WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

УДУМЯН ДАВИД КАДЖИКОВИЧ

Численные методы обработки данных, основанные на

сингулярно-спектральном и метрическом анализах,

и их применения

Специальность 05.13.18 математическое моделирование,

численные методы и комплексы программ

Автореферат диссертации на соискание ученой степени

кандидата физико-математических наук

Москва 2011

Работа выполнена в Национально Исследовательском Ядерном Университете МИФИ

Научный руководитель: доктор физико-математических наук, профессор Крянев Александр Витальевич

Научный консультант: доктор физико-математических наук, профессор Борог Владимир Викторович

Официальные оппоненты: доктор физико-математических наук, профессор Загребаев Андрей Маркоянович доктор физико-математических наук, профессор Севастьянов Леонид Антонович

Ведущая организация: Лаборатория Информационных Технологий Объединённого Института Ядерных Исследований (Дубна) июля 2011 г. в 15 часов 00 минут

Защита состоится на заседании диссертационного совета Д212.130.09 в Национальном Исследовательском Ядерном Университете "МИФИ" по адресу:

115409, г. Москва, Каширское шоссе, д. 31, тел. 324-84-98, 323-92-

С диссертацией можно ознакомиться в библиотеке НИЯУ МИФИ.

мая 2011 г.

Автореферат разослан

Ученый секретарь диссертационного совета доктор физико-математических наук, профессор Леонов А.С.

Общая характеристика работы

Актуальность темы Обработка данных в различных областях науки, техники и социальных сферах с целью выявления из данных различного рода информации, описывающей рассматриваемую систему или процесс, является одним из основных актуальных направлений научных исследований как теоретического, так и практического характеров.

Более того, в настоящее время исследуются все более сложные системы и процессы, данные о состоянии и поведении которых имеют все более сложные скрытые структуры и выявление из них интересующей исследователя информации требует создание более сложных комплексных схем, способных выявить такого рода информацию об исследуемой системе или процессе.

Одними из основных задач обработки данных являются:

задачи интерполяции и восстановления значений исследуемой функциональной зависимости, в том числе, в условиях наличия в данных хаотических компонент, задачи выделение детерминированных, хаотических и аномальных компонент при восстановлении функциональных зависимостей по исходным неопределенным данным.

К настоящему времени разработано много различных методов и схем, решающих различные частные задачи интерполяции и восстановления функций одной и многих переменных и выделения из исходных данных детерминированных, хаотических и аномальных компонент [1-3].

В 1960-70 гг. как альтернатива интерполяционной схеме Лагранжа и других, основанных на ней интерполяционных схемах, были предложены и разработаны схемы сплайн - интерполяций, которые обеспечивали равномерную сходимость интерполяционных сплайн приближений для любой непрерывной функции [4,5].

Еще одним современным направлением решения задач восстановления функциональных зависимостей, в том числе в условиях неопределенности, является сингулярно - спектральный анализ (SSA), продолжающийся интенсивно развиваться на протяжении последнего десятилетия [6,7].

Схема представления функций в виде линейных комбинаций базисных функций, в том числе полиномов и сплайн-аппроксимаций, в принципе, могут быть обобщены на функции многих переменных, но практически такие схемы являются работоспособными только для небольшого числа переменных. Например, многомерные интерполяционные или сглаживающие сплайны типа тонкой пластины, вводимые через их экстремальное свойство, могут быть практически построены только в случае, когда число аргументов восстанавливаемой функции не превышает 6-7. Для функций большого числа переменных эффективных общих схем интерполяции и восстановления функциональных зависимостей до сих пор нет.

Имеются лишь различные приближенные схемы интерполяции типа кусочно-линейных, которые с одной стороны требуют для своей реализации большого числа данных, с другой стороны даже при большом числе данных часто не обеспечивают нужной точности.

Еще одной широко распространенной схемой приближенного восстановления функциональных зависимостей, в том числе для случая многих переменных, являются нейронные сети [8,9].

В настоящее время для решения многих прикладных задач с помощью компьютерной техники имеется острая необходимость в разработке новых эффективных схем интерполяции и восстановления функций многих переменных, в том числе в условиях наличия хаотических погрешностей в известных значениях функции в точках X1,..., Xn E m, по которым восстанавливаются значения функции в других точках пространства E m, и решения с их помощью сложных прикладных задач. Примерами таких актуальных задач в ядерной области, рассмотренных в настоящей диссертации, являются:

задача выявления аномалий в солнечной активности [10,11] и задача восстановления распределения энерговыделения в активной зоне (АЗ) ядерного реактора [12,13].



Целью диссертационной работы является создание методов, вычислительных алгоритмов и программ решения сложных задач обработки данных с помощью сингулярно-спектрального и метрического анализов, достижение которой включает в себя:

1. Создание новых эффективных методов интерполяции и восстановления значений функций одной и многих переменных, основанных на метрическом анализе;

обработки неопределенных данных, включая выделение детерминированных и хаотических компонент, основанных на сингулярно - спектральном анализе и способных выявить особенности в регистрируемых излучениях солнечной активности;

3. Разработку схемы и программы высокоточного восстановления поля распределения энерговыделения в активной зоне (АЗ) ВВЭР с помощью методов, основанных на метрическом анализе.

Для достижения указанной цели были поставлены следующие задачи:

1. Создать новые эффективные методы интерполяции, основанные на метрическом анализе, и их реализации в виде программ;

2. Создать новые эффективные методы восстановления, основанные на метрическом анализе, и их реализации в виде программ;

3. Обосновать сходимость интерполяционных и восстановленных значений к точным значениям функции для созданных методов;

4. Разработать и реализовать в виде программы схему выявления особенностей в солнечной активности в условиях больших уровней зашумленности в регистрируемых сигналах, на основе сингулярно - спектрального и вейвлет анализов;

5. Разработать схему и программу высокоточного восстановления поля энерговыделения в активных зонах реакторов.

