляемую мощность, а затем исследовать зависимость характеристик процесса от остальных параметров.

В итоге предложена упрощенная модель сименс-процесса, которая в качестве исходных параметров использует технологические параметры реактора (диаметр камеры, диаметр стержней, высота камеры, высота стержней, расходы компонент, давление, излучательная способность стенок камеры, средняя температура охлаждающей жидкости и т.д.), среднюю температуру поверхности стержней и среднюю скорость движения газа (через которую определяется толщина пограничного слоя как функция от числа Рейнольдса). С помощью модели можно оценить основные интегральные характеристики процесса: скорость роста, мгновенную производительность, производительность за процесс (при расчете серии с увеличивающимися диаметрами стержней), энергозатраты на килограмм кремния, выход кремния, ток через стержни, напряжение, мощность и т.д. За отсутствием экспериментальных данных в широком диапазоне режимов работы установок, верификация модели проводилась путём сопоставления с трехмерными расчетами. Сравнение показало адекватность предложенного подхода.

Поскольку большое количество параметров сложным образом влияет на процесс, оптимизация с использованием данной модели должна проводиться с учётом особенностей конкретного реактора и чёткого выбора критериев оптимальности процесса. Это может быть производительность, потребляемая мощность, энергозатраты на килограмм кремния, чистота материала (отсутствие «попкорна»). Также необходимо учитывать стоимость исходного сырья. В работающих по замкнутому циклу производствах необходимо учитывать затраты на конверсию тетрахлорида кремния (основного продукта реакций) в трихлорсилан (исходный реагент). В производствах, не работающих по замкнутому циклу, необходимо учитывать затраты на утилизацию большого количества тетрахлорида кремния. Некоторые способы оптимизации процесса связаны с дополнительными затратами на оборудование. Кроме того, предметом оптимизации может быть изменение режима по мере роста стержней (от затравок порядка 10 мм диаметром до 180 мм стержней).

В качестве иллюстрации возможностей параметрических расчётов ниже представлены зависимости для реактора на 36 стержней, диаметр которых равняется 70 мм. На рис. 2 (а) показана зависимость затрат электроэнергии на получение килограмма кремния (кВт·ч/кг) от расхода трихлорсилана для разных давлений в реакторе при температуре ростовой поверхности 1350 К и мольном отношении в исходной смеси H2/SiHCl3 = 3. Видно, что с увеличением давления энергозатраты меняются нелинейно: сначала снижаются, затем, начиная с некоторого давления, начинают нарастать. Такое поведение связано с тем, что при низких давлениях энергозатраты в основном определяются потерями на излучение. С ростом давления роль конвективного теплообмена увеличивается, и начинает расти потребляемая реактором мощность. Однако за счет утоньшения пограничных слоев, приводящего к увеличению скорости роста, повышение давления до определенного уровня все-таки снижает затраты электроэнергии на получение единицы массы кремния. Если обратиться к графику зависимости производительности реактора от тех же параметров (рис. 2, б), видим, что производительность растет с увеличением давления, однако разница между 6 и 10 атм уже несущественна. Следовательно, для данного реактора не имеет смысла повышать давление выше 6 атм, поскольку энергозатраты растут, а производительность практически не меняется. Стоит отметить, что современные сименс-реакторы работают при давлении 5.5 - атмосфер.

Рис. 2. Зависимости энергозатрат на получение килограмма кремния (а) и производительности реактора (б) при температуре ростовой поверхности 1350 К от расхода трихлорсилана Рис. 3. Зависимости энергозатрат на получение килограмма кремния (а) и производительности реактора (б) при расходе трихлорсилана 10 кмоль/ч от температуры ростовой поверхности На рисунке 3 приведены зависимости энергозатрат и производительности от температуры при постоянном расходе трихлорсилана равном 10 кмоль/ч.

Кривые для разных давлений сложным образом изменяются при повышении давления, однако можно увидеть, что для каждого давления имеется своя температура роста, оптимальная по энергозатратам (рис. 3, а).

Производительность реактора в диапазоне температур, пригодном для промышленного роста (1200-1500 К), растет с температурой при всех исследованных давлениях (рис. 3, б). Однако значительное повышение температуры поверхности может привести к плавлению стержней (поскольку температура внутри стержня ещё выше) или образованию «попкорна», что стоит дополнительно учитывать при оптимизации.

В заключении кратко сформулированы основные результаты работы.

1) Впервые сформулирована, проверена сравнением с экспериментом и использована для практических расчетов трехмерная модель процесса выращивания поликристаллического кремния из газовой фазы, включающая в себя турбулентное течение газовой смеси в реакторе, объемное и поверхностное реагирование, теплообмен в установке (включая излучение) и нагрев стержней электрическим током. Модель позволяет находить производительность установки, потребляемую установкой мощность, делать выводы о структуре получаемого материала, а также обнаруживать проблемные места конструкций.