Методы исследований Сингулярно - спектральный анализ позволяет эффективно выделить из сильно зашумленных временных рядов трендовые составляющие;

Вейвлет - анализ позволяет после выделения трендовой составляющей обнаруживать непериодические аномальные структуры в исследуемых временных процессах;

Метрический анализ эффективные методы интерполяции и восстановления значений функций одной и многих переменных даже при небольшом числе исходных данных.

Научная новизна 1. Созданы новые методы и программы интерполяции функций, основанные на метрическом анализе;

2. Созданы новые методы и программы восстановления функций одной и многих переменных, основанные на метрическом анализе;

3. Разработана новая комплексная схема и программа выделения скрытых аномалий в исследуемых хаотических временных процессах, основанные на сингулярно - спектральном и вейвлет анализах;

4. Разработана новая схема, основанная на метрическом анализе, и программа для восстановления распределения энерговыделения в АЗ реакторов ВВЭР с учетом показаний датчиков внутриреакторного контроля.

Практическая значимость результатов Предложенные и разработанные в диссертации методы, схемы и программы интерполяции и восстановления функциональных зависимостей могут применяться в различных областях для обработки экспериментальных или статистических данных, особенно при решении задач восстановления функциональных зависимостей от многих переменных, в частности многомерных временных процессов.

В настоящее время разработанные в диссертации методы, схемы и программные коды используются при обработке данных состояний литосферы и биосферы и для решения задач, связанных с восстановлением распределения энерговыделения в АЗ ядерных реакторов ВВЭР-1000. Часть диссертационной работы выполнялась в рамках Федеральной целевой программы "Научные и научнопедагогические кадры инновационной России".

Обоснованность и достоверность полученных результатов Обоснованность полученных результатов следует из того, что при аналитических и численных исследованиях в диссертации использовались строгие и обоснованные методы: сингулярно спектральный анализ, вейвлет - анализ, апробированные схемы метрического анализа. В то же время в диссертации проведен ряд исследований по обоснованию разработанных новых методов, в частности, доказаны теоремы сходимости для методов интерполяции и восстановления значений функций, проведены сравнения численных результатов с результатами, полученными с помощью апробированных классических методов и сравнением с реальными экспериментальными данными.

Личный вклад автора. Все результаты диссертации, выносимые на защиту, получены автором. В работах, отражающих содержание диссертации и выполненных в соавторстве, автору принадлежит равный вклад в разработку математических моделей, методов и алгоритмов численных решений рассматриваемых задач и их программную реализацию.

Апробация работы. Полученные в диссертации результаты были доложены на: Международной конференции "Mathematical Modeling and Computational Physics 2009, Дубна, Всероссийской конференции "Фундаментальные физико - математические проблемы и моделирование технико - технологических систем"(2008, 2009 гг.);

Всероссийской конференции по проблемам математики, информатики, физики и химии (2009, 2010, 2011 гг.); Научных сессиях МИФИ (2008, 2009, 2010, 2011 гг.); отраслевом научном семинаре в Курчатовском научном центре (2010 г.); научном семинаре под руководством профессора В.В. Иванова (Лаборатория Информационных Технологий Объединённого Института Ядерных Исследований); научном семинаре по математическому моделированию под руководством профессора Л. А. Севостьянова (РУДН, 2009 - 2011 гг.); научном семинаре под руководством профессора Н.А. Кудряшова (МИФИ).

Публикации. Полученные в диссертации результаты представлены в 22 работах из них 5 в журналах списка ВАК.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Список цитируемой литературы содержит 96 наименований. Общий объем диссертации 122 с.

Краткое содержание работы.

Во введении дается обзор публикаций по тематике диссертации, общая характеристика работы, ее актуальность, формулируются цели диссертации, научная новизна и значимость, дано краткое изложение содержания работы.

В первой главе рассматривается интерполяция функций одной и многих переменных с помощью схем, основанных на метрическом анализе. Предлагаются новые схемы и алгоритмы интерполяции функций одной и многих переменных на основе метрического анализа.

Рассматривается задача интерполяции функции:

либо в одну точку X либо в совокупность заданных точек, при наличии информации о значениях этой функции в точках X1,..., Xn :

В пространстве E m задается метрика, поражденная нормой:

где j - метрические веса, которые удовлетворяют следующим В общем случае метрические веса 1,..., m учитывают характер изменения исследуемой функции при изменении ее аргументов и вычисляются с учетом взаимного расположения точек X1,..., Xn и значений функции Y1,..., Yn в этих точках.

Вводится (n n) матрица метрической неопределенности W для точки X относительно совокупности точек X1,..., Xn в которых значения функции известны;

где Определяется числовая характеристика N D метрической неопределенности интерполированного значения Y в точке X по значениям функции в точках X1,..., Xn с заданными интерполяционными весами z = (z1,..., zn )T с помощью равенства:

Ставится задача подбора таких значений весов zi, i = 1,..., n, удовлетворяющих условию нормировки n zi = 1, чтобы числовое значение характеристики метрической неопределенности (5) было минимальным:

В случае n m решение задачи (5) дается равенством:

Доказываются следующие теоремы о свойствах интерполяционных значений, полученных с помощью метрического анализа.

Теорема 1. Интерполяционное значение функции Y (X ) сходится к точному значению Yk в узлах интерполяции Xk, k = 1,..., n, когда Теорема 2. Интерполяционная функция, построенная методом метрического анализа, непрерывна.

Предлагается одна из возможных схем определения числовых значений метрических весов l, основанная на исследовании степени влияния каждого аргумента на изменение функции путем сравнения восстановленных значений функции в точке X с включением аргумента и без его включения в усеченной точке X(l) = (X1,..., Xl1, Xl+1,..., Xm )T размерности m 1.

Дается решение задачи (6) через собственные вектора и собственные значения матрицы метрической неопределенности W.

Показано, что для случая n > m + 1 матрица метрической неопределенности W вырождена и задача (6) имеет бесконечно много решений, причем N D = (W z, z) = 0.

Доказано, что в одномерном случае m = 1, интерполяция Лагранжа является одним из частных случаев интерполяции с помощью метрического анализа, причем выполняются равенства N D = (W z, z) = 0, (z, 1) = 1.

Чтобы обойти сложности, связанные с вырожденностью матрицы метрической неопределенности W, для случая n > m+1 предлагаются различные подходы, такие как:

1. Использование вместо матрицы W регуляризованной матрицы Wr = W + M, где M - матрица регуляризатор, - параметр регуляризации.

2. Поиск решения в подпространстве нулевого собственного значения матрицы W, в рамках которого рассматривается задача на минимум метрической неопределенности:

где µi > 0 - заданные числа для фиксированной точки X, в которой ищется интерполяционное значение, i, i = 1,..., n m - собственные векторы матрицы W, соответствующие ненулевым собственным значениям. Вектор интерполяционных весов и интерполяционное значение Y для точки X, связанные с вектором c, являющимся решением задачи (8), даются формулами:

3. Введение вместо матрицы (3) ее модификаций, которые при n > m + 1 в общем случае невырождены.

Рассмотрены конкретные примеры интерполяции непрерывных функций и их сравнение с интеполяциями Лагранжа, одномерными кубическими сплайнами и двумерными сплайнами класса тонкой пластины. Приведенные примеры показывают, что интерполяция методом метрического анализа обеспечивает эффективные результаты. Интерполяция методом метрического анализа, в отличие от сплайн интерполяции, не предполагает задания базисной системы функций, а к каждой точке X, в которой ищется интерполяционное значение, применяется индивидуальным подход с учетом взаимного расположения этой точки к интерполяционным узлам. Следует отметить, что количество операций, необходимых для вычисления интерполяционных значений с помощью метрического анализа, растет пропорционально N, где N - количество точек, в которых необходимо получить интерполяционные значения.

Во второй главе диссертации рассматриваются задачи сглаживания и аппроксимации функциональной зависимости при наличии хаотических отклонений заданных значений функции от ее точных значений. Таким образом, предполагается, что заданные в точках X1,..., Xn значения функции Y1 = F (X1),..., Yn = F (Xn ) известны с погрешностями. Пусть KY - ковариационная матрица вектора значений Y = (Y1,..., Yn)T. Для произвольной точки X восстановленное значение Y ищем в представлении где вектор весов z находится как решение следующей задачи на минимум суммарной неопределенности:

- параметр сглаживания. Сглаженное значение в произвольной точке X дается равенством Доказывается следующая теорема.

Теорема. Для точек X = Xi, при +0 решение задачи (11) стремится к значению функции Yi.

В ходе доказательства этой теоремы выводятся формулы, дающие сглаженные значения в точках X1,..., Xn.

Дается представление задачи (11) через собственные значения и собственные вектора матрицы W :

Искомое сглаженное значение где F = [1...n], = ((1, 1),..., (n, 1))T.

Для случая n > m, когда матрица W вырождена, применяются те же подходы, которые были описаны в главе 1.

В первом подходе производится регуляризация матрицы W : Wr = W +M, где M - матрица регуляризатор, - параметр регуляризации, а вместо задачи (11) рассматривается задача с использованием регуляризованной матрицы Wr.

Во втором подходе действуем в подпространстве нулевого собственного значения. 1,..., nm - собственные вектора матрицы W, соответствующие нулевому собственному значению 0 = 0.

Обозначим F0 = [1...nm], c0 = (c1,..., cnm)T, удовлетворять условию интерполяции при = 0, т.е. определять интерполяционную функцию, сходящуюся к значениям функции в точках Xi.

Искомое сглаженное значение Ysm дается формулой модифицированные матрицы метрической неопределенности, которые при n > m - невырождены.

При восстановления функциональной зависимости, для определения оптимального значения параметра сглаживания применяется функционал невязки Выбирается такое значение 0, для которого (0 ) = 0.

функциональных зависимостей с помощью метрического анализа.

Предлагается и другой подход в рамках метрического анализа в задаче сглаживания на основе информации о взаимном расположении точек X1,..., Xn, использующий итерационный процесс. При таком подходе роль параметра сглаживания играет количество итераций l и, тем самым, он носит дискретный характер.

Для одномерного случая m = 1 представлено сглаживание методом сингулярно спектрального анализа (SSA), который также не предполагает априорного задания базисной системы функций. Сглаживание методом SSA используется в главе 3 в задаче удаления тренда для рядов вариаций интенсивности потока галактических космических лучей. Если сглаженную кривую (тренд) определять с точки зрения частотных характеристик, то для сглаженных с различными степенями сглаживания кривых можно построить периодограмму, которая является оценкой плотности спектра мощности (ПСМ), и определить частоты, на которых эта периодограмма максимальна. Это позволяет отделить низкочастотные трендовые составляющие ряда от остальных.

Для задач сглаживания и аппроксимации, при наличии больших выбросов в заданных значениях функции, представлены робастные методы на основе метрического анализа. В этом случае для значений функции Y1,..., Yn в точках X1,..., Xn вместо представления где Ysm (Xi) - сглаженное значение в точке Xi, Ych (Xi) - хаотическая компонента в точке Xi, используется представление где Ysr (Xi) - компонента, соответствующая большим выбросам.

Это представление находится с помощью итерационного процесса, сходящегося за конечное число шагов.

В третьей главе представлено решение актуальной проблемы выявления аномалий в солнечной активности с помощью разработанных в диссертации комплексных схем, основанных на SSA и вейвлет - анализе. Требуется выделить из наблюдаемого временного ряда полезный сигнал на фоне подавляющего шума, характеристики которых априори не известны. Сигналы наблюдаются на небольших интервалах времени внутри временного ряда и представляют собой совокупность квазипериодических процессов, с изменяющимися частотными и амплитудными характеристиками.