Фактически, численное моделирование способно заменить дорогостоящее экспериментальное исследование процесса.

2) Впервые сформулирован критерий устойчивости роста поликристаллического кремния по сименс-технологии, позволяющий предсказывать образование или отсутствие областей «попкорна» на стержнях в заданных условиях работы установки. Даны рекомендации по повышению устойчивости роста.

3) Проанализированы процессы, сопровождающие рост поликристаллического кремния по сименс-технологии. Исследована структура течения газовой смеси, что невозможно сделать экспериментально в действующем промышленном реакторе. Показано влияние устройства системы подачи газа на производительность реактора и качество получаемого материала. На основе расчетов даны некоторые общие рекомендации по практической компоновке реакторов и организации процесса роста.

4) Предложена упрощенная модель, способная предсказывать интегральные характеристики процесса без трудоемкого полномасштабного моделирования. С помощью данной модели возможно за достаточно короткое время проводить параметрические исследования процесса.

Программный продукт на основе данной модели может использоваться непосредственно компаниями, изготавливающими сименс-реакторы или производящими поликристаллический кремний по сименс-технологии.

Список литературы [1] Chen H.C., Patel V.C. Near-wall turbulence models for complex flows including separation. AIAA Journal, vol. 26, Issue 6, 1988, pp. 641-648.

[2] S.Yu. Karpov, V.G. Prokofyev, E.V. Yakovlev, R.A. Talalaev, Yu.N. Makarov.

Novel approach to simulation of group-III nitrides growth by MOVPE. MRS Internet J. Nitride Semicond. Res. 4 (1999) 4.

Основные результаты диссертации опубликованы в работах:

1. Д.С. Бровин, С.Н. Колгатин. Анализ устойчивости роста поликристаллов кремния. VII-Всероссийская молодежная конференция по физике полупроводников и полупроводниковой опто- и наноэлектроннике: Тезисы докладов. – СПб.: Изд-во Политехнического университета, 2005. – C.21.

2. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Матер. III Росс. совещ. по росту кристаллов и пленок кремния и исследованию их физ. свойств и структурного совершенства «Кремний-2006». – Красноярск: Изд-во Института физики им. Л.В. Киренского СО РАН, 2006. – C.122.

3. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Аналитический критерий устойчивого роста поликристаллов из газовой фазы // Научнотехнические ведомости СПбГПУ. - 2006. - № 5-1. - С. 39-46. (перечень 4. Д.С. Бровин, А.А. Ловцюс. Зависимость интегральных характеристик “Siemens реактора от параметров процесса. От трёхмерного к одномерному подходу. Тезисы докладов IV Российской конференции с международным участием «Кремний-2007». –М.: МИСиС, 2007. – С. 31.

5. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Одномерный подход к моделированию Siemens процесса // Известия высших учебных заведений. Материалы электронной техники. – 2007. - №4. - С. 6-10.

(перечень ВАК) 6. Д.С. Бровин, А.А. Ловцюс, М.Э. Рудинский. Выбор высоты реактора для восстановления кремния по Siemens технологии. Тезисы докладов V Международной конференции «Кремний-2008». – Черноголовка, 2008. –С. 85.





Похожие работы:

«УДК: АСАДУЛЛАЕВ УЛУГБЕК МАКСУДОВИЧ РЕАКЦИИ МИКРОСОСУДОВ ПИАЛЬНОЙ ОБОЛОЧКИ МОЗГА И РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ В ОСТРОМ ПЕРИОДЕ СУБАРАХНОИДАЛЬНОГО КРОВОИЗЛИЯНИЯ (экспериментальное исследование) 14.00.16 - Патологическая физиология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук Ташкент Работа выполнена во Втором Ташкентском Государственном...»

«Лабунская Елена Алексеевна Взаимоотношение автротрофной и гетеротрофной ткани в процессе развития химерного листа Ficus benjamina ‘Starlight’ специальность: 03.00.12 – физиология и биохимия растений Автореферат диссертации на соискание ученой степени кандидата биологических наук Москва – 2009 Работа выполнена на кафедре физиологии растений Биологического факультета Московского...»

«Филатова Ольга Викторовна ГОСУДАРСТВЕННАЯ БЮРОКРАТИЯ КАК ИНСТИТУТ УПРАВЛЕНИЯ И СОЦИАЛЬНО-ПРОФЕССИОНАЛЬНАЯ ГРУППА В СОВРЕМЕННОЙ РОССИИ: ОСОБЕННОСТИ ФОРМИРОВАНИЯ И ФУНКЦИОНИРОВАНИЯ Специальность 22.00.08 – социология управления АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата социологических наук МОСКВА – 2013 Работа выполнена на кафедре государственного и муниципального управления факультета гуманитарных и социальных наук ФГБОУ ВПО Российский университет дружбы...»