Рассматривается в общем виде временной процесс, задаваемый в виде ряда f = (f1,..., fN ). Выделяется временное окно (f1,..., fn ) и сдвигается по всему ряду с некоторым шагом h. В результате получаем K = [(N n)/h]+1 "коротких"рядов длины n. Для каждого такого ряда на первом этапе удаляется тренд методом SSA, как низкочастотная составляющая. После удаления тренда к оставшейся части ряда применяется интегральное вейвлет преобразование где a, b R, a = 0, (t) - анализирующий вейвлет, (t) - комплексное сопряжение (t).

Параметр a (параметр масштаба) определяет размер вейвлета, его аналогом в Фурье - преобразовании является период (частота) гармонического колебания. Параметр b (параметр сдвига) задает временную локализацию вейвлета.

характеристику заданного масштаба a и параметра сдвига b, является глобальным спектром энергии, которая показывает распределение энергии по масштабам в течение всего времени T выделенного "короткого"ряда.

представляет собой полную энергию в течение всего времени T в интервале частот, соответствующую масштабному интервалу [a1, a2 ].

Это позволяет отфильтровать частоты, которые не представляют интерес в рассматриваемой задаче. В результате получаем полную энергию сигнала как функцию времени.

Описанный метод был применен к модельным рядам для двух случаев. В первом примере рассматривается регистрация суммы двух сигналов с различными частотными характеристиками; во втором случае - эти же сигналы проявляются последовательно и разделены во времени. В рядах всегда присутствует белый шум, интенсивность которого изменяется в широких пределах.

Описанный метод вычисления полной энергии E(t), как функции времени, был применен для анализа вариаций интенсивности потока галактических космических лучей (ГКЛ), который регистрируется в разных пунктах на поверхности Земли отдельными нейтронными мониторами. Применение описанного метода для анализа вариаций потока ГКЛ на орбите Земли, связанных с распространением магнитных облаков(МО) солнечного происхождения, указывает на то, что основная энергия частотных вариаций обусловлена Bz - компонентой магнитного поля внутренней структуры МО, а не изменением модуля |B| полного магнитного поля. Временное поведение энергии E(t) слабо зависит от величины геомагнитного обрезания разных нейтронных мониторов. Непрерывные значения энергии E(t) вариаций ГКЛ во время прохождения МО через орбиту Земли позволяют изучать его динамические характеристики с помощью установок типа нейтронных мониторов с высоким геомагнитным порогом.

Было проанализировано нескольких событий, связанных с вариацией потока ГКЛ, с целью поиска раннего предиктора до приближения солнечного возмущения к атмосфере Земли. Для большинства событий величина энергии E(t), связанная с солнечным возмущением, оказывается значительно выше "шумовой"компоненты, и опережает на сутки или даже двое суток регистрацию сгустка плазмы спутником АСЕ.

На рисунке 1 показано изменение энергии во времени (12-22.09. г.) для нейтронного монитора, расположенного в Ломнитски Штит (Словакия), из которого следует наличие приближающегося к Земле МО примерно за 1-2 суток до достижения им поверхности Земли.

В четвертой главе диссертации рассматриваются задачи восстановления распределения энерговыделения в АЗ реакторов ВВЭР - 1000 на основе расчетных значений и показаний датчиков внутриреакторного контроля с помощью схем, основанных на метрическом анализе.

Рассматривается АЗ, состоящая из 163 тепловыделяющих сборок (ТВС). В 64 ТВС в центральном направляющем канале каждой такой ТВС на равном расстоянии друг от друга находятся 7 датчиков прямого заряда (ДПЗ), измеряющих локальное энерговыделение.

В качестве первого приближения для распределения энерговыделения используется нейтронно-физический расчет энерговыделения в АЗ 163*16 (16 призм, равномерных по высоте АЗ). В то же время наряду с результатами нейтронно-физического расчета имеются показания 64*7 ДПЗ. Ставится задача восстановить поле энерговыделения в АЗ реактора по показаниям ДПЗ и с использованием нейтронно-физического расчета.

Предлагается схема восстановления поля энерговыделения в АЗ ВВЭР, использующая схемы, основанные на метрическом анализе, которые, как показали предварительные исследования, удовлетворяют современным требованиям.

В первой части четвертой главы на модельных примерах исследованы схемы восстановления распределения энерговыделения и получены оценки точности восстановления в зависимости от характера погрешностей в исходных расчетных значениях распределения и показаний ДПЗ.

В одномерном случае для функции, значения которой известны в точках (a, h1,..., h7, b) со средней относительной погрешностью q 1 2% (точки, в которых измеряется энерговыделение) и в точках h1,..., h16 со средней относительной погрешностью p 6 8% (в расчетных точках), восстанавливались эти значения с использованием известных погрешностей этих значений в заданных точках и восстановленные значения сравнивались с истинными значениями модельной функции. Погрешности в измеренных точках считаются случайными, а в расчетных точках они могут быть как случайными, так и систематическими. В обоих случаях, вне зависимости от того являются ли погрешности измерений в расчетных точках случайными или систематическими, результат восстановления с использованием различных генераций шумов оказывается достаточно эффективным. Числовые расчеты для конкретного примера показывают, что в измеряемых точках средняя относительная погрешность уменьшается от 2.2% до 1.0%, максимальная относительная погрешность уменьшается от 3.7% до 3.4%; в расчетных точках средняя относительная погрешность уменьшается от 6.4% до 1.3%, максимальная относительная погрешность уменьшается от 13.3% до 4.3%.

В двумерном случае в качестве модели рассматривалась функция f (x, y) = J0( x2 + y 2 ), где J0 (r) - функция Бесселя, константа. Функция f (x, y) задавалась в точках (xi, yi), i = 1,..., N, плоскости (x, y), где (xi, yi) - координаты центров кассет, N = 163 - количество всех кассет. В тех кассетах, где стоят датчики, значения функции задавались со средней относительной погрешностью в 1% (т. к. они являются результатом восстановления функции по высоте), а в кассетах, где датчиков нет, значения функции задавались со средней относительной погрешностью в 8% (т.к. в этих кассетах использовались расчетные значения) с помощью наложения шума датчиком случайных величин. Для двумерного случая также были получены результаты восстановления с достаточно высокой степенью точности. Числовые расчеты для конкретного примера показывают, что в кассетах, где нет датчиков, средняя относительная погрешность снижается от 7.4% до 1.8%; в тех кассетах, где стоят датчики и значения функции задавались со средней относительной погрешностью в 1%, точность восстановления остается в пределах 1%.