«Фазылова Наиля Амировна Функциональные особенности новой экономической терминологии в публицистическом тексте (на материале печатных СМИ 2002-2007 годов) Специальность 10.02.01 – Русский язык Автореферат диссертации на соискание ученой степени кандидата филологических наук Казань – 2008 Работа выполнена на кафедре современного русского языка и русского языка как иностранного государственного образовательного учреждения высшего профессионального образования Казанский...»

«ЛАПО АННА ВЛАДИМИРОВНА УСОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОЦЕНКИ МОРСКИХ МЕСТОРОЖДЕНИЙ УГЛЕВОДОРОДОВ НА РАННИХ СТАДИЯХ ИЗУЧЕНИЯ Специальность: 25.00.18 – Технология освоения морских месторождений полезных ископаемых Автореферат диссертации на соискание ученой степени кандидата технических наук Москва — 2011 Работа выполнена в Обществе с ограниченной ответственностью Научноисследовательский институт природных газов и газовых технологий – Газпром ВНИИГАЗ Научный...»

«ЗАЙЦЕВА Юлия Алексеевна САМОКОНТРОЛЬ АРБИТРАЖНОГО СУДА ПЕРВОЙ ИНСТАНЦИИ 12.00.15 – гражданский процесс, арбитражный процесс АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Саратов – 2011 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Саратовская государственная академия права Научный руководитель : – кандидат юридических наук, доцент Савельева Татьяна Алексеевна Официальные оппоненты : –...»

«КНЯЗЬКОВ Дмитрий Юрьевич МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ПРОЦЕССА ФОРМИРОВАНИЯ ГОЛОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ЭФФЕКТИВНЫХ МЕТОДОВ РАСЧЕТА ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ специальность 05.13.18 — Математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Москва — 2013 Работа выполнена в лаборатории механики управляемых систем Федерального государственного бюджетного учреждении науки...»

«Бакшеева Юлия Витальевна ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННО-ЧАСТОТНЫХ СВОЙСТВ СИГНАЛОВ В УЛЬТРАЗВУКОВЫХ СИСТЕМАХ ДИАГНОСТИКИ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ Специальность: 05.13.01 Системный анализ, управление и обработка информации (в технике и технологиях) Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург 2009 1 Работа выполнена на кафедре Радиотехнических систем Государственного образовательного учреждения высшего профессионального образования...»

«АЛЬОТАИБИ СУЛТАН МАДЖЕД ПРЕОБРАЗОВАНИЕ СЕМАНТИЧЕСКОЙ ИНФОРМАЦИИ В МАШИННОМ ПЕРЕВОДЕ (НА МАТЕРИАЛЕ РУССКО-АРАБСКОГО МАШИННОГО ПЕРЕВОДА ПОЛИТИЧЕСКИХ ТЕКСТОВ) Специальность 10.02.19. – теория языка АВТОРЕФЕРАТ Диссертации на соискание ученой степени Кандидата филологических наук Москва 2011 Работа выполнена на кафедре общего сравнительно-исторического языкознания филологического факультета ФГОУ ВПО Московский государственный университет имени М. В. Ломоносова. Научный...»

«Магомедова Альбина Джамаловна РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ ПРИЕМОВ ДЛИТЕЛЬНОГО ХРАНЕНИЯ БИСКВИТНЫХ ИЗДЕЛИЙ Специальность: 05.18.01 – технология обработки, хранения и переработки злаковых, бобовых культур, крупяных продуктов, плодоовощной продукции и виноградарства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва 2013 Работа выполнена в ФГБОУ ВПО Московский государственный университет технологий и управления имени К.Г. Разумовского доктор...»

«ШВЫЧЕНКОВА Маргарита Станиславовна МЕЖДУНАРОДНЫЕ АСПЕКТЫ РОССИЙСКО-КАЗАХСТАНСКОГО СОТРУДНИЧЕСТВА В СФЕРЕ КОЛЛЕКТИВНОЙ БЕЗОПАСНОСТИ (1991-2005 гг.) Специальность 07.00.15 –История международных отношений и внешней политики Автореферат диссертации на соискание ученой степени кандидата исторических наук Москва - 2009 Работа выполнена на кафедре теории и истории международных отношений Российского университета дружбы народов и Центре РУДН по изучению СНГ Научный руководитель :...»

«УДК 94 (575)(093) 930.2 (575.1) МАДЬЯРОВА САЛИМАХОН НУМАНДЖАНОВНА ИСТОРИОГРАФИЯ ТУРКЕСТАНСКОЙ АВТОНОМИИ (1917 – 2008 гг.) 07.00.09 – Историография и методы исторического исследования АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата исторических наук Ташкент – 2010 Работа выполнена в отделе Историография и источниковедение Института истории Академии наук Республики Узбекистан. доктор исторических наук, профессор...»