Во второй части четвертой главы представлена схема и результаты восстановления распределения энерговыделения на основе реальных данных для ВВЭР 1000.

Для рассматриваемой ТВС в качестве показаний датчиков брались значения, полученные с помощью схемы метрической интерполяции расчетных значений энерговыделений для этой ТВС в местах расположения датчиков. Затем в качестве "зашумленных"расчетных значений в рассматриваемой ТВС брались расчетные значения другой ТВС и с помощью схемы метрического анализа восстанавливались значения энерговыделения в расчетных точках каждой рассматриваемой ТВС. В результате была получена высокая точность восстановления поля энерговыделения, а именно:

средняя относительная погрешность уменьшилось с 15.8% до 3.6%, максимальная погрешность уменьшилась с 18.2% до 5.4%. На рисунках 2 и 3 для одного конкретного плоского сечения по высоте АЗ представлены соответственно зашумленная и восстановленная поверхности энерговыделения. Восстановленная поверхность практически полностью совпадает с исходной поверхностью.

Следует отметить, что высокая точность восстановленных значений энерговыделения частично обеспечена высокой точностью показаний датчиков внутри реакторного контроля. Предлагаемая схема коррекции расчетных значений энерговыделения на базе учета показаний датчиков внутри реакторного контроля в расчетных точках оптимальным образом "усредняет"расчетные значения и значения на основе показаний датчиков. Поэтому точность восстановленных "усредненных"значений "подтягивается"к точности показаний датчиков, становясь более точными по сравнению с расчетными значениями.

Рис. 2. Зашумленная поверхность энерговыделения Рис. 3. Восстановленная поверхность энерговыделения В приложении 1 приведен анализ дополнительных нескольких событий, связанных с вариацией потока ГКЛ на 10 - суточных отрезках времени непрерывных измерений с целью поиска раннего предиктора, возникающего до приближения солнечного возмущения к орбите Земли. Для части событий величина энергии E(t) оказывается значительно выше "шумовой"компоненты, и опережает на сутки или даже двое суток регистрацию сгустка плазмы спутником АСЕ.

Однако, такой предиктор требует более тщательной проверки на гораздо большем статистическом материале.

В приложении 2 показана устойчивость восстановления поля энерговыделения методом метрического анализа.

В заключении сформулированы основные результаты, полученные в диссертационной работе.

В диссертационной работе получены следующие основные результаты:

1. Созданы новые методы и программы интерполяции и восстановления функций одной и многих переменных, основанные на метрическом анализе;

2. Доказаны теоремы сходимости полученных интерполяционных и восстановленных значений к точным значениям функции;

3. Разработаны и реализованы метод и программа выделения полезного сигнала в сильно зашумленных временных процессах.

Разработанные метод и программа позволяет выделять из регистрируемого сигнала компоненту, связанную с солнечной активностью, при превышении шума над полезным сигналом в 4. Разработан метод, основанный на метрическом анализе, и программа для высокоточного восстановления распределения энерговыделения в АЗ ВВЭР.

Основные публикации по теме диссертации:

Статьи в научных изданиях, входящих в перечень ВАК 1. Loran V., Akopyan, Man’ko V. I., Udumyan D.K. Bell-type inequalities and tomographic entropies of multiqudit states. Journal of Russian Laser Research, V. 31 № 1, 2008, pp. 61-69.

2. Крянев А.В., Лукин Г.В., Удумян Д.К. Схемы прогнозирования временных процессов и их применение к анализу динамики макроэкономических показателей. Вестник Университета (Государственный Университет Управления), 2009, № 2, c. 270-272.

3. A.V.Kryanev, G.V.Lukin, D.K.Udumyan. Metric Analysis and Applications. Numerical Methods and Programming, v.10, 2009, pp. 408-414.

4. Крянев А.В., Удумян Д.К Интерполяция функций одной и многих переменных с помощью схем, основанных на метрическом анализе, и их применение в ядерной физике. Ядерная физика и инжиниринг, т.1, №6, 2010, с. 512-522.

5. В.В. Борог, А.В. Крянев, Д.К. Удумян. Комбинированный метод выявления скрытых аномалий в вариациях галактических космических лучей. Геомагнетизм и аэрономия, т. 51, №4, 2011, с. 1-8.

1. Иванов В.В., Крянев А.В., Лукин Г.В., Удумян Д.К.

Нелинейные робастные схемы прогнозирования временных процессов. "Фундаментальные физико - математические проблемы и моделирование технико - технологических систем". Ежегодный сборник научных трудов. Выпуск 12, т.2, 2009, с.547-552.

2. Борог В.В., Крянев А.В., Удумян Д.К. Комбинированный метод выявления скрытых аномалий в хаотических временных процессах. "Фундаментальные физико - математические проблемы и моделирование технико - технологических систем". Ежегодный сборник научных трудов. Выпуск 12, т.2, 2009, с. 536-546.

3. Борог В.В., Крянев А.В., Удумян Д.К. Комбинированный метод выявления скрытых аномалий в одномерных и многомерных хаотических временных процессах. Препринт МИФИ, 001-2008.

4. Рынок НАНО: от нанотехнологий - к нанопродуктам / Г.Л.Азоев, А.В.Крянев, Д.К.Удумян и др.; под ред. проф. Г.Л.Азоева. - М.:

БИНОМ. Лаборатория знаний, 2010, 398 с.

5. В. П. Березнев, А.Н. Васильева, В.В. Иванов, С.Г. Корзенева, А.В.Крянев, Г.В. Лукин, А.Н. Панферова, И.А. Рябошапка, С.А. Сюсюкалов, Д.К. Удумян, Т.В. Шемякина. Выделение детерминированных компонент из неопределенных данных. Труды Всероссийской конференции по проблемам математики, информатики, физики и химии, 2010, с.139-141.

6. А.В. Крянев, Г.В. Лукин, Д.К. Удумян. А.В. Васильева. А.Н.

Панферова. Применение метрического анализа для экстраполяции и прогнозирования функциональных зависимостей. Труды Всероссийской конференции по проблемам математики, информатики, физики и химии, 2010, с.124-126.

7. А.В. Крянев, А.Ю. Курченков, Д.К. Удумян. Восстановление распределения тепловыделения в АЗ ВВЭР-1000 с помощью метрического анализа. Труды научной сессии НИЯУ МИФИ-2010. т.3, с.152-154.

8. В. П. Березнев, А.Н. Васильева, В.В. Иванов, С.Г. Климанов, С.Г. Корзенева, А.В.Крянев, Г.В. Лукин, А.Н. Панферова, И.А.

Рябошапка, С.А. Сюсюкалов, Д.К. Удумян, Т.В. Шемякина.

Выделение детерминированных компонент из зашумленных данных.

Труды научной сессии НИЯУ МИФИ-2010. т.3, с.155-158.

9. А.В. Крянев, А.Н. Панферова, Н.С. Ростовский, Д.К.

Удумян, В.В. Харитонов. Применение авторегрессионных моделей для прогнозирования рынка урана. Труды научной сессии НИЯУ МИФИт.6, с.61-64.

10. A.V. Kryanev, G.V. Lukin, D.K.Udumyan. Metric Analysis and Applications. Book of Abstracts of the International Conference Mathematical Modeling and Computational Physics, Dubna, July 7-11, 2009, p 51.

11. В.В. Иванов, А.В. Крянев, Г.В. Лукин, Д.К. Удумян. Схемы прогнозирования временных рядов и их применение к анализу динамики макроэкономических показателей. XLIV Всероссийская конференция по проблемам математики, информатики, физики и химии, Тезисы Докладов, РУДН 2008, c. 64-65.

12. В.В. Борог, А.В. Крянев, Д.К. Удумян. Комбинированный метод выявления скрытых аномалий в одномерных и многомерных хаотических временных процессах. XLIV Всероссийская конференция по проблемам математики, информатики, физики и химии, Тезисы Докладов, РУДН 2008, c. 61-63.

13. А.В. Крянев, Г.В. Лукин, Д.К. Удумян. Математическое моделирование задач прогнозирования с помощью метрического анализа. XLIV Всероссийская конференция по проблемам математики, информатики, физики и химии, Тезисы Докладов, РУДН 2008, c. 29Н.А. Кудряшов, А.В. Крянев, C.Г. Климанов, Е.В. Иванчикова, С.Г. Корзенева, Д.К. Удумян. Кластеризация семейства генетических последовательностей с помощью спектрального анализа. Науч. сессия МИФИ-2009: Сб. науч. тр. М.: МИФИ, 2009. т. 2. с. 132.

15. А.В. Крянев, Г.В. Лукин, Д.К. Удумян, А.В. Васильева, А.Н. Панферова, Т.В. Шемякина. Интерполяция и прогнозирование функций одной и многих переменных с помощью метрического анализа. Науч. сессия МИФИ-2009: Сб. науч. тр. М.: МИФИ, 2009.

т. 2. с. 133.

16. Крянев А. В., Климанов С. Г., Удумян Д. К., Березнев В.

П., Рябошапка И. А., Сюсюкалов С. А. Робастные схемы выделения многомерных детерминированных компонент из зашумленных данных. Науч. сессия МИФИ - 2011.

17. Крянев А. В., Курченков А. Ю., Удумян Д. К.

Схема восстановления распределения энерговыделения в активной зоне реактора с помощью метрического анализа. М.:

РУДН, Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем, 2011, с.

313-315.

Общий объем публикаций автора по теме диссертации составляет около 4 п.л 1. Гончаров В.Л. Теория интерполирования и приближения функций. М.: Гостехиздат, 1954.

2. Никольский С.М. Квадратурные формулы. М.: Наука, 1979.

3. Крянев А. В., Лукин Г. В. Метрический анализ и обработка данных. М.: Физматлит, 2010.

4. Морозов В.А. Регулярные методы решения некорректных задач.

М.: Наука, 1987.

5. Стечкин С. Б., Субботин Ю. Н. Сплайны в вычислительной математике. М.: Наука, 1976. 248 с.

6. Главные компоненты временных рядов: метод "Гусеница". В сб.

под ред. Д.Данилова и А.А.Жиглявского. - СПб.: СПбГУ, 1997.

7. Голяндина Н.Э. Метод Гусеница - SSA: анализ временных рядов.

Санкт-Петербургский государственный университет, 2004.

8. Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применения.

М.: 2000.

9. Аксенов С.В., Новосельцев В.Б. Организация и использование нейронных сетей. Томск, НТЛ, 2006.

10. Белоносова О.В., Борог В.В., Симаков П.О. Методика регистрации форбуш-эффекта в томографическом режиме. Изв РАН, сер. физ., т.67, №4, 2003, с. 515-518.

11. Борог В.В., Белоносова О.В., Орлова Т.А. Патрулирование солнечной погоды с помощью наземного мюонного годоскопа томографа. Изв РАН, сер. физ., т.70, №10, 2003, с.1549-1552.

12. Митин В.И., Семченков Ю.М., Калинушкин А.Е. "Развитие системы внутри реакторного контроля ВВЭР". Атомная энергия, т.106, вып. 5, 2009, с. 278-285.

13. Загребаев А.М., Прохорова И.В., Овсянникова Н.В.

Информационный подход при решении задач контроля поля энерговыделения в ядерном реакторе. Изв. высш. учеб. завед., №1, 2010, с.13-19.