«МЕТЛЯКОВА ЕЛЕНА ВЛАДИМИРОВНА ЛЕКСИЧЕСКИЙ ПОВТОР КАК СЕМАНТИКО-СТИЛИСТИЧЕСКАЯ КАТЕГОРИЯ ОРГАНИЗАЦИИ ЛИРИЧЕСКОГО ТЕКСТА В РАННЕМ ТВОРЧЕСТВЕ АННЫ АХМАТОВОЙ Специальность 10.02.01 – русский язык АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата филологических наук Ижевск – 2011 Работа выполнена на кафедре современного русского языка и его истории государственного образовательного учреждения высшего профессионального образования Удмуртский государственный университет....»

«Джураева Адолат РЕАЛИЗАЦИЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЗАДАЧ ПОВЫШЕНИЯ КАЧЕСТВА ВЫСШЕГО ОБРАЗОВАНИЯ В РЕСПУБЛИКЕ ТАДЖИКИСТАН Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями и комплексами – сфера услуг) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора экономических наук Екатеринбург – 2009 Диссертационная работа выполнена в Таджикском национальном университете (г. Душанбе, Республика...»

«Оришев Александр Борисович ИРАН В ПОЛИТИКЕ НАЦИСТСКОЙ ГЕРМАНИИ НА СРЕДНЕМ ВОСТОКЕ НАКАНУНЕ И В ГОДЫ ВТОРОЙ МИРОВОЙ ВОЙНЫ (1933 – 1943 гг.) Специальность 07.00.03 – Всеобщая история Автореферат диссертации на соискание ученой степени доктора исторических наук Казань – 2007 2 Работа выполнена на кафедре всеобщей истории исторического факультета ГОУВПО Елецкий государственный университет им. И.А. Бунина Научный консультант : доктор исторических наук, профессор Райков Алексей...»

«НУРИЕВ Артем Наилевич ТЕЧЕНИЕ ВЯЗКОЙ ЖИДКОСТИ ВОКРУГ ОСЦИЛЛИРУЮЩЕГО ЦИЛИНДРА: ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ, АСИМПТОТИЧЕСКИЙ И БИФУРКАЦИОННЫЙ АНАЛИЗ Специальность 01.02.05 — механика жидкости, газа и плазмы АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук Казань — 2013 Работа выполнена на кафедре аэрогидромеханики Казанского (Приволжского) федерального университета. Научный руководитель : доктор физико-математических наук, старший научный...»

«Белоусов Константин Игоревич ДЕЯТЕЛЬНОСТНО-ОНТОЛОГИЧЕСКАЯ КОНЦЕПЦИЯ ФОРМООБРАЗОВАНИЯ ТЕКСТА Специальность 10.02.19 – теория языка АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора филологических наук Барнаул 2006 Работа выполнена на кафедре русской филологии и методики преподавания русского языка ГОУ ВПО Оренбургский государственный университет Официальные оппоненты : доктор филологических наук, профессор Л.Г. Зубкова доктор филологических наук, профессор Р.А....»

«Леонард Александр Валерьевич ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ПРИВОДОВ ТРАНСПОРТНО - ТЕХНОЛОГИЧЕСКОЙ МАШИНЫ С ЦИКЛОВЫМИ ШАГАЮЩИМИ ДВИЖИТЕЛЯМИ 05.02.02 Машиноведение, системы приводов и детали машин АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Волгоград – 2013 Работа выполнена на кафедре Теоретическая механика федерального государственного бюджетного образовательного учреждения высшего профессионального образования Волгоградский государственный...»

«ЧЕРЕПАНОВ АНАТОЛИЙ ПЕТРОВИЧ МЕТОД ПРОГНОЗИРОВАНИЯ РЕСУРСА СОСУДОВ И АППАРАТОВ ПО КОРРОЗИОННОМУ ИЗНОСУ, СТЕПЕНИ ОПАСНОСТИ И ОБЪЕМАМ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ Специальность: 05.02.13 – Машины, агрегаты и процессы (по отраслям) Автореферат диссертации на соискание ученой степени доктора технических наук Ангарск - 2013 2 Работа выполнена в Научно-диагностическом центре Открытого акционерного общества Ангарская нефтехимическая компания ОАО НКОСНЕФТЬ. Научный консультант :...»

«ДУМИНА МАРИЯ ВЛАДИМИРОВНА Роль мембранных транспортных белков в регуляции продукции цефалоспорина С у Acremonium chrysogenum 03.01.06 – Биотехнология (в том числе бионанотехнологии) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Москва, 2013 Работа выполнена в Федеральном государственном бюджетном учреждении науки Центре Биоинженерия Российской академии наук Научные руководители: кандидат биологических наук Эльдаров Михаил Анатольевич...»








 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.