Удумян Давид Каджикович (Россия) Численные методы обработки данных, основанные на сингулярно-спектральном и метрическом анализах, В работе разработаны численные методы и программы решения задач обработки данных использующих сингулярноспектральный и метрический анализ. Разработаны схема и программа численного решения задачи выявления аномалий в космическом излучении, связанном с солнечной активностью. Разработаны методы интерполяции и восстановления функций одной и многих переменных, основанные на метрическом анализе. Проведены исследования по обоснованию разработанных новых методов и доказаны теоремы сходимости для методов интерполяции и восстановления значений функций. Предложена схема и создана программа восстановления распределения энерговыделения в активных зонах реакторов с учетом показаний датчиков внутри реакторного контроля.

Udumyan David Kadjikovich (Russia) Numerical methods of data processing based on singular-spectral and metric analysis and their applications In work numerical methods and computer programs of the problems solution of data processing using the singular-spectral and metric analysis are developed. The scheme and program of the numerical solution of a problem of anomalies revealing in the space radiation connected with solar activity are developed. Methods of interpolation and reconstruction of functions of one and many variables, based on the metric analysis are developed. Researches on a substantiation of the developed new methods are carried out and proved theorems of convergence for methods of interpolation and reconstruction of values of functions. The scheme and program of reconstruction of distribution energy-release in active zones of reactors taking into account indications of the inside reactor control detectors are oered.





Похожие работы:

«ЕЛИЗАРЬЕВА ОЛЬГА АЛЕКСАНДРОВНА ЭКОЛОГО-БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЭНДЕМИКА ЮЖНОГО УРАЛА OXYTROPIS GMELINII FISCH. EX BORISS. (FABACEAE) В УСЛОВИЯХ ИНТРОДУКЦИИ 03.00.05 – Ботаника Автореферат диссертации на соискание ученой степени кандидата биологических наук Уфа – 2009 2 Работа выполнена в лаборатории геоботаники и охраны растительности в Учреждении РАН Институт биологии Уфимского научного центра РАН Научный руководитель : кандидат биологических наук, старший научный...»

«Брежнева Ирина Николаевна МЕТОДИКА ОЦЕНКИ АЭРОТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ НА ФИТОСТРОМУ ПРИ СТРОИТЕЛЬСТВЕ СКВАЖИН (на примере Оренбургского Предуралья) 03.02.01 – ботаника АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Оренбург – 2010 2 Работа выполнена в Волго-Уральском научно-исследовательском и проектном институте нефти и газа, г. Оренбург доктор биологических наук, профессор, Научный Рябинина Зинаида Николаевна руководитель доктор...»

«Тимофеев Сергей Александрович Модельное изучение динамики инфляции, гравитации и космологической постоянной Специальность 01.04.02 – Теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Долгопрудный 2011 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования “Московский физико-технический институт...»

«Фаттахова Гульнара Рафгатовна ФОРМИРОВАНИЕ КОГНИТИВНЫХ СОСТАВЛЯЮЩИХ ПРАВОСОЗНАНИЯ СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ Специальность – 19.00.07 – педагогическая психология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата психологических наук Уфа 2007 Работа выполнена на кафедре психологии развития ГОУ ВПО Башкирского государственного педагогического университета им. М. Акмуллы (г. Уфа) Научный руководитель – доктор психологических наук, профессор Сорокина Анна Ивановна...»

«Мамзин Евгений Анатольевич Высокопроизводительные клеточные автоматы с реконфигурируемым шаблоном и их применение для моделирования неоднородных динамических систем 05.13.18 – математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Тольятти – 2011 Работа выполнена в Тольяттинском государственном университете Научный руководитель : доктор технических наук, доцент, Лиманова...»

«ЧЕРНОВА ТАТЬЯНА ЕВГЕНЬЕВНА БИОГЕНЕЗ ФЛОЭМНЫХ ВОЛОКОН КОНОПЛИ (Cannabis sativa L.) И ЛЬНА (Linum usitatissimum L.): СРАВНИТЕЛЬНЫЙ АНАЛИЗ 03.00.12 – физиология и биохимия растений АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Казань – 2007 2 Работа выполнена в лаборатории механизмов роста растительных клеток Казанского института биохимии и биофизики Казанского научного центра Российской академии наук. Научные руководители: доктор биологических...»

«РЫБАКОВ Юрий Леонидович ОБЩЕЕ ВОЗДЕЙСТИЕ НА ОРГАНИЗМ СЛАБОГО НИЗКОЧАСТОТНОГО ВИХРЕВОГО МАГНИТНОГО ПОЛЯ ПРИ РАЗВИТИИ ОПУХОЛЕВОГО ПРОЦЕССА 03.01.01 - радиобиология АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора биологических наук Москва, 2013 г. 2 Работа выполнена в Некоммерческом Учреждении Институте медицинской физики и инженерии при Российском онкологическом научном центре им. Н.Н. Блохина РАМН Научный консультант : доктор медицинских наук, профессор Добрынин...»

«Северов Дмитрий Станиславович КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПОТОКОВ ДАННЫХ В ПАКЕТНЫХ СЕТЯХ НА ОСНОВЕ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ. АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2013 2 Работа выполнена на кафедре вычислительной математики Московского физико-технического института (государственного университета) Научный руководитель :...»

«КОЛЕСОВА Елена Алексеевна РАЗРАБОТКА МЕТОДОВ ПРОГНОЗИРОВАНИЯ ГЛОБОДЕРОЗА КАРТОФЕЛЯ И ИСПОЛЬЗОВАНИЕ НЕМАТОДОУСТОЙЧИВЫХ СОРТОВ В БОРЬБЕ С НИМ Специальность 06.01.01. - Общее земледелие Специальность 06.01.07 – Защита растений АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата сельскохозяйственных наук Москва 2010 Работа выполнена в ФГОУ ВПО Российский государственный аграрный заочный университет Научные руководители: доктор сельскохозяйственных наук Дубовик Владимир...»

«ТРОФИМЕНКО Анастасия Евгеньевна РАЗВИТИЕ ИНФОРМАЦИОННО-АНАЛИТИЧЕСКОЙ КОМПЕТЕНЦИИ СТУДЕНТОВ В ВУЗЕ 13.00.08 – теория и методика профессионального образования Диссертация на соискание ученой степени кандидата педагогических наук Челябинск – 2012 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Южно-Уральский государственный университет (национальный исследовательский университет) доктор педагогических...»

«Мартынов Алексей Владимирович АДМИНИСТРАТИВНЫЙ НАДЗОР В РОССИЙСКОЙ ФЕДЕРАЦИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ, ПРАКТИКА ОСУЩЕСТВЛЕНИЯ И ПРОБЛЕМЫ ПРАВОВОГО РЕГУЛИРОВАНИЯ Специальность 12.00.14 – административное право, финансовое право, информационное право Автореферат диссертации на соискание ученой степени доктора юридических наук Воронеж - 2010 1 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Воронежский государственный...»

«Моисеев Алексей Николаевич ОПРЕДЕЛЕНИЕ ДОЗОВЫХ РАСПРЕДЕЛЕНИЙ В БИОЛОГИЧЕСКИХ ТКАНЯХ ДЛЯ ПОЛЕЙ НЕЙТРОНОВ НА ОСНОВЕ МЕТОДА ТОНКОГО ЛУЧА 01.04.01 – приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Автор: Москва – 2011 2 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Национальный исследовательский ядерный университет МИФИ...»

«Росторгуева Наталья Юрьевна РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ ШВАРТОВКИ С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ ЛАЗЕРНОГО КОНТРОЛЯ (на примере нефтегавани Шесхарис порта Новороссийск) Специальность: 05.22.19 Эксплуатация водного транспорта, судовождение Автореферат диссертации на соискание учёной степени кандидата технических наук Новороссийск 2010 Работа выполнена в ФГОУ ВПО МГА имени адмирала Ф.Ф. Ушакова Научный руководитель : доктор технических наук, профессор Демьянов...»

«Жмуров Артём Андреевич Моделирование больших биомолекул и биомолекулярных систем с использованием графического процессора Специальность 05.13.18 – математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Москва - 2011 Работа выполнена на кафедре вычислительной математики Московского физико-технического института (государственного университета) Научный руководитель : кандидат...»

«ВОЛОХ ВЛАДИМИР АЛЕКСАНДРОВИЧ ФОРМИРОВАНИЕ И РЕАЛИЗАЦИЯ ГОСУДАРСТВЕННОЙ МИГРАЦИОННОЙ ПОЛИТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ: СОСТОЯНИЕ, ТЕНДЕНЦИИ, ПУТИ ОПТИМИЗАЦИИ Специальность: 23.00.02 – Политические институты, процессы и технологии АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора политических наук Москва - 2013 2 Диссертация выполнена на кафедрах Управление миграционными процессами и региональным развитием и Государственное управление и политические технологии ФГБОУ ВПО...»

«МЕЗЕНЦЕВА Марина Владимировна ЗАКОНОМЕРНОСТИ ФУНКЦИОНИРОВАНИЯ И НАПРАВЛЕННАЯ КОРРЕКЦИЯ ЦИТОКИНОВОЙ РЕГУЛЯТОРНОЙ СЕТИ 14.00.36 - аллергология и иммунология Автореферат диссертации на соискание ученой степени доктора биологических наук Москва – 2006 2 Работа выполнена в Государственном учреждении НИИ эпидемиологии и микробиологии им. Н.Ф.Гамалеи РАМН Научный консультант : академик РАМН, доктор медицинских наук, профессор ЕРШОВ Феликс Иванович Официальные оппоненты : академик...»

«Окунев Борис Николаевич Энергосберегающие термодинамические циклы в химико-технологических системах Специальность 02.00.04 — физическая химия АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук Москва — 2013 год 2 Работа выполнена на кафедре химической технологии и новых материалов Химического факультета Московского государственного университета имени М.В. Ломоносова Официальные оппоненты : Агеев Евгений Петрович, доктор химических наук,...»

«Шерстюк Татьяна Юрьевна О ПРИБЛИЖЕНИИ ОПЕРАТОРАМИ БАСКАКОВА ФУНКЦИЙ, ИМЕЮЩИХ КОНЕЧНОЕ ЧИСЛО ТОЧЕК РАЗРЫВА ПРОИЗВОДНЫХ 01.01.01 – вещественный, комплексный и функциональный анализ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Красноярск – 2011 Работа выполнена в Читинском государственном университете (ЧитГУ) на кафедре информатики, вычислительной техники и прикладной математики Научный руководитель кандидат физико-математических наук,...»

«Ибрагимов Евгений Рашитович ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СПИРАЛЬНОГО КОМПРЕССОРА СУХОГО СЖАТИЯ 05.04.06 - Вакуумная, компрессорная техника и пневмосистемы АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Казань – 2009 Работа выполнена в ЗАО НИИТурбокомпрессор им.В.Б.Шнеппа Научный руководитель : доктор технических наук, профессор Хисамеев Ибрагим Габдулхакович Официальные оппоненты : доктор технических наук, доцент Юша Владимир Леонидович кандидат...»

«ДАВЫДОВА МАРИНА ВЛАДИМИРОВНА ПЕДАГОГИЧЕСКОЕ СОПРОВОЖДЕНИЕ ФОРМИРОВАНИЯ ОСНОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ РЕБЕНКА В АСПЕКТЕ ПРЕЕМСТВЕННОСТИ ДОШКОЛЬНОГО И НАЧАЛЬНОГО ОБРАЗОВАНИЯ 13.00.02 – теория и методика обучения и воспитания (дошкольное образование) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Челябинск 2013 1 Работа выполнена в ФГБОУ ВПО Челябинский государственный педагогический университет Научный руководитель : Трубайчук Людмила...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.